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Abstract

We study auctions for an indivisble object. The outcome of the auction
influences the future interaction among agents. The impact of that interac-
tion on agent 7 is assumed to be a function of the agents’ valuations. While
agent’s ¢ valuation is private information to i, other valuations are not ob-
servable by / at the time of the auction. We derive equilibrium bidding
strategies for second price auctions in which the seller may impose reserve
prices or entry fees, and we point out differences between the cases where
impacts (which we call externalities) are positive or negative. Finally, we
study the effect of reserve prices and entry fees on the seller’s revenue.

1. Introduction

In a variety of economic settings significant changes of ownership influence the
nature of the interaction in the respective markets. In particular, agents that are
not directly involved in an actual transaction may be affected by its outcome.
If those effects are anticipated at the transaction stage, potential traders will
take them into account and they will adjust their trading strategies accordingly.
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Conversely, those strategies will determine the outcome of the transaction. and
hence the effect on the future interaction.

A good illustration is offered by the following quotation from The Economust.
June 28th, 1997:

“The good sales run at Rolls-Royce began 18 months ago, when it
snatched a huge order to supply Singapore Airlines with engines for
its latest twin-engined Boeing 777s. Its hard-nosed American rivals.
Pratt&Whitney and General Electric. were prepared to take a loss to
land such a prestigious deal. So they assumed Roll-Royce won the bid
by taking an even greater loss”

We demonstrate below how precisely such a behavior arises in the equilibrium
of an auction if loosing the auction has a negative impact on future expected
profits.

Besides the award of major projects as in the example above, other good
examples for the situation we focus on are: changes of ownership in oligopolies
(through merger. privatization, ctc...); the sale of patents that cover technical
innovations ; the award of projects that lead to the creation of a new technological
standard: the location of environmentally hazardous enterprises: the provision by
a single agent of a service having a public good aspect.

Both cases of positive and negative externalities are discussed in the large 10
literature on vertical and horizontal relations. We explicitly describe below how
the sale of a cost-reducing innovation creates negative externalities in a simple
oligopoly model. An interesting illustration for the positive externalities case is
offered by Watz and Shapiro (1985): Two oligopolists offer incompatible products.
and the consumers’ utility increases in the size of the group that uses the same
product (there are network externalities). If compatibility can be achieved by
attaching an "adapter” to onc of the products, then one firm will usually bear the
cost of the adapter. while the increased compatibility benefits both firms. This
creates a free-rider effect. and the incentives to invest in an adapter may be too
low.

In Jehiel and Moldovanu (1996) we focused on participation decisions in auc-
tions with negative externalities and heterogenous buyers having complete in-
formation. In Jehiel et.al. (1996a) we derived revenue-maximizing mechanisms
when agents possess private information about externalities imposed on others.
and in Jehiel et.al.(1996b) we allowed for private information about incurred ex-



ternalities in case another wins the object!. In both papers, an externality term
depends only on the identities of the actual buyer and the sufferer, but not on their
tvpes. However, a more general model of information in transactions followed by
downstrean interaction requires that the effect of the downstream competition on
buyer ¢ will depend both on the type of i (which is private information to 7). and
on the types of others (in particular on the type of the auction’s winner j which
is not observable by i at the transaction stage if ¢ # j ). In this paper we study
svimetric settings where the impact on 7 if the object is sold to a competitor
will depend both on i’s and the competitor’s types, but does not depend on the
identity of that competitor.

Our main goal is to illustrate several qualitative phenomena induced by the
presence of externalities. We focus on the case of two potential buyers bidding
for an indivisible object in a second-price. sealed-bid auction where the seller
nay sometimes keep the object, and we indicate the changes needed when there
arc more than two bidders. The second-price auction is chosen for its analytical
simplicity: it allows us to highlight the phenomena caused by the presence of
externalities without getting too entangled in complex bidding mechanics. A
very similar analysis can be performed for other sale mechanisms, e.g., first-price
auctions, all-pay auctions. etc...

We want to note that our auction model is not a special case of the general
model with affiliated valuations studied by Milgrom and Weber (1982). In that
model. bidder 7's valuation for the object is a function of the signals obtained by
bidders and, possibly, of other variables whose realization is independent of the
auction’s result (some of the variables may not be observable at the time of the
auction). However. in Milgrom and Weber's model. a bidder that does not get
the auctioned object obtains a fixed payoff. usually normalized to be zero. In
our model. when a bidder does not get the object his utility is influenced by the
realized allocation (e.g., by events such as “the good is not sold” or "the good is
sold to another bidder having certain characteristics”. Thus, bidder i’s willingness
to pay depends on i’s belief about possible auction outcomes if this bidder decides
not to acquire the object. As a consequence, even in a complete information
framework bidders face strategic uncertainty.

The paper is organized as follows. In Section 2 we illustrate in detail two
simple settings that fit in our model: the sale of a cost-reducing innovation to
one of two duopolists (negative externalities) and the location of a firm in one of

'The analvsis there employs and further develops the optimal mechanisin design methodology
for multi-dimensional type spaces.



several jurisdictions competing in tax rebates (positive externalities). In Section
3 we present the economic model with externalities, and we describe the analyzed
auction procedures: standard second-price auctions (where the seller uses neither
a reserve price. nor an entry fee). second price auctions with reserve prices. and
second-price auctions with entry fees. We then derive an equilibrium for the
standard sccond-price auction. In this equilibrium a bidder takes into account
both the expected profit if she acquires the object (i.e.. her pure valuation net
of externalities) and the impact she expects in case her competitor acquires the
object. As in the case of affiliated valuations. the equilibrium bid of bidder ¢ is
determined by the event that the competitor j. j # i, has the same valuation as
bidder i (because the setting is symmetric). We note that bids are higher than
pure valuations if externalities are negative, and lower if externalities are positive.

In Section 4 we focus on auctions with a reserve price . The main difficulty
is that a buyer with a high enough valuation expects the good to be sold for
surc. and the effective competition is provided by the other bidder (as in the
case of a standard auction). while for bidders with low enough valuations the
effective competition is provided by the seller’s reserve price. Since the impact of
a loss to the other buyer is different from the impact of the event that the seller
keeps the object. we obtain alternative bidding strategies which must be somehow
combined to formn an overall optimal strategy. For the negative externality case.
the two areas of valuations are separate. and we always find an equilibrium in pure
strategies. This equilibrium displays a discontinuity at a valuation equal to the
reserve price. For the positive externality case, it is impossible to have separate
areas. and an equilibrium in pure strategies (if it exists !) will display a region of
pooling.

