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v. {Y:} and {Z:} are AR(1) processes with autoregressive parameters close to 1 and with
innovation terms whose variances are close to 2 and 1, respectively; and

vi. either ¥(e) = €2 or the stochastic processes {{X1¢}.{Xa}....} are Gaussian.

PrOOF OF THEOREM 4B: Notation: By assumptions (iv) and (v), we can write X;; =
u+ Y, + Z;, where {V;} and {Z;} are mean-zero AR(1) processes. We write these as
Y, =~Yi_1 + Vi and Z;; = 8Z; 41 + Wy, where {V;} and {W;;} are noise processes.

Parameter values: Assume that v = 3 = 1, that Var(}}) = 2 and Var(Wy) = 1, and
that w = 0. We will claim that our calculations vary continuously with these parameters, so
that the results hold when the values are close to the ones given. In particular, the fact that
the processes are not stationary when v = 3 = 1 does not invalidate the calculations and
results. Assume first that ¥(e) = ¢2. We will later explain how to adapt the calculations to
the Gaussian case.

Intuition: Firm 1 can make a good forecast of X} simply by observing X; ;. Firm 1
cannot differentiate Y; and Z;; with this data, but it does not need to. For large n, firm n
cannot make as good a forecast of each X;; because it cannot use recent data about most
of the processes. However, what is mainly needs is to forecast ¥; (a law-of-large-numbers
effect diminishes the average loss from errors in forecasting the idiosyncratic terms). For
each s € Nand ¢ € N, X ;_, is a noisy observation of Y;_,. Unlike in the sampling problem,
the number of these noisy observations used in a forecast is bounded for each s, and so the
forecast of Y; may have a greater expected loss than firm 1’s forecast of X}.

Loss for firm 1: By assumption (iii}, firm 1 can compute 4; = X, ;_;. Since X=Xy, =
X1 -1 + Vi + Wiy, the expected error is

E[(%+Wvlt)2] = Var(Vt)+Var(Wu) = 3.

Loss for firm n: Let n > 2 and 7 € [I*. Assumption (i) implies that the data from dates
t — 1 and t — 2 that may be included in H] is at most one of the following:

Case 1 X;;-1 and X;;_» for some 1;
Case 2 X;;_; and X, ;—» for some ¢ and some j # ;
Case 3 X;;_» and X, for some 7 and some j # i.

In addition, H may include data from periods ¢ — 3 and earlier.

Consider Case 2. For example, Hf includes X;:—1, X2,:-2, and data from periods
t — 3 and earlier. To construct a lower bound on the expected loss, we can assume that HJ
includes X1 ¢—3 and X5 ;3. Since A] is a linear decision rule, there are constants a;, 2 € R
such that A7 = na; By + nasBs + Bj, where

B = Xi1-1—X14-3 Vici + Wi+ Vico +Wiio,
By, = Xpp2—Xop 3 = Vico+Waio,

and Bj is a measurable function of H;_3. Let

Xr - X, o ) 1o, .- .
B = Xt - V4V 4+ Via+— Z(Wz‘t + Wit + Wiga) .
n n <

23



1 Introduction

1.1 Motivation

The purpose of this paper is to study formally whether and how human information
processing constraints can limit the scale of centralized decision making in organizations
with endogenous administrative staffs. This abstract question is relevant, for example,
to the theory of firms and industrial organization, given that decision making appears to
be more centralized when an industry is controlled by a single firm than when output is
produced by independent firms. Hence, any advantages to decentralized decision making
may limit the scale of firms.

We address this question by characterizing the average cost curve for a statistical decision
problem that exhibits centralized decision making, in a model in which decisions are made
in real time by an endogenous number of boundedly rational agents. A related model was
introduced in Radner and Van Zandt (1992); here we develop a new axiomatic computation
model, contrast it with a benchmark sampling problem, and provide more extensive and
precise results. In the spirit of the theory of teams, we restrict attention to informational
and computational decentralization, leaving aside issues of incentives and governance. The
administrative agents in our model are boundedly rational because it takes them time to
process and use information. This time represents both managerial wages that must be
paid and also. more critically, decision-theoretic delay that constrains the use of recent
information. The main theme of this paper is that such delay can lead to decentralization
of decision making and bounded firm size—confirming, as stated by Hayek (1945, p. 524),
that “we need decentralization because only thus can we ensure that the knowledge of the
particular circumstances ... be promptly used”.

