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Economics has long been concerned with the possibility of
decentralized economic organization. Interest attaches on the one
hand to the theory of decentralized processes, and on the other to
identifying those properties of economic enviromments which distinguish
between those that can be successfully coordinated by a decentralized
process and those which cannot be so organized. The broad question - -
addressed in this paper is; "What class of economic environments can be
satisfactorily (with respect to the Pareto criterion) organized by
means of an economic mechanism which is informationally decentralized?"
We study this question on the basis of formulations and results in [6], [7]
and especially [14], where background matérial and fuller discussion of
basic ideas may be found. 4

Resource allocation processes (which are abstract models of economic
organization) typically involve an explicit model of communication using
formal messages ([16], [1%4]). Informational decentralization of processes
has been defined in terms of two properties. The first, involving the
concept of 'privacy', amounts to the requirements that all information
except what is internal to an agent (e.g., his preferences) must come to
him via messages; the second restricts the messages used by the process

to be vectors whose dimension is bounded by a number related to the
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dimension of the commodity space [6]. 1In this way the information-
carrying capacity of messages is constrained, and therefore the informa-
tion that can be communicated is constrained. Thus, the dimension or
"size'" of messages is a basic component of the concept of informational
decentralization. However, without further conditions on communication
restricting the dimension of messages does not impose a meaningful
restriction on the amount of information communicated via those messages.
It seems intuitive that two dimensional messages are "bigger" than one
dimensional ones in the sense that '"more information'" should Ee conveyed
via a two dimensional message than a one dimensional. However, a communica-
tion process using two-dimensional messages can be replaced by one which
uses one dimensional messages without sacrifice of performance. This
paradoxical possibility exists because there are (continuous) functions which
map a lower dimensional space onto one of higher dimension. One such
map is the Peano function, which maps the unit interval continuously onto
the unit square. The inverse of the Peano function can be used to encode
two dimensional messages into one dimension; the Peano function can be
used to recover the original two dimensional information. It is therefore
necessary to impose a condition on the communication process which excludes
such smuggling of information.

One such condition, given in [14], is that the message correspondence,

. 1/ '
which models communication, is locally threaded.— (Another such condition
given by Hurwicz is that a certain function, which plays a role analogous
to the inverse of our message correspondence, should satisfy a Lipschitz

condition.) These conditions, which relate to the smoothness of the

1/

=’ Gee the footnote to Definition 2.1 for the definition of "locally threaded"



communication process, have implications for the smoothness of the relation
between the outcome of the process and the environment. Specifically, if

the message correspondence is locally threaded, then the performance of

the process is given by a continuous function from environments to outcomes.
[Lemma 2.17.

We study organizations whose performance is satisfactory with respect
to a criterion (usually the Pareto criterion) which can be expressed
formally by means of a correspondence & from environmenfs to dﬁt;omes. B
We consider a collection of processes using the same message space and out-
come function, which we call a mechanism [Definition 2.2], and show that
a mechanism whose message correspondences are locally threaded can be (e.g.)
Pareto-satisfactory on a class of environments if and only if the Pareto
correspondence is a union of continuous functions (a completely threaded-
correspondence) on that class of environments [Theorems 2.1 and 2.2].

Since Theorems 2.1 and 2.2 identify a property (complete threading)
of the Pareto correspondence which is necessary and sufficient for the
existence of a (decentralized) mechanism whose performance is Pareto-
satisfactory, the question arises, on what class of environments does the
Pareto correspondence have that property? 1I.e., on what class of.environ—
ments is the Pareto correspondence completely threaded? Our resulté show
that, in the presence of certain rather standard conditions, if preferences
are strictly monofone,then the Pareto-utility frontier correspondence is

completely threaded {Theorem 5.2]. Examples show that strict monotonicity

is indispensible. If further the set of points (allocations or trades)

—
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Which are Pareto equivalent to a given Pareto optimal point is a
singleton, (Pointedness Assumption), then the "Contract Curve'" corres-
pondence is also completely threaded [Theorem 6.1].

The classical welfare theorems establish the Pareto-satisfactoriness
of the competitive mechanism on the class of convex environments. However,
it is not known whether the competitive mechanism has a locally threaded
message correspondence on the full class of environments on which the
welfare theorems hold. It was established in [14] that the competitive
mechanism does satisfy that regularity condition on the class of pure
trade environments with Cobb-Douglas utilities. Furthermore, it is clear
that when the competitive equilibrium is unique (and the Walras correspondence
is upper hemi-continuous), the regularity condition (local threading) is also
met. The case of multiple equilibria for environments which do not
satisfy the assumptions of our theorems remains open. It should be
pointed out that the competitive mechanism, as it is ordinarily specified,
does not meet our requirements for a mechanism in the case of multiple
equilibria., We require that a particular equilibrium be selected in a
continuous fashion as the environment varies. Indeed, one interpretation
of our result is that the conjunction of (i) the requirement that the
economic mechanism make a selection of equilibria for cases in which
there are multiple equilibria, (ii) the regularity condition on communica-
tion, and (iii) Pareto-satisfactoriness of performance,restriﬁts the

allowable environments to very classical ones.



Section 2: gp-satisfactory Mechanisms

In this section we give the definitions needed to determine the
structure of mechanisms which have satisfactory performance relative to an
abstract criterion represented by a correspondence & from environments
to actions. We call these # -satisfactory mechanisms. In subsequent
sections we take & to be the Pareto correspondence. We begin by re-

producing the definition of a resource allocation process given in [14].

Definition 2.1 Let E, M and Z be topological spaces , let y:E- M

be a correspondence and g:M -+ Z a function. The pair (y,g) 1is a resource

allocation process on E (with message space M) if

2
(i) vy 1is locally threaded'—/
(ii) g 4is continuous

(iii) g 1is compatible with vy, i.e., for e ¢ E if m and m'

are in vy(e) then g(m) = g(m').

The performance of a resource allocation process (y,g) 1is Eﬁaracterizgd by

the function f =g.y:E 3 Z.

If f:E -+ Z is a given continuous function, we say that (v;g8) realizes

f and that M is sufficient for f if f =

g .Y See [14, Definition 1,p. 169].

/ For convenience we give Definition 6 of [14, p. 173]. The correspondence
Y:E + M is locally threaded if for each e ¢ E there exists an open neighbor-

hood of e,3(e) c E and a continuous function s :3(e) » M such that s (e") ¢ v(e)
for all e' ¢ 3(e). € e

[P



The structure is as yet not fully adequate for the study of Pareto satisfactory
mechanisms, since the outcome of a resource allocation process is a point,

while the outcomes corresponding to equilibria of a Pareto satisfactory process

must cover the Pareto set.