In Subscction 4.1 we derive an equilibrium for the negative externalities case.
The lowest relevant bid is strictly higher than the reserve price. and some types
that are, in principle, willing to pay for preemption, choose nevertheless to make
irrelevant bids. We next derive the seller’s optimal reserve price, and we show
that the seller should sometimes announce a reserve price that is strictly lower
than her own valuation for the object. The intuition for this result is simple: since
externalities are negative. when the seller sells more often, the bidders are more
afraid that the good will fall in the hands of a competitor. Consequently, they
bid more aggressively. This effect (which works in the direction of decreasing the
reserve price) may well be stronger than the effect caused by the "traditional”

) - . . . - .
=We normalize bidders’ pavoffs to be zero in the case where the seller keeps the object. The
scller has also a valuation for the object. which may differ from zero.



interest of a monopolist seller to restrict supply (which works in the direction of
raising the reserve price).

In Subscction 4.2 we look at the case of positive externalities. The derivation
of equilibria is rather complex: 1) For the case where the positive externality
is decreasing in the winner’s valuation we are able to prove the existence of a
svimmetric cquilibrium in pure strategies. We find that all types in an interval
(which inclndes tvpes with pure valuations above the reserve price) make the same
equilibriun bid. equal to the reserve price. The main difficulty is to determine
the boundaries of the interval where bids arc pooled : 2) For the case where the
positive externality increases in the winner’s valuation. we show that equilibria in
pure strategies may not exist.

In Section 5 we look at second-price auctions with entry fees. The analysis here
is simpler than that for auctions with reserve prices. Once a bidder has decided to
participate in the auction, it is clear that competition is against the other bidder
(if any) and not against the scller (who has committed to sell the object). After
deriving equilibrium strategies, we show that, in the case of negative externalities.
there is a natural one-to-one correspondence between entry fees and reserve prices
that achieve the same expected revenue for the seller (this is the case in the model
without externalities). The situation is more complicated in the case of positive
externalities. We first show that. no matter what the seller’s valuation for the
object is. a strictly positive measure of types is excluded from participation in
the auction with the optimal entry fee. This result. which sharply contrasts the
usual intuition. stems from the fact that, with positive externalities, exclusion has
the additional effect of mitigating the free-rider effect among buyers. Finally, we
consider a simple class of situations where the externality term does not depend
on the other agents’ private information. We show that. for each relevant entry
fee. the seller can find a reserve price that leads to a strictly higher revenue.
Hence. these two instruments are not cquivalent. More generally, whether the
seller prefers a reserve price or an entry fee depends on the size of the pooling
interval at the optimal reserve price (assuming an equilibrium for the auction with
reserve price exists).

In Section 6 we extend our model to n > 2 buyers. and illustrate several facts
that are not immediately apparent in the 2—buyer case. For example, we show
that the optimal reserve price depends on the number of bidders.

Concluding comments are gathered in Section 7. All proofs appear in an
Appendix.

(W)



2. Hlustrations

2.1. A case of negative externalities: The sale of a patent

Consider 2 firms in a Cournot oligopoly. Assume that the total cost to firm 2 of
producing quantity g; of a homogenous product is given by ¢ - ¢; . where ¢ < L.
Let P(Q) = 1 — @Q be the market-clearing price when the aggregate quantity
on the market is Q = q; + ¢ < 1. In the Nash equilibrium the firms produce

g = o = 1;"“, and the price is p = 1—*—% The profits are given by
2
. . 1—-c¢
ml=m= % (2.1)

(where sq stands for status-quo). All parameters in the status-quo are common
knowledge.

Assume now that an inventor wants to sell a cost-reducing technical innovation
protected by a patent. The firm that acquires the patent will be able to produce
the good with marginal costs 0 < ¢; < ¢. {We assume that the patent can be
sold only to one firm.) The new, reduced cost ¢; is private information to firm ¢
at the time where the innovation is to be sold. However, after the sale. the new
structure of cost is assumed to be revealed to every competitor. To simplify the
discussion, we assume below that both firis will produce positive quantities also
after one of them acquires the innovation and becomes more efficient. If firm ¢
acquires the patent it will earn a profit

(1—2-¢i+¢)° 5

T = ; > (2.2)

Firm j. j 5 7. that does not acquire the innovation will produce with the old
technology (which is now relatively more costly). and will earn a profit
ext (1 —2-c+ Ci)2 sq
it = <7’ (2.3)
J 9 - J
We are in the negative externalities case. Relatively to the status-quo. we obtain
the following:

1. When firm 7 acquires the patent. its benefit from the innovation is given by

m=at -t = (1 —¢) (c— ) (2.4)



2. The non-acquiring firm j incurs a loss given by
ext sq 1 =4
T =g (¢; —¢) (2—=3c+¢) (2.5)
Note that the loss suffered by the non-acquiring firm is a function of the benefit
of the acquiring firm?* (which is private information to the acquiring firm.) Indeed.
by equation 2.4 we obtain

07:%- (1+(:— (140)2+97r7'> (2.6)

Together with equation 2.5 . this allows us to express the loss of the non-acquiring
firm j as:

T =t = gi(mym) = g(m) =

2

c c m c—1 2
= ——-+—+ . l1-c¢ +97T-) 2.7
coor i (Vu-ot o 27)
In this example. the loss of the non-acquiring firm does not depend on its own
benefit were it to obtain the patent ie.. it does not depend on 7;, but it does
depend on the profit of the acquiring firm. which is not observable at the time of

the auction’.

The main question of interest is: How much should a firm. say firm 1. bid
to acquire the patent 7 Note that firm’s 1 valuation is not well-defined since it
depends on 1's beliefs about the likelihood of possible outcomes. To see that.
consider two extreme cases: 1) If firm 1 believes that under no circumstance will
the patent be sold to firm 2 . then its valuation is 7 = 79" — 7. 2) If firm 1
believes that in case it fails to buy the patent. the seller will surely sell to firm 2.
then its valuation is m — Eq,[g1(72)] > m (where E denotes an expectation ).

In general, firm 1 must take into account the expected negative impact given
its beliefs about the probability that the good is sold to firm 2, and its valuation
incorporates a preemptive term. It should be clear that firm 1's belief, on which its
bidding strategy will be based. depends both on the nature of the sale mechanism
(the selling strategy of the seller) and on the bidding strategy of the other firm.
For an equilibrium of a given sale procedure. bidding strategics must be optimal
given beliefs. and beliefs must be consistent with the bidding strategies.

*Tt is this form of dependence which is consistent with the general model described below.

. Dy, 7, .7 g, (7,7, 3(c=1) B .
*Since -—**L—-(”’(): ) — () apd 2elmT) (O:I.T ) = % 4+ 3 S U ((1 — 0)2 + 9771-) < % we obtain that
’/I 7 -

the function G(#) = 7 — g(7. 7) is strictly increasing. This is an iportant requirement for the
general model we develop below.,



2.2. A case of positive externalities: Firm location and tax rebate

Consider a firm that must locate either in comumunity A or in community B of a
country X. or abroad. The firm is indifferent between the locations per se”. and
it chooses the location that offers the highest tax rebate. It is often the case that
the involved local authorities engage in a “bidding war” where tax rebates (and
possibly other sweeteners) are offered.