1.2 Real-time decentralized information processing

We use a real-time computation model—that is, a model where computation constraints
are embedded into a temporal decision problem in which data arrive and decisions are made
at multiple epochs. Such a model, whose properties are explored in Van Zandt (1998c),
captures in a sophisticated way the fact that human information processing constraints
limit the use of recent information.!

The decision problem we study is the estimation in each period of the sum of n discrete-
time stochastic processes. This is one of the control problems faced by a firm or plant that
sets its production level centrally in order to meet the uncertain total demand of n sales
offices or customers,? or by a firm or plant that needs to estimate the average productivity of
n workers (machines or shops) based on past individual productivity indices. This decision
problem is also part of resource allocation problems—such as allocating capital to n projects
or assigning output orders to n production shops—in which one of the steps is aggregating
profit, cost or productivity indices in order to calculate a shadow price. The size or scale of
the decision problem is n.

1 Marschak (1972) was the first economic model of real-time processing (that we are aware of). He studied
how different price adjustment processes affect delay, but he did not study decentralization of information
processing and the effects of problem size.

2For example, Benetton’s must respond quickly to changing market conditions at its many retail outlets
in order to implement just-in-time inventory management practices and thereby reduce inventory costs.



Computation Problem Assumptions 2 and 4 imply that there is 7*! € II"*! such that
A7 = ((n+1)/n)AT” for t € N and such that C(z"+!) = C(z") = C*. For t € N, let
¢ = E[un(X] — A7) /n and 4 = B[t (X - ATTT)]/(n + 1), so that

ACMa™) = T({gH+C/n
AC™ (@™ = TG H+C7/(n+1).

We showed above that € > ¢! for ¢ € N, and hence that T({¢7}) > T({¢/*'}) and
AC™(x™) > AC™H!(z™*1). We also showed that if either assumption (ii) or (iii) held then
¢r > L for ¢t € N, and hence, by Assumption 10 (part 3). D({£7'}) > r({e+ty). 1
instead assumption (i) holds, then C* > 0 and hence C*/n > C*/(n + 1). In either case,
AC™M(x™) > AC™H (a1,

Sampling Problem We let 7*** € II"*! be a sampling procedure such that cp?"“ =T
fori e {1,...,n} and c,og':;l = Ynun. According to Assumption 6, such a procedure 7l
exists and C(x™+!) = C(7") = C*. For t € N, let 4] = ((n + 1)/n)A]. We showed above
that E[¢™(X] — A7")] /n is (weakly or strictly) greater than E [y (X = AD]/(n+1);
the latter is, in turn, an upper bound on E[¢" ! (X[*! — A;’"H)]/(n + 1), since A4; is a
function of Hf "*' The rest of the proof is like the one for the computation problem. [

The following assumption ensures that, in Theorem 4A. the diversification effect is
present.

Assumption 12 In the sampling problem, one of the following two conditions holds.

1. (a) W is strictly convez. (b) Fori,j € N such that i # j and for t € N, there are no
functions f,; and fj Of Ht——l such that Xit - fi(Ht—l) = ng - fj(Ht—l) a.e.

2. Fori,t € N, if P is a regular conditional probability of X given Hy \ {Xit}, then
with strictly positive probability H, \ {Xu} is such that the conditional probability
P(H:\ {Xit},"): B— R does not have a support that is bounded above or below.

PROOF OF THEOREM 4A: Overview of main step: The main idea of this proof is that
firm kn can achieve lower average costs than firm n by replicating the sampling procedure
and policy of firm n. Specifically, let n € Nand = € II". Fort ¢ N, let £; be the average
period-t expected loss of firm n given 7. For k > 1, we define a sampling procedure 7* for
firm kn. which replicates 7, such that C(7*) = kC(z). For t € N, let £f be the average
period-t expected loss for firm kn given 7*. We define an upper bound €% on ¢f such that
b > fﬁ'

Why this proves the theorem: It follows that ¢ > ¢f for t € N and hence T'({¢,}) >
T({¢F}). That is, firm n’s average long-run loss given 7 is greater than firm kn’s given 7*.
Both firms' average sampling costs are (1/n)C(r). Hence, AC™(7) > ACk™ (z¥). By letting
7 be an optimal sampling procedure for firm 7, so that AC™(r) = AC(n), we have shown

that AC(n) > AC**(z¥) > AC(kn).

We can then conclude that firm size is unbounded. Let 2 € N, let n' =1+ S _,n. and
let n > n'. Any partition of n either has a firm whose size is greater than @ or has two firms
of the same size. In the latter case. these two firms can be combined to reduce average costs
and so the partition is not optimal. Hence, the maximum firm size of any optimal partition
of n is greater than 7.
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large firm into several smaller firms.®> Thus, diseconomies to centralized decision making
may also limit firm size.

