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Abstract

This paper presents a model that distinguishes between decentralized informa-
tion processing and decentralized decision making in organizations; it shows
that decentralized decision making can be advantageous due to computational
delay. even in the absence of communication costs. The key feature of the
model. which makes this result possible. is that decisions in a stochastic con-
trol problem are calculated in real time by boundedly rational members of
an administration staff. The decision problem is to allocate resources in a
changing environment. We consider a class of hierarchical procedures in which
information about cost functions flows up and is aggregated by the hierarchy,
while allocations flow down and are disaggregated by the hierarchy. Nodes of
the hierarchy correspond not to a single person but to decision-making units
within which there may be decentralized information processing. The lower
tiers of multitier hierarchies can allocate resources quickly within small groups.
while higher tiers are still able to exploit gains from trade between the groups
(although on the basis of older information).
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1 Introduction

Consider the capital budgeting processes of large firms. or the procedures for allocating
resources within large nonmarket organizations such as governments. firms. and univer-
sities. The flow of information in these procedures may resemble the hierarchical flow
depicted in Figure 1. At the bottom of the hierarchy are the shops (or operatives. or
whatever are the ultimate recipients of resources). In the upper tiers are managers or ad-
ministrators. who are independent of the shops. Information about the shops is aggregated
by a flow of information up the hierarchy. and resources are recursively disaggregated by
a flow of information down the same hierarchy. These procedures exhibit both decentral-
ized information processing—meaning that the resource allocations are calculated jointly
by the members of the administrative staff—and decentralized decision making —meaning
that (a) each node makes decisions that constrain the resource allocations and (b) the
decisions of different nodes of the hierarchy are calculated using different information.

This paper models decision procedures with such hierarchical upward and downward
flows of information. It distinguishes between and explains some of the advantages and
disadvantages of the two forms of decentralization. The nodes of the hierarchies correspond
to multiperson decision-making units (offices) within which there is decentralized infor-
mation processing and aggregation of cost information. The disaggregation of resource
allocations—i.e.. the decentralized decision making—defines the hierarchical structure.

Our model is one of real-time decentralized information processing. This means that
decisions in a stochastic temporal decision problem are calculated by boundedly rational
members of an administrative staff. One component of this methodology is a distributed
computation model—that is. a specification of how multiple agents jointly process informa-
tion when the number of agents and the algorithms they follow are endogenous. The other
component is a temporal decision problem—in our case. a resource allocation problem
with a changing environment. Unlike the ~ad hoc™ approach to boundedly rationality-—in
which suboptimal decision rules are motivated informally by complexity—this paradigm
models the process by which decisions are made. as well as the constraints and costs that
this process introduces.

The advantage of decentralized information processing in our model -~ whether within
or across nodes of the hicrarchy—is that operations can be performed concurrently by
several agents. This means. loosely, that delay is lower and resource are allocated based
on more recent information, compared to when one person performs all the operations
sequentially.

The advantage of decentralized decision making is that managerial nodes in the lower
tiers can allocate resources within small groups using recent information. while nodes in
higher tiers are still able to exploit gains from trade between the groups (although based on
older information). Specifically. when resource allocations are disaggregated through the
hierarchy, each office suballocates resources to its subordinates based only on the aggregate
of these subordinates’ cost information. This is beneficial because each office’s information
is more recent (since it is less aggregated) than that of its superior. (The main cost of this
decentralization is an increase in the amount of computation.)

This advantage of decentralized decision making —although only demonstrated for a
specific form of hierarchically decentralized decision making and for a specific decision
problem --may be stated more broadly. Decision making is decentralized when there 1s a
nexus of overlapping spheres of decision making: the hierarchically decentralized decision
making depicted in Figure 1 is just one example. This paper illustrates how decentral-
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FiGure 1. Hierarchical decomposition of the resource allocation problem without
externalities. Cost functions are aggregated through an wpwaerd flow of information.
Allocations are disaggregated through a downward flow of information.

ization allows decision making about small-scale coordination problems to use recent and
hence better information—without precluding further coordination at a large scale based
on older (but still valuable) information.

Our explanation for why (a) agents with no prior private information are hired to
process information and (b) decision making is then decentralized among them—which
is based on bounded rationality and delay—is meant to complement other explanations.
Nevertheless. only a couple other papers endogenously derive both forms of decentraliza-
tion (most notably. Geanakoplos and Milgrom (1991)). We refer the reader to Section 6
for a review of the literature: the next two paragraphs summarize a few main points.

The batch processing literature {e.g.. Mount and Reiter (1990) and Radner (1993)- -see
Section 3 for more references) is also built on distributed computation and exhibits delay
reduction due to decentralized processing. However. we show that a benchmark batch
processing model would not explain the decentralized decision making seen in Figure 1.
In batch processing. a given function is computed from data of the same lag. whereas the
advantage of decentralized decision making in our model relies on the heterogeneity of the
vintage of information across decision nodes.

Information transmission costs can easily explain decentralization of decision making
to agents who are endowed with private information: this is the theme. for example. of the
statistical theory of teams in Marschak and Radner (1972). However, hiring agents with
no prior private information only aggravates these transmission costs. Incentive problems.
which have dominated the economics literature on organizations. are hard pressed to
explain either form of decentralization. On the other hand. such decentralization leads
to many of the contracting and incentive problems that economists usually take as given.
and hence understanding it is important for incentive theory.

That bounded rationality and delay are an important explanation for decentralized
decision making is not a new idea. This theme arose several times in the debates in
the 1930's and 1940°s about socialism and economic institutions: for example. Hayek
(1945. p. 524) states “we need decentralization because only thus can we ensure that the
knowledge of the particular circumstances ... be promptly used”. Whether these factors
are more or less important than others is an empirical question. but we note that the ability
to adapt to changing environments is often mentioned as a fundamental characteristic of



successful organizations. (See Van Zandt and Radner (1998) for further discussion.)

In this paper, we are able to derive the advantages and disadvantages of decentralized
decision making—as well as to study methodological issues such as the comparison between
batch processing and real-time processing. the relationship to the static decomposition of
resource allocations. and the criteria for specifving a distributed computation model---in an
abstract model that clarifies the results and demonstrates their generality. However. this
abstraction does not permit the statistical assumptions required to characterize optimal
hierarchies or perform comparative statics. In subsequent work. Van Zandt (1998c¢) studies
a model that is similar but has very specific assumptions—the shops have quadratic cost
functions whose parameters follow first-order autoregressive processes—which allow such
calculations. That paper also provides a formal treatment of decision procedures and
hierarchical structures and an analysis of the distributed statistical inference problem.
Van Zandt (1998e) then characterizes the shape of optimal hierarchies. returns to scale. and
comparative statics. Interestingly. firm size is limited in the model even though internal
decentralization is possible. That paper also shows. for example, that organizations tend to
be smaller and more interally decentralized the more quickly the environment is changing.
Van Zandt (1998c. 1998¢) contain additional references and a discussion of related team
theory models—especially Geanakoplos and Milgrom (1991)—that are based on a static
version of the decision problem.

Van Zandt (1998c. 1998e) further demonstrate the power of the model developed in
this paper. Although there are other ways to obtain either decentralized information
processing or decentralization decision making. this one paints a rich. dynamic picture of
large administrative apparatuses. vet yields (in Van Zandt (1998¢)) a tractable model with
a specific characterization of the distribution of information in the organization and of the
properties of optimal hierarchies.

Reader’s guide We begin, in Section 2. by reviewing the notion that it is at least possi-
ble to hierarchically decompose the allocation of resources when there are no externalities—
without explaining why it is advantageous to do so. In Section 3 we exclude various po-
tential explanations not based on bounded rationality. Then we attempt. but also fail.
to answer the question using a benchmark model of decentralized batch processing. The
real-time model is presented in Section 4. where we compare two classes of decision proce-
dures: one is identified with two-tier centralized hierarchies and the other with three-tier
decentralized hierarchies. (General hierarchies are defined in the Appendix.) An inter-
pretation is given in Section 5. Section 6 reviews other explanations of decentralization.
and Section 7 discusses several extensions to and questions about the model (as well as
additional related literature). For example. it explains that the underlying model is rich
enough to construct decision procedures that resemble market mechanisms such as bilat-
eral trade or wholesale/retail networks. thereby addressing other questions about market
and nonmarket institutions and comparing their computational efficiency.

