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Abstract

Risk averse agents who engage in risky production activities frequently participate
in some sort of arrangement to share risk. When there are issues of moral hazard, optimal
risk sharing typically involves spreading risk over time as well as over space. Agents who
suffer bad outcomes can spread risk over ime by borrowing against future earnings to
supplement present consumption. In this paper I analyze the cffect that such intertemporal
risk sharing has on the distribution of consumption and utility. I find that in most cascs
intertemporal risk sharing leads to a spreading of the utility weight distribution. Under the
optimal contract agents who suffer negative shocks respond by working harder and bcaring
more risk, exposing them 1o the likelihood of more negative shocks.
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Section 1: Introduction

Risk averse agents who have uncertain income streams will seek some way to
mitigate the welfare loss cansed by this risk. One way to do so is by sharing risk among
agents. When individual effort is unobservable, 'pure’ risk sharing will generally not be
optimal due to problems of moral hazard. Typically, the problem of imperfect risk-sharing
due to moral-hazard can be partially mitigated by spreading the risk over time. In other
words, rather than punishing an agent with a large one-shot decrease in consumption, it is
more efficient to spread the punishment over time. Thus under the optimal dynamic risk-
sharing contract, an agent who suffers a bad outcome might receive some immediate
insurance at the cost of reduced future consumption.

Spreading risk over time in this way implies that negative shocks will have long
term effects; the consumption of an agent in a given period will be affected by all previous
shocks the agent has experienced. If the effects of an income shock do not diminish
sufficiently over time, and there is not a negative correlation between past and future
shocks, the persistence of income shocks might lead to increasing inequality over time.?
Thus spreading risk over time involves a trade-off between current and future inequality. In
fact the optimal contract may decrease the amount of inequality in the present and near
future at the cost of increased inequality in the distant future.

Although this paper takes a normative approach to the question of risk sharing and
the distribution of income, the results of the paper are of positive interest as well. Work by
Udry (1995a,1995b) and Townsend (1994,1995) suggests that real-world risk sharing
arrangements which occur in developing countries do share some features of the
predictions of the optimal model. Specifically, Udry finds in northern Nigeria a prevalence
of informal loan contracts with state dependent repayment schemes. Likewise, Townsend
finds in studies of villages in India, Cote D'Ivorie, and Thailand that although he can reject
full information perfect risk-sharing, in some villages there is large degree of risk sharing
among villagers. Townsend's findings would be consistent with optimal risk sharing under

imperfect information.

Z Strictly speaking, this paper makes predictions only about consumption inequality, rather than income
inequality. In fact the model used does not even distinguish one agent's income from another's. In practice
the changes in the relative positions and indebtedness of agents might be reflected in transfers of land or
other durable property which might affect the relative nominal income of the agents. Thus we might expect
income inequality, as well as consumption inequality, to result from past income shocks as well.



Deaton and Paxson (1994) provide empirical evidence that inequality within a
cohort increases over time. As they note, this is a straightforward prediction of a life cycle
model of consumption without borrowing constraints where agents are subject to
independent uninsured shocks. This paper relates to Deaton and Paxson in that it shows
that even if agents are able to optimally insure against income shocks, as long as they face
some moral hazard, inequality will tend to increase over time.

This paper follows more closely in a line of papers concerned with intertemporal
risk sharing under asymmetric information. Green (1987) examines an economy in which
agents with exponential utility functions insure each other by debt contracts subject 10 an
incentive compatibility constraint. He finds that agents' endowments follow a random walk
with negative drift. Thomas and Worrall (1990) generalizes Green's findings, showing that
under a range of utility functions an agent's utility tends towards negative infinity. Atkeson
and Lucas (1992) examine the evolution of inequality under optimal unemployment
insurance with hidden information. In their model, perfect insurance is precluded by the
need to prevent agents from falsely claiming to be unemployed. They find that in this
model there is no stable distribution of income, in fact, under the utility function they
consider, the variance of consumption is strictly increasing over time. Phelan and
Townsend (1991) consider a model similar to this one and develop strategies for
computationally finding the optimal sharing contracts.

Phelan (1998) considers the role of the assumptions in the findings of much of the
previous literature, He considers a multiple agent economy in which aggregate
consumption is fixed and agents have exponential utility. He shows that if some agents are
perfectly monitored, the utility of all other agents will become arbitrarily low, thus showing
that Thomas and Worall's findings do not hinge on decreasing aggregate consumption. On
the other hand he shows that there are strictly concave utility functions under which an
agent's utility does not become arbitrarily low. Specifically if utility of consumption is
bounded away from zero, initial conditions can be found where an agent’s consumption is
arbitrarily likely to become arbitrarily high with the passage of time.

The papers mentioned above have generally relied on a hidden information model to
justify limits on risk sharing. That is they precluded perfect insurance by a need to insure
that agents do not falsely report negative shocks. This paper looks at a hidden action
model, in which the outcome is observable but is a function of unobservable effort, which
is chosen from a continuum of possible values. Allowing agents to choose effort levels
allows us to answer the question of how agents' effort levels will respond to negative

shocks and whether agents who suffer negative shocks will indeed work harder to catch
up.



A lack of convergence in a moral hazard model where agents choose effort from a
continuum of values might initially seem surprising. Generally if two agents have the samc
production possibilities, but one is poorer, the poorer agent would be expected to work
harder, so that his income would be greater and he might ‘catch up'. There is, however, a
simple argument as to why this will not occur under optimal risk sharing: once the poorer
agent has caught up he will have the same marginal utility of consumption as the other
agents. In the present, since he is poorer, his marginal utility of consumption is greater than
that of the other agents. Assuming the absence of liquidity constraints, he will be able to
increase his utility by trading away future consumption, which he values as much as other
agents, for current consumption, which he values more. As a result, if the poorer agent
anticipates catching up he will always wish to trade away future consumption for present
consumption. Thus in any optimal contract his expected future position must not be better
than his current position.

This is essentially the same intuition that is found in much of the previous literature,
and generates their findings that some measure of entitlement or indebtedness will follow a
random walk(with the possibility of drift). However, this paper differs from the previous
literature in that it considers a mode! with a small number of agents, so that each agent's
effort has a significant effect on aggregate consumption.? The effect of an agent's effort on
aggregate consumption would provide some incentive for each agent to work even if risk
were shared perfectly. If agents are not very risk-averse this effect will be weaker for poor
agents(those who have suffered bad shocks) since they receive a smaller share of aggregate
consumption. As a result, under the optimal contract, their efforts will be augmented more
by the possibilities of future rewards and punishments. For reasons to be explained later,
punishments will tend to outweigh rewards over time, so poorer agents will fall farther
behind the richer agents.

In contrast to the above literature, several papers present models that result in a
stable non-degenerate distribution of wealth or consumption. Banerjee and Newman(1991)
obtain this result from a model in which agents choose between engaging in a profitable,
but risky project, or investing in a safe diversified portfolio of others' projects. Informed
by the results of this paper, one suspects that their finding of a limit to incquality rests on
their assumption that rather than caring about the utility of their dynasty, agents care about
the bequest they leave, and always wish to leave a positive bequest. Phelan(1994) also

3 Although Phelan(98) considers a model with a small number of agents, he allows for insurance which
negates the relationship between any one agent's realization and aggregate consumption. Similarly,
Phelan(94) allows for stochastic variation in aggregate consumption, but assumes this variation is caused
by an aggregate shock that is independent of the behavior of the agents.



finds a limiting distribution, but this arises from his use of an overlapping generation
model, the inequality within any give cohort is always increasing in his model. In a follow
up to their 1992 work, Atkeson and Lucas (1995) show that with a lower bound on
continuation utility, there is a stable, non-degenerate distribution of income under optimal
insurance. However their result that the lower limit of utility is not absorbing stems from
the fact that they place a lower bound on continuation utility, rather than on instantaneous
consumption, while their result that the upper bound of continuation utility is not absorbing
stems simply from their assumption that agents discount the future more than the principal.

To obtain the result of increasing inequality under optimal risk sharing, I first set up
a model of production under moral hazard, and define a risk sharing contract. The first
result is that under an optimal risk sharing contract, the state of the economy can be
described by a vector which assigns a utility weight to each agent. An optimal contract
maximizes the social welfare function given by these utility weights. The contract is
recursive in that it maps this old utility weight vector and the realized state of the world into
a new utility weight vector which determines both current consumption and expected future
utility. Thus, this utility weight vector, which can be interpreted as a measure of wealth or
entitlement, forms a sufficient statistic for the effect of history on the optimal contract

In section 3 of this paper I characterize the optimal contract and show how it
rewards and punishes agents for outcomes that are suggestive of high or low effort. The
punishment or reward takes the form of lowering or raising the agent's utility weight. The
condition for the optimal repeated risk sharing contract conforms with the optimal single
period risk sharing contract with moral hazard in that punishment and rewards are
concentrated in states with high marginal probability ratios.

The general result of increasing inequality is presented Section 4 of this paper. This
result takes the form of a proof that under an optimal contract, the expectation of the ratio
of the utility weights of any two agents is non-decreasing over time, and it is increasing
when both agents are subject to moral hazard. The increasing ratio of utility weights can be
interpreted as increasing inequality, although whether or not it corresponds to more
conventional measures of increasing inequality depends on the forms of the agents' utility
functions. This increasing ratio comes about because each agent's utility weight follows a
martingale. This result that each agent’s utility weight is a martingale is fundamental to the
literature of inequality under risk-sharing and versions of it drive the results of Green (87),
Thomas and Worrall (90), Atkeson and Lucas (92) and Phelan(98).

Section 5 of the paper describes the implications of the optimal contract in the
special case where one agent is not subject to moral hazard, either because the effort of this
agent is observable or because the agent does not take place in production. We think of this



as the principal-agent model with the agent not subject to moral hazard being the principal.
The principle finding of this section is that the utility weight of the agent is declining
relative 1o the principal, that is to say the agent expects 1o receive more punishments in the
future than rewards. This is in line with the major result(Proposition 3) of Thomas and
Worral(91) which shows that in a hidden information model the utility of the agents tends
to negative infinity with probability approaching one.

Section 6 is concerned with describing the conditions under which a model with
multiple agents begins to approximate a principal-agent model. This section focuses on the
evolution of relative utility weights when one agent faces more moral hazard than another.
It is shown that the agent for whom there is a greater moral hazard problem tends to do
worse relative to others over time. Furthermore it is shown that for a wide range of
parameters and symmetric production functions, under the optimal contract, the moral
hazard problem will be more severe for the agents with the lower utility weights, 1.e. the
poorer agents, than the richer agents. The intuition behind this result is that the richer agent
receives a greater share of aggregate production, and thus intemalizes more of the effect of
his effort on this production. Thus, in expectation, the poorer agents will face more risk
and see their utility weight decline relative to the richer agents, and the increasing inequality
described in section 4 will be exacerbated.

Section 7 considers the case where utility from consumption is bounded below, 50
there is a limit to the punishment the social planner can impose. In this case it is possible to
have negative utility weights. These negative utility weights correspond to scenarios where
an agent is being punished so severcly that he is held below his ‘efficiency wage' and it is
impossible to further punish this agent without reducing his incentive to work in the future.
Punishing this agent thus decreases the expected utility of the other agents. In this case a
series of short-term contracts would not be able to achieve the constrained optimal social
welfare, since the agents would renegotiatc whenever the optimal contract called for
negative utility weights. Additionally it is shown that in the principal agent model where
utility is bounded below, the long run distribution of income is degenerate, and eventually
either the agent or the principal will be at the lower bound. This differs from the findings of
Atkeson and Lucas(95) which predicts a non-degenerate distribution under bounded utility.
The difference in results between these papers derives from the form of the lower bound on
utility. Atkeson and Lucas propose a bound on the agent's ability to promise away future
utility, will this paper focuses on a lower bound on current utility.

The results of sections 5 and 6, that the agent faces greater moral hazard tends to
lose utility weight over time, is derived from the fact that it is more efficient to provide
incentive to risk averse agents with material punishments than comparably sized rewards.