Let T:E+ M be a correspondence. We may e.g., interpret T (e)
to be the set of message complexes which are equilibria of a communication
process in the environment e. 1In general T is not compatible with the
outcome function g:M -+ Z. Where there are multiple equilibria, different
equilibria could lead to different allocations, as in the cé;e of multiple

competitive equilibria. We may consider the family of correspondences vy

from E to M which lie in T and are compatible with g; i.e.

T = {yv| v(e) cT(e) for all e ¢ E and m,m" ¢ y(e) implies g(m) = g(m")}

Each such selection from T, together with the function g, determines a
resource allocation process provided that condition (i) of Definition 2.1

is met, namely that the selection y is locally threaded on E.

. Definition 2.2  The pair (T,g) consisting of the family T and the function

g 1s a mechanism provided (y,g) is a resource allocation process for all

vyel.
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Let ©:E > Z be a correspondence., We interpret £ as

optimality criterion. Thus, for each e ¢ E, (e) C Z

points in Z which are considered optimal for e.

whether Z 1is the space of allocations, trades or other outcomes.)

cases we will consider below & 1is the Pareto correspondence,

is the set of Pareto optima of e.

We consider next redistributions of the initial endowment.

conventional pure trade case,for example, such redistributions

Edgeworth Box and the contract curve fixed, varying only the initial endow-

ment point in the Box.

a continuous process.

the

is the set of

(We do not here specify

In the

i.e., &(e)

In the

leave the

We shall in addition require redistribution to be

We may as well think of it as a particular kind of

continuous transformation of the enviromment by a process not part of the

economic mechanism and which does not alter the optimal set

Definition 2.3 Let /B be the class of continuous functions

that £(d(e)) =@(e) for all e ¢ E. We call the function d

rule.

We may now define o - satisfactoriness of mechanisms.

& (e).

d:E + E such

a redistribution

Definition 2.4. A mechanism

(i) for every vy e¢T,
(ii) for every e ¢ E
d ¢ # such that

Condition (i) of Definition 2'4}(n0n-wa8tefulness)
J

T,g) is @ - satisfactory on E if

and e ¢ E, g -+y(e) ¢ @(e).
and z ¢ ©(e), there exist y ¢[' and
go vo d(e) =z,

requires that every



outcome of the mechanism be a @ - optimum.

Condition (ii),(unbiasedness);requires that any outcome =z which is
£ - optimal for an enviromnment e be a possible outcome of the mechanism
for some choice of equilibrium, allowing for an admissible transformation of

3
the environment e.g., a redistribution of initial endowment.—

We note next that the performance of a resource allocation process is

continuous.

Lemma 2.1. Let (v,g) be a resource allocation process on E with message

space M, and let f =g .vy:E'+ Z. Then f 1is continuous.

Proof. Let U be open in Z. We shall show that f_l(U) is open in E.
Now

f_l(U) = Y_l-g—l(U) = y_l(V), where V 1is open in M since g is

continuous, and where y-l(V) = {e ¢ E \y(e) c V}l. Let pe y-l(V). We

-1
shall show that vy (V) contains a neighborhood of p in E, and hence is

open in E. Since vy 1is locally threaded, there exists an open set E

containing p and a continuous function s:E + M such that s(e) ¢ y(e)

<3 N]

for e ¢

>/ Hurwicz, taking £ to be the Pareto criterion, required only that an

outcome Pareto equivalent to the given alternative 2z be found by the

mechanism [6]. Our requirement is slightly stronger if Z is the space of
allocations or trades, and the same if Z 1is the space of utility values. The
stronger requirement avoids some complications which do not seem to contribute
anything essential to .aur understanding, The weaker form of Condition (ii)

would require replacing the Pareto point z in theorems 2.1 and 2.2 by a Pareto
equivalent point.



Since s(p) ¢ V and V 1is open there exists an open neighborhood W of
p in E such that s(W) ¢ V. But this implies W C y-l(V), which since
p € W, suffices to show that y-l(V) is open in E. §

Thus, the fact that the message correspondence is locally threaded imposes
a substantial degree of regularity on the performance of a resource allocation
process. This has the effect of restricting the class of environments capable
of being satisfactorily coordinated by means of mechanisms. Theorem 2.1
establishes necessary conditions on the correspondence £ .so that a.

& - satisfactory mechanism exists,

Theorem 2.1. Let E be a class of environments and &:E =+ Z a
correspondence. If (T,g) is a £ -satisfactory mechanism on E then
for each e, € E and z, e-@(eo) there exists a (global thread Syt E- 2z
of @ which éasses through zO at e -

Proof: Let e € E and z, € Q(eo). Since (T,g) 1is & -satisfactory

on E, by (ii) of Definition 2.4 there exist y e¢eT and d e ./ such that

gs y-d(ey) = 25. Since vy 1is locally threaded, it follows from Lemma 2.1 that

f =g.y is a continuous function on E. Take sy = f .d. Since d:E- E

is continuous, it follows that So:E + Z 1is continuous on E. By construction

so(eo) = Zg. Finally, so(e) ¢ ®(e) for all e ¢ E, since by (i) of

1

Definition 2.4, g. y(e) ¢ #(e) for all e ¢ E, and consequently d(e) = e

implies g -y(d(e)) e @(e') =@&(e), since it follows from Definition 2.3 that

d(e) = e' implies @(e) =o(e'). 1
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We next consider whether the condition that the correspondence & be
suitably threaded is sufficient for the existence of a ¢ - satisfactory
mechanism. It is possible to establish the converse of Theorem 2.1. How-
ever, because of our interest in informationally decentralized organization

it is more interesting to state a '"converse'" to Theorem 2.1 with the condition

that the mechanism preserve privacy. Thus, we take E to be the class
N .

of decomposable environments, i.e., E =TI El, where E- 1is the space of
i=1

agent 1i's environmental characteristics (his preferences, endowment,
technology, etc) and require the mechanism to preserve privacy (Definition 3
of [14].) Theorem 2.2 establishes the result that if the correspondence 2

is completely threaded, then there exists a privacy-preserving £ - satisfactory

mechanism on E. The converse of Theorem 2.1 can easily be obtained as a

corollary.
We introduce the class of privacy preserving processes, We reproduce

from [14] the definition of a coordinate correspondence and of a privacy

preserving process.

N .
Definition 2.5 Let E = T El; "we say that the correspondence y:E -+ M

is a coordinate correspondence if there exist g,l:El + M such that
p(e) = N Ml(e ) for all e ¢ E.
i=1

Definition 2.6. Let E = Elx---XEN. The resource allocation process

(y,g) preserves privacy if vy 1is a coordinate correspondence.