Assume that each local authority 7. i = A. . has private information that
concerns. for example, the share s; of the local labor force that is adapted to
the kind of work needed by the firm. Assume also that the "social value” of an
cmployed worker in 7 is given by w;. If the firin locates in 7. then it pays the local
tax ¢;. diminished by the tax rebate rate At;. Thus. the overall aggregate payoff
to community ¢ is:

™ — Af, = s;w; +t; — At7

On the other hand. when the firm locates in i, there is a possible spillover on
the labor force i community j.j # 7. Of course. this spillover is primarily in-
fluenced by geographical distance and transportation infrastructure. etc,...Denote
by ¢(s;.s;) the share of the labor force in j that is effectively employed by the
firm when it locates in 7. A reasonable restriction is ¢(s;. s;) < s; . since the total
ciploved force in j cannot exceed the capacity of j. Also gf < 0. since there is a
likelv substitutability effect between the labor force in the two locations from the
viewpoint of the firm. The reduced form of this model is thus as follows: If the
firm locates in 7. then community j incurs a positive externality given by:

7Tj —t. T — t.

J Sw;

w j Wy

gjlmj.mi) = (

Several variations on these theme are possible: for example, if the locating
firm 1s envirommentally hazardous (a nuclear reactor. say) the positive employment
effects must be weighed against the environmental risk and the associated negative
externalities.

3. The Model

To simplify notation and proofs. we focus below on the two-buyer case. In the
sviunetric setting we are considering (to be defined below), this is sufficient for

"Adding  preferences  about intrinsic  characteristes  of the available locations s
straightforward.



the illustration of the effects caused by the presence of externalities. In Scction 6
we comment on the changes (if any) required for the cases where n > 2.

We consider the following situation: A seller owns an indivisible object. The
seller’s valuation for the object is mg. There are 2 potential buyers. Buyer’s 7
pure valuation for the object (i.e., his profit when it acquires the object) is given
bv 7;. Denote by 7_; the valuation of the other buyer.

If the good is sold to buyer i for a price p . the utilities of the agents are as
follows: p for the seller: m; — p for buyer 7: g;(w;.7_;) for buyer j,j # i. We
normalize the utilities of the buyers to be zero in case that the seller keeps the
object.

The functions g, (-. -).which are common knowledge. are assumed to be differ-
cntiable. Note that the first argument of a function g (-.-) is always the type of
the sufferer A. and the second argument is the type of the other agent.

Buyers™ pure valuations are private information. and they are independently
drawn from the interval [zr;. 7;] according with the density fi(-). We denote by
F;(+) the distribution of f;(-).

We consider below sales through a sealed-bid second-price auction, since this
is a relatively simple mechanism that allows us to focus on the effects of the
externalities. A standard second price auctions i1s described by the following
rules: Buvers simultaneously submit bids for the object. Assume without loss of
generality that the bids are by > by, If by > by . then buyer 1 gets the good and
pavs to the seller p = by. Other buyers pay nothing. If by = by, = b then each
buyer gets the object with probability % . The winner pays p = b, and the other
buyer pays nothing.

Second-price auctions with a reserve price proceed as follows: The seller an-
nounces a reserve price R. The buyers then simultancously submit bids for the
object. Assume without loss of generality that the bids are by > by, If R > 0.
then he seller keeps the good and no payments are made. If by > R . and b; > by .
then buyer 1 gets the good and pays to the seller p = max(R, by). The other buyer
pays nothing. If b, = b, = R, then cach buyer gets the object with probability
% . The winner pays p = R, and the other buyer pays nothing.

In second-price auctions with entry fees. the buyers who participate at the
auction must pay an entry fee E. After the fees have been collected, the buyers
participate in a standard second-price auction. We assume. of course, that buyers
who choose not to pay the fee (and hence do not bid at the auction) are still
affected by the outcome of the auction (i.e.. suffer possible negative externalities,
or enjoy possible positive ones).



We consider here a symmetric setting in the following sense: 1) m; = 7, and
. 2) There exists a function f () : [z. 7] — R such that Vr fi(7) = f(7)
( ) 3) There exists a function g(-) : [z.7] x [m. 7] — R such that Vm 7'
(11( ') = g(m. 7)) = go(m. 7). Hence, we assumne that the externality suffered by
agent 1 w ith type 7 if agent 2 with type 7’ gets the object is the same as the
externality suffered by agent 2 with type 7 if agent 1 with type 7’ gets the object.

Let D,g denote the derivative of the function g(-.-) with respect to the first
coordinate (i.c.. the type of the sufferer). and let Dyg denote the derivative of the
function g(-.-) with respect to the second coordinate (i.e.. the type of the causer).
Throughout the paper we assume that

vr.n' € lm.w]. Dyglm.7') < 1 (3.1)

{1

\II

—

aud that
Vr € [a.7]. Dyglm.w) + Dyg(m.m) <1 (3.2)

The last assumption implies that the function G(x) = 7 — g{m. ) is strictly
monotonically increasing on . 7).

We will speak of the negative externalitics case if Vo @' € [x. 7], g(m, @) <0,
aud of the positive externalities case if Va.n' € [z, 7]. g(m.7") > 0.

We analyze below symmetric equilibria of the various auction forms, and we
first derive the equilibrium of a standard sccond-price auctions. without reserve
prices or entry fees.

Proposition 3.1. An cquilibrium of the standard second-price auction is given
by

bi(m;) =m — g (m.m) (3.3)

With suitable assumptions that ensure monotonicity of equilibrium strategies.
the result above casily generalizes to the symmetric n—buyers case - see Section
6.

Note that in the simple case of pure auctions with two bidders there are only
two possible physical outcomes (the good ends up in the hands of one of the
bidders). A re-normalization of buyers™ utilities yields a model covered by Milgrom
and Weber’s (1982) analysis. But. when there are strictly more than two physical
outcomes (c.g.. three or more bidders : two bidders. but the seller may keep the
object) the model is qualitatively different: even with complete information there
Is strategic uncertainty, since bidders’ valuations depend on their belief about who
1s golng to win.

10



4. Auctions with a Reserve Price

4.1. Negative externalities

Assume now that the seller sells through a second-price auction with a reserve
price R. Consider the type G—}(R).which is given by the unique solution to the
equation

Gr)=r—g(r.m)=R (4.1)
Note that GY(R) = R+ g(G™'(R).G™'(R)) < R. The interesting part in the

determination of equilibrium is the prescription for buyers with valuations in the
interval [G7Y(R). R). Given a reserve price of R . these types are interested in
the good only for preemptive reasons. i.e.. they only want to avoid the negative
externality created by the good falling in the hands of others. These types are.
i principle. willing to pay more than IR for preemption. However, as we show
below. given the equilibrium actions of the other bidder. a buyer with valuation in
the interval [G7(R). R) has a chance to get the good only when the other bidder
bids less than R. In this case the good will not be sold to the competitor. and
preemption is therefore not necessary. Hence. bidding zero is ultimately optimal.
Note. in particular. that the equilibrium will not be in dominant strategies. The
lowest relevant bid is G(R) = R—g(R. RR) which is strictly above R if g(R, R) < 0.