The intuition behind this is essentially that it is very socially costly to provide incentives via
rewards, because agents are rewarded when their project is successful, and their marginal
utility from consumption is low. Hence rewarding them involves transferring large
quantitics of utility from agents whose marginal utility of consumption is relatively high to
agents whose marginal utility is low. Thus, over time, punishments will tend to outweigh
rewards for the agents who face the greatest moral hazard. When combined with the result
that the poorer agents tend to face more moral hazard this implics that the relative fortune of
the poor compared to the rich will tend to decline. This result can be seen as an explanation
of the fact that workers everywhere tend to be poorer than capitalists. Even if workers, or
agents, are initially better off than capitalists, or principals, this model predicts that over
time the punishments imposed on the workers will outweigh the rewards, and wealth will

end up in the hands of the capitalists.
Section 2: The Model

I consider an infinite horizon, discrete time, moral hazard model with I individual
agents indexed by i. In each period, each agent chooses their own unobservable effort level
e; € [0,50). Assume that agents have exponentially discounted Von-Neumann Morgenstern
utility functions, so that Uit = E[Vil(ci[)] €, +BE[U1H1], where Vi[(ci[) is the
instantaneous felicity from consumption. Assume Vic>0 , Vicc<0 as in a standard risk
averse utility function, and furthermore that V is thrice differentiable. Their are N possible
realizations denoted @ € Q, and each realization is associated with an aggregate resource

constraint x(w). This is expressed by the condition ¢; € x{w). Because this is a model

2,
without commitment constraints, and realizations are aslsumed to be observable, the social
planner does not care where the production is coming from, he only cares about the
aggregate production for each realization and the signal on each agent’s effort. Although
agents may be producing the resource individually, for the purposes of finding the optimal
contract we can treat all production as joint social production. Which agent individually
produces more or less is only important insofar as it is a signal about agents’ efforts.

The model does not allow for the possibility of savings or aggregate insurance. The
production technology is assumed to be stationary and is written as a function P which
maps the effort vector e, which is not directly observable, into &, a probability distribution
over possible states. A particular element in the distribution is referred to as p(®,e) which
denotes the probability of realization @ given the effort vector e. Because e is determined in
equilibrium, the argument is often suppressed and p(m,e) is written p(w). I denote the



marginal increase in the probability of state ® with respect to e, as Pe,(®), likewise peiei(a))
is the second derivative of the probability of ® with respect to 1's effort.

It is assumed that increasing effort always improves the likelihood of a good
outcome, specifically

e>e = S plw.e) 2 dplw'e)

That is to say that the distribution over resources associated with higher effort by
any agent stochastically dominates the distribution associated with lower effort.
In addition the following three assumptions are made to ensure that the

optimal contract problem is well-behaved and non-trivial:

(Al) Vo e Q,Ve p@)>p

(A2) For any effort level €€ s ple)= xi(ei)pl(e_i) + (1')"1(69) P“(e_i) where A; is thrice
differentiable with A5 >0, A;'< 0

(A3) For any £>0, 3 Kk <eo 5.t if 8>€, A > K

A1 insures that every state is possible at every effort level, and is necessary for
existence of an optimal contract. A2 is taken from Holmstrom{(84) and insures that when
the first order conditions on an agent's effort choice are met, he is maximizing his utility,
so the first order approach is valid*. Note that A2 is a strong condition, implying, among
things, that whether a state is a positive or negative si gnal about an agent's effort does not
vary with the agent's expected effort. The last assumption A3, simply insures that the
returns to effort do not decrease too sharply, so it will not be too easy to hold an agent to
the optimal level of effort.

The model is quite general and can apply to a wide range of situations. For example
the model could apply to a situation in which there are several agents each of which engage
in independent production activities which produce observable output according to a
probabilistic production function p,, where individual output is given by x.(.) and the total
resource constraint is given by x(®) = 21 x.(®,) where the aggregate state is @ =
o!xm...xwl. It should be pointed out that this is a special case, one in which the signal

over agents’ outcomes is independent. This refers to the fact that an increase in one agent's

4 In characterizing the optimal contract, this paper relies on first order condiions. However it has been
shown that there are many plausible circumstances under which a first order approach may not lead to a
valid characterization of a moral hazard problem when continuous action is possible. The paper uses a
condition due to Holmstrom which guarantees that the first order approach is valid. Aliernate conditions are
possible which are similar to those described by Rogerson?. The goal of this paper is not to determine under
exactly which conditions a first order approach will be valid in the multiple agent case. Rather we guaraniee
validity by making a strong assumption about the production technology, and note that our results will
hold if these conditions are viotated, as long as the first order approach is still valid.



cffort will not change the probabilities of getting a good or bad signal regarding another
agent's effort. In this case the state ® can be thought of as a vector of signals over
individual agents' efforts, leading us to the following definition:

Definition: The signal over agents’ efforts is said to be independent iff @ = w'xa? .. @/
and plw,e) = H] ple))

A risk sharing contract is a function F(mt) which maps the history of realizations
up to time ¢, o' ={ (1)1...(01), into a consumption vector ¢(w"), and an effort vector €. The
social planner is permitied o add randomizations to state space, ensuring a convex utility
possibility set. The contract 18 subject to the resource constraint

36 S x@) (1)
where x(u)t) 1s the total societal production under realization @. In addition any contract
must satisfy the incentive compatibility constraint that for any history @' each agents effort
is maximizing his expected utility, which is written:

oo
€y, € Argmaxe Zﬁt(p((ﬁt)V(Ci(a)T))-ei((Dt)) (2)

T=t+1

Our first result is that the optimal contract can be summarized as a recursive map of
an expected utility vector U and a realization @,, into consumption ¢, and continuation

utility vector U,

Lemma 2.1. The optimal contract can be written as a stationary recursive contract H:
RIx€2 ~» RIXR'XR! where H maps prior utility vector and realized state into an effort
vector, consumption vector and continuation utility vector. Furthermore the optimal

contract is the solution to the recursive problem:

Supyy Y. o PLO)G(v(c(@))-e+gra(@)),

s1. (i) e, € Argmax, Y. o pl@)v(c(w))-e+fz (@), (i) Y cfw)<x(®) Vo, (ii)z€Z
where Z is the utility possibility set
[Lemma 2.1 insures that under the optimal contract, the relevant history can be

summarized by an I dimensional vector of continuation utilities which it provides to the

participants. However, rather than using the vector of continuation utilities as a state



variable we will use a vector of utility weights.5 If the utility frontier is strictly convex, for
every point on the frontier, there is a unique vector of utility weights such that social
welfare is maximized at that point. When this 1s the case, we can write the contract as G:
RIxQ2 — RIxR x R? so that if {c U }=H(U,®) and U= argmax__, ¢ ¢z, then

{e,c.0,,}=H(®,w), and U , = argmax *z. That is to say ¢ is the inverse slope

el ¢L+l
of the utility frontier at that point, so G(¢,®) 1s the contract that maximizes ZI ¢; Uj . If the
continuation utility of the optimal contract is always on the utility frontier then the
continuation utility, vector, U _,, implies a utility weight vector ¢, ,. Thus the vector ¢, isa
state variable which completely describes the optimal continuation contract at the beginning
of period t. The sum Z ¢i Ui will be referred to as W, or social welfare, throughout the
paper. !

It should be noted that the utility possibility frontier need not be strictly convexS. In
this case the utility weight vector ¢ is not a sufficient statistic for U, the vector of
continuation utilities. However, the results of the paper are not predicated on strict
convexity. Even if the vector ¢ is not a sufficient statistic for the state of the contract, the
results of the paper still hold and we will see, by Lemma 3.1, that the vector ¢ still uniquely
describes consumption in any state, although it may not uniquely describe the continuation
contract. Using a utility weight vector to describe the evolution of the contract is powerful
and convenient because it allows us to characterize the optimal contract without making any
assurmnptions about the actual form of the utility function. Furthermore if we are concerned
with inequality, looking at inequality in utility weight, which translates into inequality in the
marginal utility from consumption might be more appropriate than simply locking at
consumption levels. Inequality in marginal utility is a measure of the marginal efficiency

loss to inequality, it tells us how harmful inequality is.

Section 3: Characterization of the Optimal Contract

5 This use of a utility weight vector as a state variable is analogous to the technique of Marcet and
Marimon(92) which uses the utility weight of an agent as a state variable in a growth model with
commitment constraints,

6 Ong situation in which the frontier might not be strictly convex is if the efforts of agents are substitutes.
In the case where effort is perfectly substitutable, there might be a linear portion of the utility possibility
frontier where the effort of one agent is substituted for that of another at a constant proportion. If this
lincar portion is long enough, it may be possible to provide the agents with sufficient incentives by just
moving along the lincar portion, thus holding their utility weights constant. In this case, first best is
achieved. On the other hand, it is possible to show that as long as the returns to effort drop off quickly
enough the first best utility sct is strictly convex. An example that satisfies this is if production consists of
individual projects whose returns to efforts decline exponentially. In this case it is possible to show that the
first best will not be achieved.

10



This section begins by showing that the outcome of the optimal contract after the
statc has been realized can be described by only a utility weight vector ¢, , and a societal
resource constraint x(). The consumption of individual agents is implicitly determined by

6,,, and x(w) , and the continuation contract is described by ¢ alone.

Lemma 3.1: If posterior utility is always on the utility frontier in the optimal contract, and

| Velo) 4,
c.and ¢ are above their lower bound, then =
l ! Vj’c( ) ¢:’I+I

Proof: See Appendix

Understanding lermnma 3.1 provides the basis for understanding why income or
wealth levels will not converge. The central idea of the proof 1s that if the ratio between two
agents' marginal utilities from consumption differs from the marginal rate of transformation
of their continuation utilities, Pareto improving trade is possible. Since each agent's utility
from consumption is concave, consumption is determined uniquely by the resource
constraint and the ratios of agents' marginal utilities of consumption. Thus, when the utility
possibility set is strictly convex the optimal risk sharing contract is completely described by
a function G: R!'x Q — R! where ¢,1 = G{¢,®) so G maps prior utility weight and
realized state into posterior utility weights which in turn determine the future of the
contract.

Before proceeding in describing the optimal contract, the following definitions are
useful in making the expression of the contract less cumbersome. We will define W, as the

1
marginal effect agent i's effort has on social welfare given weights ¢. The derivation of W,

involves considering not only the direct effect of i's effort on production, but also 1
considers the fact that a change in i's effort will also change the effort levels of the other
agents, which will in turn affect the welfare of all agents. The algebra and notation
necessary for an explicit formulation of Wei is not terribly enlightening and is relegated to
the appendix.

In order to make our expressions of the optimal contract more compact we
introduce some more shorthand notation. We define U;_ as the marginal effect of j's effort
on 1's utility under the optimal contract. Likewise We define Uicjek as the partial of k's of
Uj,. with respect to k's effort.

We will define s, by:

11



The symbol s, represents the sensitivity of i's effort to incentives. Since i chooses effort to
maximize his utility, at the equilibrium effort choice Uei = (). Thus the direct change in1's
effort with respect to a change in i's incentives is given by s, which can be thought of as the
inverse curvature of the return to effort. When s, is low so the returns to effort are relatively
linear, increasing i's incentives will move him further up along the effort curve than it will
when s, is high and the payoffs to increasing effort are rapidly diminishing. Having set up
the notation, it is now possible to express the effect of social welfare of raising any agent's

consumption in a particular state.

Proposition 3.2: The partial derivative of social welfare with respect to c{®) is given by:
We (@) = $p(@)V;, (@)+We.5,p, () Vi (©)
Proof: See Appendix

The partial derivative of social welfare, Wci(m) consists of two parts, the first part
is the direct effect on welfare through agent i's utility from consumption. As long as utility
weights are positive, this component is clearly strictly positive since every agent's utility is
increasing in consumption. The second component is the effect of changing i's incentives
on everybody else's utility. If p, () > 0, that is if increasing i's effort leads 1o a state
becoming more likely, increasinlg the utility 1 receives in that state will increase i's effort.
Assuming that there is some risk-sharing occurring, increasing i's effort increases
everybody else's utility (i.e. W, >0 ) and the second term will be positive for states where
P; is positive, that is for states \lwhich are suggestive of high effort on i's part.

Knowing Wci((n) , the welfare consequences of increasing an agent's consumption
as a function of the state, enables us to produce the following conditions which must hold

in an opumal contract.

Proposition 3.3: In any state where the resource constraint is binding, the posterior

utility weight vector is characterized by the equation:

¢jr+1(w) - ¢jl+ W"jcfgj
¢it+1(a)) ¢it+ We,' Gisi

Proof: See Appendix.