1
Definition 2.7. The mechanism (T',g) preserves privacy on E = E X...xE

if v eI’ implies Yy 1is a coordinate correspondence.
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Lemma 2.2 let E = ElX---XEN be a class of (decomposable) environments and

let @:E 2 Z be a correspondence on E. If for each e, € E and
zo ¢ #(ep) there exists a continuous function so:E =+ Z such that sgy(e) e #(e)

for all e ¢ E and sy(ey) = 2,2 then there exists a privacy preserving resource

allocation process (y,g) such that g-y(e) ¢ #(e) for all e ¢ E and

g'Y(eo) = Z4-

Proof: Take M =E, and for et € Ei and 1 =1,...,N
define
i, i, _ L1 i N 1 =i i
vy (e7)=E"x...x {e Ix...x E" = {(e ’_..’EN) ¢ E ‘ el==el},
and let
S S N
y(e) = igl Y (e?) = {e} for e ¢ E.
Finally, let g = S,-
Since Yy 1is the identity function on E, it is a locally threaded
correspondence. It follows from g = So that govy(e) ¢ #(e) and
8.Y(eo)=20' ,
Th 2.2. 1L - gt N
eorem 2.2. et E E™x.,.XE be a class of (decomposable) environments
and let @:E-* Z be a correspordence on E. If for each e ¢ E and

z ¢ #(e) there exists a thread of o passing through =z at e, then there

exists a privacy preserving mechanism which is #-satisfactory on E

Proof: Let 4/ be the set of continuous functions from E to Z, with the

topology of pointwise convergence. Then . contains the (continuous) threads

of the correspondence &.
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Let M =E x ., and let the outcome function g be given by,
gle,s) = s(e),
and note that g 1is continuous on E x o/ [ 12, - p.218 17,
For e ¢ E and 2zy € #(ey), there exists a thread sg:E + Z such that
so(e) ¢ #(e) for all e ¢ E and So(eo) =z . For each i=1,...,N and e ¢ E, define

Y:;(el) = Elx...x {el} x...XENX {SO} c E x

and

_ N i
Yo(e) = N v (e = ({e},{so])-

i=1

Clearly, Yo is threaded, since for fixed sy it is a continuous function
on E.
Finally,

g -v,(e) =s5(e) e@(e) for all e ¢ E,

and

g .yo(eo) = s,(e,) = z,, by comstruction.

Take T to be the collection of all Y, generated as s, Vvaries ovér all

the threads of #. Then (T,g) 1is the required mechanism. §

Theroems 2.1 and 2.2 together tell us that it is necessary and sufficient
for a class of {decomposable) economies to admit of being @-satisfactorily
organized by means of a (privacy-preserving) mechanism, that the correspon-
dence £ be a union of threads.

Examples of Pareto-satisfactory and privacy preserving processes may be

found in [6], [7] and [14] and the references cited in those papers.
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Section 3: Notations and Assumptions

In what follows we shall make use of certain notations and assumptions

which we list here for convenient reference.

Rz euclidean space of (-dimensions, the commodity space,

Rﬁ the non-negative orthant of Rz-
X« Rﬁ the admissible consumption set of agent i, i1 =1,...,N.
> i - -
7 preference preordering of X',
i i s . .
w e X initial endowment of agent i , i =1,...,N,
vt set of admissible trades for agent i. 1In the pure trade case

Yo =xt - (W),

E = Elx...xEN the set of environments, sometimes called economies,

In the pure trade case,
, . . . . . . o -
gl = {el]el = (Xl, T, wt )} where 1" c X'xX  is the graph of
We give E' the product topology using the topology of closed

convergence for spaces of subsats and the euclidean fopology for Rz.

X = xx...xxV
Y = le...xYN

J:E + X, where J(e) ¢ X 1is the set of allocations feasible for e.

F:E -+ Y, where F(e) Y 1is the set of trades feasible for e.

i, _i i i i
e X | % x}, for x ¢ X, and

I
~
|
e

et xh

i yl} for v e Yl_

e Y | ¥

FY Ry

G e,y

|
~
«

> _13 . .
We understand the symbol 7% between elements y°© and y! of Y to mean
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X = (El z ..iN) and x = (xL...x XBB.
Thus, 2 BT x X o Xl,
and G: E'xY Y fori=1,...,N.

i)
1
b
bl

k]

=

and

G = Glx...x G,
and hence

L Ex X+ X
and,

G: ExY~» Y.

For A and B subsets of Rm, d(A,B) denotes the distance between A

and B in the metric topology of closed convergence. We shall denote the norm

in R© by |-|

©£: E + X denotes the Pareto correspondence i.e. £(e) 1is the "contract
curve" in X.

P: E+ Y 1is the Pareto corxrespondence in terms of trades.

I ule,) = (el ), .., @, ) for ecE

is a vector of utility functions on X, then

U: E »+ RN; where U(e) 1is the image of J(e) under u(e,:), is the
feasible utility correspondence and,
~

-~
U: E =+ RN, where U(e) 1is the image of #(e) under u(e,-) , is the

Pareto frontier correspondence.
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Thus, for e ¢ E

U(e) {r e RNlr = u(e,x) for some x ¢ J(e) }

and

%(e) {r e RNlr cU(e), and (r' =71, r #*71) imply r' & U(e)}.

Thus U(e) is the set of utility values attainable for the economy e with

~

utility functions wu(e,-), and U(e) is the Pareto frontier of utility values.

For a and b vectors, we write a >b 1if a; = bi for all 1
but a #b,and a> b if a; > bi for all 1. . A -
We shall list the following assumptions. Not all assumptions will be

in force simultaneously, but only as indicated. We shall, however, always

assume continuity of preferences (Assumption II).

. . i .
Assumption Ia. For each i =1,...,N, X" is an arc wise connected subset

of Rﬂ.

Assumption Ib. For each 1 1,...,N, Xt = Rﬂ.

. . . > ., .
Assumption II. For each 1 =1,...,N, the preference relation 7 is continuous.
i i —i i, 1> 1 -1 i
L.e;- for every x ¢ X the sets {x ¢X x ¥ x } and {x ¢ X X
are closed.
Assumption IITa. (Local non-satiation) For each 1 =1,...,N, each

{ i ' i i L. i . it 1ot
x* e X" and for every open set & (x7) containing x~ there exists X e 3 (x7)

_i> i
such that X ; X
.. . =i i, .
Assumption IITb. (Strict monotonicity) For each i =1,...,N, X" > x implies

_> i
X . X .
i

i> .1
~ X
1

}
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Assumption IV. (Strict dominance) For e ¢ E if x e J(e) and x € #(e),

. — —_ > .
then there exists ¥ ¢ F(e) such that X ; ¥ for i =1,...,N.