We emphasize that by a firm we mean an enterprise—as this term is used in Chandler
(1966)—rather than merely a legal entity. For example, in the construction of a large
building, many independent contractors work together. During the project, they continue to
maintain their independent identities, but they also give up some of their autonomy because
of the tight coordination that is required by the project. This paper considers whether there
are organizational limits to the scale of such enterprises. As another example,® consider two
farmers each owning a piece of land and a small tractor. Suppose that they decide to
buy a big tractor and cultivate all the land together (not merely share the tractor). Then
they have formed an enterprise that did not exist prior to the merger, even if each farmer
continues to own his or her own land or to maintain a separate business identity for certain
purposes. The farmers would nearly always form a legal partnership after such a merging
of operations, but a lack of legal status would not eliminate the economic status of the
enterprise. The joint operations involve collective decision making about the cultivation of
the land, and the aggregation of information about soil qualities of the two pieces of land
and the markets served by the two farmers. Leaving the technological returns aside, such
collective decision making may have certain benefits, such as the sharing of information,
and certain disadvantages, such as delays in aggregating information. These are precisely
the issues we study in this paper.

To capture in a simple and concrete way that decision making is more centralized within
a single large firm than among multiple small firms, we identify each decision problem in
our model with a single firm. This is consistent with the examples of the decision problem
given in Section 1.2, where the decision variable for each problem is a level of output. There
is always some centralized control over a firm’s total output, but very little coordination of
output levels of different firms in the same industry. In these examples, our measure n of
scale is proportional to the level of output, which is the usual measure of scale.

Our approach sheds new light on how bounded rationality limits firm size, but it has
limitations which could be addressed in future research. First, our identification of a firm
with a single centralized decision problem introduces two biases. On the one hand, because
there is also decentralized decision making within firms, which is not allowed for by our
model, we may underestimate the scale of firms. On the other hand, because there is
some coordination among firms—through anonymous market interactions and also through
contractual relationships—which is also not captured by our model, we may overestimate
the scale of firms.”

Second, it would be useful to integrate our compiexity-based modeling of organizational
decision making with the incentives-based property-rights theory of firms (see Hart (1995)

5For example, the subunits could not communicate, coordinate their activities, or allocate resources
except as independent firms would do. Even if there continues to exist a common entity that owns the
subunits, these subunits would be independent firms, just as the common ownership of the many publicly
traded corporations by overlapping sets of stockholders and investments firms does not erase the boundaries
between these corporations.

6This example is borrowed from comiments of an anonymous referee.

"While recognizing these limitations, we note that most other models of organizational returns to scale
are also based on an ad hoc identification of a firm as some informationally integrated unit. For example,
Williamson (1967) defines a firm to be a hierarchy with an exogenous managerial production function. Keren
and Levhari (1983) define a firm to be a hierarchy with coordination delay that could be derived from a
model of associative computation. Radner (1993, Section 7) defines a firm to be a network for aggregating
cohorts of data. Geanakoplos and Milgrom (1991) and Van Zandt (1998f) define a firm to be a group of
shops to which resource allocations are coordinated by a hierarchy.



processes {Xi;} and {X;} are mutually independent for  # j, it follows that E[X |H{] =
E[X;:|H]]. Furthermore,

(1)

E[(X!-AD)?] = E[(iXit—E[XuIHZE]>~

=1

i E[(X,, - E[ Xy lH{;])z] .

For i € {1,....n}, firm 1 could use a sampling procedure =’ € 1! such that 7 = @F
(Assumption 6). and would then have the sequence { E[( Xy — E[X | HZ1)?)}2, of expected
losses. Hence, this sequence belongs to £. Given also the linearity of I' (Assumption 10)
and the additive separability of sampling costs (Assumption 6), the total cost is

n

term = 3 (P{{B[(Xu - BlXul ) ]}:)Jrsw;f)) .

=1

The sampling problem is thus additively separable over the stochastic processes. That
is, the problem is to find a single-process information structure ©* € ¢ that minimizes

2) F({E[(Xit—E[Xit (X | sEcpt}])z]}oo

t=1
and then to use a sampling procedure 7= € II™ such that ¢] = ¢* for ¢ = 1,... ,n. The
average cost for any firm is the minimized value of equation (2) and returns to scale are

)+56)

constant.