12



Proposition 3.3 is derived by equalizing the partial derivative of social welfare with
regard to each agent's consumption in each staic so that for any realization @, WCi((n)
:WCJ_((D). Thus social welfare is maximized subject to the resource constraint. The result is
a general condition which applies to any risk-sharing contract with moral hazard. pf,j and
Pe; correspond to the extent to which rewarding i or j will increase their incentives. Thus
when pej £0CS up Or P, gOES down, the ratio%ﬁ- increases, so relative to 1, j receives more
utility in that state. In general when risk sharing is occurring we expect Wei, the impact of
any agent i's effort on social welfare to be positive. Lastly, note that o and ¢y, the prior
utility weights, are both multiplied by p(e). This impties that when pe, or Pe; is large in
magnitude compared to p{() we expect to see a large difference between the posterior
utility weights and the priors, so that one agent is being substantially rewarded or
punished. This corresponds to the general mechanism design result that incentives are
concentrated in states where the marginal probability is high relative to the absolute
probability, and is similar to the findings in Rogerson(1985a) concerning the repeated
principal-agent problem.

When proposition 3.3 is satisfied, a local optimum in the social planner's problem
1s implied. Our assumption A2 insures the continuity of agent's responses to the optimal
contract, and hence insures that the optimal contract will occur at a local optimum.
However, we have not shown the converse, that is to say we have not shown that any local
maximum is a global maximum, thus the condition in proposition 3.3 must be seen as a
necessary but not a sufficient condition for the optimal contract.

Looking back at proposition 3.3, we might ask if there can be a state which sends
such a negative signal about an agent's effort that under the optimal contract, the social
benefits from punishing an individual in a state outweigh the private cost to him of being
punished. In this case Wq((z)), the partial of social welfare with respect to his consumption
might be negative, implying that the ratio in proposition 3.3 could be negauve. However
we will now show that if utility is unbounded below, as in a CRRA utility function with ¥
>1, WCi(oo)i will never be negative in an optimal contract. The argument is, if utility is
unbounded below and Wq(co)i is negative, social welfare can be improved by taking utility
away from agent 1. This will increase i's effort, and lessen the moral hazard problem. Since
utility 1s unbounded below, social welfare can always be increased by taking away
consumption and utility until WCi((D)= 0. If WCi(a)) =0, and there is another agent j such
that Wcj((o) is positive, social welfare can be improved by transferring consumption from 1
to J. Thus, if utility is unbounded below, either Wq((x)) >0 for all i, and the resource
constraint is binding, or WCi((n)z 0 for all 1, and the resource constraint is not binding.
Note that WCi((D) will be zero only in states where every agent is being simultaneously

13



scverely punished. As is shown below, under some general conditions about the
independence of signal space, it is always possible to punish agents severely enough in
states where another agent is not being punished. Thus the ratio in proposition 3.3 will
always be strictly positive and the resource constraint will always be binding.

Proposition 3.4 Suppose 3 a partition of I {I] voeerd g ] SUCH that Q =Q x .. QM 50
that p(w) = HMp( /) and pe,.(af“) =0Vig Im If utility is unbounded below, then under
an optimal contract W_{ @) is always positive and the resource constraint will be binding in

every state.
Proof: See Appendix

According to proposition 3.4, if social production can be broken into projects
performed by disjoint teams, the resource constraint will always be binding. Note that this
is a slightly weaker condition than the condition for independence of signals presented in
section 2. Proposition 3.4 holds because it will always be possible to provide sufficient
incentives to a team by punishing them very severely if their project fails while another
team's project succeeds. As an aside, it is worth noting that if utility is unbounded below
we have a condition for the maximum value of Wci‘ By the non-negativity of WCi(m), we
know that:

-0y p(®)

Wei'é Min(Q|pe_ <) Pe;s,

1

This places an upper bound on the marginal moral hazard any agent faces. This upper
bound is increasing in his utility weight and decreasing in the marginal informativeness of
the state which represents the worst signal about his effort.

Having characterized the optimal contract, and shown how the current utility
weights depend on the past utility weight and the signal over the agents’ efforts we arc now
ready to approach the question of the evolution of utility weight shares. We are now turn to
the question of what our findings say about the evolution of inequality.

Section 4: Increasing Inequality
This section uses the results of the previous section to show that the expectation of

the ratio of utility weights of any two agents is increasing if the resource constraint is
always binding and the signals over the agents' efforts satisfy some weak conditions about
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independence. In other words as long as the posterior utility weights will always be
positive, the utility weights of any two agents are expected to spread. I interpret this as an
increase in expected inequality, and show how the effects of this increasing inequality on

income and utility from consumption depend on the form of the utility function chosen.

Proposition 4.1: If the resource constraint is always binding, and the signals over

agents’ action are independent, the expectation of the ratio of the utility weights of any two

9. 9. ¢. 9.
agents is increasing over time. ( Le. E(—M >-L gnd if Wei =0, E el I )

i+1 it it+1 it

Proof: See Appendix

Note that the inequality is strict whenever W, # 0, in other words, as long as the
i
social planner has some incentive to punish or reward 1 by raising or lowering his relative

utility weight, utility weights will spread.
Although the proof of proposition 4.1 assumes that the signals about the agents'

pei pC- . . .
efforts —— and —L— are independent, by second order approximation we find that
plw)  plw)

independence 1s not necessary. In fact a second order approximation of the necessary

condition is that:

i pﬂ_.l

2 Var (5 Wermsi > Cov (Wes )
ar (s, A > LoV . . . .
0. ' p(w) “ipw)” T plw)

This condition is violated only if the covariance of In ¢. . and In ¢. . is greater than the
it+1 Jt+1

variance of In ¢, , . This is roughly equivalent to the statement that conditional on a good

is
t+1’ +1
greater. When 1 1s rewarded he expects that j will be rewarded more, and when he is

outcome and an increase in ¢, , , the expectation of the proportional increase in ¢j
punished he expects that j will be punished further. Thus increasing i's effort on average
actually worsens his position relative to j. This would occur only if the signals of i's effort
and j's effort were closely correlated and j faced more moral hazard. Absent such an inter-
relationship of signals, the utility weights of 1 and j will always be spreading.

Proposition 4.1 simply shows that the expectation of the relative utility weights of
agent j compared to agent i is increasing, and should not be taken to mean that agent j is
doing progressively better in relation to agent i. By symmetry, the expectation of the
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relative weight of agent i's utility relative to agent j's is also increasing. Rather,
proposition 4.1 implies a spreading of the marginal utilities.

It can be seen that if all else is held equal an increase in wﬁ,i’ the marginal social
benefit of i's effort, will lead to an increase in the expectation of—j'li]- . The marginal
social benefit of i's effort can be considered a measure of how mugﬁ 1risk is shared, thus the
more risk is shared, the more quickly the utility weights diverge.

What the result of Lemma 4.1 tells us about the behavior of more conventional
measures of inequality, such as inequality in consumption levels depends on the utility
function chosen. If utility is given by a CRRA function with =1, i.e. log utility, the ratio
of any two agents' consumption will be the same as the ratio of their utility weights. It is
thus trivial to show that the expectation of the ratio of the richest agent's consumpton {0
that of the poorest agent is increasing.” For any CRRA function with 7y <1 the ratio of
consumption is concave in the ratio of utility weights, and is also clearly increasing. If
utility is CRRA with y> 1 the ratio of consumption is convex in utility weights, and it is no
longer possible to state unequivocally that the consumption ratio is increasing. Note that ¥,
the coefficient of risk aversion, could be considered a measure of how odious inequality is.
It is not surprising that in an optimal contract, when vy is high, there will be less inequality
in consumption.®

The final question this section asks is what will happen to inequality in the long
run. As long as W, _is not zero for every agent with probability 1, there will be some j

such that expectation of — will be rising. Thus if we measure inequality as the sum of the

; .
ratios of the utility wei ghis between any two agents( Zi‘,jf;,i %), inequality is strictly
increasing. Furthermore this measure of inequality will not teach an asymptote as long as
every agent's utility weight is positive. So as long as utility weights always vary?,

inequality is not bounded in the limit.

. . - . . Cite1 . _ Cit .

TSuppose i is the richest agent and j is the poorest at time t. At time t+1, E(cl—+-) > C—l . Since the
jt+1 jt

richest agent as at least as rich as i, and the poorest at least as poor as j, the expectation of the consumption
ratio is increasing.
8 It is questionable whether a decrease in the expectation of the ratio of consumption between the rich and
the poor should always be interpreted as decreasing inequality. Differences in need might be more worrisome
than differences in consumption. A natural interpretation of marginal utility from consumption is need,
thus we can still say that we are always expecting the neediest to become more needy compared to the rich.

% This is almost the same as saying the program is first best. A stable distribution would only be optimal
when the social planner is randomizing between two effort profiles that are locally first-best when
randomization is not permitted. However it is possible that there exists a third globally first-best effort
profile, in which case this randomization would not be first best.
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This result can be seen as a bare bones in that it implies that if there is any chance of
a poorer agent catching up to a richer agent, the poorer agent must also run the nisk of
falling further behind. The finding in this paper that utility weight follows a martingale,
coincides with the findings in Green(1987) and Thomas and Worrall (1990), that the
inverse of marginal utility of the agent will follow a martingale. Since the utility weight of
the poorer agent and the richer agent are both following martingales, in some sense neither
agent is expecting to catch up or fall further behind.

However, measuring inequality by the expectation of utility weight ratios puts a
great deal of weight on extreme inequality. As long as there can be some probability that
inequality is arbitrarily high, the probability that incquality is low may approach 1. In the
following two sections [ develop intuition for determining when other, stronger measures
of inequality will be increasing. In particular, I show that if the agents are not especially
risk averse, under ex-ante symmetrical functions, the "martingale” driven inequality
discussed in this section will be exacerbated by the fact that in some sense, the poorer agent
expects to do strictly worse relative to the richer agent in the future. In this case , I am able
to argue that there will be no stable non-degenerate distribution of utility weight. On the
other hand if agents are very risk averse, there is some sense in which poor agents expect
their relative standing to improve relative to richer agents. If this is the case there may be a
non-degenerate limiting distribution of utility weights, but I argue that due to the extreme
risk aversion, every agent's expected utility is negative infinity in the limit, and the

detrimental consequences of inequality are in any case unbounded.
Section 5: The Principal- Agent Problem

The implications of the above results when applied to the principal-agent problem
are interesting in themselves and also provide guidance as to what to expect when agents
are subject to differing degrees of moral hazard. The term principal is meant to describe an
agent who faces no moral hazard. This could occur either because his effort is either
perfectly observable, or because it does not enter into the production function. Contrary to
much of the previous literature, the principal is not assumed to be risk-neutral, rather he is
assumed to have a utility function similar to that of the other agents. Because the principal
can be scen as the limiting case of an agent that is subject to little moral hazard, the results

of this section give us the limit of results when agents bear moral hazard asymmetrically.

values of @ ¢; =0 could be optimal, and hence there would not be a moral hazard problem.
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The first result is that if utility weights are restricted to lie on the unit simplex, the

expectation of the principal's utility weight is always growing. Take note of the result that
if i is a principal and bears no moral hazard E[J-l-] = 2L Thus the utility weight ratio
between an agent and the principal is a martingq)ajftf.lll sh(gﬂld be noted that there is a real

asymmetry here. Specifically E(git—ﬂ) > & so it is fair to say that the position of the

. kel Ok )
principal relative to the agent is expected to improve over time.

Proposition 5.1:1f i is a principal and faces no moral hazard, and 3 some agent j that

9, ¢
does face moral hazard, then Ef it+] J> i+
¢k[+1 Z ¢kt+]

k

k

Proof: See Appendix

Corollary: If utility is CRRA with y=I, the principal's share of consumption is
increasing.

Proof: if y = 1 consumption share is proportional to utility weight share.