Stated in terms of utilities, the strict dominance assumption is:
For e ¢ E, if p ¢ U(e)and »p ¢ U(e), then there exists q e U(e) such

that q > p.
Assumption V. (Pointedness) For e ¢ E and x ¢ @(e), Z(e,x) N JT(e) = {x}.

Assumption VIa. The correspondence J:E + X is (1) upper semi-continuous, (ii)
lower semi-continuous ., and (iii) such that its image sets.each contain more

than one point.

N N
Assumption VIb. For e ¢ E, if x e X, yeX, x eJ(e) and X x =3 ¥y,

then vy ¢ J(e).

The foregoing assumptions are clearly mot all independent. We note some of the

relationships among them,without proof.

(1) 1b implies 1Ia.
(ii) Ib and IIIb imply TIIIa.

(iii) Ib, II, ITIIb, and VIb imply 1IV.
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We also note that Assumptions II and 1IIIa imply a weaker form of IV,
namely that each non-optimal feasible point which is dominated by a point

interior to the feasible set is strictly dominated.



-18~

Section 4: The Feasible Utility Correspondence and the Pareto Frontier.
In this section we study the continuity of the utility possi-

bility set and its Pareto utility frontier.

We note first,

Lemma 4.1: If J: E= X 1is continuous on E (u.h.¢. and 1.h.c.) and
u: Ex X = RN is continuous on E x X, then U: E = RN, U(e) = u(e, F(e)) 1is
a continuous correspondence on E. { [1] . p. 113). It is clear that if

J is compact valued and u continuous, then U 1is compact valued.

Lemma 4.2: Let A:X = RN be an upper hemi-continuous correspondence on a
topological space X and let X € X. Then there exists a compact set
K C:RN and an open neighborhood G(xo) of X such that x ¢ G(xo) implies

A(x) < K.

Proof: The upper hémi-continuity of A implies A(xo) is compact. ({11 Theorem 2,

pp.110) It follows that cl Ae(xo) is also compact, where, for ¢ > 0,

N
Ae(xo) ={y ¢ R \ |y - z[ < ¢ for some z ¢ A(xo)l.
Since Ae(xo) is open, and A 1is upper hemi-continuous, there exists an open

neighborhood O(xo) of X such that x ¢ G(xo) implies A(x) C Ae(xo)

([1] p. 109). Hence x €<§(XO) implies A(x) c cl Ae(xo). B

* TLemma 4.3: I1If J: E» ¥ g continuous and compact valued, (Assumption
VIa), if u: E x RzN - RN is continuous and satisfies Assumption IV (strict

~ N . . .
dominance) on J, then the correspondence U: E -+ R is upper hemi-continuous

on E.
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Proof: The correspondence U:E -+ RN is continuous and hence upper hemi-
continuous. (Lemma 4.1) Since U(e) U(e) for all e ¢ E, we may write
% = ﬂ nu. If ﬂ is a closed correspondence it follows that ﬂ is upper
hemi-continuous, since the intersection of a closed correspondence with an
upper hemi-continuous correspondence is upper hemi-continuous, (Theorem 7

~

of [1](p. 112)). We shall show that U 1is a closed correspondence.

Let e € E, e, » e , .+ r and let r, € UC(e,) for j=1,2,... .
o J 0 h| o J J

~

Since U(ej) C U(ej), rj € U(ej) if and only if there exists xj e‘?(ej) such that

1 u(e.,x.,) = r,
) ( 37 J) 37

and

2) f{xe JKej) \ u(ej;X) > u(ej,xj)} =9

Since J(eo) is compact [Assumption VIa(ii)] and J upper hemi-continuous
[Assumption via(i)] by Lemma 4.2, for every ¢ >0, there exists an integer
J(e) such that j > J(e) implies
j(ej) c Cl‘?e(eo)’ a compact set.
Hence, the infinite set {Xj ] i> J(e)} - has a pOint'of accumulation
X7 and consequently a subsequence x, - X - By continuity of u on

4N
EXR;

u(ejk,xjk)-+ u(eo,xo).

) = r, and by hypothesis r, -+ r_. It follows that
Iy I o o
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A ~
Now suppose r, # U(eo). Since r e U(eo) and r, # U(eo)
it follows from the strict dominance assumption applied to r (ASsﬁmpréanV)A
that there exists T € U(eo) such that T > ro and correspondingly
x ¢ 4 (e,) such that r = u(e_,X) > u(e_,X ).
Since J 1is lower hemi-continuous (Assumption V a), it follows from

e.* e and x ¢ J(e ) that there exists x, e J(e. ) such that
e © © I Ik

+ X. Since u 1is continuous, for ¢ = \u(eo,i) - u(eo,xo)\ > 0,

h|
k
there exists an integer K(e) such that %k > K(e) implies
lue, ,x. ) - u(e ,i)\ < E
3,773 o 2

k
and

€
fuey g - (e < 3

.It follows that for k > K(e),

r. = u(e, ,x, ) >u(e, ,x, ) =r,
T I I k x I

Thus, T. e Ule. )T, > r, , and hence r, ¢ U(ej ), contrary to constructiom.
Ty G R P Tk K

Thus r ¢ %(e ) must be false. This establishes the upper hemi-continuity
o} o

~

of U . §

N . .
Lemma &4 4 : If U: E=> R is continuous and compact valued on E then

~

U 1is lower hemi-continuous on E.

Proof: Assume e € E and r, e U(eo) and suppose ej - e where {ej} is a
convergent sequence of environments e, e E.
Since U(e) c U(e) for all e ¢ E, it follows that r e U(eo).

Since U 1is lower hemi-continuous om E, and since ej ad e, it follows

that there exist rj € U(ej) such that rj -» r,.

e

* Mark walker's suggestions have made this proof both shorter and clearer than
it was before.
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Let
Q(r) = {s ¢ Ry | s =1},

and let Bj ={r e RN ] r is maximal for = on .Q(rj) N U(ej)}. By
hypothesis, U(ej) is compact and hence so is U(ej) N Q(rj). Hence Bj
is non-empty for all j.