2 Hierarchical decomposition of resource allocations

Consider the following one-good resource allocation problem without externalities.
framed as a cost minimization problem of an organization such as a firm. Fix a domain
X =Ror X = R, for allocations. Given a total quantity xg € X of a resource. the firm
chooses an allocation {z;.... ,&n} of the resource to n production shops or operatives in



order to solve

1 n
(MAX) min Z Ci(r;) st Z I; = IR .
{eeX¥in i3 i=1
The data in the problem are the shops' cost functions {C}.....C,} and the amount xg

of the resource. The system is closed in the sense that xg is not an endogenous allocation
to the whole organization.

This is a canonical resource allocation problem with many interpretations. The variable
i is a transfer to shop 7 that could represent capital. some other input. or orders to be
filled. The function (';: X — R could represent a cost or negative profit. and it could be
a reduced form that subsumes further unmodeled decisions taken within each shop. For
example. C;(r;) could be shop s minimum cost of producing a quantity x; of output:
—('i{r;) could be shop i's maximum profit when it has capital r;. The resource could also
be a consumption good and each “shop™ i could be a consumer whose weighted utility in
an aggregate welfare function is function —C;. If v = 0. then the allocations represent
net trades. Because costs are additively separable across shops. there are no externalities.

In the rest of this section. we review why it is at least possible. if not desirable. to
solve this problem by hierarchically decomposing the allocation of resources (as shown in
Figure 1). This is an example of the kind of decompositions of decision problems that are
studied in Bernussou and Titli (1982) and Dirickx and Jennergren (1979).

We begin by defining the aggregate of a set of cost functions. Let R = RU{—c} and let
C be the set of functions from X into R. the elements of which we call cost functions. The
aggregate (or “infimal convolution™. as defined in Rockafellar (1970)) of a finite collection
{C’k € C—}kgl\. of cost functions is the cost function C': X — R defined by

Clr) = inf Z Crlrg) st Z T =&

TREX
{re€Xher o ken

for & € X': this is denoted by @kgl\. Ck,' If _CA. C13 € C. then eake{AB} (' is also denoted
C'y = Cpg. The binary operation :=: ¢ x C — ( is associative and commutative. and if
CreCfork=1.....mthen @, Cx =C1 = =Cy!

Now consider a hierarchy (i.e.. a tree} like the one in Figure 1. The leaves are the
n shops {1.....n}. Let J be the set of interior nodes. which we refer to as offices or
managerial nodes. The root node in J is denoted by R and is also called the “center”.
For each office j € J. let ©; be the set of j's immediate subordinates. which may contain
both offices and shops. and let 8; be the set of shops that are inferior to office j in the
hierarchy: 8; is called office j's division or simply “division j". In Figure 1. 0, = {b.c}
and 6, = {1.2.3.4,5}. A node’s tier is the maximum number of edges from the node to
one of the leaves inferior to the node. Each of the leaves is in tier 0. and the root is the
unique node in the highest tier. which we call the height of the hierarchy. (This notation
is listed in Table 4 in the Appendix.)

Office j's aggregate cost function is ('; = @1601 (;. That is. for each x; € X. ()
is the infimum of the total costs of the shops in 8; when quantity x; is allocated to these
shops. It is the lack of externalities that makes C'; independent of the resources allocated

13We could define the aggregate of cost functions {Cy: Xy — 7} with different domains. in which
case the domain of the aggregate cost function is 3~ ¢ x Ni. To simplify notation. we selected a common
domain X such that X' = >, ., X. and hence aggregate cost functions also share the domain X. We
also chose N to be open so that. in later sections. we can characterize solutions to (MAX]) by first-order

conditions.



to shops that are not in ;. Because the aggregation of cost functions can be decomposed
into the binary associative and commutative operation =,

¢y = @ieoj ¢ = EBL‘EOJ(EBIEOk Ci) = @kge) Cr .

In Figure 1 this means. for example. that office a can calculate its aggregate cost function
either by directly aggregating the cost functions Cy.... .C; of shops 1-5 or by aggregating
the aggregate cost functions (', and (. of offices b and c.

Furthermore. we can decompose not only the aggregation of cost functions. but the
disaggregation of resource allocations. as follows. Let {v7 € X'}!_| besuch that 3.7 | &7 =
rp. For jo€ J. let 2y = 37 Then {z7 € X}I_| solves (MAX) if and only if. for
cach j € J. {‘l';}keej solves

min Z Crl(ry) st Z Ty =X

rRERY}L
{ru€heo; ycq, k€O,

2%
ico, T1-

For example. in Figure 1. if office a has to allocate an amount &, of the resource to the
shops in division a in order to minimize the division's total costs. it can either do so
directly or instead (a) allocate amounts @y, and &, of the resource to offices b and ¢. in
order to minimize the sum Cy(ay) + Co(a.) of their aggregate costs. and then (b) instruct
each office b and ¢ to divide its allocation among the shops in its division. in order to
minimize the sum of those shops’ costs.

This suggests the following hierarchical procedure. Recursively starting at the bottom
of the hierarchy. each office calculates its own aggregate cost function from those of its
subordinates. and sends the result to its superior. This stage ends when the root has
calculated the overall aggregate cost function. Then. recursively starting with the root.
each office allocates to its subordinates resources received from its superior. in order to
minimize the total (aggregate) costs of its subordinates. The upward flow of cost functions
and downward flow of resource allocations is then as shown in Figure 1.

3 Batch processing and delay

3.1 What does the administrative staff do?

Section 2 reviews the possibility of decomposing a resource allocation problem without
externalities. as depicted in Figure 1. However. it does not explain why this would be

advant ageous.

In order to explain why the administrators in an organization would use a hierarchical
procedure to allocate resources. we must explain why there are so many administrators
in the first place. The reason. of course. is that the task of aggregating information and
making decisions is too large for a single administrator. However. this obvious answer 1s
not provided by the behavioral model of full rationality that is the foundation of most
economic theory. even when there are information transmission costs and incentive prob-
lems. A single. fully rational CEO could instantly aggregate the relevant information
about the shops and decide how to allocate resources to them. Transmission costs could
lead such an entreprencur to decentralize some processing tasks to the shops—if the latter
are endowed with private information about their costs—but not to delegate such tasks
to administrators who have no private information when hired. Incentive problems may
lead the entrepreneur to hire administrators whose sole job is to audit or watch subordi-
nates so that thev do not shirk or lie. as in Calvo and Wellisz (1980) and Qian (1994).

<t



But in this case other processing tasks would not be delegated to these agents. since such
delegation would just create problems of private information that did not exist before. In-
stead. all agents (including auditors or supervisors) should communicate directly with the
entreprencur through a direct revelation mechanism. (See Section 6 for further discussion
and exceptions.)

Thus. to explain the existence and activities of the administrative apparatus in Figure 1,
we should model the bounded processing capacities of the individual administrators.

3.2 A model of decentralized batch processing

The nature of information processing constraints is that people are bounded in the
amount they can process in a given amount of time. It is possible to suppress the temporal
aspect of these constraints and simply bound the total amount of processing an agent can
do. as in Geanakoplos and Milgrom (1991) and in Marschak and Reichelstein (1995. 1998).
However. like the current paper, most of the economics literature on processing information
with an endogenous number of agents has instead emphasized this temporal aspect.

One approach that emphasizes computational delay is decentralized batch processing.
known in computer science as parallel or distributed batch processing (see Zomaya (1996)).
Kenneth Mount and Stanley Reiter. starting in 1982, have advocated this as a model of
human organizations. Models of organizations based on decentralized batch processing
include Beggs (1993). Bolton and Dewatripont (1994). Friedman and Oren (1995). Malone
and Smith (1988), Meagher and Van Zandt (1998). Mount and Reiter (1990, 1996). Orbay
(1997), Radner (1993). Reiter (1996). and Van Zandt (1998d). The value of decentralizing
information processing in those papers is typically that it reduces delay: in the periodic
models of Bolton and Dewatripont (1994), Radner (1993). and Van Zandt (1998d). it also
increases the rate (throughput) at which problems can be computed.

The first part of a decentralized batch processing model is a function f:}Y — Z to
be computed. The input domain Y is typically multidimensional. in which case all the
data in the vector y € ¥ are available when the computation starts. If the output space
Z can be written as a product. then delay is measured by the interval between when
the computation starts and when all the components of f(y) are calculated. even if some
components are available at earlier times.