The intuition as to why the agent expects to do worse in the future, and the principal
better is somewhat subtle. The result stems from the fact that it is more efficient to provide
incentives with punishments than rewards. This is because in states where an agent 15 being
rewarded his marginal utility of consumption is low compared to the principal, therefore it
is necessary to take a large amount of utility away from the principal in order to provide
him with a moderate reward. In states where he is being punished, it is only necessary to
take a small amount of consumption away from him to provide incentive to avoid such
states. Since the principal only gets a small amount of utility from this, social welfare is still
being lost, but the loss is now smaller, because less ex-ante social welfare is being
transferred. Since punishment is more socially efficient, the optimal contract will use more
punishment and less reward. Since it has already been established that rewards and
punishments will take the form of lowering or raising the agent's utility weight in the social
welfare function, we'd expect the utility weights of agents who bear moral hazard to
decrease over time, since the punishments will tend to outweigh the rewards.

A simple example can clarify the above intuition. The marginal welfare loss from
incentivization is the difference between in the weighted marginal utility of the agent and the
weighted marginal utility of the principal. Consider a situation where the ex-ante utility
weight of the principal and the agent is identical and the agent is being rewarded. Suppose
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his marginal utility of consumption is .5, while that of the principal is 1. To transfer 1 util,
two units of consumption would have to be transferred causing a welfare loss of one util. If
the agent was being punished and his marginal utility was 2 while the principal’s was 1, in
order to take away 1 util we'd have 10 transfer one half unit of consumption, and the
welfare loss would be only one half of a util. Consequently, if both states were equally
likely it would be optimal to reward less and punish more. 10

The increasing utility weight of the principal does not directly translate into
increasing utility for the principal, likewise the decreasing utility weight of the agent does
not necessarily imply decreasing expected utility for the agent. However we find that under
a wide range of parameters, decreasing utility weight will be accompanied by decreasing
utility. In fact, is shown in the appendix, that abstracting from changes in effort and
production, a principal's utility from consumption will always be increasing if utility is
given by a CRRA function with y>1. By the convexity of the udlity possibility set the
agent's utility must be decreasing under these conditions. In fact it is possible to show that
if the utility function is CRRA withy2 —cxpected utility from consumpnon is always
decreasing for the agent in a principal-agent model. Even when '{< the agent's utility
will be expected to increase only when his weight is low compared to the principal's.!!

The central intuition of this section, that the principal's position relative to the agent
is improving over time because the agent is being punished more often than rewarded, is
interesting in itself, but is also applicable to the question of the dynamics of inequality. If
we can identify which agents more closely resemble the principal we can expect that in the

long run utility weight will tend to migrate towards them.

Section ¢: The evolution of agents' relative welfare.
8

The findings of the previous section suggest how utility weights and distribution of
consumption might evolve when agents face different amounts of moral hazard.
Specifically agents who face more moral hazard should on average sutfer more punishment

than reward. Conscquently utility weight should tend to move towards the agents that more

10 Thomas and Worral provide an almost identical intuitive argument in their 1990 paper.

9.
A5 v goes to zero j's utility takes the shape of an S-curve when plotted against ﬁl , with the steep

1

! 8-
portian of the curve occurring near where ﬁl =1 If él <1, j is on the lower flat part of the § -curve,
i .
1
Y
5.

1

where it is concave, thus j's otility is increasing with mean-preserving variance in

19



closely resemble a principal and face less moral hazard. With this motivation we turn to the
question of what it means for one agent to face more moral hazard than another agent, and
describe the conditions under which an agent would expect his utility weight to increase or
decrease relative to another agent. We are specifically interested in determining whether
agents who have received good realizations and have higher utility (rich agents) will face
more or less moral hazard under the optimal contract than agents who have received bad
realizations (poor agents). This is of central interest to the paper, because it tells us when
there are forces exacerbating or mitigating the dispersion of utility weights and the increase
of incquality.

I will now construct a variable I call utility weight risk. [ define Z, as the

proportional variance in 1's utility weight under the optimal contract. Thus Zi is defined by:
Var(o.} (We.s.)?
Z = 1 11

1 q)iz

It should be first noted that this variable is a function of the optimal contract, rather
than a direct function of the parameters. It is a measure of how much an agents utility
weight is likely to change from the current period to the next. It can be interpreted as moral
hazard for the following rcason, the more an agent's incentives differ from those of the
social planner, the more reason there is for the social planner to modify these incentives by
varying the agent's future utility weight as a function of outcome. If an agent’s effort were
perfectly observable, or if his incentives were perfectly aligned with society's there would
be no reason for the planner to vary the agent's weight. The proportional variance in the
agents utility weight can be thought of as the marginal cost of providing incentives to this
agent under the optimal contract. Since under the optimal contract the marginal social cost
of providing incentives is equal to the marginal social benefit, Z; a measure of how much
this agent's interests differ from the planner's, and can thus be seen as a measure of moral
hazard.

The measure chosen has the quality that, by looking at a second order
approximation, the condition E[lnq?f%] > ln(g-ijf) is approximately equivalent to the

condition Z; < Z;. Comparing the logs of the prior and posterior utility ratios is an

appealing condition for which direction utility weight is being transferred because it is

symmetric, in other words 1nﬂ£= -In 9y soif E ln—]ﬁ] > ln%—'—) then E [1 Gite 1 —] <
bit ‘3)}[ Pit+1 ji+1

ln(%)_ Thus by comparing the prior and posterior utility weight ratios we can get a definite
it
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answer to the question of which agent expects to improve his relative position in the future.
If Zj < Z;, it is appropriate to say that j expects to improve his utility weight relative t0 11n

the future.

We now turn to the question of whether utility weight risk(Z) is likely to be higher
for the poorer or richer agent. We can provide intuition as to why the utility weight risk of a
rich agent approaches zero as all utility weight becomes concentrated in the rich agent. As
the utility weight of the other agents approaches zero, the social planner cares less about the
other agents, and has less incentive to distort the incentives of the one agent he does care
about 1o improve matters for the other agents. The rich agent becomes in effect, a virtual
principal, since his utility forms the bulk of social welfare, he has effectively intcrnalized
the effects of his effort on social welfare. In fact it is shown that as Zmp q:j — 0 for any
j#1, Z.—0.

Our first intuition might be that as an agent's utility weight drops, he internalizes a
smaller proportion of social welfare, and should accordingly be rewarded or punished
more. A parallel intuition would be that as an agent's utility weight drops, the social
planner would like him to work harder, and as a result must increase the incentives on that
agent. However there is another countervailing effect: when risk aversion is high, a poorer
agent will care more about the aggregate consumption than the rich agent (even though he
gets a smaller share). In this case, concern about aggregate consumption alone causes the
poor agent to work harder than the richer agent, and since the returns 10 effort are
decreasing, the social planner has less reason to increase the incentives of the poor agent.
When risk aversion is very high, the second effect could dominate, and Z might actually
decreasc as agents get poorer.

In our attempt to determine more precisely when Z will be higher for the poorer
agent, we start by taking a closer look at the incentives of any agent. The incentive that an
agent faces can be divided into two sources, the incentive from the effects of his effort on
the total quantity of resources available, and that from the effect of his effort on his own
share utility weight. These will be referred to as size of the pie incentives, and share of the
pie incentives respectively. The relationship between an agent's utility weight, and the
strength of the incentive he derives from concern over the size of the pie depends on Y, the
coefficient of relative risk aversion. If y=1, changing the size of the pie, but holding each
agent's share constant will have the same effect on each agent's utility. Howeverif y>1,
this incentive will be stronger for the poorer agent and if ¥ < 1, it will be stronger for the
rich agent. The effect of proportionate change in utility weight, or share in the resource is
always greater for the poorer agent because the slope of the utility frontier is given by the
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inverse ratio of utility weights. Thus the incentive from a change in an agent's share of
utility weight will be inversely proportional to the agents utility weight. That is to say that if
lo_werin g or increasing ¢j by one percent changes U, by one util, the effect on Uj will be
3;_ utils.

From this we provide a simple argument that if y> 1 the poorer agent should work
harder under the optimal contract. Since the poorer agent receives as much incentives from
the size of the pie, if her utility weight proportionally varies at least as much as the richer
agent's (i.e. Zj 2 Z.) she will receive more incentive from the share of the pie, and thus will
work harder. But if the poor agent is not working harder than the rich agent, the moral
hazard the poorer agent should face is greater than the richer agents so the poorer agent
should work harder. (ej <e = Zj > Z.l = & >e. ).

Now we turn our attention to the more difficult question of for whom Z will be
higher. In order to express sufficient conditions for our result we first must develop some
notation. Recall that if we assume independence the probability over states is the cross
product of the probabilities over each individual's realization, and that by A2 the
probability distribution over an individual's realization is given A;(e,) p,l+1-A(e)p, 0 We
define ny as the expected utility of consumption of an agent who consumes the aggregate
resource given that the probability distribution over states is p.*xp,Y . We define ¢.* as the
i's first best level of effort as — — oo, With these definitions we are able 1o state the
following result about utility v.;cight risk in the limit where one agent's utility weight goes

L0 Zzero.

Proposition 6.1: Suppose the economy consists of two agents with independent signals
over effort and the following three conditions are met.

(a) Utility is CRRA with <2

(b) Returns to effort are 0 for some finite effort (Vi , 3€; < o 5.1. A;'(¢;)=0)

(c) Me™) (W“-;V]OH(I— Me ¥ Wo-W, ) > IW, + W, -W, -W, I

Then Lim ¢jw7i < L
J

As long as the above conditions are met, the fact that the social planner cares much
more about the effect of the poor agent's (j) effort on the rich agent(i) then the reverse is
enough to show that the planner will augment the poorer agent's incentives with more
utility weight risk. In this case the utility weight of the poorer agent will be declining
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relative to the richer agent (E [1n—-1——] <In (-J—) and the random walk spread of inequality
described in section 4.1 will be engcerbated

Conditions (a) and (b) are self explanatory, and condition (¢) requires that the effect
of j's success on i's incentives be smaller than the direct effect of j's success on i's utility.
Since the first best effort levels are easy to find, condition (c) is easy to check. Conditions
(b) and (¢) are used in the proof only to rule out forms of the optimal contract that are
intuitively improbable, and should not be thought of as necessary conditions. Specifically
condition (b) is used to rule out an arbitrarily large increase in j's effort resulting from an
arbitrarily small proportionate decrease in j's utility weight, and condition (c¢) rules out the
possibility that W <0 that is that j is punished when he succeeds. Because it is difficult to
imagine why the opUmal contract would ever have these forms, one would expect the result
10 hold even when b) and ¢) are violated. In fact the poorer agent is more likely to face
more utility weight risk if b) is violated: if returns to effort declmed exponentially, which
would violate b), we could show that for any y <3, L1m¢1_)0 Z > 1. Thus if the optimal
contract is sufficiently smooth and well behaved conditions b) and ¢) are not needed.

However the first condition is likely to be necessary: as v increases there are two
effects which causc the poorer agent to face less utility weight risk than the richer agent.
First, as vy increases, the effect of the rich agent i's effort on j increases, causing the social
planner to augment i's incentives more. Sccond, as ¥ increases, j's effort will increase and
the marginal effect of his effort will decrease, causing the planner to augment his incentives
less. If (b) is satisfied!? and ¥ > 2 these two effects will dominate, and it will be the richer
agent who faces more relative risk than the poorer agent, and the spread of inequality will
be mitigated by the fact that the richer agent expects to be punished more than the poorer
agent.

Outside of the limiting cases, it is more difficult to determine whether the poorer
agent faces more or less utility weight risk than the richer agent. It is possible to construct
production functions where the magnitude of s, is decreasing rapidly in e, that is where
diminishing returns to effort set in suddenly. Therefore as an agent's effort increases it 1s
easier to hold him close to the optimal effort, and he does not need to bear as much extra
risk. Even when we assume a specific production function, so that this is not the case,
because we do not have a closed form solution for the program, It is difficult to make
unequivocal claims about which agent faces more moral hazard. However if we abstract
away from effects which we expect to be small we are able to make a strong argument
about conditions under which we expect the poorer agent to fall further behind.