Further, Bj c %(ej) for all j. To see this, let r ¢ B. and

J

r' e U(e;) with r' #r and r'=zr. Then r'z=r= Ty thus

r' e U(ej) n Q(rj). Tt follows that r is not maximal on that set, which

contradicts T ¢ Bj'

Given ¢ > 0, it follows from the hypothesis that U is compact-
valued, that <cl Ue(eo) is compact. Since U 1is u.h.c. there exists an

integer K such that j > K 1implies

) C ¢l .
U(e ) (e )
Ihus,

1 f i > K.
Bj € U(ej) cCc Ue(eo) or j

Take zj € Bj for j > K, which may be done, since Bj #@ for all j.
Compactness of cl Ue(eo) guarantees that the infinite subset {zj}

has at least one accumulation point, say 2z, and that if Z is the only

accumulation point of {zjK, then it is the limit of {zj}. let z_ be

an accumulation point of {zj}, and let {zjk} be a subsequence which

. = f j
converges to z, We have zjk = rjk’ or all I > K (because

w

zj e Bj cQ (rj)): and rjk 4T hence, z =T

But we also have ejk - eo and zjk € U(ejk), which, since U
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is upper-hemi-continuous, guarantees that z e U(eo). Since ro¢€ U(eo),

then we must have z =r ; that is, r is the only accumulation point of
0 o) 0

‘{zj}, and is consequently the limit of {zj} . Since, for j > K,

zj € Bj c U(ej), the proof is complete. §
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Section 5: Threads of the Pareto Frontier
In this section we give conditions sufficient for the existence of
a continuous thread of the Pareto correspondence passing through
an arbitrarily chosen point of the graph of that correspondence. As we
found in Theorem 2.1, the existence of such threads is necessary in
order that a class of economies be susceptible of being organized by a
Pareto satisfactory mechanism satisfying the condition . that the
message correspondence is locally threaded. " These- coﬁditions -
show that a class of economies for ;which,uthe .Pareto correspondence
has such a thread consists of economies such that the consumption set of
each agent is the non-negative orthant of the Euclidean commodity space:
£he production sets permit a non-zero allocation and are such that the
set of attainable allocations is compact, and where preferences are strictly
monotonic for each agent. Convexity of either preferences or production
sets is not required. In [ 9 § this class of econémies . Was
shown to satisfy the assumption of Opemmess. ([9]Lemma 5.9 and its Corollary.)
We show below in Section 6 that strict monotonicity cannot be replaced
by a weaker form of monotonicity. This is not unexpected, since both
local nonzsatiation and the strict dominance properties might then fail. Further-
moere convexity of preference, implying local non-satiation, is not
sufficient to ensure that the Pareto frontier has no holes. Example 5.1 below
shows this.
The property of strict dominance, which 1is indispensable for
the Pareto frontier to be without holes, involves a relation-

ship among the preferences of all the agents,as well as among. their consumption
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sets (and production sets in thelcase of production). If we specify a
class of characteristics of individuals (consumption sets, preferences, etc.)
such that any N-tuple of agents drawn from that class

will . have the  strict dominance  property, then we
conjecture that strict monotonicity of preference over the non-negative
orthants (or consumption sets that are suitable translates of them) is
essentially the largest such class. However, as Lemma 3.2 above shows,
continuity of preference and local non-satiation are, when redistribution
is feasible (Assumption.VIb) sufficient for the strict dominance property
to hold except on the set of non-optimal points dominated only by boundary
points of the consumption set.

Definition 5.1 Let e ¢ E be an economy with coﬁtinuodsvutilify indicators

1 N i
u= (u,...,u) such that for each i =1,...,N inf ul(x) > 0, and let

~ N
U'(e) < R, denoteu(@(e)), the Pareto set of e 1in the space of utility values.
" p ¥

We say that U(e) has no holes if and only if for each non-zero vector P ¢ Rf,

{tp ez 01 n ;(e) # 0.

Thus, the set of Pareto utility values has no holes if every ray out of
the origin in a non-negative direction intersects the Pareto set. Lemma 5.1
gives sufficient conditions , involving the no holes property, that the

Pareto correspondence has a thread through every point of its graph.

Lemma 5.1: If E 1is a class of economies such that (i) the Pareto

correspondence U 1is upper-hemi-continuous on E, (ii) U(e) C:RE for e ¢ E,
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~

and (iii) for each e ¢ E, U(e) has no holes,then for every e, € E, and every

point P, © U(eo), there exists a continuous thread s:E - RE of U such that
s(eo) = P,-

~

Let e ¢ E, let P, € U(eo), and for each e ¢ E, let s(e) be

ats
w

Proof:

~

the set {t po‘t = 0} N U(e), the intersection of U(e) with the ray

through P, According to (ii) and (iii), s(e) is non-empty for each

n .
e ¢ E, i.e. s 1is a correspondence from E to E{+. Since s

~

is the

intersection of the upper-hemiroofitiiuvus orresppondacce U with thecconstant

2
(hence continuous) correspondence {tpo\t = 0}, it is itself upper

hemi-continuous [1}, Theorem 2', p. 114). Finally, s(e) obviously consists
of only a single point for each e (by definition of U), and hence s 1is

a continuous function. j

Definition 5.2. Let E  be the class of economies satisfying Assumptions

o,

Ib, II, I1IIb, VIa, VIb. TI.e., Ex is the class of economies such that

(a) for each agent i ¢ (1,...,N)

(1) the consumption set x*t = Ri

(ii) the preference relation < 1s continuous and strictly monotone,

~

i
and (b)
. s * LN, .
(iii) the correspondence J: E - R is continuous and compact valued,
and such that its image sets contain more than one point
o 1 N . 1 N
(iv) if xe J(e), x = (X ;+..35X ), and if y = (y ,...,y )
. N N
. i . .
y >0 fori=1,...,Nand = yl = 3 x then y ¢ J(e),
i=1 i=1

&
~

(v) for each e ¢ E  there exists x ¢ J(e), x> 0.

e

“We owe this improved version of the proof to suggestions made by Mark Walker.
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Lemma 5.2. There exists a utility representation u : E x RZN* RN such that

the correspondence

S N * *
U :E + R given by U (e) = {p ¢ RN l u (e,x) = p for some
x ¢ J(e)}
is

(1) upper hemi-continuous and lower hemi-continuous

(ii) U (e) C Ry for all ecE
(iii)-o e RE is dominated for all e ¢ E , (i.e., for all e §E , O

is not a Pareto point of U (e))-

o N .
Proof: If e ¢ E , under (i) and (ii) of Definition 5.2, it is well-known

that there exists a vector of utility functions

L LN N
u: E x R+ + R

which is a jointly continuous representation of preferences.(Hildenbrand

[11,p.798] established the existence of a utility function which is jointly
continuous in preferences and commodities and which represents the class of .
continuous monotone preferences on Rﬁ, where the topoiogy on the space

of preference relations is that of closed convergence. )