For the computation problem, we show that the average gain from information processing
converges to 0 asn — oo. Ford € N, let Ay = E{(X,-t - E[Xi,|Hi,t_d])2], which does not
depend on i or t because the stochastic processes are exchangeable and stationary. Let
n € N and = € II". The right-hand side of equation (1) is a lower bound on the period-t
expected loss for the policy {47 }. (This lower bound may not actually be attained, because
the decision procedure is not necessarily statistically optimal.) Furthermore, a lower bound
on E[(Xi — E[Xi|HE))?] is given by Aqgy,, where d, = t — max{s | (i,s) € $7} is the
minimum lag of the data in HJ, (or df; = oc and E[Xit|Hit—a..) = B[ X if HY is null).
Hence, the period-t expected loss for {A7} is at least 3., Aq

Let B: N — N be the bound in Assumption 1, and let {d;};-, be the sequence such that

d; = 1 for the first B(1) terms, d; = 2 for the next B(2) terms, and so on. This sequence is
such that, forn e N, m e [I", t € N,and d € N,

#{ie{l,....n}|di<d} > #{ie{l,...,n}|du<d} .

Hence, because Aq is decreasing in d, Y1, Agr, > S0, Aa,. Therefore, AC(n) > + 3",
Since each stochastic process {Xj} is regular, lim mfd_m A = 'Var( it) (Remark 2). Since
also lim;_eo di = 00, we have lim; o Ag, = Var(X;) and lim oo 2 = Zl_ Ag; = Var(Xy).
Consequently, lim inf,, oo AC(n) > Var(Xy). Because Var(X;) is the no-information aver-
age cost and is an upper bound on AC(n), limp—.c AC(n) = Var(Xi:).

Suppose also that there is n € N such that there is a computation procedure whose
average costs are lower than the no-information average cost. Then AC(n) < Var(X;) and
there exists an 7 € N such that, for m > 7,

|m/n|n AC(n) + (m mod n) Var(Xy) < AC(m) .

The left-hand side of this inequality are the total costs when m processes are partitioned
into |m/n| firms of size n and m mod n firms of size 1. Hence, i1 is a bound on firm size. O

19



been used to show nondecreasing technological returns to scale, also work in the sampling
problem but break down in the computation problem. Furthermore, the proofs link this
breakdown to aggregation delay and the informational integration implied by centralized
decision making.

Specifically, under the assumptions of Theorem 2, we show that there are constant returns
to scale in the sampling problem because a firm should replicate the optimal sampling
procedure of a firm of size 1. Under the assumptions of Theorem 4, we show that there
are eventually increasing returns to scale in the sampling problem because a firm of size
mn can achieve average costs lower than those of a firm of size n by dividing itself into
m divisions of equal size that imitate the sampling procedure of the firm of size n. Such
replication strategies do not work in the computation problem because each division would
compute only its own forecast. The aggregation of these forecasts would introduce delay,
and so the decision rule would use information that is older than the information used by the
smaller firm. Consequently, in the computation problem, there are eventually decreasing
returns to scale under the assumptions of Theorem 2 and there may be a firm size that
minimizes average costs under the assumptions of Theorem 4.

Empirical research in this area beyond case studies is limited. Brynjolfsson et al. (1994)
measure the impact of information technology (IT) on firm size and find that it is linked to
smaller firm size. Heuristically, if we claim that firm size is limited in part by managerial
delay, then improvements in IT should instead lead to larger firm size (although we do not
perform such a comparative statics exercise). However, in a general equilibrium model.
improvements in IT also mean that each firm’s competitive environment is changing more
quickly, and this aggravates the effect of managerial delay. Brynjolfsson and Hitt (1998) find
positive correlation between demand for IT and decentralization of decision making within
firms. This is a link between hardware and the structure of human decision making that our
model is not rich enough to capture, but heuristically this might contradict our conclusion
that information processing constraints limit centralized decision making. Alternatively,
it may mean that firms that operate in rapidly changing environments respond by both
decentralizing decision making and improving IT. Further research is needed to resolve
these theoretical and empirical issues.

2 The decision problem

We study the real-time computation of a family of forecasting problems that are param-
eterized by their size or scale n, a strictly positive integer. Our goal is to compare decision
problems of different sizes. In the definitions that follow, the exogenous components that
vary with n are indexed by n, whereas the endogenous components are not.