12 If the retumns to effort decrease exponentially, so that it is not quite so easy to hold the poor agent near
his optimal effort level, than these effects will not dominate until 1>3.
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Recall that by A2, the returns to any one agent's effort can be summarized by the
derivative of the one dimensional variable A;(e;). If we assume that rewards to effort
li tially it will be th that s. d td f disf0
decline exponentially it will be the case that s, does no ep%g(gjil)g&c(im an. 1s\;ar13853%ej2

across individuals!3. Thus it is only necessary to compare with

We will now make two simplifying assumptions about the oplir‘ghzl contract, namel?j%l)
Var(c) = K(A)? Viand (2) a, =a; =0. The first of these assumptions is that the
likelihood of the most informative realizations are the same for both agents. The second 18
that the effort of one agent does not affect the incentives of the other agent, so we can
ignore the cross effects of each agent's effort. Neither of these assumptions are generally
true, but we argue in the appendix that our result about when the poorer agent faces more
moral hazard is not critically sensitive to the first assumption, and the violations of the
second assumption is likely to be violated in a way which strengthens rather than weaken
the result. Under the simplifying assumptions, in an ex-ante symmetrical model where
utilitics are CRRA with coefficient y <2, Zi>Zj whenever ¢j <0.. Thatis to say the poorer
agent will always fall further behind the richer agent in expectation, and the random walk
growth in inequality will always be exacerbated. The derivation of this result is not terribly

enlightening and is relegated to the appendix.
It turns out that the behavior in the limit described in proposition 6.1 is enough to

give us a much stronger inequality result then that presented in section 4. Specifically, as
long as the poorer agent faces more moral hazard in the limit, it is possible to show that
there will be no non-degenerate distribution of utility weight, that is to say with probability
approaching one, all the utility weight will be concentrated on one agent. As long as in the

limit where ¢j—>0 Z;>Z;, there will be some € such that if ¢;<e, Zj<Z;. We can construct a

: . - i, .
strictly monotone transformation of our utility measure such thatq ~ In (‘p—_l) if ¢.<e or ¢tj<E,
]

i a0 DPe.
13 Recall s, = "By the assumption of exponential decreasing returns to effort —-=—— and is
i~ . A" Dee.
lg.e. i
171
pei
constant. By incentive compatibility pri(m)Ui(m) do =1 and Ui B fpeiei(m)Ui(m) do, Thus if ——
eiei = pcici
Q Q
Pf:i
is constant, Ui . = and is constant.
€8 peiei
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q- %'1' if ¢>¢,>¢ and q ~ —%‘if 0.>p,>€'%. Whenever q, <0, q is a supermartingale, and
] i

when g>0,q is a submartingale. Since a martingale will not converge to a non-degenerate

distribution if limg_,, Var(z) <ee, and q diverges morc quickly than a martingale, there will

be no non-degenerate limiting distribution of q or ¢. In this case the likelihood that the

poorer agent's utility is arbitrarily small will be arbitrarily close to one as t goes to infinity.
So as long as agents are not very risk averse, the limiting distribution of utility weight or
consumption share will be degenerate, and society will become arbitrarily unequal for any

measure of ineguality.

If agents are very risk averse, so that the conditions for Proposition 6.1 do not
hold, there may be a non-degenerate distribution of utility weight. Since the variance in
utility weight approaches zero in the tails of the distribution, it is possible to approximate
the evolution of utility weight there by Brownian motion with a drift. This allows us to
characterize the tails of the limiting distribution when it exists. When we charactenize this
distribution under the assumption that the poorer agent faces no moral hazard, which is the
best possible case for equality, we show that the likelihood that the agents is in tails is
finite, so can be a non-degenerate limiting distribution'. However we show that for any
CRRA utility function the utility from the tails goes to negative infinity, so that even if
incquality is bounded by some measure, the negative consequences of inequality are not
bounded. This occurs because the variance of utility weight for both agents in the tails 1s
very low, so once the utility weight distribution becomes very unequal, even though it
might tend to become more equal in the future it will do so very slowly. As a result, in the
long run the economy is very likely to be in a state with high inequality, where one agent is
being punished very severely.

The results of this section give us some hint as to how the speed and character of
the spread of utility weights depend on the parameters of the model. If rich agents face less
relative moral hazard, as is expected to occur when agents are not extremely risk averse and
diminishing returns to effort do not set in suddenly, then the random walk' dispersion of
utility weights is aggravated by the fact that the poor will bear more moral hazard than the

e %
1-€’0.
%

. 0.
14 Lo i . _ 3 E . _ E ., B |
The exact function is @ =In (—Cb») if ¢<e. g=In (_I—E)_(_I*E’-lqai if ¢j>¢)i>s .g=1In (1_8;-(1_814-(

]
. £ ¢’i .
if ¢)i>¢3j>£ and q = 1-(TTE-)+ in (&)-.-) if ¢j<£
!

15 This is done in the Appendix under "Characterization of the Limiting Distribution”
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rich and thus will expect to see their utility weight decrease further relative to that of the
rich. We might refer to this situation as positive dispersion of utility weights.

On the other hand if the parameters of the model are such that richer agents face
more moral hazard under the optimal contract, the random walk dispersion of utility
weights will be mitigated by the fact the richer agents actually expect 1o be punished more
than the poorer agents. This countervailing force will slow the spread of inequality, and if
this holds in the limit, the limiting distribution of utility will be none-degenerate. However
since this will occur only when the agents are very risk averse, the consequences of

incquality will still drive any agent's expected utility down to zero.

Section 7: Lower Bounds on Utility

Up to this point the paper has considered situations in which the ability of the social
planner to punish a particular agent was unlimited. That is to say no matter how poorly off
an agent was he could always be made worse off. However one might believe that there arc
often limits to society's ability to punish an agent in a given period. For example there
might be social norms against giving an agent too little consumption, or the agent might
have the possibility of exit, or the agent might simply place a utility of greater than negative
infinity on starving to death.

In this cases there is a limit to the quantity of utility that can be transferred away
from an agent. Thus it is possible that under an optimal contract WCi(m) will be negative in
states which suggest low effort by agent i. This implies that the agents posterior utility
weight is negative; the social planner would like to punish the agent more severely and
would do so if it were possible to do without harming the other agents. If Wq(a)) 1s

negative the following will be true:

. Agent i's consumption will be at the lowest possible level, and lemma 3.1 will not
apply since the social planner is not free to transfer more consumption away from
agent 1.

. Because it is impossible to further decrease i's consumption, the only incentive 1

faces to contribute effort is the possibility that his future consumption will be
increased if a signal indicative of high effort is realized. It is thus impossible to
increase his effort without increasing his future utility.

. Society is on an upward sloping portion of the utility frontier as illustrated by the
tangency in figure 7.1. Decreasing i's continuation utility will decrease his incentive
to work and decrease the continuation utility of the other agents. Thus i can be said
to be below his ‘efficiency wage' level of utility. Although increasing 1's utility to
the etficiency wage level would be an ex-post Pareto improvement, it would
diminish i1's ex-ante incentive to work.
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“efficiency wage"

/ points

Figure 7.1

The possibility of having negative utility weights has implications about whether the
optimal risk-sharing contract can be duplicated by a series of short-term contracts. If utility
from consumption is not bounded below, the optimal contract can be achieved in a scenario
where agents agree on one period contracts which map states into 2 consumption vectors
and renegotiable continuation contracts. If the continuation contract is on a point on the
utility frontier with a slope equal to the ratio's of the agents' marginal utility of
consumption they will not renegotiate. However if utility is bounded below and the optimal
long-term risk sharing contract calls for a point on the upward sloping portion of the utility
frontier, as pointed out in Fudenberg, Holmstrom and Milgrom(1990) it is clear that it
cannot be duplicated by a series of short-term contracts. The agents will renegotiate away
from any continuation contract that is not Pareto efficient. So if there are lower bounds on
the utility from consumption, the optimal social contract is not renegotiation proof, and
society may not be able to commit to optimally punishing agents who are poor. In other
words society might depart from the optimal contract and redistribute sacrificing some ex-
ante efficiency.

Turning away from the question of renegotiation-proofness, we wish to ask what
effect placing a lower bound on consumption or utility will have on the distribution of
utility weight or consumption. If there are lower bounds on utility it is obvious that

inequality cannot continue to increase once it has reached these bounds. However we are
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still faced with the question of whether these bounds will be absorbing or reflecting. Do we
expect that all agents will be pressed up against these bounds, or will the distribution of
utility weight have a non-degenerate distribution, with a substantial proportion of the agents
in between the bounds at any given time. In the remainder of the section I show that if there
is a floor on consumption, we expect the limiting distribution to be degenerate, with all
agents al either the upper or lower bound.

For mathematical simplicity I consider a principal-agent model with one agent. We
will refer to the agent as i, and the principal as j. Since the principal will not need to be
rewarded or punished his utility weight ¢; can be normalized to 1. Even if utility from
consumption is bounded below for the principal and the agent, such as when y<1or
when there is a lower bound on consumption, proposition 3.3 will still apply and we will
have the result that ¢; is a martingale. However ¢; will not always correspond to the ratio
of marginal utility of consumption between the principal and the agent, since the social
planner may run into a lower bound on consumption. Under these circumstances we are
able to make some claims about the long run distribution of income. The justifications for

these claims all rely on the following proposition.

Proposition 7.1: If the consumption of the principal is bounded below by ¢ > 0, ¢;, the
utility weight of the agent is bounded above by some P < oo
Proof: Sce Appendix

The essence of the proof is that as the utility share of the agent grows the
consumption and the variation in consumption of the principal shrinks. Since the
consumption of the principal is bounded above zero, the principal's marginal utility of
consumption is finite. Therefore as the variance in the principal’s consumption gocs to
zero, the variance in his utility goes to zero as well. Thus the amount of moral hazard borne
by the agent goes to zero, and the variation in 0. goes to zero.

One can sce that if we define ¢ as the lowest Q)i such that v,(:@‘) > ¢, for any @

e Q, any time that ¢i>$, the principal will always consume ¢ and be(l?rzagt)fected by the
agent's effort, hence the agent will face no moral hazard. If the agent faces no moral
hazard, Wei =0, and by proposition 3.3, ¢, ., =0,, s0 the agents utility weight will be
fixed. In this case we might think of the agent as a 'virtual principal'. Because the
principal’s consumption is fixed the agent bears all the risk and reaps all the gains of a
successful outcome. It is worth noting that if the only signal of i's effort is binary, ¢, will

always be less than @, so it will never be optimal to reward the agent so much that the
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principal is forever held to the lower bound of his utility.® However if the signal of i’s

effort takes on more than 2 possible values, it may be possible to reach an absorbing state.
Having established that there is an upper bound on (bi, we now ask the question of

when there will be a lower bound on i's utility weight. We begin by defining the IRIE

(infinite returns to infinitesimal effort) condition.

Definition: The production technology satisfies IRIE iff

Jw st limg_yp pei(a)) = oo

Pel-(w)
Proposition 7.2: If IRIE is not satisfied (i.e. |

| is bounded above for all w € £2),
o)

3¢ srifgi<g, e, =0 and @, is an absorbing state. Furthermore §; is bounded below

by ¢

Proof: See Appendix

According to proposition 7.2 if IRIE is not satisfied, there is some maximal
punishment where agent 1 is held to the lowest possible utility in the future regardless of
outcome. Obviously the agent will exert no effort in these states, and furthermore, the
marginal increase in i's effort caused by increasing his incentives is zero. Thus it will not
be optimal to provide any incentive to i, SO ¢i[+1 = ¢i[, and the maximal punishment is an
absorbing state. Furthermore there is some & >0 s.t.if ¢i> ¢ e>¢ As q)i decreases below
. ¢ discretely jumps down 10 zero.

The intuition for the result is that if the marginal effects of effort are not infinite, it 1s
necessary to increase Uj{w) discretely above the minimum in some future state to give i
incentive to work. Thus if e, >0, it is possible to decrease u, discretely by ceasing to give
him incentive to work. If ¢. is negative, and of sufficient magnitude the (discretely positive)
social benefit from punishing 1 will outweigh the future cost which must be finite. Social
welfare will then be maximized when u is at its absolute minimum and e. 18 zero. On the
other hand, if IRIE is satisfied, it is possible to increase the agent's effort from zero
without discretely increasing his utility, nevertheless, ¢; may still be bounded from below.