Proposition 4.1. Assume that externalitics are negative. An equilibrium of the
second-price auction with reserve price R Is given by

Ty (m;.m) form > R
bilmi) = { 0 for mi < R (4.2)

We now turn to the study of the optimal reserve price policy from the point
of view of the seller. The seller’s expected revenue is given by:

Us(R)y = [FR)-=s| +[2F(R)- (1= F(R))- R] +

2 ["(r = glm.m) - (1= F(m)) - f{m)dn

(4.3)
?

Differentiating this expression with respect to R we obtain:

1— F(R) 1~ F(R)
f(R) F(R)

11

+g(R.R)-

a5 = 2F(R)- f(1) {m ~ R+

} (4.4)



Comparing to the case without externalities, the thing to note is the extra
term involving g(R. R)’. Assuming that the first order condition characterizes
a maximum. the equation that determines the optimal reserve price 18 Rop —

1= F(Ropt) _F(R, )
2\ topt ) CI-F(R,) v
f([\),—,,,t) '(](R()pt ) Ropf) P‘(I{OD?) 7TS .

Since g( Rope Ropt) < 0. it may well happen that the seller optimally announce
a reserve price which is strictly lower than her own valuation (even if the function
R — %}g)m is monotonic). The intuition is as follows: When the seller sclls more
often. the buyers are more afraid that the good will fall in the hands of the
competitor. and they bid more aggressively. If the seller’s valuation is relatively
low. the gain of having higher bids fully offsets the loss suffered in cases where
the eood is sold at a price below valuation. Finally. note that, because of the very
low reservation prices. it may well happen that the monopolist seller increases
supply above the efficient level. i.c.. the object is sold "too often”. This is a novel
phenomenon, since the usual inefliciencies created by a monopolist seller are in
the opposite direction: supply is restricted below the efficient level. i.e., the good
1s sold “too seldom”

Example 4.2. Let n = 2. FEach buyer’s valuation 7; is drawn from the interval
[0.1] with density f(m;) = 1. Let the externality be defined by g(m. ') = —3 . We
obtain that: aU |- R

0—]; = (2R)~(7rg—2]?+1—7?¥
The optimal reserve price Roy, as a function of the seller’s valuation wg. Is as
follows:

) (4.5)

0. if mg < 0.8094

Rop(7s) = sms+ 3+ 37 +3ms — 1. if0.8094 < 75 < 1 (4.6)

1. ifrg>1

T

Note that a scller with a low positive valuation prefers to set a reservation price
cqual to zero. At the cutoff-value wg = 0.8094 the loss of selling below valuation
becomes too high. and the optimal reserve price displays a discrete jump (it Is a
continuous function afterwards).

YObserve that in Myerson's regular case without externalities (i.e.. where the function R —
1—F(R) . . . . . . 1-F(R.,,
1=ER) 56 monotonic). the optimal reserve price. R,,:. satisfies the equation R, — LFlRop)

R , ' 15hes The €4 ; F(Rom)
7g. and hence R,y > wg. This confirms the usual economic intuition about the monopolist that

restricts supply.

12



4.2. Positive Externalities

In this section we study equilibria for the case where the seller imposes a reserve
price and there are positive externalities. The derivation is relatively involved
because. if an equilibrium exists. it will typically involve an area of pooling that
includes tvpes with valuations that are larger than the reserve price.

Let again G~ R) denote the unique solution to the equation 7 — g(w.7) = R.
Note that G"YR) = R+ g(G7Y(R).G"'(R)) > R. The equilibrium we describe
below will have the following structure:

1. There is bidder with type 7. R < 7 < G™'(R).which is indifferent between
a bid of zero and a bid equal to R. and there is a bidder with type 7.
G’I(]?) <

[R.G(7)).

7 < . which is indifferent between any two bids in the interval

2. All bidders with types in the interval [7. 7) make the same bid, equal to R
(and this bid is strictly preferred to any other bid)

3. All types below 7 bid zero. and. finally. all bidders with types m > 7 bid
T — g(m.m).

The next Lemma characterizes the extremities of the pooling interval [7. 7) :

Lemma 4.3. Assume that D,g < 0. and that for all # > R. 7 — g(7.7) > R.
The svstem of equations:

) glu.m) f(m)dm = 0

(u—R)-(F(u)+ F(z)) —

T

(z = R)-(F(2) = F(u)) =

Ju

(z.7)f(m)dm = 0 (4.7)

S

has a solution (u.z) = (7.7) such that R

IN

<G YR)and G"Y(R) <7 < 7.

Proposition 4.4. Assume that D,g < 07 and that, for allm > R, @ — g(7,7) >
R. Let (7.7) be a solution of the system 4.7 that satisfies R < 7 < G7'(R) and

"Observe that this assumption fits with the positive externality example provided in Section
)
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< 7. The strategy profile

A0

m —g(mi.m) form, € 7.7
bi(m)={ R for m; € [7.7) (4.8)
0 for m; € [m. )

constitutes a Nash equilibrium.

Remark 1. : Assume that for all m > R. and for all 7. R < 7" < 7, g(7,7') >
7 — R (this means. roughly, that the externality in all relevant cases is higher than
the gain of acquiring the object). In this case. no matter what u > R Is. there
is no z > u such that the second equation in the svstem 4.7 holds. This implies
that the svstem of equations does not have a solution such that 7 satisfies: ™ >
7> G7YR). The equilibrium of the auction is then given by:

R for m € |7.
bi(m,) :{ : [F ; } (4.9)

0 form € [r.
where @ (i.c.. the type which is Indifferent between bidding 0 and bidding R )

= ]

satisfies the equation

s

(u—R)-(Flu)+1)— / glu.m)f(m)dm =0 (4.10)

Ju

This is the instance of the first equation in the system 4.7 for z = 7. Note that.
for any z. @ > z > R. the equation (u — R) - (F(u)+ F(2)) = [ g(u.m)f(m)dm =0
(viewed as an equation in u ) has always a solution 7 on the interval [R, z].

Our following result looks at the case where the externality function does not
depend at all on the type of the acquirer- In this case the determination of the
pooling interval is somewhat simpler. as the upper end of the pooling interval is

GYR).

Corollary 4.5. Assume that fori =1.2 and for all 7. 7" € [m. 7). Dy(m,7') = 0.
Define then h(w) = g(z.7') for all 7, 7" € [z. 7], and let 7 satisfy H(7) = 0 where
H(u)=(u—R) (F(u)+ F(G™YR))) — (F(G"'(R)) — F(u)) - h(u) The strategy
profile
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7, — g(m.m) for m € [GTHR). 7]
bi(m)={ R for m; € [7.G'(R)) (4.11)
0 for m, € [7.7)

constitutes a Nash equilibrium.
We next show by way of example that cquilibria in pure strategies may fail to
exist when the condition Dyg < 0 is not satisfied.