Let Z denote the set of integers and N the set of strictly positive integers. We fix once
and for all a countably infinite set of potential discrete-time stochastic processes, indexed by
i € N, from which the processes that enter into each decision problem are drawn. Process 7 is
denoted by {X it}f.i__oc or simply {X;:}. The decision problem of size n involves forecasting
the sum X = Z?=1 X of the first n processes at the beginning of each period t € N, based

on their past realizations.?

A forecast A; of X[ is a random variable measurable with respect to the history
{Xit-dr- - Xnit-d}gu,- A policy is a sequence {4,};Z, of forecasts (also denoted {A¢}).

8Even though the forecasting begins in period 1, we assume a double infinity of time periods for the
processes in order to simplify the statement of certain statistical assumptions.

(4]



completion of computation. The authors study returns to scale by positing an exogenously
given cost function—a function that depends on the scale of the problem, the computational
costs. and the delay. Reiter (1996) is also a batch processing model that examines limits to
firm size and centralization, but under the postulate that there are bounds on the size of
the informational inputs of any organizational unit.

Real-time control is a different, and in some ways richer, methodology for studying
the effects of delay on decision making. First, because it is based on a temporal decision
problem, we can implicitly derive a “cost of delay” from the degradation of the quality
of decisions that are based on old information. Furthermore, because decision rules are
endogenous, we do not artificially limit centralization by forcing organizations with large-
scale decision problems to bog themselves down with computation and only use old data.
Compare this with a benchmark model obtained by embedding a batch processing model
into our decision problem. Following Keren and Levhari (1983) and Radner (1993, Section
7), in which all data are collected for a decision at the same point in time and the amount
of data is equal to the scale of the firm, we would consider only computation procedures
in which the firm calculates the period-t decision from {X;;—4} ., for some delay d. The
computation constraints require that n < B(d) and hence d — o0 as n — oc. Consider the
assumptions of Theorem 3, with a negligible idiosyncratic component. The problem is then
to forecast Y; from {X;;_4};_,. Assuming that {Y;} is regular. the average expected loss
in the benchmark model is approximately equal in the limit (as n = oo and d — ©0) to
the average expected loss when there is no information processing. One can thus construct
specific examples (see Van Zandt and Radner (1998)) in which firm size is bounded in
the benchmark model, whereas Theorem 3 shows that returns to scale are monotonically
increasing in our model.

The model by Geanakoplos and Milgrom (1991) is a team-theory model of resource
allocation in which an endogenous administrative apparatus hierarchically disaggregates re-
source allocations. Their model has the advantage of allowing for internal decentralization
of decision making, with coordination among the decision-making nodes. Theirs is a static
approach that does not explicitly model the hierarchical aggregation of information; rather,
there are constraints on information acquisition for individual agents that represent infor-
mation processing constraints. Hence, their results on returns to scale depend on assump-
tions about what aggregate information is available exogenously. The assumption under
which they conclude that returns to scale are decreasing—that no aggregate information is
available—is extreme. However, the notion that aggregate information is less available or
of poorer quality than disaggregate information is supported by our model; computational
delay means that aggregate information cannot be as recent as disaggregate information.
Van Zandt (1998e, 1998f) studies a temporal version of their decision problem, but with
real-time information processing.

The work of Orbay (1996) and Meagher (1996) is also related, but with interesting differ-
ences. They consider a problem of forecasting a fixed stochastic process without variations
in the scale of the decision problem or operations of the firm. However, the amount of
data sampled about the process for calculating each decision is endogenous. Because of
computational delay, the trade-off is between basing each forecast on a large amount of old
information or on a small amount of recent information. The size of the administrative
apparatus is roughly proportional to the amount of data incorporated into each decision,
so this exercise considers the optimal size of the administrative apparatus for a firm whose
scale of production is fixed. They find, for example, that the administrative apparatus tends
to be smaller the more quickly the environment is changing.
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data. C(x) is the long-run costs, including managerial wages, of this information processing.
®7 denotes the indices of the data used to calculate A].