The other part of a decentralized batch processing model is a decentralized computation
model. which consists of the following components:

1. a set of elementary operations—these are functions that, when composed, can yield
2. a description of how the processing activities of agents are coordinated and how

information is communicated between agents—this may include a communication

protocol:

3. a set of potential information processing agents. each of whom is characterized pri-
marily by the time it takes the agent to perform each elementary operation and each

operation in the communication protocol.

Given a decentralized batch processing model. a procedure (algorithm) specifies how
one or more agents calculate f: 1 — Z by performing elementary operations and sharing

information.



For the resource allocation problem (MAX) in Section 2. the function to be computed
is f: 0" x X = X" where f(C,.....C,.xrg) is the solution to (MAX) and C C C is the
set of potential cost functions. Assume that C is a set of strictly convex and differentiable

cost functions such that C is closed under the operation = and such that the resource
allocation problem (MAX) has a solution for all {C; € C}; and xp € X.

As will be explained in Section 3.3. we have some discretion in choosing the set of

elementary operations. The following suit the objectives of this paper:

1. (aggregation of two cost functions) f;: C* — C. where f1(C4,Cp) = C4 = Cp:

2. (derivative of a cost function) fo: C x X — R. where fo(C.x) = C'(a):

3. (inverse derivative of a cost function) f3: C x X — R. where f3(C.p) = C""'(p).
These clementary operations are sufficient to compute f(Cy.... . (. xg) as follows.

1. The aggregate cost function C'y 1= Cy-i--- - (), can be calculated with n —1 of the

operation fi.
The shadow price pr 1= f2(Cr.xr) of the resource can be calculated with one

operation f».

The allocation of each shop i can then be computed by setting the shop’s marginal
cost equal to the shadow price: r; = f3(Ci.pr). A total of n of the operation f3
arc needed.

Table 1 in Section 3.4 summarizes the elementary operations and the number that are

performed in order to calculate f(Cy.... .Ch.2R).

Next we specifv the means by which agents communicate and are coordinated. We

choose the simplest specification:

1.

2

agents are coordinated by syuchronously executing instructions (the organization’s

managerial procedures:

there are neither individual nor network communication costs or delays.

Finally. we specify the capacities of the potential information processing agents. We

have already assumed that they are unconstrained in the communication abilities. We also

assume the following:

i

o

4.

agents have identical computational abilities and wages:
each elementary operation takes the same amount of time. which we call a cycle:
cach agent is paid only when performing an operation. at a fixed wage per operation:

each agent has unbounded memory.

Overall. we have the simplest possible specification of the communication between and
coordination of agents. The lack of communication costs and delays means that agents

have equal access to the information in cach other’s memory. so we can imagine that there

ix actually a single memory shared by all the agents. and that cach agent is a control

unit or processing element that performs operations on the shared memory. It is arbitrary



which agents perform which operations each cycle—as long as no agent performs more
than one operation at a time. Such a model is called a parallel random access machine
(PRAMI) in computer science.?

A computation procedure for this simple model can be specified by the operations to
be performed each cycle, with each operation’s inputs identified as available data or as
the output of a previously performed operation. As in this paper, it is typically possible
to describe computation procedures informally yvet clearly. However, Van Zandt (1998c¢)
defines the computation model and computation procedures more formally.

3.3 Discussion of the computation model

We have chosen a very simple model in terms of both the decomposition of the problem
into elementary operations and the interaction between information processing agents. In
this section, we explain the reasons for doing so. (The reader can opt to skip this discussion
of methodology and proceed directly to Section 3.4.)

Consider first the selection of elementary operations. One of the reasons for decom-
posing the computation problem into elementary operations. whether processing is serial
or in parallel. is to compare the delay and processing costs of different types and sizes
of problems. To do so. we must decompose the different problems into a common set of
operations. In Van Zandt (1998e). for example. we compare the information processing
for different numbers n of shops. Therefore. the aggregation (', -= - - -5 (), of all the cost
functions should not be a single elementary operation. since this operation is different for
different values of n. This is why the elementary operations we defined are all independent
of n.

However. there are many sets of clementary operations that satisfy this invariance
condition and that are sufficient to calculate f: C"x.X' — X". We must balance other goals
when choosing among the possible specifications. On the one hand. a coarse decomposition
is simpler. On the other hand. a fine decomposition permits more decentralized processing
(the assignment of different elementary operations to different agents) and a more complete
and realistic description of the actual activities of the agents. Because the purpose of this
paper is to illustrate decentralization as simply as possible. we have opted for a very coarse
(and unrealistic) set of elementary operations.” but the decomposition is still fine enough
to permit decentralized processing.

The other simple features of this computation model suppress some potentially inter-
esting issues, such as the problem of economizing memory and communication costs. the
coordination of agents who are not synchronized. the scheduling of tasks when agents must
be paid even when idle. and the assignment of tasks to agents with heterogeneous compu-
tation abilities and wages. However. these issues are orthogonal to and would obscure the
main theme of this paper. which is that decentralized decision making can arise owing to
computational delay. even in the absence of other processing constraints or heterogeneity

among information processing agents.

2See Zomava (1996) for an overview of the PRAM and other models of parallel computation. Our
model is also a special case of the one in Mount and Reiter (1990). Their formalization deals with certain
technical issues related to real-number computation and to the measurement of communication costs.
which our model suppresses.

3Indeed. the operation of aggregating two cost functions is generally not “elementary” at all: see the
Appendix for an example of iterative adjustment procedures that avoid the aggregation of entire functions.



Elementary Number of Parallel

Calculation operation operations delay
Cri=C = 2C, | 1(C4.C)Y=C4=Cp n—1 [log, n]
pr=Cgrlrr) H(Coa)y=C" ) 1 1
{ori=C b, FCpy=C" p) n 1

Total: 2n 2 + [log, n]

TaBLE 1. Elementary operations and serial and parallel delay for the resource allo-
cation problem.

Note. however. that the computational delay upon which this theme relies could be
due either (a) to human delays in reading. understanding and interpreting information
or (b) to human delays in calculating with information they have already “loaded” into
their brains. This is explained, although in the context of a different model. in Van Zandt
(1998h. Section 5). We have chosen a model that contains delays only of type (b} both for
simplicity and because delays of type (a) would introduce costs of communication between
agents (the managerial wages for the time it takes agents to read messages sent by other
agents). The reader might then have more trouble seeing that the decentralized decision
making that arises in the model is due to delay rather than to communication costs.

The lack of communication costs in our model means that we are not attempting to
examine two themes that have been important in most of the economics literature on
decentralized batch processing.

1. One is that decentralizing information processing entails a trade-off between delay
and communication costs. As more administrators share the operations and hence
more operations are performed concurrently. delay is decreased but communication
costs Increase. Qur computation model captures only one side of this trade-off, the
reduction in delay. However. this paper is concerned not with that trade-off but
instead with the trade-offs entailed by decentralizing decision making.

2. The other is the pattern of communication between individual administrators. which
has been interpreted as an organization’s structure. Without communication costs.
this microcommunication is indeterminate: when all agents have equal access to all
information at all times. the identities of the agents who perform the operations
each cvcle are not relevant to the performance of the procedure. However. this
paper. as well as Van Zandt (1998¢. 1998¢). contend that organizational structure
should be derived from the macro structure of decision making more than from the

niicro structure of message exchange between individual agents.

3.4 Decentralization and delay

This section describes two batch processing procedures and illustrates how decentral-
ization reduces delay.

In the first procedure. a single agent (the “entrepreneur”) calculates the resource allo-
cation. The 2n operations listed in Table 1 must be performed sequentially by this agent.

so the delay is 2n.
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FIGURE 2. Associative computation by a PRAM.

Compare this with decentralized information processing. in which potentially many
agents compute the resource allocation jointly. In the first stage. C'r 1= (7 = -2 (),
is calculated. The efficient algorithms for associative computation with a PRAM are
illustrated in Figure 2. In the first cycle, the cost functions are divided into pairs, and
each pair is assigned to a different agent. who calculates the aggregate of the two cost
functions. In each subsequent cycle. the aggregate cost functions computed in the previous
cycle are grouped into pairs. and again each pair is assigned to an agent who calculates
the aggregate. The number of partial results is reduced by half in each cycle. so there
15 a single pair in cycle [log, n] whose aggregate is C'g. (The brackets [-] denote the
ceiling or round-up operation.) Hence. the delay is [log, n] rather than the n — 1 cycles it
takes a single agent to compute C'gr. However. the computation of C'g still requires n — 1
operations.