Let

i X i
m, = min, u (e,x).
X eR+

i .
Since Rﬁ contains its lower bound for =, namely ,0 ,and u(e, ) is

ats
v

i .
strictly increasing with respect to =, m, 1s well-defined., For e ¢ E

define
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* N
u(e, ) =A cuf(e,«)=u(e, ) - (m, ;mm)
Thus,
o Ex BN o Y
+
Then,
u“l(e,xl) =0 fori=1,...,N and x' e Rg

*i
u (e,0) = 0,

ale ¥ oL

. L. . * 4 . .o
and u is jointly continuous on E x R+, because /i is continuous,
u
R i . .. . . .
since mu is the minimum of a continuous function on a fixed set.

o

s
FAY

It follows immediately that U is continuous on E . 5

.

e o

~
L]

ot

Proof :/

Let p e U"(e) and suppose p 1is not a Pareto point. Then there

exists q ¢ Uw(e) such that q > p. Since p and q are in U“(e)

2 1

there exists x and y in F(e) such that u (e,x) = p and u (e,y) = q.

Since q > p = 0, there is at least one agent 1 ¢ {1,...,N} such that

i % i i

N 7':i i
1 0O o O . . .
g = qu O(e,y ) > u O(e,x ) = 0. It follows from strict monotonicity
of preference and from min un(e,x) = 0, that there is at least one commodity
7 (e)
P
jo e f1,...,4} such that y, > 0. Since u ©9(e,.) is continuous and
3
io ' io
assumes the value, 0 at 0 and g at 'y > 0, there exists a scalar

0 < ao < 1 such that

ale
~

i i *
O (o} 1
u (e,ay ) =% (u

i i, ig io
e,y ) tp )>p .

KN /
£

The proof of this Lemma follows an argument in the proof of Theorem 5 in

([31, p. 25).
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We may define a new allocation 2z, by

. (o] 1
i l - a o . .
. v =+ T y for 1i ¢ {1,...,N}\{lo}

Zl= R

o 1o . .
a'y for i = i
~ AN TR
Clearly =z ¢ R+ , and le = 2y ; hence,by Assumption VIb, z ¢ J(e).Furthermore
i= i=1

i i . . .. *i . .
zl > yl for i # io, which by strict monotonicity of u “(e,+ ) implies

dar 2.
<

. . s i
u l(e,zl) > u l(e,yl) = p © for i # i

oo

*q i i i i
o] o o o .
while for 1i = io’ u (e,zl) = u (e,ao vy )>p . Thus, it follows that

)

u(e,z) ¢ U (e)

and

u (e,z) > p

This concludes the proof of Lemma 5.3. i

Lemma 5.4 - The Pareto correspondence

~% * N .
ug:E - R, , given by

)

U'(e) = {p e U (e) | q ¢ Ux(e), gq=p implies q = p}

oL

is upper hemi-continuous on E .

Proof: It follows from Lemmas 5.2 and 5.3 that U* satisfies all the hypotheses

of Lemma 4.3. The conclusion follows.
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oo N g,

Theorem 5.1;/ If e ¢ Ex, then U (e) has no holes.

Proof:
For e ¢ E  define U (e =1{p e RE \ p=q for some q ¢ U“(e)]
and let
% %
B (e) denote the relative boundary of U (e) in RE . It follows

from compactness of J(e) and continuity of u (e, ) that U (e) is

o .

compact and hence that U"(e) is compact. Hence,

5*(6) N ﬁ“(e) = B*(e) for all e ¢ E.

For each e ¢ E the hypotheses of Theorem 5 ([3],p.25) are satisfied; it

follows that

1) = £ ).

This, in turn, implies that U (e) has no holes. To see this, we must

N
show that if p ¢ R+, p # 0, then the half line {tp \ t > O] has a non-
empty intersection with the Pareto set U (e). It is clear that

{tp \ t>0} NU (e) #B. Since Ux(e) is compact and contains a point

g > 0, there is a largest value of t, say t = t, t > 0, such that

Tp ¢ U (e). It follows that tp ¢ Bﬁ(e), since t >t implies tp is

exterior to U (e).

N g.

By the Theorem 5, of [3], tTp ¢ U (). I.e., for each

ec E, Ux(e) has no holes.

*/

—/  Chipman and Moore point out that their form of this result is implicit in
Z.Gorman's paper ''Community Preference Fields" Econometrica 21 1953,
pp. 63-80.

&
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ol

Theorem 5.2: If E  is a class of economies satisfying Definition 5.2,

. * AN N
and if u: E X R, -+ R is a jointly continuous representation of

~ * N
preferences and U: E - R; the Pareto correspondence induced by u,

then,for every economy e, € E  and every Pareto point P, € U(eo) there

Ja
is a continuous thread s: E - RE which takes the value P, at e,.

ta
v

Proof: Let Au be the transformation which carries u to u , as in the
proof of Lemma 5.2. Then A, is orthogonal and non-singular.

-1 . . . .
Hence A =~ 1is well-defined, continuous and carries Pareto points to

Pareto points. TI.e., if

~

q e U“(e), then A;l(q) e U(e) .

It follows from Theorem 5.1 that for e ¢ E , Ux(e) has no holes. Hence

Lemma 5.1 applies. We may conclude that there exists a : thread

ota ata
w w

N %
s : E * R such that s (eo) = A" (po)'

* N
s: E R+

given by
s(e) = AL (s"(e))
is the required function. §
We have assumed that the set of feasible allocations F(e) 1is compact

for e e E . Conditions on the production and consumption sets which imply

that the set of attainable allocations is bounded are given in ([10]

Theorem 1 p. 581 ). These conditions do not require convexity

of either production or consumption sets. It is straightforward te show
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that if the aggregate production set is closed, then J(e) is

closed.

It can.be further shown [see [16] pp. 39, 40 for proofs] that condi-
tions on individual production sets which (in the presence of others) are
sufficient for boundedness of the set of feasible allocations are also
sufficient to insure that the aggregate production set is closed when-
ever the individual production sets are closed. These conditions are

stated in Lemmas 5.5 and 5.6.

N .
i
Lemma 5.3 Let Yl,...,YN be subsets of Rz and let Y = '21 Yy . If
1= L

AY N (-AY) = {0}, then A.Y}...,A YN are positively semi-independent.