We model the computation constraints axiomatically rather than constructively. The
assumptions allow for decentralized computation, that is, computation performed jointly by
many managers or clerks whose numbers and activities are determined endogenously. This
property, which is analogous to parallel or distributed processing by networks of machines,
cannot be suppressed when studying returns to scale, because managerial resources must
be allowed to vary with the scale of the firm. The assumptions stated are satisfied by the
computation model in Radner and Van Zandt (1992) and Van Zandt (1998c), which study
this same decision problem. and most other distributed processing models, including those
that have been used in economics, such as Mount and Reiter (1990) and Reiter (1996).°

The fundamental constraint we want to capture is that information processing—which in-
cludes the reading and preparation of reports and aggregation of non-numerical information—
takes time. To motivate this, the numerical data in our decision problem should be viewed
as a proxy for the complex data used by human administrators in actual organizations,
or the reader should imagine that the data is not available in a simple numerical format
and instead is difficult to understand and substantiate and must be communicated through
lengthy reports. We emphasize that our use of a numerical decision problem as a proxy for
more realistic human decision problems is standard in economics and derives from the need
to impose statistical assumptions, rather than from our need to impose computation con-
straints. Van Zandt (1998c) explains that the information processing constraints we impose
are qualitatively similar to the ones we would impose for more realistic problems.

This time constraint has two effects. First, it adds an administrative cost (reflected
in C(m)) to the calculation of any policy owing to the time managers spend processing
information. Second, it restricts the set of feasible policies; in particular, it limits the
amount of recent data that can be incorporated into decisions. This second effect is the
more important one for this paper, and is captured by the following “iron law of delay”.

Assumption 1 For each lag d € N, there is a uniform bound on the amount of data whose
lag is d or less on which any forecast can depend. Formally, there is a function B: N — N
such that # {(i,s) € ®] | s >t —d} < B(d) forde N, 7 €I, and t € N.

This bound comes from the delay in aggregating information. For example, suppose that
policies are computed by having agents perform elementary operations that can have at most
k inputs (which can be any previous results, raw data, or constants) and that produce an
arbitrary number of outputs. Suppose each operation takes at least § units of time. Either
Aq is a constant or the value of a raw datum, or it is the output of an elementary operation
that was begun by time ¢t —¢. Thus, A; can depend on at most 1 datum that is first available
after t — 6. If A, is the result of an elementary operation begun by time t — §, then each of
the < k inputs is either a constant or a raw datum, or is itself the output of an operation
begun by time t — 2. Hence, A, can depend on at most k data first available after ¢ — 26.
Repeating this argument inductively, A; can depend on at most k? data first available after
t — 36, and on at most k¥~ ! data first available after t — v6 for v € N. This implies that, for
d € N, A, can depend on at most kl%/%) observations from period ¢ — d or later. The bound
would also hold if the delay comes from reading and interpreting raw data and messages;
see Van Zandt (1998c¢) for a discussion.

9Kenneth Mount and Stanley Reiter have advocated decentralized information processing as a model of
human organizations since 1982. See Van Zandt (1998a, 1998b) for surveys of the use of such models in the
economic theory of organizations.
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Interestingly, delay does mot lead to decreasing returns in the computation problem
because the amount of data used in the computation is endogenous and, in particular, does
not have to increase with the size of the firm. In Section 6.2, we contrast this with the
eventually decreasing returns that may obtain in a benchmark batch processing model.

Radner and Van Zandt (1992) characterize the returns to scale for a specific computation
model under assumptions (piecewise linear loss and processes that are noisy versions of a
common AR(1) process) that are consistent with those of Theorem 3.

5.4 Scalable loss and general processes

The idea behind Theorem 3 is that a larger firm can achieve a lower average loss than a
small firm by imitating the decision procedure of a single small firm. This is not an analog
of the principle that leads to nondecreasing technological returns to scale: A large firm can
imitate the production processes of several small firms whose total size is the size of the large
firm. However, in the sampling problem with scalable loss, the analog of this principle—a
large firm imitates the sampling procedures of several small firms-—does lead to eventually
decreasing returns to scale under general statistical assumptions. This is the first part of
Theorem 4.

Theorem 4A Assume that the loss function is scalable and Assumption 12 (stated in the
Appendiz) holds. In the sampling problem, firm size is unbounded and AC(kn) < AC(n) for
n,k € N such that k > 1.

There is no such analog for the computation problem. If a large firm imitates the
policies of several small firms, it ends up with several forecasts each period. If it attempts
to aggregate these forecasts, there is additional delay and so the policy uses information that
is older than the information used by the small firms. This does imply that returns to scale
are never increasing in the computation problem, as was shown in Theorem 3. However,
the second part of Theorem 4 presents a robust example in which firm size is bounded in
the computation problem. This result shows how aggregation delay in a centralized decision
problem may subvert the Arrow effect.

Theorem 4B Assume that the loss function is scalable and Assumption 13 (stated in the
Appendiz) holds. In the computation problem, AC(1) < AC(n) forn > 2 so 1 is a bound on
firm size.