Proposition 4.6. Assume that cach buyer’s valuation m; is drawn from the in-
terval [0.1] with density f(m;) = 1. Let the externality function be given by
g(m.7') = k7' where 0 < k < 1. and let the reserve price R be such that R < 1—k®.
Then there are no equilibria in pure strategies.

5. Second-Price Auctions with an Entry Fee

Assume now that the seller sells through a second-price auction with an entry fee
E. Our goal is to compare the revenue obtained by using a reserve price to the
revenue obtained by using entry fees. We recall here the well-known result in the
case without externalities: For cach reserve price IR there exists an entry fee £
that yields the same revenue. and vice-versa. We show below that this standard
result generalizes to the case of negative externalities. but does not hold anymore
when externalities are positive. Morcover. for the case covered by Corollary 4.5.
we show that a reserve price policy is superior from the point of view of the seller.

The following Proposition characterizes the equilibrium behavior in auctions
with entry fees (irrespective of the sign of the externalities).

Proposition 5.1. Let 7% be the unique solution to the equation E = u - F(u).
The strategy profile defined by

stay out for m; € [m, 7F)
si(mi) = : (5.1)

enter. and bid 7, — g(m;.m) for m; € [nF. 7]

constitutes a Nash equilibrium.

il

“The condition R < 1 —k above ensures that G™H(R) = £ <1 =7 If GT'(R) > 1. then

)
)

Y

[

R for w; € [F.
[

there is an equilibrium of the form b;(7;) = 0 form €
1

(|



We now compute the seller’s revenue in an auction with an entry fee £ . Since
there is a one-to-one correspondence between F and 7%, we write the seller’s
revenue as a function of 7%, (This also cases the comparison with the case where
the seller imposes a reserve price). The revenue is :

Us(z™) = [FA(r") me| + [2- F(=") - (1= F(x¥)) - =] +

Differentiating this expression with respect to 7%, we obtain:

U ’ ;
G = 2 FE)- S
. 1-F(a) gy 1= F(xF) .
7TS—7TL+W+.(](7T1.7T[)'—F(—7FE)— (03)

For the case of non-positive externalities we obtain that any entry fee policy
Is revenue cquivalent to an appropriately constructed reserve price policy, and
vice-versa.  Indeed. observe the analogy between the expression above and the
respective expression in the reserve price policy (Equation 4.4). In particular, the
optimal entry fee is given by Eyy = Ropr - F(Ropt).

We now turn to the case of positive externalities. and we first illustrate a rather
surprising phenonmenon arising in this case .

Proposition 5.2. Assume thatVr. 7', g(m.7') > 0. and that the function K (u) =

1—F 1-F .. . . . _ ,.
u— it glu.u)- 121 s inereasing” in the interval [m. 7). Then, for any seller’s
flu) : Fu) =] ;

valuation wq. a positive measure of buyvers’ tvpes is excluded from participation
in the auction with the optimal entry fee.

The standard economic intuition for the case without externalities is as fol-
lows: When the demand parameters (here the buyers’ valuations) are much larger
than the supply parameters (here the seller’s valuation). supply restriction (here
exclusion) does not make sense. The valuable sale opportunities that are lost by
exclusion cannot be compensated by the higher payments obtained from types

that participate.

*This assumption is met. for example. when g¢(-.-) is constant and f(-) is uniform ( see
Example 5.3.)
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With positive externalities. exclusion. however. has an additional effect: by
selling less often the seller mitigates the free-rider effect among buyers. It is
interesting that the free-riding mitigation effect is always stronger than the lost-
opportunitics effect.  We illustrate the exclusion phenomenon in the following
example.

Example 5.3. Fach buver’s valuation =; Is drawn from the interval [0.1] with
density f(m;) = 1. Let the externality be g(m.my) = % . We obtain that:

1__7rlz

U
2nk )

o = 27") (g — 27" + 1+

(5.4)

The optimal cut-off type 7, (7g) is given by :

%+i775‘+%\/(17+4775+4(775‘)2 ) if’/’rg <1

Topt\ TS = .
p(7s) 1. if mg > 1

Note that 7, (7s) > 0 for all mg. The optimal entry fee is E, ,(7s) = (7op (75))?.

The general comparison of the seller’s revenue when using an entry fee or a
reserve price is quite difficult when externalities are positive (in some cases. we
do not even know whether an equilibrium of the second price auction with reserve
price exists - see Proposition 4.7). We prove below that. when the externality
term does not depend on the valuation of the competitor. the seller is better oft
using an optimal reserve price rather than using any entry fee.

Proposition 5.4. Assume that Va. 7' . g(m.7") > 0. and that m — g(7,7) > 0.
g AR

Morcover. assume that for all m. 7' € [z.7]. Dyg(m.7@") = 0. For each auction with
an entry fee there is an auction with reserve price that yields a strictly higher
revenue for the seller.

6. Extension to n > 2 Buyers

We now comment on the extension of our (symmetric) model when there are n > 2
potential buyers.

Buyers™ pure valuations are private information. and they are all independently
drawn from the interval [r, 7] according with the density f(-). We denote by F(-)
the distribution of  f(+).

17



Let w = (m,.m.....T,) . We denote by m_;; the vector obtained from = by
deleting the coordinates 7. j.i # j. and by 77 the largest coordinate of m_;.

Let m be the vector of pure valuations. If the good is sold to buyer @ for a
price p . the utilities of the agents are as follows: p for the seller: m; — p for buyer
i gy(mj. 7. w_y) for buyer j.j # i. The functions g; are common knowledge. A
symmetric setting is characterized by the existence of a function g : R — R.
svinmetric in its last n — 2 coordinates. such that if any buyer ¢ with type m;
obtains the object. the externality on any buyer j. j # . with type 7; is given by
.(](’/T]. i 71',_11').

With suitable assumptions that ensure monotonicity. an equilibrium in a pure
second-price auction is given by:!"

1)7'(71’7') =T, — E{Wf,J/TFTf‘JXSm}[g“T"Wf‘n—ij)] (()1)

Note that the svinmetry assumption ensures that the above expression does
not depend on the choice of j. j # i. and that all buyers with the same pure
valuation (i.c.. with the same type) make the same bid (i.e.. the equilibrium is
SVLIINEtric).

The equilibrium for the negative externality case is similar to the one derived
for the setting with only two buyers: All types below IR bid zero. and types above
R bid according to expression 6.1.