The next step is to compute pr ‘= fo(Cg.rgr). which one agent does in one cycle.
Finally. the n operations {x; := f3(Ci.pr)}, can be assigned to n different agents and
executed concurrently in one cyvele. As summarized in Table 1. the total delay when the
computation is decentralized is 24 [log, n]. compared to 2n when a single agent calculates
the allocations. This reduction in the delay is the benefit of decentralization.

The only administrative (computation) costs in this model are the wages of the agents.
These are proportional to the total number of operations. which is 2n whether the com-
putation is performed by one agent or many. Hence. there is no administrative overhead
incurred by decentralization. This is because we assume that there are no communication
costs and that agents are paid only for the operations they perform. Under different as-
sumptions. such as in Radner (1993). increasing the number of agents who jointly calculate
f reduces the delay but increases the administrative costs.

How does this batch processing model relate to Figure 17 On the one hand. we will see
that the aggregation of cost functions in Figure 1 is similar to the decentralized aggregation
of cost functions in our batch processing model. However. the disaggregation of resource
allocations in Figure 1 has no analog in the batch processing model.

Consider first the aggregation of cost functions. If we treat each interior node in
Figure 1 as an information processing agent in our computation model. then it takes an
agent j € J who has s; immediate subordinates a total of s; — 1 cycles to compute her
aggregate cost function. Agents b. ¢. and d can start this calculation at the same time: they
finish after two. one. and two cycles. respectively. Then agent ¢ computes Cy 1= C},-2-Ce in
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the third cycle and agent R computes C'g := (', == Cy in the fourth cycle. The total delay
of 4 is less than the delay of 7 for a single agent. This is similar to the parallel computation
of C'r that is shown in Figure 2. (Although the nodes in Figure 2 are operations. it is
possible to assign cach operation to a different agent. in which case the nodes in Figure 2
correspond to agents. )

In contrast. there is no analog in our batch processing model to the hierarchical disag-
gregation of resource allocations. In the computation procedure described in this section
and shown in Table 1. resources are allocated to all the shops in a single step,once the
shadow price pg is calculated. Suppose instead that. as in Figure 1. cach agent j receives
the allocation & for division j. calculates division j's shadow price p; := CJ’.(I]-). and then
allocates resources to cach subordinate & € ©; by setting @y so that Cp(ag) = p;. Then
the shadow price at every node is the same. The only useful operations are the calcula-
tion of the overall shadow price. pr := C(xr). and of the individual shops™ allocations.
ryi= C'fl (pr). The calculations of intermediate shadow prices and allocations increases
not only the number of operations (by twice the number of intermediate nodes) but also
the delay (by twice the number of intermediate tiers).

4 Real-time decentralized information processing

4.1 Measuring the cost of delay

For the moment. ignore the question of why resource allocations might be disaggre-
gated hierarchically. Instead. motivate the next step by supposing that we have a batch
processing model with communication costs and that we have derived the set of efficient
procedures. within which there is a trade-off between delay and administrative costs (as
is done. for example. in Radner (1993) and Van Zandt (1998d)). In order to determine
which procedures are optimal or to study how information processing constraints affect
returns to scale. we need to measure the administrative costs and the “cost™ of delay.
Administrative costs are easy to measure—for example. by managerial wages. Delay. on
the other hand. is not an input that we can buy at a constant unit price. Instead. it
has a decision-theoretic cost—higher delay means that decisions are based on older infor-
mation. To quantifv the costs of delay. we need a temporal decision problem in which
current decisions are computed from lagged information. A decision procedure is then a
decision rule together with a computation procedure for computing the decision rule. The
computation of the decision rule must adapt to the timing of the arrival of information
and of the decision epochs. This is a problem of real-time or on-line control.

We obtain a simple temporal version of the resource allocation problem in (MAX) by
assuming there are discrete time periods ¢t € {... . —1.0.1....} and that. at the beginning
of each period ¢, new cost functions {Ci;.... .y} are realized and observed and a deter-
ministic quantity rg, of the resource must be allocated. That is. the shop costs in period
t when the allocation of gy is {ays.. .. .4 Tnt}oare ZL] Ci(xy). We are assuming that the
resource constraint must be satisfied cach period. and hence there is no intertemporal al-
location of resources. However. the informational structure is dynamic because allocations
are computed from past observations of the cost functions.*

We can use the same computation model as in Section 3 for the computation of the
decision rules. but we need to specify the relationship between a cycle (the unit of time

1The reason we must assume that {a'm}?i_x is a deterministic process is that otherwise, since allo-
cations must be calculated from past data. it could be impossible to calculate a feasible allocation.
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FIGURE 3. A two-tier centralized hierarchy.

in the computation model) and a period (the unit of time in the decision problem). We
assume that a cyele and a period are the same: this assumption simplifies notation but is
not important for the qualitative results.®

We measure the cost in each period by the sum of the administrative costs (of the
computation procedure) and the expected shop costs (of the decision rule). In order to
determine the expected shop costs for a decision rule. we need assumptions about the
stochastic process {Cy;. ... .C'nt}fifx (as in Van Zandt (1998c. 1998e)). However. for
the purpose of this paper--—-which is to derive a qualitative rather than quantitative value
of decentralized decision making—the reader should simply imagine that we have imposed
statistical assumptions such that decision rules that use old information “tend” to have
higher expected shop costs than those that use recent information.

In this real-time setting. the decision procedures that most closely resemble batch
processing are stationary and compute the allocation for each period from data of homo-
geneous lags. Consider the following example. The resource allocation for each period
t is calculated by collecting the cost functions {C  —g.... .Ch—q} in period t — d and
then calculating the resource allocation using these cost functions and rg; as data. in the
manner described in Section 3.9 The lag d is the delay in performing these computations.
which is given in Table 1. Hence, with serial processing (one agent). the allocation in each
period is calculated from the cost functions from 2n periods ago. whereas with decentral-
ized computation. each allocation is calculated from the cost functions from 2 + [log, 1]
periods ago. Greater decentralization leads to lower delay—and hence better decision rules
and lower shop costs—but might increase administrative costs (in a different computation

model).

We consider this decision procedure to be a two-tier hierarchy. as shown for n = 9
in Figure 3. The single administrative node. which is the root node or center. is an
office within which reside the agents who compute the decision rule. Each period. this
office collects the current cost functions from the shops and sends the current allocation
to the shops. In period f. the organization is busy computing the allocations for periods

5A possible justification is that. if the decision problem is actually in continuous time. then a natu-
ral interval for the purpose of collecting data and updating allocations is the discrete time unit in the

computation model.

6The allocation in period t would thus be optimal if the cost functions were the same as in period ¢ —d.
With specific statistical assumptions. as in Van Zandt (1998¢). we could allow the decision rule to take
into account the expected changes in the cost functions between periods t — d and period . Note that,
since the shadow price is calculated from {Cz:t-di }1":1 the final step in which marginal cost is set equal
to the shadow price must use these same cost functions (rather than more recent ones} in order to balance

the allocation.
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FiGURE 4. Information flow at the beginning of period ¢ in a three-tier hierarchy.

t+1.... .t+d. Although these computations overlap temporally. they are independent and
do not use common data. As in Section 3.4. there is decentralized information processing
within the central office because the procedure is computed in parallel, but decision making
is not decentralized because, in each period. all the shops™ allocations are computed from
the same data. In particular, there is no hierarchical disaggregation of resource allocations.

4.2 A procedure with decentralized decision making

In this real-time model. we are not restricted to procedures such as those of Section 4.1.
in which each period’s decisions are calculated from data of the same lag. We now specify
a procedure without this property.

We first present the hierarchical structure that we ascribe to the procedure. Assume
there are integers sy.s2 > 2 such that n = s1s,. Consider a balanced three-tier hierarchy
in which the span of an office in tier h € {1.2} is s. This means that the root (in tier 2)
has s» immediate subordinates. which are offices in tier 1. and that each of these offices
has s, immediate subordinates. which are shops in tier 0. There are thus s;$, = n shops.

as required. Such a hierarchy is shown for n = 9 and s, = s, = 3 in Figure 4.