Assumptions 12 and 13 in Theorems 4A and 4B, respectively, are stated in the Appendix
because they are rather technical. Assumption 12 is a weak statistical assumption that plays
the following role. We obtain the inequality AC(kn) < AC(n) in the sampling problem by
showing that if the firm of size kn replicates the sampling procedure of a firm of size n,
then the average sampling cost of the large firm and the small firm are the same, and the
average expected loss of the large firm is as low as that of the small firm. To obtain the
strict inequality AC(kn) < AC(n), we appeal to the diversification effect, but this requires,
for example, that the processes not be perfectly correlated. Assumption 12 rules out this
and similar trivial cases.

For the computation problem, Assumption 13 specifies a detailed but robust example.
It assumes, for example, that the processes can be decomposed as X = Y: + Zy, and
that each of the components is a first-order autoregressive processes. When the statistical
conditions in Assumption 13 are satisfied, so is Assumption 12; hence, the contrast between
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processes. To state this formally, we identify for each # € II and 7 € N the dates of the
information about process ¢ provided by = by letting ¢, = {s€Z| (i,s) € ¥} fort € N
and ¢7 = {7 };o,. We refer to 7 as a single-process information structure.*® (If a process
is not sampled at all, then its information structure is ¢pun = {Z}fil.) Our assumption
is then that (a) there is a set ¢ of single-process information structures with associated
costs, (b) a sampling procedure specifies a single-process information structure in ¢ for each
process, and (c) sampling costs are summed over the processes.

Assumption 6 There is a set ¢ of single-process information structures such that, for
n €N, {¥1,...,9n} C @ if and only if there is 7 € II" such that o7 = ; fori € {1,....n}.
Furthermore, there is S: @ — R such that, forn € N and 7 € II*, C(z) = 5.1, S(o7).
AlSO, Pnull € 95 and S(‘Pnull) =0.

3.4 Comparison of the computation and sampling problems

The policies in the computation problem do not minimize the expected loss conditional
on all available information, since they do not even depend on all available information. A
weaker notion of statistical optimality of a computation procedure 7 € II" is that A7 mini-
mizes E[v™(X] —a)|H] ] almost surely. As discussed in Van Zandt (1998c¢), a constrained-
optimal computation procedure (one that minimizes total costs on II) need not be statisti-
cally optimal in the computation problem because it may be more costly (or impossible) to
compute the statistically-optimal decision rule that uses the same information as #. This is
one potential difference between the sampling problem and the computation problem.

However. this difference is not relevant to our results. In fact, we never preciude sta-
tistical optimality in the computation problem. Instead, the important difference is how
much data of a given lag can be used in a forecast. Suppose that, in the sampling problem,
the forecast in period ¢ of a firm of size 1 is based on X; ;—5. Then, for a firm of size n,
it is possible to sample X;,_, for all 7 € {1,... ,n} with the same average sampling cost
faced by the firm of size 1, so that the forecast uses the data surrounded by the solid line
in Figure 1. This is not possible in the computation problem because of aggregation delay
(Assumption 1). For example, Figure 1 shows the bound on the data of any given lag for
the case where B(d) = 27!, Thus, in the computation problem, aggregation delay creates
a negative informational externality among the processes—data of a given lag about one
process crowds out data of that lag about other processes.

4 Returns to scale: Assumptions and definitions

4.1 Statistical assumptions

For t € Z, the vector {X1;. Xot,...} is denoted by X;; then {Xt}t"i_°<> or simply {X;}
denotes the vector process. For t € Z, H; denotes the history of {X,} up through period ¢.

We assume that the processes have finite variance and are stationary and exchangeable.

Assumption 7 For allt € Nandi€ N, 0 < Var(X;) < oo.

10The structure @7, is an element of 2{-t=2t=1} 4pd 50 formally we define a single-process information
structure to be any element of []J52, 2{-¢=2.t=1}



Statistical Returns to Scale

Assumptions Sampling Problem Computation Problem
@ . . -
2 mutually bounded firm size bounded firm size =
= dependent (limp— 0 AC(n) = 00) (limn—oo AC(n) = ) =
2]
: L
S
5 =
% mutually constant bounded firm size =
5 independent (constant per-unit gain) (per-unit gain — 0) =
X
- !
@ | common process . . . . . . =
S plus noise monotonically increasing | monotonically increasing | 3
P e
2
8 . -
< general unbognde.:d firm size example with =
n (replication works) bounded firm size 3
>

TABLE 1. Table of results.

independence of the stochastic processes. The quadratic loss function is not favorable to
increasing returns because if the average error is constant then the average loss increases
linearly with n. Theorem 1 shows that this leads to decreasing returns to scale in both the
computation and sampling problems if (heuristically) there is a common component that
cannot be perfectly forecasted from past data.