A phenomenon which is not apparent for n = 2 is the fact that the optimal
reserve price does. in general. depend on the number of buyers n'!. For a simple
illustration of this dependence. consider the case where for any number n >
2 of potential buyers. the externality if the good falls in the hands of another is
constant. and equal to o < 0. Then. for each buyer i . the equilibrium bidding
strategy is given by b(w) = 0. for 7 € [z. R) and b(7) = 7 —a, for 7 € [R,7]. The
seller’s revenue is given by

Us(R) = [F"(R)-ms]+ [nF""'(R)- (1 - F(R))- R +

n-(n—1)- /'ﬂ(ﬂ' —a)-F" 3 m) - (1 = F(m) - f(m)dr| (6.2)

JR

0The event that determines the bid is that where one of the other bidders has the same
valuation, and all other bidders have a lower valuation.

'The optimal reserve price in the symmetric independent private values case without exter-
nalities case does not depend on n. This is a somewhat surprising, but well known result (see.
for example. Myerson (1981)).
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Differentiating this expression with respect to R we obtain:

oUs L-F(R) LR
o = ETIR ) e = Rk = = (= )0 (6.3)

[t is clear that the optimal reserve price will depend on n unless the total exter-
nality imposed by any buyer. (n — 1) - a. is kept constant as n varies'?2.

An cquilibrium for the n-buyer case with positive externalities (whenever it
exists aud it Is not trivial) displays a region of pooling. as before. The only
significant change is the derivation of the critical types 7(n). 7(n) . It should be
clear from the argument for n = 2 that this derivation depends on the number of
bidders. not the least through the specification of the tie-breaking rule.

Assume that for any nmumber n > 2 of potential buyers. the externality if the
good falls in the hands of another is constant. and equal to a > (0. We are then in
a similar case to the one covered by Corollary 4.5, and 7:r(n) = R+ a. By keeping
the reserve price R constant. and by maintaining the symunetric tie-breaking rule,
one casily obtains that lim,_.. 7(n) = G7Y(R) = R + a. The intuition is as
follows: as n — oc. the probability that the good is eventually sold (even if there
is a positive reserve price) goes to 1. Hence. as n — oc . a bid of zero becomes
attractive for higher valuation types since. in the limit. a payoft of o is assured
with probability one. On the other hand. the probability of winning the good
with the minimal bid R goes to zero. and this bid is optimal for fewer and fewer
types.

Finally. the equilibrium for the auction with an entry fee is analogous to the
2— buyer case. The critical type 7% is given by the unique solution to the equation
E=u- (F(u))"_1 . All types below 7 do not enter the auction, and all types
above bid according to expression 6.1

7. Concluding Remarks

This paper has explored bidding behavior in contexts where there are externalities
between bidders. and where these externalities depend on characteristics that may
not be observable at the time of the auction. The main driving force is the fact
that a buyver’s willingness to pay (which determines her bid). depends in a complex

1) e . - . . . .
"“Situations where the suffering decreases if it is shared among many is captured by the old
tal R P
saving: " Misery loves company ™.
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way on the allocation of the good (which is. in turn, determined by the bids at the
auction). While studying the effects of standard tools such as reserve prices and
entry fees. we have illustrated several important qualitative differences between
the cases where externalities are positive or negative.

It is still an open question whether Nash equilibria (possibly in mixed strate-
gies) exist in auctions with a reserve price when the positive externality increases
in the competitor’s valuation (see Proposition 4.6'?)

Throughout the paper we have abstracted from the possibility that the bids
at the auction mav serve as signals that influence beliefs in the future interaction.
This theme will be treated in subsequent work.

8. Appendix

8.1. Proof of Proposition 3.1

We first assume that buyer 2 bids according to the strategy J3(mp) which is
monotonically in('roa%ing and differentiable. and we derive the necessary FOC
for buyer 1. Buver’s 1 expected utility given that he has type m, and given that
he makes a bid b is -

37H(b) 7 7
Ulmb) = [ (m = Bm)f (ma) dma+ | L8 mem) f(m)dmy(31)

Differentiating the above expression with respect to b we obtain:

OU((;}:. b) _ (13(11)(1)) - f (‘3*1 ([))) . {71 _ ’3(371(())) g (WL 3—1(1))” (8.2)

By symunetry we must have in equilibrium that 371(0) = ;. Hence, we obtain:

oU (my.0)
ob

We now prove that the strategy b(m)
given that buyer 2 plays the strategy b(m,;

=0<=b=m —g(m,m) (8.3)

=7 — q(7r1 m1) is optimal for buyer 1,
T, ) g{ma. ). Assume that buyer 2

5 The conditions needed in order to prove existence of mixed-strategy equilibria in discontin-
uous games (sce Dasgupta-Maskin (1986) )do not apply here. We conjecture that equilibria in
mixed strategies do not exist.
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has type 7> . When buyer 1 bids above my — g(m,. m2) . he gets the good and his
pavoff is m; — (my — g(my. m2)) . When he bids below my — g(m2. m2). buyer 2 gets the
200d. and buyer 1's payoff is g(m;. 7). By the Mean Value Theorem we have that
7 — (13 — g(my. mp)) — g(my.my) = (m — m2) - (1 — D,yg(7.m3)) , where 7 is between
11 and 7. By assumption, 1 — D,g(7.m) > 0. Hence, bidding above m, — g(m2, m2)
is optimal if m > 7 . and bidding below mo — g, m2) is optimal if 7 < my. By
the monotonicity of the function G(7) . the bidding function b(m ) = m —g(m, m1)
satisfies all these optimality requirements for all 7;. ®

8.2. Proof of Proposition 4.1

Assume that buyer 2 bids according to the strategy in the statement of the Propo-
sition. Counsider now buyer 1. and assume that m; € [m. R). For such a type.
bidding zero (or any other bid below R) yields

Uy(m.0) = /RW g(my.my) fmy)dmy (8.4)

Bidding R <b < G(R) yields

Uitm6) = [ (m = B f(mddms o [ glm.ma)f (), (8.5)

Siuce m; < R, the first integral is negative. and bidding zero is preferred to bidding
bh. R <b < G(R). Finally, bidding b > G(R?). yiclds

R G (D)
Ui(m.b) = / (my — R)f(my)dms + (my — 7o) fmy)dmy

JR

| gtmm) (s (3.6)
R

Since 7 < R. the first two integrals in the last expression are negative. and
bidding zero is preferred to bidding above R — g(R. R).

The proof that bidding 7 — g(7,.7) is optimal for types 7y € [R. 7] is anal-
ogous to the one of Proposition 3.1 and is omitted here. B

8.3. Proof of Lemma 4.3

Fix u such that R < u < G (R). and consider the equation

(z = R)- (F(z) - F(u) — / g(z.7) f(x)dm = 0 (8.7)



Defining P(z) = [* z—R—g(z.7) f(7)dr. the previous equation becomes P(z) = 0.
For z > G7!(R) we obtain that

r'(z)= ./uz(l — Do (z.m)f(m)dm + f(z)- (z—g(z.2) —R) >0 (3.8)

By the definition of G-Y(R). and by D,g < 0, we obtain that P(G™'(R)) < 0. By
the intermediate value theorem. we obtain that

P(7) = (1 — F(u)(7 — g(7.6) — R) (8.9)

where u < # < 7. By the assumption that V@ > R, @ — g(7.7) > R, we obtain
that P(7) > 0. Since the function PP(z) is strictly monotonically ncreasing on
the interval [G7H(R). 7] . there exists a unique z. G7'(R) < z < @. such that
P(z)=0.