In the decision procedure we describe. each office calculates resource allocations in
much the same way as the center does in the procedure defined in Section 4.1. However.
an office in tier 1 uses as its quantity of resources an amount that is sent by the center.
The center uses as its cost information the aggregate cost functions calculated by the tier-1
offices. These aggregate cost functions are also used by the tier-1 offices to determine the
suballocations of resources to their subordinate shops.

First. disregard the root of this hierarchy and imagine that we have simply divided
the organization into s> independent units. which we call ~divisions™. even though they
are independent. Each division contains s; shops. Because these divisions operate in-
dependently and resource allocations to the divisions are not coordinated, each division
allocates a fixed fraction of the total resource. For example. if the allocations represent
net trades. then the total amount of the resource available to the whole organization and
to each division is 0. In any case. denote division j's available resource in period ¢ by x ;.

Each of these divisions allocates resources using a two-tier hierarchy as described in
Section 4.1. but with s, shops rather than n shops. These calculations are shown on the left
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Allocation | ;= C';V,_fdl (i) = CA';';ldz (pPre)

TasrLe 2. Calculations by the divisions and the center in the three-tier hierarchy.

side of Table 2. The delay is denoted by d; and is equal to 2 + [log, s1]. The aggregate
cost function and shadow price calculated by division j for the purpose of allocating
resources in period t are denoted by f’jt and pj; and are equal to @ieoj Cii—q, and
é}t(.l'jt ). respectively.

These divisions and their decision procedures correspond to the three subtrees under
the center in Figure 4. The advantage of splitting the organization this way it that the
delay 2 + [log, s1] of each division is smaller than the delay 2 + [log, n] of the unified
two-tier organization in Section 4.1. However, gains from trade (coordination) between

the divisions are lost.

To exploit some of these gains from trade. we add the central office that is shown
as the root node in Figure 4. The center also uses a decision procedure like the two-
tier procedure described in Section 4.2, but the center’s immediate subordinates are the
division offices instead of the shops. The data that the center uses are the aggregate cost
functions {Cvﬂ}jeeR of the divisions. which are partial results of the divisions™ decision
procedures. The center’s delay is do = 2 + [log, s2]. Its calculations are shown on the
right side of Table 2.

Let's consider more closely the data the center uses and the calculations it performs.
They are more complicated to describe than for the offices in tier 1 because of the following
complications. which can be verified in Table 1. On the one hand, each office j in tier 1
needs to know its period-t allocation rj; two periods before period t, so that it has time to
suballocate the resources before before . On the other hand. each office in tier 1 finishes
the calculation of f’jt two periods before period t. Hence. to calculate the allocation to the
divisions for period {. the center begins in period t —2 — d» and finishes at the end of period
t — 3. When the center begins calculating the period-t allocation in period t — 2 — d5. the
most recent aggregate cost functions calculated by the divisions are {CA’J;,_dQ }jeen’ These
are the data the center uses to calculate the period-¢ allocation to the divisions. Hence.
the aggregate cost function Cre that the center calculates in order to allocate the resource

for period ¢ is

e A _ ' _ n v
CRt = @jE@R Cj.t—(Iz - ®jE®R @iEOj Ci.f*(h—lg - @izlcz.l—dl—dg-

The center then computes the shadow price pgry := Cpre(xre) and sets xj; so that Cj¢_q, (2j¢) =

PRt

"The center must perform this last step using the same cost functions from which it computed Cg,.
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This upward flow of information and downward flow of allocations is illustrated in
Figure 4. At the beginning of period t. each shop 7 sends its current cost function 'y
to its divisional office and receives its current allocation r;; from this office. At the same
time. each division j sends C'j.t+2 = @ie(% C'it42-4, (a partial result from its computation
of the period-(f + 2} allocation) to the center. and the center sends x; 1> (the amount of
the resource division j will allocate in period f + 2) to each division j.

For example. toward the end of August a division office finishes aggregating informa-
tion about its immediate subordinates™ resource needs and sends this information to its
immediate superior. At the same time. it receives a budget for September. which in the
next few days it disaggregates in order to assign a September budget to each of its subor-
dinates. The center calculated the division’s September budget using information sent by
that division and the other divisions at the end of July. but the division office disaggregates
the budget using more recent information. which it aggregated during August.

4.3 The benefits and costs of decentralized decision making

In Section 4.2. we presented the three-tier hierarchy as a comparison of (a) independent
two-tier hierarchies between which there is no coordination and (b) a three-tier hierarchy
within which these two-tier hierarchies are coordinated by a central office. Now we com-
pare (c¢) a two-tier hierarchy that has no hierarchical disaggregation and (d) a three-tier
hierarchy with the same number of shiops. That is. we compare Figures 3 and 4. In order
to simplify this comparison. assume that s;. s». and n are powers of two. so that the
round-up operations in the formulas or the delay in the previous sections can be ignored.
(Otherwise. some of the quantities in what follows could differ by 1.)

It may appear that one difference between the two-tier and the three-tier hierarchies
is that. in the latter. the aggregation of cost functions is hierarchically decomposed and
hence more decentralized. However. remember that each node in these hierarchies is an
office containing multiple information processing agents. and that the aggregation of cost
functions is alwavs maximally decentralized within each node. This means that the hier-
archical decomposition of the aggregation of cost functions. which is explicit in Figure 4.
exists also within the center in Figure 3. Observe in particular that. in a three-tier hierar-
chy. the center finishes calculating in period t — 4 the aggregate cost function Cre that it
uses to allocate resources for period t. Furthermore, C‘m = EB?:I Cit—dy—d,- Hence. the
aggregate cost function is calculated in

dy+dy—4 = (2+1logys1)+(2+1og,82)—4 = logyn

periods in the three-tier hierarchy. This is exactly the same delay as in the two-tier
hierarchy.

The actual difference between the two-tier and the three-tier hierarchies is the disag-
gregation of resource allocations. The center in a three-tier hierarchy, after calculating
its aggregate cost function C'r: and then its shadow price pg¢. does not allocate resources
directly to the shops in one step. Instead, it calculates allocations for the divisions. whose
offices then calculate suballocations for the shops. We interpret this as decentralized de-
cision making. as explained in Section 5. The advantage of this may be summarized as
follows.

That is. it must set &y so that CJ’ t—dg('l'ﬂ) = pp¢. even though the divisions have calculated more recent

aggregate cost functions (e.g., éj_t_g): otherwise the allocation will not be balanced.



= | 2-tier: Delay ... 24 log,n

= | 3-tier: Delay of each division ......... 2 +log, s1

M Diff: Decrease in division’s delay .. log, s2

| 2-tier: Delay ... 2+logyn

& | 3-tier: Center's cumulative delay .. ... (24 log, s1) + (2+log, s2)

o . . . = =
Diff: Increase in center’s delay .. ... 2

_ | 2-tier: Operations of center ......... .. 2n

& | 3-tier: Operations center & divisions .. 282 + s9(281)

O ‘ . .
Diff: Increase in operations ........ 289

TABLE 3. The benefits and costs of decentralized decision making (three-tier versus
two-tier hierarchies).

When a division receives rj; from the center in period ¢ — 2. it does not have
to allocate xjs using the information CA’J.,*@ that the center used to compute
xj¢. Instead. it uses its most recently calculated aggregate cost function C’j,.
That is, the data used to allocate resources within each division in a three-tier

hierarchy are 2 + log, 51 periods old. and hence log, n — logy s1 = log, s2
pertods more recent than the data used to compute allocations in the two-tier
hierarchy.

The intermediate disaggregation of resource allocations adds two extra steps: the calcu-
lation of the divisions’ allocations and the calculation of the divisions’ shadow prices. This
leads to two disadvantages of the three-tier hierarchy compared to the two-tier hierarchy.

1. In the three-tier hierarchy, gains from trade between shops in different divisions are
exploited by the center. The cumulative lag of the center’s data that it uses to
allocate resources is

di+dy = (241log,s)+(2+1og,s2) = 44+1logyn.

This is two periods greater than the center’s lag in the two-tier hierarchy. This extra
lag is a decision-theoretic cost of decentralized decision making.

o

The three-tier hierarchy also has higher managerial costs. The center’s calculations
in the three-tier hierarchy involve 2s, operations per period. Each division’s calcu-
lations involve 2s; operations per period. Hence, the total number of operations is
28y + 82(281) = 282 + 2n. In contrast. the number of operations in the two-tier hier-
archy is only 2n. The wages paid for the 2s, additional operations in the three-tier
hierarchy are a managerial cost of decentralized decision making.