Lemma 5.6 If Yl,...,YN are closed subsets of Rg and if
N,

AYN (-AY) ={0}, where Y = % Y, then Y is closed.
i=t

A X denotes the asymptotic cone of the set X.

1

N cones with vertex O
X5...,X, are positively semi-independent if = x" =0 x e X* for

i=1,...,N implies x" =0 for i =1,...,N. Gee [4]
(1.9 m) and 1.9 n p. 22 for definitionsl
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We next give an example showing that convexity of preferences, apd "steepness",
implying local non-satiation, are not sufficient to ensure that the Pareto
frontier has no holes. Notice that in this example the utility functions
are concave, but utility is not freely disposable. (Disposability of utility

may be considered to be a form of monotonicity.)

Example 5.1: 2 commodities, 2 agents.,

Let J(e)(the feasible set in the space of allocations)be the Edgeworth Box

2
{(=o%) € R 1o§x1§1,o§x < 1}

2

so that agent 2 holds (1 - x 1 - x2) if agent 1 holds (Xl’XZ)'

1)
1( ) = + 0
Let u Xl)xz Xl X2 Xl)xz Z
2 1 3
Let u (leyz) = [u (1 = yl) 1 - YZ)]2 leYZ ..>_ O
Then, it follows that
2 1 : 1 £
u (Y1Jy2) - [u (1 = y1}1 - Yz)] = [U. (lexz)]

1
and hence that the image of J(e) is the curve (z, z®) in R2, where
1

=

z € [0,1] and hence 2= > z
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(0,1) &

favfig

Figure 5.1

The Pareto set consists of the point (1,1). Now clearly for v = ( _%5’2 )

>0

. = max {\:\ v is feasible} satisfies X = 1. TI.e.,

9 3
v = ( 16 % ) is feasible,but for A > 1, A v is not feasible,

>

since for A > 1

3 33 _ 9 &
Ng >N = 007
9 3 . R .
But (7E§’Z ) 1is not a Pareto point, since
2
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éection 6: Threads of the Contract Curve

In this section we study the Pareto set in the space of allocations or of
trades, We given conditions under which the utility map is a homeomorphism between
the graph of the contract curve correspondence and the Pareto frontier corres-
pondence (Lemma 6.2). This homeomorphism can be used to lift a thread of
the Pareto correspondence in the utility space to a thread of the Pareto
correspondence in the allocation space (Lemma 6.1).

The conditions under which the utility function is a homeomorphism between

the graphs of the Pareto correspondences include the so-called 'pointedness' con-

dition, (Assumption V), namely; that the upper contour set on a.Paretd point contains
only a singié feasible point. Example 6.1 shows that this condition is indis-
pensible for the existence of threads, for without it there is a set of economies
and a point through which there is no local thread of the Pareto correspondence,

and, a fortiori, no thread.

Lemma 6.1:

N i
Let u:E x X2 R be a utility function on E x X. Let u denote the
restriction of u to the graph 2(@) of &. Let 4 be a homeomorphism of

2(®) to the graph 2(U) of U. Let s:E = RN be a thread of U, and let PrX

PrX:E x X+ X be the projection of E x X to X. Then,

~-1
Pr_ o U o S:E+ X 1is a thread of ¢&.

Proof: The proof is immediate. §

~

Lemma 6.2: Under Assumption Ia, II, IIla, V, and VIa(i), u is a homeomorphism

of 2@) and 2(V).
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Proof: Under Assumptions Ia, II and IIla u:E x X RN is jointly continuous.
It follows that wu 1s continuous on 2(2).

It follows from Assumption V (pointedness) that u-l;z(U) + 92@) 1is

~

single-valued. It remains only to show that u is continuous on 2(U). To
ShOW this ]-et (eo;Po) € i(U) and ]-et (ej}pj) - (eo}po)} Where (ej}pj) € i(U)

for j=1,2,...

-1 -1 .
Let u (ej;Pj) = (ej,xj), and u “(e ,p) = (e ,x)). Since e, - e

by assumption, we need only show that xj-+ X -

o

Since J:E -+ X 1is upper hemi-continuous (Assumption VIa(i)) it £follows
from Lemma 4.2 that there exists a compact set K C X and an integer J
such that j(ej) Cc K for all j > J. Omitting the first J terms from the
sequence Xj’ it suffices to show that the remaining sequence converges to X -
To establish this proposition, we shall show that every infinite subsequence
of {xazj > J} converges to X

Since {xj} C K, it has a convergent subsequence x,k whose limit is x'.
Since J 1is upper hemi-continuous, e.* e , x, -+ X and x, e J(e. )

k Ix T i

for all %, implies x' G:?(eo). Since u 1is continuous, it follows that

ule. ,x. ) 2> u(e ,x'). But u(e, ,x, ) p. , and p. - p , since p, is
e Jx © e Jx Tk e 0 © i

a subsequence of pj’ and pj -+ P,- It follows that u(eb,x') = u(ro,xo). But
it follows from Assumption V that x = x',
Consider the terms of the sequence Xj which are not in the subsequence
Xj . Either there is a finite number of them in which case, xj‘4 X s OT there
k
is an infinite number in which the same argument applied to the remaining infinite
set of Xj‘s leads the conclusion that there is a convergent subsequenece with

the limit x. Hence it follows that every infinite subsequence of {xj} converges

to x, and hence that {xj} converges to X.
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~

. . -1 o
This establishes the continuity of u on 2(U). B
Chipman and Moore {3, Theorems 6 and 7] have given conditions under

which the '"contract curve'" (the set of Pareto allocations) is homeomorphic

to an (N-1) simplex. These conditions include strict convexity of the preference

relations, which implies that Assumption V (pointedness) is satisfied. While
the pointedness assumption can be satisfied without strict convexity of prefer-
ences, it is not clear whether there is a (non-trivial) class of economies which

satisfy all the assumptions of Theorem 6.1 without strictly convex preferences.

Theorem 6.1 Under Assuymption 1Ib, II, IIIb, V, VIa and VIb, there is for

' - ) ‘ pon .
each e ¢ E and p g U(e)
. N
a) "a thread of U sp: E - RN, such that sp(e) = p,
and

~

b) a cotrresponding thread PT_ o u-lo s :E-+» X of 2
P

Proof: a) follows from Theorem 5.2;

‘b) follows from a) and Lemmas 6.1 and 6.2.

~Example 6.1;

| We give next an example in which the Pareto correspondence in the space
of allocations is not locally threaded, although the Pareto utility corres-
pondence is threaded. We shall sketch this example rather than present it

formally.
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Two agents, two commodities, initial
endowment (a,b)

Figure 6.1

Let two lines J and 22 (in Figure 6.1) be given a fixed distance

1
i 1 2 . s
apart, say 1. In the environment ey = (ej,ej) indifference curves of
1
agent 1 consist of parallel translates of the dotted line labelled e.