Hence. for cach u. R < v < G7'(R). we have found a unique z = z(u) >
G Y R) such that

z(u)

(4@ﬁﬁy@ww»—Fm»—/ g(=(u).7) f(m)dr = 0 (8.10)

JUu

By the implicit function theorem. the function z(u) is continuous.
Consider now the continuous function

z(u
prqu—mmﬂw+Fm@»—/>ﬂmmﬂmm. (8.11)

JUu
Note that

z(u)

H(n) = (u=R)-(Flu)+ F(z(w) - |
) = (

2 glu.m)f
+(u — R)(F(u) — F(z(u g V(E(:

RY(F(u)

(m)dm
— F(x(u))

z{u
- N&@»ﬁhdﬂ+L>W—R—ﬂMMﬁWMW (8.12)

1

We have H(R) < 0. By the intermediate value theorem we obtain also that

H(G™I(R)) =

o

F(x(GT(R)) - (GTH(R) - R)
H(E(z(u)) = F(u) - (GTHR) = g(GTH(R).C) - R)
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where GH(R) < ¢ < z(G™YR)). By the definition of G™'(R) . and by D,g < 0.
we obfain that H(G™'(R)) > 0. Hence the equation H(u) = 0 has a solution 7
on the interval [R. G H(R)] .M.

The pair (7.7) where 7 = z(7) is a solution of the system. as required. B

8.4. Proof of Proposition 4.4

Assume that buyer 2 uses the above strategy. and consider a type m, € [r. G7(R)]
of buyver 1. Bidding zero (or any other bid strictly below R) yields:

Up(m.0) = /j g(my.mo) f(ma)dmy (8.13)

Bidding R vields:
U(m. R) = / (71 — R)f(ma)dmy +
: /~ (71 — R+ g(my. 7)) f(my)dmy +

g(my. ) f (7 )dy

—R)-(F(7)+ F(7)) +

E)

AN

O | — w!»—tm\qtolr—*
<o

/T gy m) f(ms)dmy +.éﬂ.(](7T1.7Tg)f(7T2>d7T2 (3.14)

!

S
=
3

o

Type 7 is indifferent between bidding zero and bidding RY?, and:

Ui(7.R) — U (7.0) =0 (8.15)

Further. we have that

: {(Wl = R)- (F(7) + F(7)) - /;.G(Wl-ﬂz)f(ﬂz)dﬁ}
(8.16)

B | =

M The solution need not be unique. It is unique. if, for example. Dig < 0. A more general suf-
ficient condition for uniqueness is given by :Vz. the function loglg(v. z) - (1 — F(v))] is increasing
i e,

P This is exactly how this tvpe was constructed.
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Note that

O{th(m. R('%_l Ui(m.0)) _ F(7) + % - /~ (1 = Dyg(my.m)) fmo)dms  (8.17)

Since 1 — D,g(m.m) > 0. the function Uy(7;. R) — Uy (m.0) is increasing in 7 .
Hence U, (7. R) — Uy(m,.0) > 0 for all types m € [T 7:r] and bidding R is better
than bidding zero for these types. Similarly. bidding zero is better than bidding
R for tyvpes my € [m.7]. In fact. it easily follows that a bid of zero is optimal for
types m € [m.7]. Note also that # > R (since the first equation in system 4.7
does not admit solutions with v < I? .)

We now show that a bid of I is optimal for all types m; € [7. 7:r] We still need
to consider alternative bids b > R. There are two cases: Assume first that G=1(b)
< 7. Then bidding b > R yields :

Uy(m.b) = Aﬁ(m — R)f(my)dmy + j‘[; g(my.my) f(ma)dmy

Assume next that G7Hb) > 7. Then bidding b > R vields :

071(7'('1.1)) = / (771 — 7"2 (1"1'2 +/ A2 g(WQ,WQ))) f(7r2)d7r2
+/4 2) f () dy (8.18)

If G-1(b) < 7 we have then that!¢:

S [ R = glmm) fmddm, (8.19)

If G~'(b) > 7 we have then that:

Ui(m  R) = Up(m. b)) =

Us(my. R) = Uy(my. ) = % . / (R~ (my — g(my. m))) f(ma)dms +

O (m = glmm)) =
/: ( (m1 — g(m.m)) )f(@)d S

!%Note that we have used the assumption that @ > G~ !(R) to derive the two expressions
above.
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We need to show that Uy(wy. R) — Uy(7.b) > 0 for m € [T. ’/':I'] Consider first the
second integral in equation 8.20. For each 7, € [?r G~1(b)] we obtain by the Mean
Talue Theorem that (my — g(ma. m)) — (71 — g(m1.m)) = (ma—m1)- (1= Dyg(7. m2)).
for a certain 7 € [m.m). Since D,g(7.m) < 1. each term in the summation is
non-negative. and therefore the itegral is non-negative.
Consider now the first integral in equation 8.20 (which is also the only expres-

sion appearing in equation 3.19). and let A'(m,) = f;; (R — (m — g(m.m2))) f(m2)dm,
. Observe that K'(7) = 0 '". This shows. in particular, that the type 7 is indif-
ferent between bidding R. and bidding any bid b € (R.G(7)]. Note also that

K'(m) = JZ (=14 D,g(m.7m)) f(me)dm, < 0. and hence that K(m) > 0 for
7 € [7. T:r] This completes the proof that a bid of R is optimal for all types in
the interval [7. 7).

The proof that bidding m — g(m,.m) 1s optimal for types m; € [?r 7] is analo-
gous to the one in Proposition 3.1. and is omitted here. B

8.5. Proof of Corollary 4.5
Define h(m) = g(m, ') for all 7.7" € [z, 7] . The function
H(u) = (u—R) (F(u)+ F(G'(R))) = (F(G"Y(R)) — F(u)) - h(u) (8.21)

is continuous. Since G™HR) > R and h(u) > 0. it holds that:
H(R) = —(F(G™R)— F(R))-h(R) <0; (8.22)

H(G Y(R) =2 (G '(R) - R)- F(G'(R)) > 0. (8.23)

Hence there exists @ € [R. G 1(R)] such that H( @) = 0. The system of equations
4.7 becomes now

(u—R)-(Flu)+ F(z)) = (F(z) = F(u))-h{u) = 0
(z—=R) - (F(z)— F(u) — (F(z) = F(u))-h{z) = 0 (8.24)

We now show that the pair (u.z) = (7. G }(R)) satisfies this system of equa-
tions. The first equality in the system holds for this pair by the definition of
7. The second equality holds since G™HR) — R — h(G"Y(R)) = GTY(R) — R —
g(GHR).G7Y(R)) = 0. The claim follows then by the proof of Proposition 4.4. B

I"This is how 7 was constructed .