The benefits and costs are summarized in Table 3.

We have now described real-time decision procedures that correspond to two-tier hier-
archies and to three-tier hierarchies that are balanced (each node in the same tier has the
same number of subordinates). In the Appendix. we generalize the real-time procedures
to arbitrary hierarchies. Increased decentralization of decision making corresponds to ad-
ditional intermediate tiers. The benefits and costs of three-tier versus two-tier hierarchies
arise again as additional tiers are added.
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5 Interpretation

Recall that the nodes in the three-tier hierarchy are offices rather than individual
managers. Because our model has no communication costs. we cannot even state that the
agents who perform operations within one node at one point in time must be different
from the agents who perform operations within a different node at another point in time.%
Hence. the hierarchical structure we see in Figure 4 arises from the structure of the decision

procedure. rather than from communication between individual administrators.

This a realistic view of organizations. An organizational chart does not show the links
between every manager. professional. secretary. clerk. and computer in an administrative
apparatus. Instead. it shows offices within which many people and machines may work.
Furthermore. the chart depicts the structure of decision-making procedures that persist
over tinme. even when there are changes in personnel. Such changes occur not only when
someone retires or finds a new job. but also when an employee is temporarily absent and
either a new employvee is hired as a substitute or an existing employee in another office
fills in. Some employees even spread their time on a regular basis between two positions in
different offices. Hence. whereas the literature on organizations that process information
with an endogenous number of agents has focused on the micro structure of communication
between individual agents.? we should be at least as interested in the macro structure of
communication between offices and division nodes.

We claim that the intermediate disaggregation of allocations in the three-tier hierarchy
(and in the general hierarchies defined in the Appendix) is related to decentralized decision
making. This claim is considered more formally in Van Zandt (1998c): here we limit
ourselves to an informal interpretation.

Decentralized decision making does not have a universal formal definition. The reader
may associate decentralized decision making with the delegation of certain decisions to
specific individuals who are autonomous in some sense and who may even have conflicting
interests. However. there are no conflicts of interest in this model. and the model could not
formalize the notion of autonomy. Furthermore. we have just explained why calculations
or decisions in this model should not be identified with individuals.

We instead look to the definition of decentralized decision making that is implicit in
team theory (Marschak and Radner (1972)). Accordingly. there is decentralization of
decision making when individuals or offices (i) control different action variables and (ii)
base their decisions on different information (Radner (1972b. p. 189)).

The first criterion is not entirely precise. In our resource allocation problem. are the
only action variables the allocations of the individual shops? Can we consider the aggregate
allocations of a division. which are not intrinsic control variables in the decision problem. to
be action variables? Should every partial result of the calculations be considered an action
variable. given that its value ultimately influences the final allocations? Our answers to
these questions are. respectively. "no”, “ves”. and "no”. but our justification is not formal.
Rather. the decision procedures in our model do resemble actual hierarchical budgeting
or other resource allocation procedures. and most observers would classify the resource

8That same indeterminateness. on the other hand. means that it is possible to assign cach operation
within each node (which is repeated every period) to the same agent. One could imagine advantages to
doing so given positive communication costs or the kinds of returns to specialization studied in Bolton
and Dewatripont (1994), but this would take us outside our model.

“For example, Geanakoplos and Milgrom (1991). Radner (1993), and Bolton and Dewatripont (1994):
an exception is Reiter (1996)
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allocations that come out of offices as decisions but would not classify every partial result
of the calculations as a decision. Perhaps this is because the aggregate allocation that an
office transmits to a subordinate division constrains the possible resource allocations for
that division. Therefore. we view the joint information processing within each office as
decentralized information processing but not as decentralized decision making.

The second criterion. which has been called informational decentralization (e.g.. Radner
(1972a. p. 188)). is critical for a model in whirch there are no conflicts of interest. because
otherwise it makes no difference who controls which actions. However, the meaning of
criterion (ii) and its relationship to decentralized decision making is also imprecise. Is
there informational decentralization if the decisions made are the same as those that would
have been made had all information been shared? Take. for example. iterative planning
procedures and static communication mechanisms that include exchanges of demand or
price information in a space of lower dimension than the initial private information; if the
allocations or outcomes therebyv calculated are the same as would have been realized by
a full exchange of information, is this then an instance of decentralized decision making?
Without taking a stand on this semantic question. we at least can say that the sense of
decentralization is stronger when the decisions that are taken are not the same as would
be taken with a full exchange of information.

In our model. this informational decentralization is present and exactly matches the
hierarchical structure. In the two-tier hierarchy. all allocations at time ¢ arc a function of
{('1_,,{1}21:1. In the three-tier hierarchy. the allocations at time ¢t to the shops in division j
are a function of the data {C;_gq, ,dg}?zl that the center implicitly uses to compute
and of the data {Ct’*dl}ieoi
different for shops in different divisions. Furthermore, the allocations to the subordinates
of any one node of the hierarchy are functions of the same data. whereas the allocations

that division j uses to suballocate rj. This information is

to the subordinates of different nodes are functions of different data.!®

This is why we consider the three-tier hierarchy to have more decentralized decision
making than the two-tier hierarchy. even though both hierarchies have maximally decen-
tralized information processing. Note that we are simply comparing two- and three-tier
hierarchies and are not claiming that the three-tier hierarchy has the greatest possible
decentralization of decision making. For example. hierarchies with more tiers are defined
in the Appendix. There also exist nonhierarchical procedures that are less bureaucratic
and that more closely resemble market mechanisms for allocating resources. All of these
may be more decentralized than three-tier hierarchies.

6 Related literature on decentralization

Recall that our model simultaneously explains (a) why agents with no prior private
information are hired to process information and {b) why decision making is then de-
centralized among them. Both effects are due solely to information processing delay. as
is highlighted by our model’s total lack of information transmission costs and incentive
problems. Here we consider other explanations for either (a) or (b).

Y0Note that the procedures involve the calculation of shadow prices. but different offices in the three-tier
hierarchy calculate distinct shadow prices at any point in time. Hence, the decentralization that arises
because of information processing constraints causes a failure of the law of one price.
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6.1 Information transmission costs

In most of the preceding economics literature on decentralized decision making--such
as the iterative planning. message space. and team theory literatures—decentralization
has been due to information transmission costs. (See Van Zandt (1998a) for a brief sur-
vey.) The intuition is straightforward. If agents (such as the shops in our model) have
heterogeneous information and it is costly for them to share this information, the decisions
should be delegated to the agents with the best information for that decision.

The delegation of decisions to intermediaries (such as to the administrators in our
model) who are not exogenously endowed with private information would ounly increase
transmission costs. However. in a model with both computation constraints and trans-
mission costs. the former can motivate the hiring of agents to process information. and
then - since these agents thereby acquire private information-—the latter may provide ad-
ditional motivation for decentralizing decision making to those agents. For example. as
described in Bernussou and Titli (1982, p. 23). if the shops are distributed spatially and
the transmission of information over long distances is costly. then it may reduce communi-
cation costs to have local management units that coordinate small groups of neighboring
shops along with a central management unit that coordinates the local units. as opposed
to having all management activities in a single location. Mount and Reiter (1990) de-
velop a general computation model that incorporates communication constraints, which.
as applied in the batch processing model of Reiter (1996). yields examples of decentralized
decision making.

6.2 Incentives

Incentive problems tend to work against decentralization. Like communication costs.
they are aggravated by the hiring of information processing intermediaries (because these
intermediaries may shirk and obtain rents from private information). Furthermore, ac-
cording to the revelation principle. pure incentive problems are not lessened and may be
aggravated by decentralizing decision making to agents whose private information is ex-
ogenously given. Nevertheless. there have been a few incentives-based justifications for
decentralization. which we now describe. (Section 7.3 mentions other papers that take
decentralization as given and consider its consequences for incentives.)

There are models in which outside agents are hired to monitor effort or audit the output
of workers and perhaps each other (e.g.. Baiman et al. (1987). Baron and Besanko (1984).
Calvo and Wellisz (1980). Demski and Sappington (1987). and Qian (1994)), but these
agents arc purely sources of information and there is no delegation of decision-making
tasks to them. In models with hidden information. the revelation principle continues to
apply with respect to the entire set of agents and auditors. so that the auditors also
comiunicate directly with the principal and not with the other agents.