J

in Figure 6.1, while the indifference map of agent 2 consists of parallel

2
translates of the solid curve labeled ey - For j' > j, the indifference j'

1
curves of agent 1 are closer to the flat segment AB. As j - o=, ej - ei-

Thus, for all j the Pareto set for ej = (e?,ei) is the line 21’ while

in the limit ey the Pareto set is the strip (closed) included between the
.. = 2

lines 21 and 22. Similarly, for e = (ez;,ek where the indifference

curves of agent 2 are parallel to the dashed curve labelled ei in Figure 6.1,

the Pareto set is the line 22.

Now, every open set containing e contains ej and e for j and k

sufficiently large.
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A local thread for the Pareto correspondence P would have to satisfy

the following conditions.
There exists an open set U containing e_ and a continuous function
s: U= P(WU); (i.e. for each e ¢ U s(e) ¢ P(e).)
1 2 e
Therefore, for e; = (ej,eo) ¢ U and e, = (eo’ek) e U, we must have
s(ej) € ﬂl and s(ek) e Ly- But - the distance of s(ej) from s¢( k) is

1 for all j,k. Hence s 1is not continuous on U, for any open set U

containing e,-
The preferences in this example are continuous, convex, satisé& locai

non~satiation, and (can be chosen) strictly monotone. We may choose a

utility function to represent these preferences say by taking the distance

from the respective origins to each indifference curve measured along the

diagonal of the box. Then the Pareto utility image does have a thread,

although the Pareto allocation correspondence does not.

Note that, while the example shows indifference curves with kinks,
smoothly differentiable curves can yield the same result, since such
indifference curves can be made to turn smoothly into flat segments, with

suitable tangencies along zl and 22 respectively.
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Section 7: An Economy Whose Pareto Frontier Has Holes

In Section 5 we constructed a thread of the Pareto utility corres-
pondence by intersecting a fixed ray out of the origin with the set of
feasible utility values, and taking the point of maximum distance from the
origin on that ray. Under suitable conditions, including strict monotonicity
of utilities, the point so obtained was shown to be a Pareto point. This property is
eéssential to the construction of threads. We have already seen in Example 5.1 that
strict monotonicity of preferences is indispensible for this construction.
In that example preferences have the local non-satiation aqd convgx?ty -
propgrties, but are not monotone. It is instructive to examine the border-
line case in which preferences are monotone but not strictly monotone. Of
course, in that case preferences may not satisfy the local non-satiation assump-
tion. For this borderline case, we construct a class of economies
with two agents and one commodity for which there is a complete description
of the Pareto utility set. For this economy the feasible

utility set is the line segment from (0,1) to (1,0) in R_Z and the

_I_}
Pareto utility frontier is an arbitrary closed subset of that segment con-

taining the end points. [See [16] pp. 47-55 for details of this construction.]

We consider théﬁm;;Séu‘of Vtworhconsumeré and one commoaity.
The admissible consumption set of each agent will be the non-negative real
line, thus satisfying Assumption Ib, and the total endowment of the commodity
will be a.positive real number w = LA in the environment e. Preferences of
consumers will be described by a real valued continuous function ui, taking
non-negative values on the non-negative reals. Then, the set of feasible
1 2 1 2 |

allocations consists of all x > 0, x > 0 such that x  + x° = w. This

is the usual Edgeworth Box situation.
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We note that Assumptions VIia and VIb are satisfied. We may without
loss of generality take w = 1. Then the feasible set J(e) comnsists of
the line segment in R x R joining the point (0,1) to (1,0). Now, let

i
£7: {0,171~ R+ i =1,2 be continuous functions and let f(t) = (fl(t),fz(t))

2
for t e [0,1]. Let £ be the image of [0,1] in R, wunder f, so that

. . 2
€ 1is a curve in R, -

1 1 2 2
Now, for x e [0,1] set u'(x) = £7(x) and u (x) = f (1-x). Then

1 2 s .
for a feasible allocation (x »X ), the utility image (ul,uz) of (xl,l—xl)

is (ul(xl),uz(l-xl))= (fl(xl),fz(xl)), and hence the utility image U(e)
of the feasible set J(e) 1is precisely the curve E£. Thus, in order to
specify a possible utility image U(e) of an economy e (with continuous
utility functions) we need only specify a continuous image of the unit

interval.

We then construct anreconomy which has as the utility image of its

2

feasible set the line segment L from the point (1,0) to (0,1) in R+

and whose Pareto frontier consists of the line segment from (1,0) to
(0,1) with an open interval S deleted. This may be done by choosing u
and u2 to be piecewise linear and weakly monotone, each being constant
on a subinterval of [0,1]1. The line segment parameterized by

g(t) = (£,1-t) (0Lt < 1) 1is easily seen to have as image of (0,1)

under (uljuz), the graph shown in Figure 7.1.
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The basic idea of the construction is to use the method pictured in
Figure 7.1 to eliminate an open interval from the Pareto set, defining a
pair of functions on the unit interval which do the job. By composing such
functions we can eliminate from the Pareto set all the open intervals of L - S.
It remains only to take care of the technical details ensuring that the
infinite composition of continuous functions yields a (pair of) continuous

o N . - - . . -
functions. We do this using the length of subintervals to be eliminated
to index the functions, constructing a uniformly convergent sequence of

continuous functions, thus ensuring that the limit function is continuous.
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Section 8: A Class of Economies Whose Pareto Frontier Correspondence Is

Not Threaded Through All Points

The example referred to in Section 7 shows that the assumption of
strict monotonicity of preference is indispensable for the construction
used in Lemma 5.1 to define a thread of the Pareto utility correspondence.
However, failure of the construction used in our proof does not necessarily
entail non-existence of a thread. It is clear, for instance, that if the
utility functions in Example 5.1 are made continuous in'the environments, -
the continuity and single-valuedness of the Pareto correspondence in that
example would ensure the existence of a thread, despite the fact that the
relative boundary of the feasible utility set and the Pareto frontier are
not the same, and hence that the ray construction fails. The existence of
threads means that for any economy e, and any utility allocation P,
which is Pareto for e’ there must exist a global thread s of the
Pareto correspondence such that s(eo) =P, However, we have constructed
an example of a class of exchange economies with two agents and one
commodity, with weakly monotone utilities which contains an economy with
a Pareto point through whiech no thread exists. [This example is presented

in detail in [16], pp. 56-74].
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