16 For a proof of this, see Proof of Claim 7.2a in the Appendix.
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2
A.u
Proposition 7.3: If lim e;->0 IT‘—J is bounded 3 ¢ st ifgi< ¢, e, =0 and @¢; is an

H

absorbing state. Furthermore ¢; is bounded below by ¢ 17
Proof: See Appendix

de. dU,
The condition in 7.3 ensures that as ¢, -0, ml-_d?]_ is bounded. If — Q)i is greater than
i i

the upper bound, the social welfare function will be maximized by minimizing e, that is by
setting e, 10 0. In any case where ¢ exists, its magnitude is positively related to the

de. dU, de.
ot 1 . 1. e s .
maximum of _dUi _Ldei . Thus when __dUi increases, signifying that i's effort is more

cheaply bought, ¢ increases in magnitude, suggesting that it is less likely that Ui be set to
the minimum. Intuitively this can be interpreted as showing that the easier it is to motivate
the agent when he is very poor, the less likely the agent is to be 'given up on.’

Proposition 7.4: If Proposition 7.1 and Proposition 7.2 or 7.3 hold then Ja < I such

that for any €>0 lim, _ Pr(¢;> o-¢) =a and fimp, Pr(tpl. < q?u +g)=1-a

‘Pi()' (P_ ¢0_ ¢ —
Furthermore if i's initial utility weight is ¢, ——— <a < L = where 9,0 .0

b0 39 :

and ¢ are given by the definitions above.

Proof: See Appendix

Proposition 7.4 states that if there is a lower bound on the agent's utility weight,
eventually either the agent or the principal is very likely to be very near the lower bound of

17 It is not clear that there are any functions for p(@) which are bounded which do not satisfy the condition

Pe.(®)
that }p—l(EJ-)-i is bounded above for all @ € € for any e<e. Certainly any function of the form p(w) =
ﬁiei

x+ ae! T satisfies A2, but also satisfies the condition for I.emma 7.3
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consumption. The proof of Proposition 7.4 makes use of the fact that any bounded
martingale converges to regions where its variance approaches zero. In this case the only
regions where variance approaches zero are  (¢; > & —€) and (¢i < ¢ +g). Furthermore
since the expectation of ¢, must always be ¢, we are able to estimate a, the likelihood
that the principal is near the lower bound, by the equation a¢ + (1-a) ¢ = ¢;p. This result
enables us to predict the long run distribution of consumption and incgme in situations
where there is a lower bound on consumption. Note that  is decreasing in ¢ , that 1S to say
it is increasing in the magnitude of ¢ . From our carlier result the magnitude of ¢ is
increasing in the responsiveness of ';he agent to incentives, thus if an agent is mgre
responsive to incentives, and all else is held equal, he will be more likely to end up at his
maximurn possible utility.

To summarize, the result is that under very gencral conditions, if there is a lower
bound on the consumption of the principal and of the agent, in the long run, either the
principal or the agent will be close to the lower bound with probability approaching one.
Furthermore the probability that the agent is at the lower bound is decreasing in how
responsive he is to incentives at very low effort levels.

These results differ from those of Atkeson and Lucas (1995) in that here the lower
bound of utility is an absorbing state rather than a reflecting state. This difference rests
entircly on the differing assumptions about the form the lower bound of utility takes. In
Atkeson and Lucas there is a lower bound on agents' expected future utility, but it is still
possible to punish the agent by decreasing his current consumption. When an agent is
punished like this he would like to trade future utility for present consumption but runs into
the lower bound on future utility. It is still possible to give this agent incentives by
providing him with less than his expected continuation utility in future states which are
indicative of low effort, and more utility in states indicative of high effort. In the states
where he is rewarded, he will trade current consumption for future utility and lift himself
above the lower bound on future utility. In this paper, on the other hand, the lower bound
on continuation utility stems directly from a lower bound on instantaneous utility from
consumption. Since an agent's utility is lowest when he knows that he will be at the lowest
consumption level in every possible future state, the fact that he is at the lower bound of
expected utility implies that he must not expect to be rewarded in any state, and is
permanently stuck at this lower bound.

It should be pointed out that these results concerning bounded utility are all derived
for the one agent case. If there are multiple agents it becomes more difficult to obtain results
for the long run distribution of income. However the general result that agents face no
moral hazard only when they are being maximally punished, or when everyone else is
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being maximally punished, suggests that in the long run at most one agent will be above the

lower bound on consumption.

Section 8: Conclusion

This paper shows that the optimal risk sharing contract under moral hazard has a
recursive form and maps a prior utility weight vector and a realized state to a posterior
utility weight vector. The contract punishes or rewards agents by increasing or decrcasing
their utility weight in accordance with a positive or negative signal about their effort. If
utility is bounded below, following the optimal contract may lead to a situation where the
utility weight of an agent is negative, meaning that the social planner is trying to minimize
rather than maximize this agent's utility.

Under the optimal contract, utility weights will diverge as long as signals
concerning different agents' efforts are sufficiently independent. For some utility functions
this implies that inequality, measured as the ratio between the consumption of the richest
and poorest agent, is always expected o be increasing. For other utility functions this
measure of inequality may not always be increasing, but the ratio of need between the
poorest and richest agent, measured as their marginal utility from consumption, is always
increasing.

If moral hazard is not borne equally, utility weight will tend to migrate towards
those who face the least moral hazard. This occurs because it is more socially efficient to
provide incentives by punishment than by reward. Thus the utility of agents who face more
moral hazard is decreasing over time for two reasons. Firstly, because they are risk averse,
and uncertainty over their utility weight and consumption level is increasing over time, and
secondly, because they are being punished more than they are being rewarded so their
relative position is actually expected to be worsening over time.

One might not expect to see formal risk sharing contracts exactly like those
described here in a real world setting, but as shown by Udry and Townsend it is not
unreasonable to expect to see less formal approximations in areas where risk sharing is
common. Specifically one might expect contracts where utility weight, although not
formally defined, rests in a concept of indebtedness or entitlement, and this entitlement is
changed from period to period based on outcomes and consumption. Applying the results
of the paper to such situations, one might expect inequality in such a situation to rise over
time.

The result of the paper that punishment is more effective in providing incentives
than rewards, and that agents tend to lose utility weight relative to principals has
widespread implications. It suggests that optimal incentive schemes will take the form of
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granting agents entitlements and then, on average, taking them away. We can interpret the
results of the model as predicting that lucky agents who experience good realizations will
receive a greater share of societies resources, becoming something close to a principal, or
capitalist and facing less morai hazard. Agents who suffer bad realizations continue to face
more moral hazard, and expect to see their share of consumption continue to decrease.
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Appendix
Proof of Lemma 2.1:

Let C(AY) be the space of continuos bounded functions on AY, the interior of the J
dimensional simplex.

Define the operator T on C(Ah by
(TW)(©0) =sup _ D p(@)¢e(vic(@)-e+Borz(@)),

e 2
sl.e € Argmaxq 2p((n)(v(ci(m))—ei+Bzi((0))), Bez<W(0) V O A!

we Q
Note that this is a well defined problem for any bounded W since it is the maximum of a

continuous function and the range of values of excxzx€ space that must be considered 1s
compact.!8

We will show that T is a contraction mapping from C(A”) to C(A").
The first step is to note weak monotonicity in T i.e. if W'(0) = W{¢) YV de A, (TW)() 2
(TW)(9)

This is true because an increase in W(¢) simply represents a loosening of constraints on the
problem. Now we will show that

if sup, s IW(0)-W'(0)! =8 then sup, s I(TW)(@)-(TW)(@)I<BS
Consider Wg(9) =W($)+8 V e Al We will show that
(TW)(9)-(TW)(¢) < 3V 9e A’
If H is a contract which specifies ¢.e,z as functions of , let Hy specify c.e,zg, where the
elements of zg are defined by z5(w) = z(w)+d Vie J, @ e Q. Itis clear that ifHis

feasible and incentive compatible under W, Hy will be feasible and incentive compatible
under W furthermore

3 p(@.£)(0*(v(c(@))-c+Boe2())) - .p(ed,e) (O (v(c(w))-c+Bhezg(@))) = B8 ¥ e Al since ¢
Q Q

and ¢ are the same in both expressions. Thus for any contract H which obtains TW(¢)
under W there is contract H; which obtains TW(9)+B0 under Wy so TW () = TW($)+po

¥ ¢. Analogously for any contract H which obtains TWg(¢) under W, there is a contract
H ; which obtains TW g()-36 under W so TW(9) < TW(6)+R6 V ¢. Hence TW,(9) -
TW(0) =pBo.

18 Even if e is not bounded the spaces of effort levels that must be considered is bounded, it is clear that no

effort level greater than max ¢ QT —I—TB'T(QJV(E)-{DV@) will ever be optimal, because a program
1«
o.p@")

which prescribed e=0 at all times would be preferable.
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WLOG assume TW'(¢) = TW(¢), then by the definition of W§g and the fact that 6= SUD e pJ
IW(d)-W' ()l W ()2 W($) ¥V ¢ Hence TW'(0) < TWs() and TW'(¢) < Bo.

Thus T is a contraction mapping from C(A?} to C(A”) and has a unique fixed point. This
fixed point is analogous to the self generating profile described in Abreu, Pearce and
Stacchetti(90)

We now show that if W* is the limit of the above contraction mapping, the optimal contract

results in social welfare given by W*(¢).
Suppose there were a general ( not necessarily recursive) contract F, s.t.

2B Ip(@") ge(vic(ah)-e(@t1)) > WH(¢)

t=1
which satisfies the incentive constraint that

eml(m‘) € Argmaxeit+1 zBt(p((nt)v(ci(m‘))—ei((of)), as well as the feasibility

T=t+1
constraints.
Pick £ >0 s.. ) BUIp(a) ¢e(v(c(@h)-e(atD) - W*(9) >e.
t=1

By the fact that TW (¢) < TW(0H0 3 m1,¢2 s.1.

- £
D BU2p(e) ¢, (vic(@h)-e(@t ) > W0y
t=2

Likewise it is clear that there is some 2 € QxQ and ¢3 s.t.

D B3 0,0 (vici@h)-e(t ) > W*(¢3)+§—2
t=3

And there is some @™le Q! ZB““p(m‘) q)n-(v(c(co‘))-e(mt‘l))> W*(%)%, but this

t=n
- - - - 8 .
implies a contradiction when E‘> v(x(®)). So no contract can achieve welfare greater than
W*(0), and the proposition is proven .

Proof of Lemma 3.1:
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Vi (@) ¢ (@) o
Without loss of generality, suppose = x > -2 By Definition G,
Vi (@ 01 (@)
dUi
I ¢‘ __¢|'t+1 *
md)(lml?.esE,Q)n EUi SO 9" = (*)
i S T
do

Consider the social welfare effect of perturbing ¢ so that j's utility is increased, 1's is
decreased, and the utility of all other agents remains constant. By (*) the ratio of the

.. e . e . it+1 . . .
decrease in i's utility to the increase in j's is—=— However the ratio of the increase in i's

it+1
utility to the decrease in j's from moving consumption to 1 from j, is x, which is greater

0.
than E)J‘il_ Therefore total utility can be increascd by perturbing ¢ and compensating by
it+1
shifting consumption, and the contract was not optimal. Hence the lemma must hold in any
optimal contract. ]

Proof of Proposition 3.2:

Define Uic as the partial derivative of agent i's utility with respect to agent j's effort, thus:
j

Uy, = Y v pe,(®) do

Q

Note that if agents choose effort to maximize their own utility, the incentive compatibility

constraint implies that Uie~ =0. Let us define ch_ _ the change in j's return to effort
1 ]

directly caused by k's effort, so:
dyj;,
U =—

JCJ' €k de

The matrix A 1s the I X I matrix whose elements are defined by:

ij Uie e
So a, represents the change in 1's effort caused by a change in j's effort.