Several papers have shown ~in models with two or three parties who are endowed with
private information that decentralizing decision making can strictly dominate central-
ization when complete, enforceable contractual mechanisms are not possible because of
post-contracting collusion, renegotiation. or lack of commitment. (a) Collusion. Laffont
and Martimort (1997) find. in an adverse selection model. that collusion does not by itself
favor decentralization (there are optimal centralized collusion-proof mechanisms). Simi-
larly. Baliga and Sjostrom (1998) is a moral hazard model in which agents can collude
and delegation changes the division of surplus by changing the agents’ outside optious, yet
decentralization only weakly dominates centralization. However. Laffont and Martimort
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(1998) find that delegation can be strictly optimal under the assumptions that agents may
collude. that communication is constrained. and that delegation changes (i) the division of
surplus between the agents when they bargain and (ii) the timing of individual rationality
constraints. (b) Renegotiation. In Poitevin (1995). delegation of decision making may be
strictly optimal because it is assumed to limit renegotiation (by reducing the level of con-
tractually stipulated communication). (c) Lack of commitment. When there is a lack of
commitment over observable variables. decision-making authority should be assigned tak-
ing into account the parties’ ex-post incentives. For example. the assignment of property
rights in the incomplete contracts literature can be interpreted as delegation of decision-
making authority. Klibanoff and Poitevin (1995) find that it may be strictly optimal for
a principal to delegate decision making to agents in a model in which the principal lacks
commitment and there are externalities between the agents.

6.3 Information processing

The batch processing literature has modeled the endogenocus hiring of information
processing agents in large administrative apparatus in order to reduce delay or increase
throughput. However. in Section 3. we showed that a benchmark batch processing model
did not demonstrate any advantage to decentralized decision making. This exercise il-
lustrated that the decomposition of decision problems into steps that are performed in
parallel by multiple agents is not the same as decentralized decision making. and hence
it is not trivial that constraints on individual information processing capabilities lead to
the latter. It was not a claim that only in a real-time processing model (or only because
of delay) could bounded rationality lead to decentralized decision making. For example,
the literature on multi-level systems in operations research and management science (e.g..
Bernussou and Titli (1982). Dirickx and Jennergren (1979). and Dudkin et al. (1987)) men-
tions a variety of unquantified but intuitive advantages to decentralized decision making.
distinct from the one presented in this paper.

Another example is Geanakoplos and Milgrom (1991). who present a model in which
bounded rationality also leads to hierarchically decentralized decision making in a resource
allocation problem. Although it is a static team theory model in which delay plays no
specific role, it is an important tool in Van Zandt (1998c) for defining organizational
structures and deriving real-time processing procedures that take into account the team
statistical inference problem. In their model. the aggregation of information is not mod-
eled. Instead. manager acquire information directly from the environment and bounded
rationality takes the form of constraints on the amount of information each manager can
acquire. One consequence is that it does not have an endogenous formulation of the dif-
ferences between information at different nodes of the hierarchy. At an informal level.
our model can motivate their assumption that aggregate information is less accurate than
disaggregate information. but their model is not a reduced form of Van Zandt (1998c). as
explained there and in Van Zandt (1998e).

Radner and Van Zandt (1992) and Van Zandt and Radner (1998). which study real-time
processing and returns to scale of firms. are also implicitly about decentralized decision
making. However. their decentralization takes a stark form-—it occurs when decision prob-
lems are divided up into completely separate units between which there is no coordination.
In contrast, this paper models decentralized decision making within unified non-market

organizations.



7 Further comments and extensions

7.1 Optimality
Q1. Should we care about optimality?

Introducing information processing constraints into a decision problem such as the one
studied in this paper restricts the set of feasible decision rules and also adds information
processing costs that are part of the performance criteria. Constrained optimality can be
defined to be ~optimality given the information processing constraints™. As is obvious. we
do not characterize constrained-optimal decision procedures in this paper. However. we do
compare the performance of different classes of decision procedures. and the motivation
for doing so is no different than the motivation for characterizing constrained-optimal
procedures. This motivation is discussed in Van Zandt (1998b. Section 2.3). where it is
explained why- -even as a descriptive criteria- constrained optimality is consistent with
the bounded rationality of the agents in this model and does not presume that these agents
or any others can effortlessly and instantly design constrained-optimal organizations.

Q2. Are the procedures described in Section 4 constrained-optimal?

There is not enough structure in this paper to measure the expected value of shop costs for
different procedures. so we cannot even rank any two procedures in terms of constrained
optimality. All we have shown is that there is a potential advantage of decentralized hier-
archical procedures over centralized hierarchical procedures. The question of whether the
procedures are constrained-optimal is addressed more meaningfully in Van Zandt (1998c.
1998e). where it is possible to calculate the sum of the shop and administrative costs for
given procedures.

However. note that we neither claim nor expect that. under most statistical assump-
tions. the procedures in Section 4 and their generalization to arbitrary hierarchies are
better than others not counsidered here. Even in this very abstract version of the model.
which has a coarse set of elementary functions. the set of possible procedures for calcu-
lating resource allocations is huge. Minor variations that could be better or worse than
the procedures we study include (a) not updating the resource allocations each period or
never processing cost information about some shops or divisions to whom resources are
allocated (in order to reduce information processing costs). and (b) taking into account the
stochastic processes governing the evolution of the cost functions. as in Van Zandt (1998¢))
(rather than calculating resource allocations that are optimal given old cost functions).
We describe more significant variations in Section 7.2.

7.2 Alternative procedures
Q3. How could we model a market mechanism?

It is possible to model market mechanisms as alternate decision procedures within our
model. thereby comparing the computational efficiency of markets with the computational
efficiency of hierarchies. This would provide a formal analysis of why certain transactions
take place in markets and others take place in hierarchies. This would also be an extensive
project, but we can give a simple example here. It illustrates the versatility of the general
methodology of modeling information processing in organizations as real-time control.



As a first step. we can assume that. even when the agents interact in markets. they do
so with the objective of minimizing collective costs: the incentive structure is thereby the
sawe in the two models. That is. we can collectively design the market interaction and the
decision procedures that each agent uses in the markets. Although this is a rather artificial
assumption. it does allow us to focus on computational differences between markets and
bureaucracies. which should be done before we study these differences in combination with
differences in incentives,

There are many market mechanisms and structures. such as auctions. wholesale/retail
networks. and financial specialists. Some of these even have semihierarchical structures.
Perhaps the most decentralized market interaction is bilateral trade, and so we use this
for our example.

We now think of each shop as the decision-making unit. The shop may still be an
“office™: for comparison with the hierarchical procedures, we should allow for maximal
decentralization of the operations that the shop must perform. We assume that. in d,,
cyveles. all shops can be (randomly or deterministically) matched pairwise. The shops keep
track of their current allocation. which they do not change until they calculate a new one
through a pairwise exchange. Once matched. each pair of shops calculates an exchange
(so that their total resources do not change) that minimizes the sum of their costs. This
can be done with the elementary operations we have already defined. We do not bother to
specify the details of this calculation here: let’s simply say that it takes d. cycles. Then.
every d,, + d. cycles, shops are matched and within each pair the allocations are updated
based on information that is d, periods old.

Here is one comparison between this bilateral exchange and the hierarchical procedures.
First. observe that we could generalize this procedure so that. instead of pairwise matches.
trade takes place within groups of size s;: thus. when s; = 2 we have the bilateral model.
(We are deliberately using the same symbol s; that we used for the size of each division
in the three-tier hierarchies.) Suppose that. as an alternative to the two-tier hierarchy
in Section 4.1, we simply split the organization up into units of size s;, so that resource
allocations within the units are based on more recent information but gains from trade
between units are not exploited. In Section 4.2. to take advantage of these gains from
trade we added a center that coordinated trades between the units. Now suppose that
instead we simply mix up the units over time as in the pairwise matching. Then we no
longer have fixed groups that never trade even when the marginal costs for the groups
become very different. Hence. the trading within small groups combined with mixing of
the groups allows resource allocations to be computed from recent information while at
the same time taking advantage of gains from trade across the population.

Q4. Can iterative procedures be modeled?