Theorem 1 Assume the loss is quadratic and that E[Cov(Xi, Xj¢|He—1)] > 0 fori,j € N
such that i # j.12 In both the sampling and the computation problems, lim, o AC(n) = 0
and firm size is bounded.

5.2 Quadratic loss and mutually uncorrelated processes

When the loss function is quadratic but the processes are mutually independent, a diver-
sification effect counterbalances the curvature of the loss function. This leads to constant
returns to scale in the sampling problem. As shown in the proof of Theorem 2, the selection
of a sampling procedure is separable over the processes and any firm should replicate an
optimal procedure of a firm of size 1.

In the computation problem, such replication is impossible because the firm would com-
pute n forecasts, which must then be aggregated, thereby incurring additional delay. In
fact, the aggregation delay implies that the data about “most” processes is “old” in large
firms. In Theorem 2, we assume that information becomes useless as it gets older. (Specif-
ically, we assume {X,} is regular; see Remark 2 immediately after Theorem 2.) Hence,
as firm size grows, the average cost converges to the no-information average cost. This
is defined to be the average cost of the decision procedure that (a) has no administrative
cost. (b) makes the same forecast each period, and (c) has an expected loss each period of
mingeg E[v™ (X7 — a)]. Such a procedure corresponds to no computation or no sampling.

12Recall that E[Cov(Xis, Xj¢| He—1)] = E[(Xie — E{Xie| He—1])(Xj¢ = E[X;¢ | He—1])]. If the decomposi-
tion in Remark 1 holds and if {X;} or simply {Y:} is regular (see Remark 2), then E[Cov(Xi¢, Xj: | He—1 ) >
0 if and only if the processes are mutually dependent. We conjecture but have not verified that this holds
without the decomposition.
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where ¥ is a convex function not depending on n such that ¥(0) = 0, ¥(e) > 0 if
e #0, and E[¥(X;: — E[Xi))] < co. We refer to this as a scalable loss function.

A leading example of the scalable loss is when % is piecewise linear and does not depend

on n:

’70|XZL—AtI if th—At<0,

V(XD - Ay) =
PR A {71|X,"—At| if XP—A4,>0.

For example, this is the loss when a firm has to make up for excess demand (resp., supply)
by buying (resp., selling) output at a price that exceeds (resp., is less than) the firm’s unit
production cost. The scalable loss also includes the case where a quadratic loss is adjusted
for firm size, W™ (X — A;) = (X7 — A4;)?, in which case ¥(e) = €2,

4.3 Long-run loss

As explained in Section 3.1, the function I' aggregates period-by-period expected losses
into a measure of long-run loss. We denote the domain of I' by £, which must contain the
sequence of expected losses for any policy that is generated by a decision procedure (such
a policy is said to be allowable). Our next assumption restricts the domain £ and assumes
that T' is linear and strictly monotone.

Assumption 10 If A; is an allowable policy for a decision problem of size n and Ly =
E[y™(X] — A)] for t €N, then {L;} € L. Furthermore:

1. L is the positive cone of a linear subspace of B containing the constant sequences;

2. T is a linear functional;*!

3. if {L:} and {L}} belong to L and L, < L} for t € N, then I'({L:}) < T'({L}}).

As a normalization, we also assume that if {L;} is constant then I'({L;}) is equal to the
constant value of {L;}.

The purpose of the linearity assumption is to make comparisons across problems of
different size meaningful (e.g., if the expected loss in each period scales linearly with problem
size, then so does the long-run loss). This assumption holds if £ is the set of bounded
sequences in RY and I'(-) is the discounted present value with respect to a summable sequence
of discount factors. It is also consistent with the case where I'({L;}) is the long-run average
value of {L;}, in which case there is an implicit restriction on the set of decision procedures.
Specifically, the set £ must then contain only sequences whose long-run averages are well-
defined and £ cannot contain two sequences {L;} and {L;} such that L; < L; for t € N and
such that both have the same long-run average (true if £ contains only constant or cyclic
sequences). See Van Zandt and Radner (1998) for further discussion and a sketch of how to
weaken the monotonicity condition.

4.4 Definitions of returns to scale

For both the computation and sampling problems, we assume that there is a cost-
minimizing decision procedure for all n.

11That is. I’ can be extended to a linear functional on the subspace spanned by £.
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