Since Uie- =0, by the incentive compatibility constraint a,; TCpresents the change in 1's
1
cffort caused by a change in j's effort. We define the matrix B as the I x I matrix whose
clements are defined by:
b, =Uj;
ij ¢j
Thus bij represents the effect of cj on 1's utility, note that by incentive compatibility the

diagonal elements in B are zero. We define b, as the k'%row of B. Having introduced this
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notation it is now possible to continue on with the proof that the marginal effect of an
increase in ¢ () is given by:

Vi Vi
] JCPeI- _ . ICpel'
6p(w)Vi, % o.b,(I-A) z’_Uie,.el. = ¢plw)V; - W, Uiel_el_

Vi pe
Increasing i's consumption in state ¢ will directly increase his effort by U,C
1

~ . Agenti
eiei

chooses ej such that Uie- =0, thus
1

Y U @pe @ do =1 ()

Q
Increasing ¢j(®) increases Uj(w) by Vic’ increasing the left side of (**) by Vicpci((o).
To maintain equality effort must be increased so that Uiq decreases by vicpei’ Hence the

Vi Pe.
change in i's effort generated directly by the increasc in c, is - U-C L
1

€€
However, this will change the other agents’ efforts, which will in turn change i's effort
again. Note that d, the vector of changes in effort must satisty
d = Ad + g where g is the direct change in effort, caused by changes in the relative
desirability of states and Ad is the indirect change, caused by changes in other agents’
effort

Solving for d we have g = (I-A)d , thus d = (I-A)’Ig

Thus the marginal change in effort due to increasing 1's consumption is the column vector
oAyl Vi Pe;
(I- Z; Uieiei

where z; is the ith column of I, the identity matrix. We define bk as the kth row of B so if
d is a vector of effort changes, bkd is the effect of an effort change of d on k's utility.
Thus the effect on k's welfare from changed incentives 18 :

Vip
-1 T
I-A) 'z
and the total effect on social welfare from changed incentives is:

S ¢ b (1-A)! MAD
- Z'
k kK k ‘Uigiei

Define Wci as the change in social welfare with respect to a change in 1's incentives , S0

We, =3 qubk(I—A)'lzi
k

Hence the partial of social welfare with respect to ¢{@) is given by:
Vi Pe.
C 1

eI,
i Uje e.
11

wCi :q)lp(m)vlc((o) -W

Proof of Proposition 3.3:
When the resource constraint is binding



We(w) = Wcj((o) ¥ i,j,0. Thus by proposition 3.2

Vicpei
p(w)9, Vi (@) -We, Uios
—— =1 (1)
P(GJ)(DJ-[VJC(G)) Wcj Ujee.
i
VO o
From lemma 3.1, we know that =
Vi 4
Dividing (1) Through by Vjc((o) we obtain.
¢jt+1
%
¢i1¢.jt+l W ¢‘il;+1
Ci U
0. 1 ie.e,
plwr—1 5 =1 (2), solving for ¢. () we obtain
e.
p(@)9, - We——
] ] Jese;

¢p+1 N

. i
m\¢i¢Jt+1 W ¢it+1
} -

Pe.
p( =p((—0)¢j1'We._U".'l_ (3), This reduces to:
B Jejej

% Ujge,
it+1 11
Pe.
P(@)O, - We 71—
0} n J Viee,
jt+1 _ 1§ (4) *
o Pe;

it+1 p((‘[))(])i1 - Wcim
11

Proof of Proposition 3.4:

From Proposition 3.2 it can be scen that for any agent in L, the sign of the partial of the

social welfare function depends only on @' and not on @?. Likewise the sign of the partial
for any agent in 12 depends only on ?. Finally note that for every agent in I there is at

least one state where the sign of the partial is positive. This is because Zpei do =0 forall

Q
i, thus there exists at lcast one state where Pe, is non negative (or non positive) and where

the partial is positive,
Suppose that the partial of an agent ile I; was non- positive for some sub-state ®'.

Consider an agent i, € Ip, from above there exists a sub-state (? where his partial is
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positive. In the state & =0 x & the partial of i, is positive, but the partial of i is non-
positive so social welfare can be improved by transferring resources from i1 to i2 in this
state. Thus the original contract was not optimal. It is easy to see that if the partial is
positive for all agents in all states, the resource constraint is always binding. +

Proof of Proposition 4.1:

We can divide the numerator and denominator of the expression in proposition 3.3 by
p{®) and we obtain:
Pe;
¢.[+We_--————1—
J ] p{0)Uje e
1]
pei
' P((l))Uieiei
Note that whenever the numerator is positive and held constant this is a strictly convex
pei

p(w)

o
0

el _ (4.1.1)

it+1 q;i[.m,re

function of

Since Y p(@) = 1 by definition, it is  tautology that ¥ pe;(®) =0
Q Q

. Pci(m) Pe; oo
Thus the cxpectation of = p{w) dw, which is equal to 0.
p(w) p(w)

Q
Since the mean of a convex function is greater than or equal to the function evaluated at its

-
" Pe; L I p(@)Uje e
mean, conditional on —(-17 the expectation of ===1s greater than 1L Since
p(®

it+1

W pel-

¢. -We.
Pe; I p@VUjee o,
the expectation of T‘;is zero, the expectation of ; Lljs - and the
p(® . .
1t 1t

¢

expectation of—lﬂ is greater than =& .
P g

it+1 it
Proof of Proposition 5.1

Since 1 bears no moral hazard(W, =0), by Lemma 4.1,
1
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b q:'kl+1 E’ q)l(t

¢
y =KL Thys EX -
0

E (¢kt+1
¢

20
" kt+1

it+1 it it+1

¢il+1 . . .
But ——— s a strictly convex function of
Gy O

p )
b, ki+1
Thus E(—*L ) > (&

K ki+1 ¢il+1

)'1 , with the inequality being strict if there is any variation in

20
k ki+1

.

it+1
strict. &

. If anyone faces moral hazard, there will be variation, so the inequality will be

Proof of Proposition 6.1
We begin by normalizing ¢, and q)j $0 ¢i+¢j=1.

'\’ ar(c )i W

Var(c) = z ’

(W

(6.1)

. Now since pg,(®) = Ai' (p%(®)-p(w)) and p(w) > p

Var(ci) < (6.2)

Ay
Secondly because A" <0, s, =-i% is bounded as well.
i
We rewrite the result of proposition 3.2 and obtain
Wci = ¢jbji+ajiwej

We now show that 3K s.t. la W _| <K¢j
oY
By our assumption of independence of signals, we can write €2 as ©, X ., where p(w) =

pi(w)pj(w;) and by A2

pi(®;) = 7Li((‘fl)([)il((ﬂi))-(1'7Li(01))(910((01)) (6.3)
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Let Uixy be agent i's expected utility when p.(@;) 1s given by p;X and pj((nj) is given by p;”
in essence Uj,  is 1's utility if they both succeed, U, 1s 1's uulity if 1 fails but j succeeds,
and so on.

By i's utility maximization:

We are interested in showing that as ¢j —0, ajiWcj <Ko,
Our preliminary step is to show that lim¢,j 0 We >0
i

Wej = bU +aijwei (65)
Applying our definition of a, (The elasticity of 1's effort with respect to j's effort)
aij = Sili' )\’jl(Ui“-f-UiOO_UiOl_UilO) (66)

It is easy to show that by the optimal static contract Iimq,j 50 WSMUC=WOFB. That is to say

that the optimal static contract approaches the first best contract. Thus the optimal dynamic
contract approaches the first best contract as well. Since Uj is bounded above:

. FB .. .

hmq)j 0 U=W" ". This implies Uixy: Wixy
Combining 6.5 and 6.6 and substituting in

Wcj: lj'(?\.i(ei)(Wl1-W01)+(l—ki(ci))(wm-wm)) + sili' ka'(Wl1+WOO—W01—W1O)Wei

Note that by A2 p(c) describes a straight line in probability space, and for any
p®, p' on that line we can choose a A-function. We choose p.! such that ming, p.!(@.)=0.

Thus there is a state @.* where p.(@,*) =( l—li(ei))pio(mi*)

By Proposition 3.4 we know that ;W gi(m,) > —0g - Where g; is the lowest possible

Pe;
value of 6. However 6,= —So

' p(w)
'li'(ci)pio(wi*) )-( )
= < A'(e) so
e pl@
siWCil((oik q)ei (6.8)

By assumption (W11+WOO—W01—W10) <MW -W +HI-A )W -W )

Thus we have established that Wej >0, and we turn our attention 10 W,
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Wci = lll(kj(e_])(Ull I—Uj01)+(l-lj(ej))(UjIO-UjOO)) + Sjli' )\.]‘(U“ 1+Uj00-Uj01_Uj10)Wej
(6.9)

Since W. >0, (U;, -U;
n ¢ Uy,

101)>0 and (U;

]lO_UjOO) >0 and
(Ujl 1+Ujgo_Uj01"Uj10) < 1
Ay(e) (Ui -Ujg )+H(1-Ay () (Uj - Ujg) Ae,)

Furthermore sjlj‘Wej < ¢j or else there would be a state where ¢>jt+1<0.

Thus W, < q)j(“ﬂlc—_)) li'(i\.j(ej)(UjlI-Ujm)+(l—lj(ej))(Ujm—UjOO)) (6.9)
]

Recall that in the limit U.m——>WFB and W){){—)WFB , therefore
1ﬁm 60 q)jijx—)(). so lim 60 cijjxx:O , and
hm ¢J_)O Wei ':()

In fact, we can say a little bit more about how W, behaves as q>j—+0

As .50, W, =0

; 0
As We —0, A —1, and 10 51, Hence i's effort affects j only through the aggregate

Jo1 o

. Loy 1wy g (117
resource constraint. so Uj, -Uj, < 1fﬁ{(x T-x'"") ¢j (1-1m (6.10)
1
[y 1- 1 - + ' . ..
Thus W, <A (X777 x Y) (lm) q:j %, since hmq,j_,o A" and lim 405, finite,
i
\f}(. < Ais;AfVar(o) A X7 x!7) (1+1—) R (6.11)
i 1 1 ]
k(ej)

Thus
. 1/
lim LK, < Ao, v (6.12)

QOur next step is to prove the following claim:
AS o 0 JK>0 2y > Ko, (1-1#) (6.13)

Let U be j's expected utility in state, given that tbj is held constant, and let V*jxy be j's
xy
expected instantaneous utility from consumption.

AU U 34+ (1-A 00U -Us )
Theclaimwillbclrueiflimq,j_>0 L The 17 7Jo TJ00 < oo

AU - U+ (A (U%5p, - U )

44



This implies that the incentive that j receives from the effect of his effort on his utility
weight will not arbitrarily dominate the incentive he receives from the effect of his effort on

aggregate consumption. By our assumption that Z; < Z; , we have that Z; < A(p i
lim Yart@y _ <A (6.14)
¢)J —0 j -

j

Thus the difference between vj,  -v¥j =~ l—(x' T+ 0 - 1y,
Y

Xy

- T 1y -,
- ]

but Ving v* I

jto
AiVjy 7Yy ) H LA Vg -Vigo)
Ai(v¥5y -V ) +HT-A) (VHjg, v

So for any v>1, 80
*ioo)

Var(¢;)

i . . — A . B _J_

Note that lim & -0 e=¢. Since lim 9 >0 y =0,
j

€y~ cjt=€j (6.15)

Since the limit in the variance in effort is 0,

_ S ac ] 1o I 1py-(1-1f «(1-17y)
U*11-Uin =2 B E(vjl0%j, )- EQvj loy, ) < —F(x "‘)ry((“ 0, (HI - 1y 1Y

=1 1-p
Usi11-Us
Since U* holds ¢ constant, U*; U*JIO _v*jn_v*ho and lim 80 H:
Thus for any y>1
. AilUj,,-Uj o)+ (12U - Joo) _
limg, 50 . =1 (6.16)
AU} Uy )+(1- i D(U%j0-Ujgp)
And the claim 1s proven.
Our next step is to show that
W,
l—'l> C for some C. (6.17)
J
Wei q)'b'i wei . Wei
By (6.5) =L ita — Asi— 0 ,a —0and — is bounded, so the second
A A ji kj. i lj

term goes to zero.
The first term, is the difference in i's utility between when j succeeds and when j fails. As

q)j——>0, 7&}—)0 and ?LJ.—)limc_ oo lj , also ¢;—x. Since j's probability of success will not
j

depend on Q)j, and 1 will consume virtually all consumption in any future state, U, will

b..
vary negligibly. Thusﬁ is the difference in 1's expected instantaneous utility of

: T .
consumption, which is strictly positive and bounded away from zero.
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Thus we have
h‘!