8.6. Proof of Proposition 4.6

By standard incentive-compatibility arguments one readily obtains that. with-
out loss of generality, we can restrict attention to equilibria where the bidding
functions are monotonic.

Lemma 8.1. Let b;(m;) be such that b;(w;) = b* > R for all m; in an interval
(7a. ). Then bi(m;) cannot be part of an equilibrium strategy profile.

Proof. Cousider first a symmetric equilibrium (b(m;), b(my)) such that the func-
tion b is constant on an interval as above. By monotonicity. type 7, of bidder 1
prefers bidding b* rather than 0* — =. where £ > (. This yields

(Mg — b )(my — 7q) > /Ib kodmy (8.25)

Analogously. type m, prefers bidding 4" rather than b* + ¢, which yields:

(m, = b")(m, — 7,) < / ' kmodm, (8.26)

The last two equations vield 7, > m,, which is a contradiction!®.

Consider now the case of an asymmetric bidding profile, and assume that
bidder’'s 1 strategy exhibits pooling at a level b*. If b* is not in the range of
by(-). then U's bidding strategy can be changed such that no pooling occurs at
b*. without further consequences. Assume then that 0* is in the range of bo(-).
If bidder’s 2 strategy also requires pooling of types at the bid b*, then the same
arguient as in the symmetric case works. Otherwise. the optimal bid for each
tvpe min the interval [m,. ) 1s 7 — A‘bgl(b*). which cannot be a constant . B

By Lennna 8.1, and the proof of Proposition 3.1 the only candidate for a
sviuetric equilibrium in pure strategies must have the form

i — g(mi.m) for m € [7:r7-, 7
[)1-(7r1-) = R for T € [7~T1 77'1) (827)
0 for @, € [71. ;)

We now show that no such equilibrium exists. Consider first the case of a
symmetric equilibrium having the above form. The system of equations 4.7 reads
oW

I*Note that this argument does not work for b* = R. since then a bid b* — ¢ has other
COUSCQUETICES,
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(z — R)(z—u)— / kmadmy = 0 (8.28)
The only relevant solution of the system is given by: v =7 = EE—IZQ, =7 =

2R(k+1 . o . . : . i
—‘;(Fl As in the proof of Proposition 4.4, it is necessary for an equilibrium that

7> G YR) = 1 k However. %(-_%12 < 1% for all & > 0. This concludes the
proof that no symmetric equilibrinm in pure strategies exists.

Consider now the possibility of an asymmetric equilibrium having the form
oiven in formula 8.27. Type 71 must be indifferent between bidding R and bidding

R+ = yielding:

12

(/ 1 — R)(’T] - /A] / ]\’Tzd’TZ = 5]\,(’/7'2 — 77['2>2 (829)

For type 7y we obtain analogously:

N - 7 . | |
ﬁrJM@—ﬁg:L kmdm = k(R = 71)° (8.30)

Combining equations 8.29 and 8.30 we obtain:

sopo o)

7 B S 3.31
: 8 (7 R)? (8.31)

Assume without loss of generality that 7, < 79 (if these are equal than it im-
mediately follows that 7, = 7. and we are in the case of a symmetric equilibrium
candidate). Equation 8.31 yields then

~ k -
Fl-R<g (7 - ) (8.32)

Since A& < 1. and since 7; > R (sce the proof of Proposition 4.4) we obtain a
contradiction. W
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8.7. Proof of Proposition 5.1

All tvpes that decide to pay the fee face a second-price auction without reserve
price. The fact that the bid 7; — g(7;. 7;) is optimal for a type m; that enters the
auction follows in the same manner as in Proposition 3.1.

[t remains to show that the respective entry /non-entry decisions are optimal.
Consider the type 7% of buyer 1. and assmme that buyer 2 plays according to
strategy s»(-) . By staying out. the payoff of type 7 is given by

[ olm" m) f(ma)ds (8.33)

B

By entering and bidding 7 g(mE. 7% | his payoff?¥ is given by

B+ F()x + [ gt m) fmdm = [ g(x® m)f(ma)dm - (334)

Hence type 7 is indifferent between entering and staying out?’. It is then

straightforward to show that all types m; > 7% strictly prefer to enter the auction. B

8.8. Proof of Proposition 5.2

The claim is obvious if mg > 7. Assume then that 7 < 7. Since g(u,u) > 0.
we obtain that lim, . K(u) = —oc. Observe also that lim,;z K(u) = 7. Then,

no matter how small g is. (possibly negative !) the equation g = K(u) has a
unique solution 7w, (7g) >m. By Equation 5.3. the seller’s revenue is maximized
at Top(7g) when the seller’s valuation is g, If the seller uses the optimal entry
fee Eopi(ms) = wop(ms) - F(mop(ms)). all types in the interval [Zr. Topt(s)) do not

payv the fee and stay out. B

8.9. Proof of Proposition 5.4

Consider an auction with entry fee E. and let 7% be the unique solution to the
equation F = uF(u). For each buyer i. types in the interval [7.7%) do not pay
the fee and stay out, whercas types in the interval [7. %] pay the fee and bid
T — g7 ).

Xote that this type never (i.e.. with probability zero) gets the good.
' The equality in the expression above follows by the definition of 7 F.
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We now construct?! an auction with a reserve price R* where the set of active
types (i.c.. types that bid at least the reserve price) is exactly [7F, 7] . Define

H(R) = (7" - R)-(F(=")+ F(G™'(R))
— (F(G7H(R) = F(x")) - h(x") (8.35)
Note that H(R) is well-defined and continuous in the interval [G(7®), 7%] . We

obtain that??:

H(G(#") =2 F(x%) - h(zx") > 0; (8.36)
H(z") = = (F(G ' (=") = F(=")) - h(=") < 0 (8.37)

Hence. the equation H(R) = 0 has a solution R” in the interval [G(n?). 7¥].
By the construction of R* . and by the proof of Corollary 4.5, equilibrium
behavior in an auction with reserve price RT is given by

i — g(m.m;) for m; € [G_I(RE),ﬂ
bi(m) =<{ RE for m; € [WE,G‘l(RE)) (8.38)
0 for 7 € [r.7%)

If all types m; in the interval 7. G Y(R")) were to bid m; — g(m;, m;) in the
auction with reserve price RE. then this auction would be revenue equivalent
to the auction with entry feec E = 7 F(7%). However. equilibrium behavior in
the auction with reserve price R” requires that all types m; € [#7. G71(RY)) bid
instead RE. Since G(w;) = 7 — glm.m) < R for my < G7YR) , the scller’s
revenue in the auction with reserve price R is strictly higher than the revenue
i the auction with entry fee £ (although both auctions induce the same interval
of active tvpes. B
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