W .-
JZ = Var(o)s, fl By definition Var () > A2lp2-plI* =A2p*. By A3 5, >
: 1.9

J
Combined with (6.17) and (6.13) we have:
0 (1-1/7) ¢'(1-W)
: 2, (1-14) __]__(:_l—
lim 6;—0 \’Zj =2 K ¢j » o
i
\IZ_ 3(1-1/)
i ~_L 2 ..J_
lim ¢j_>0'Jz_>K ClA ¢1+1/'Y

Z.
Thus lf'Y(z, lim ¢J_)0 ALl —

VZ,

Analysis of the Relationship Between Z and Utility Weight:

For simplicity we consider a model where there is a binary signal (success or
failure) on each agent's effort. We will refer to the state where both agent's succeed as ®,,

and the state where i succeeds and j fails as @, and so on. We will use SSIZC to refer to the
difference between i's expected utility condmondl on his success and h;s unhty conditional
on failure that is due to increased societal consumption. The symbol 6  thus represents 1's
incentive from the cffect of his effort on the 'size of the pie'. We note that if y1is the

1ry .

) . The other part of i's

coefficient of risk aversion, 8, is proportional to (— l
" Ly
o. T+ 0.
share ) !
incentive is referred to as 8, and is the difference in his utility due to the difference

between ¢. | conditional on success and ¢, ) conditional on failure. Note that if Z, =Z; so
q)it+l((0lx) . ¢jt+1(mxl)
¢i1+1(m0x) ¢jt+1(mx0)

that and the curvature of the utility function does not change too

. o ) 1 . du. ¢)i _
quickly 8,  will be proportional to —. To sec this note thatmlz - — and since Zi=Zj the
: :
impact of 's failure on the ratio of utility weights is same as the impact of i's success.

(9}_)%718 size+(_’£6 share
! 5 size 5 share i i
g0 —b = ¢i i
kjr - 8 slze+8 share 8.5i26+8.share
1 1

By simplifying assumption 2, We. A '$.(8517¢-8 sharey
SRR ]

o -1 . 6
If Z = Zj this implics W, = l_'¢j ((—-L)uy Sis‘ze—{? SiSh"”e) and
i ]
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Wej - lj.q)i(aisize_Sisha:e).

Wci q)n i ¢1 i
Thus V\./re - 5 size 5 share 5 size S share s ¢T
j i + i q)l( i - i ) _l i
. wei . )
Soif y< 2 then if §; >4, wo < 1, by the assumption that A’ decreases exponentially
e.

(?l)l"fl aisize_},qi gisharc (bj (((i}.].)]'/Yfl Bisize_qli_ aishare)
. ‘ % (?1)2’7

i

si=s;, thus by simplifying assumption 2) Z; <Z;

Thus if we assume Z, = Zj and ¢, < ¢j, we obtain a contradiction, Similarly assuming Z,
> Zj leads to a contradiction leaving only the possibility that Z, > Zj.

We now consider taking into account the effect of one agents effort on the effort supply of
the other agents. We can manipulate the intermediate results of Proposition 3.2 and obtain:
WC_ = b +a W

3 i# 3 i €
Let U, bei's utility contingent on state Gy Evaluating a;; under exponentially decreasing
Xy
returns to cftort we obtain: G Uil 1+Ui00_Ui10-U
“a. U, +U. -U._-U.
N _ ji jtr Too Tiie o1 _

Intuitively the negative effect of one agent's effort on the incentives of the other agent
derives from the fact that if one agent works harder, societal consumption is likely to be
higher and the marginal effects of additional consumption will be lower. Under CRRA
utility functions an individual's utility from consumption is the product of a societal term

and individual term. The negative effect of one agent's effort on the other’s incentives will
enter through the societal term and be multiplied by the individual term. We have already

in1

established that the individual term will be proportional to cpil/'rl. So consequently this

cffect will be greater for the poorer agent whenever ¥ > 1. If the coefficient of risk
aversion, y < 1 then it is greater for the richer agent but bji fbij >aj.i;’a.lj s0 W, is still
1

greater for the poorer agent. Thus when we take into account the negative effects of one
agent's cffort on the other agents effort supply, it should not change the result that the
poorer agent faces more moral hazard.

var(c,) (7Li')2
i L]

var(c,) (kj')2

informative state is more likely for one agent than the other. In this case we can still say that

as long as long as the ratio of the probabilities of the least likely informative results for both
agents is not much greater or less than the ratio of their utility weights the results still hold.

By substituting into the earlier demonstration that if y>2 (11i>¢j = Zi<Zj We see that if
¢‘1/Y

var(s) (A)? ¢/ L
< the results will still hold. ¢
var(c) (kj')2 0.1

Now let us consider what happens when that is when the least likely
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Derivation of the Limiting Distribution:

In(0,)

We define z = , and look at the limiting distribution of z. We approximate the

In(¢.)
dynamics of z by assuming it takes the form of Brownian motion with drift, with diffusion

In(¢. In
n(0,, ) In€oy,, ) 2] and drift 1= E(l In(¢,,,) (¢1t+1)_
lrl(q)JtH) ln((i) t+1 1'l(q)jul) 1n(¢jl+l)

¢, varies when q;j 1$ poorer,

If we assume that only

speed o2=E[(

ar(9,)
S = Var(In ¢i)

i

v
= E(ln(9, )- In(¢, )12, and p = E[In(¢, )- In(9,)]. Recall that Z, =

, S0 G2 = Z. . Itis shown in the proof of Proposition 6.1 that Z.~¢.2/T ~e"™ We find
E[ln(q) ) In(o, ) using a Taylor approximation, keeping in mind that E[¢». ]=¢. , so

4] 1t

By equation (2.4) of Hansen and Scheinkman(1995), under Brownian motion, if p(z) is
the density of the limitjng distribution,

52
p(?) 2(6) pl2 j HEy) dy 1. However we have shown that—— W) _ - % SO —B-(E-)—:
(L) c(z) o%(y) p{(z’)
o3(2) @D Thus p(z) ez(zm ) _ T 1-2)
o%(2) p(z") ez(z"’

We will now show that the weight in the tail is finite, keeping in mind that we are looking
that the left tail of the symmetrical case.
z

Prob(z<z') =p(z') J erw =p(z). —p(z)Ee “0-2M  This will be finite
w00 =

whenever ¥ >2, which is not a relevant condition, because we have already shown that if ¥

<2, there limiting distribution will be degenerate.

Now we show that E[Uj—) -oo], Under CRRA, v, < 11—X1'7(¢j)'(1'1m , since X is

¥
the aggregate consumption in the best state, Because the variance in ¢)j approaches zero in

[hc [ﬂll U_< _ILXI'Y(Q).)'(I-UY) . NomaliZing q).:I, q).:ez‘ and U < 1_e>2(1-1/7)
bo1-Bly ] i j i 1y
Thus j's expected utility from being in the left tail is
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7z Z
o(2)e “ D fcz(lzmcm WD _ e ™2 fe 2l
-C0 -0

This integral does not converge, and since p(z'} >0, j's expected utility from being in the
left tail 1s negative infinity. Since j's utility is bounded above everywhere, his expected

utility in the limiting distribution is negative infinity. .

Proof of Proposition 7.1:

Proof:
Step 1) Let @ be the best possible state (x(D) 2 x(0') V @' € ), let
Vi ©) y v (©
=—————.If ¢. >0 , the ratio —————< ¢, , so J's consumption will be ¢
Vi (x{(®)-¢) " Vi x(@)-0)

regardless of state if ¢i[+1:¢n. Suppose Wei # 0 ,this implics Uje- # (}, but in any state
1

where ¢,

utility weight. Furthermore since ¢it+1

utility will be no lower since continuation utility must be at least the same, and consumption

can be no lower. Since increasing cffort increases the chance of states where ¢it+1>¢it’

o

> ¢i[, J's continuation utility will be no higher since it is decreasing ini's

>¢il, j's consumption will be ¢. If ¢it+1 <¢it’ 1's

increasing effort cannot increase j's utility. Hence If ¢)il > 0, Wei:() and 0™ it

Pe;

Step 2). If A2 does not hold Wei 18 bounded and is bounded as well, so ¢i1+1 - q)it is
e.

B'l

bounded by [. Since if ., >0 , ¢..1=0, . if 0, = ® + B, Ojpp = & + P thus ¢y is

Pe:
bounded. If A2 holds then if e >E >0, for any ¢, then i 18 bounded and we can use
e Pe;

m

the above proof to show ¢y, is bounded. If e, <€, Ui+ ~Ui_ <& , Where Ui+ 1s 1's utility in
the reward states and Ui' is his utility in the punishment states. But if ¢i[+ > , then i's
consumpton in the reward statcs is x((n+)-g, but then 1 would have incentive to work since
x(@") > x{©") (i's effort increases social resources). Hence if e. <€, ¢i+< ¢ . So q)it is

bounded above. ¢

Proof of Claim 7.1a

pci

Proof: Since the signal over i's effort is binary for any €, takes on only two

p(®)

possible values. Hence ¢y, takes on two possible values ¢; < ¢y < ¢;". Since i is being
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rewarded if ¢i[+1 >0, it must be the case that W, > 0 and thus Uj(¢i+) > Uj(q)i') but if ¢i+

=¢ , Uj is at its minimum, SO Uj(qf) < Uj(q)i') , and there is a contradiction. ¢
Proof of Proposition 7.2

By the agent's maximization problem:

pel(m) A - 4+
| is bounded above by B, 3 0 @ s.t.

ife,>0= JU(®) pe(@) do = 1.1 |
Q

Ui(oh-Uy(o ) = 1/2B, But Uy(w ) 2 U; so Ui(w ") = U; +B, since the chance of o' >g

E(U) = U; +1B -¢;

But E(Ui) is maximized over g; thus if ei>0 = E(Ui) >U; +xp

p(w)

Let U be the lowest possible Ui for which ei>0. Let Uj(Ui) be j's utility as a function of
U;. Since U- U; 2z and Uj is bounded so Uj(Ui) —Uj(LIi) <o, 3 9 <0 s.1.

max;. g 0] Ui+UJ-(Ui) =0 Lli+Uj(Lli). Note that since we have assumed an efficiency
; h b

wage exists, 3 Up> U s.t. U (U > UUj), hence ¢ <0. Tf 6<9 , 63U+ UjUL) < max,

-0 ¢uUi+Uj(Ui)' So 1J; maximizes weighted social welfare. However at U; is the
absolute minimum utility so the probability that Ui increases in any future state must be
zero. Hence setting ¢,,7 =0y, 1s optimal.

The remainder of the proof that ¢; is bounded below is analogous to the proof that it 1s
bounded above, the lower bound is simply the minimum possible ¢;,, arising from any
state where ¢; >¢ +

Proof of Proposition 7.3:

dU.(U)
We will show [hat_—d'l['}_l is bounded above. Hence U; maximizes ¢iUi+Uj(Ui) if @<
i
dU.(U;)
¢ when _dJU_ is bounded above by -0 .
~ ; -

Since utility is bounded there is a maximum possible value e, will take on, since peiei(m) is

2 2
Pe. (@) A
continuous and greater than zero |— | is bounded if e.>e. Thus if lim e._)o+l—”| is
Pee; () ! ! /1‘-
2
pcl(m) . — _ dU-
bounded, then ———11s bounded. Let D = UJ.(U )-Uj, Let Pe; = Max ¢ |peil lhenﬁl <

Pe;e, () i

Dp;.

1
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de, pel((.l)) 1 dU. de. pci(ﬂ))

1 1 _
7 < max ~ Thus =L = < Dp,. max
dUri © Pciei(w) R dt’i dUi & © Pciei(m)
. 2
dU. Pe.Pe.(0) De. () du.
Thus -(ml < max D &% 7 . Hence if ———is bounded thenﬁfL 1s bounded. ¢
i b Deiei(Cﬂ) Pciei((ﬂ) i

Proof of Proposition 7.4:

Part 1) Let £ = min (¢i | 5 >0; > 9+8) (var q>n+1|¢il) . Because ¢“ is bounded above
and below, Var ¢i[ is bounded. Because ¢il is a martingale. Var q)im = Var ¢i[ + Var
(@;,,119;0)-

Suppose in the limiting distribution, Pr (¢ —& > o, > +€) > 5.

Then Var Oy = Var ¢, + { . But then in the limit the variance would be unbounded. So

Lim,__Pr(d-¢ > ¢, > ¢ +&) =0, and the first part of the proposition is proven.

~ q)io_m
Part2)E (¢ ) = ¢,, - E(dip >a(d—€) +(1-a)p. a==
¢—€-0
0;¢—¢
E( ;) <ab+(l-a) p+e), a= — *
b ot
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