Friedman and Oren (1995) study a batch processing model for the resource allocation
problem without externalities. a model in which the algorithm is an iterative procedure
similar to a Walrasian tatonnement or iterative price-quantity planning process. Thus.
its set of clementary operations does not include the very unelementary operation < that
appears in the current paper. The purpose of their paper is to measure the parallel
complexity of the resource allocation problem.

We can also define hierarchically decentralized iterative procedures that are direct
analogs to the centralized and decentralized hierarchical procedures in Section 4. This
indicates that the main message of this paper does not depend critically on our particular

decomposition of the decision problem into elementary operations.



In our model. global cost information flows up the hierarchy and resource allocations
flow down. The analog in an iterative procedure is that local cost information. in the
form of marginal costs (shadow prices). flows up and is aggregated by the hierarchy. and
resource allocations flow down. This corresponds to a real-time version of a gradient ascent
algorithm that is the basis of the quantitv—price planning procedure in Heal (1969). In
the iterative procedures. each office allocates resources based on aggregated marginal costs
(average shadow prices) of the shops inferior to the offices. and this information is different
for different nodes of the hierarchy. An example of such procedures is defined for general
hierarchies at the end of the Appendix.

Defining multitier real-time versions of the more classical price-quantity Walrasian
procedure in Friedman and Oren (1995) poses several difficulties. which we have not vet
thought through. In such a model. demands at each point in time would be aggregated
through the hierarchy and shadow prices would be transmitted and updated down the
hierarchy. However. it is impossible for the organization to satisfy a binding budget con-
straint with this type of model. Furthermore, there is no analog to the disaggregation of
shadow prices. although it is possible for each office to update the shadow price it receives
from its immediate superior before sending the shadow price on to the subordinates.

7.3 Complications
Q5. What if there are also incentive problems?

The bounded rationality approach and the incentive approach to the economics of organi-
zations have so far developed independently. but it has long been recognized that incentive
problems and bounded rationality interact strongly in organizations.

There are two classes of such interaction. First. incentive problems require contracts or
mechanisms whose clauses must be stated ex ante and calculated ex post. This introduces
costs and constraints on the set of feasible contracts and mechanisms, and it creates
information processing tasks that cannot be delegated directly to interested parties without
creating further incentive problems. The contracting contraints in the incomplete contracts
literature are often informally motivated by complexity and bounded rationality. Williams
(1986). Reichelstein and Reiter (1988). and Hong and Page (1994) have studied mechanism
design explicitly taking into account communication costs (which may be motivated by
bounded rationality).

Second. the delegation of any information processing tasks creates problems of pri-
vate information and. if the effort exerted by the information processing agents exert is
not observable, of moral hazard. This interaction has been studied implicitly in the and
the hierarchical contracting literature. such as McAfee and McMlillan (1995). Melumad
et al. (1992. 1995. 1997). and Mookherjee and Reichelstein (1995, 1997)). These papers
start with standard adverse selection models in which the revelation principle would ap-
ply. but then impose hierarchical decentralization of contracting. motivated informally by
bounded rationality or explicitly by communication costs. They then characterize the op-
timal (“third-best™) contracts. and determine when there is a strict efficiency loss due to
decentralization (compared to the direct mechanism benchmark).

Models of information processing such as the one in this paper can be used to study
these issues formally. For example, it might be possible to integrate our model, framed as a
profit maximization problem with managers deriving positive benefit from being allocated
resources. with the hierarchical contracting models mentioned above, several of which
arc also based on resource allocation problems. Conceivably. incentives could provide
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Nodes:

J = set of offices (internal nodes).
{1.....n} = set of shops (terminal nodes).

R = root (ReJ).

H = height

Subordinates: Define for each office j € J.

©; = set of direct subordinates of office j:

s; = span of office j (s; = #0;).

#; = set of shops inferior to j (division j).
(For each shop i. let 6; = {i}.)

nj = size of division j (n; = #6;).

(For each shop i. let n; = 1.)

TABLE 4. Notation for general hierarchies.

an additional reason for decentralizing decision making. Specifically, it may be that the
computation constraints motivate the hiring of agents to process information. whereupon
it becomes casier to measure the performance of agents and to control against improper
use of resources by hierarchically decomposing the disaggregation of allocations.

Q6. What if there are externalities?

If the environment exhibits externalities—meaning that each cost function depends (po-
tentially) on the entire vector of allocations—then the decomposition in Section 2 is not
possible. Even the centralized procedure. which relied on the operation &. would have to
change in the presence of externalities. In these brief comments. we can at best speculate
on the properties of real-time resource allocation with externalities.

It would still be possible to define hierarchically decomposed real-time procedures.
but each office would not be able to fully take into account externalities between shops
in its own division and other shops in the organization. This would be an additional
disadvantage of decentralization. On the other hand. the advantage of decentralization
described in Section 4.2 would still be present. It should be possible to construct a model
of this trade-off such that. for some parameter values (e.g.. when externalities are not too
significant). it is better to decentralize the decision making in order to take advantage of the
reduced delay of lower levels of the hierarchy. whereas for others (e.g., when externalities
are important and the environment does not change too quickly), centralized procedures
perform better.

Appendix: General hierarchies

In this appendix. we define a real-time procedure for an arbitrary hierarchy such that
the procedure is analogous to the ones in Section 4 and the decomposition of the resource
allocation problem for the hierarchy is as defined in Section 2.

Recall the notation from Section 2 that we used to describe a hierarchy. It is listed
in Table 4. along with the following. The span s; of division j is the number of direct
subordinates in ©;. and the size n; of division j is the number of shops in #;. As a



Periods Operations

(t—1—-+) Calculation Type # Delay
dj.....3 éjt::®keej Ct 11 s;—1 [log, s;]
2 Pjt i= CA”J'-t(.l'ﬂ) o 1 1
1 are = Chy Hpjt) f3 8j 1

Total:  2s;  [log,s;|+2
T, = Q(hJ‘ - 1)

dj: [lOgZSJ] + 2
Crt = Crtmd;—2(h,—ha—1)

TaBLE 5. The calculations performed by office j € J for the allocation of resources
in period t.

convention. we define ¢; = {/} and n; = 1 for each shop i. The tier hj of node k is the
maximum of the lengths of the paths from the node to shops in §;. Hence. all the shops
are in tier 0 and the offices are in higher tiers. The tier H = hg of the root is called the
height of the hierarchy and is the number of managerial tiers. For &y, ks € TU J. we write
ky 7 ko if ko is weakly inferior to &) in the hierarchy.

Note that h; = 1+ max{hy | k€ ©O;} for j € J If k € ©; and hy + 1 < hj. then
k is said to skip h; — hx — 1 levels when reporting to j. or simply to “skip-level report™.
For example. in Figure 1. manager d skips one level when reporting to R and all other
managers do not skip-level report. The balanced three-tier hierarchy in Section 4.2 has no
skip-level reporting.

The calculations performed by office j € J for the period-t allocation are shown in
Table 5; they are a generalization of the calculations in a three-tier hierarchy. Office j € J
begins calculating the period-t allocation of its subordinates in some period before ¢ (yet
to be determined) by collecting the latest aggregate cost function calculated by each of its
subordinates (or just the subordinate’s latest cost function. if the subordinate is a shop).
Let Cy, be this cost function for subordinate & € ©;. where the t denotes the period for
which j uses the information to allocate resources (rather than the period in which Cyy is
collected). Office j then calculates its own aggregate cost éj[ = @keej C’jt in [log, s;]
periods from this data: the index ¢ in C’jt again denotes the period of the allocation for
which the information is used. In the next two periods. 7 calculates its period-t shadow

price p;; = @J’-,(.l‘jt) and then the allocations {;u, = Ck'i,t“l(pj,)}%e‘ of its subordinates.
Office j's delay is thus d; = Tlog, s;] + 2. and it performs 2s; Calculz]itions per period.

A subtlety that complicates description of the timing and the use of data is that each
office must finish calculating the period-t allocation of its immediate subordinates two
periods before any such subordinate & € ©; (if it is an office) finishes calculating the
period-t allocation of &'s own immediate subordinates (because this is when & uses xj;
as an input, as seen in Table 3). It follows by induction that the latest time each office
J can finish calculating the period-t allocation is by the end of period t — 7; — 1. where
7; = 2(h; — 1). (If subordinate r € ©; does not skip-level report to j. then k learns
exactly when it needs this information: otherwise. &k learns it 2(h; — hy — 1) periods earlier
than necessary.) So that this is the period in which j finishes. we let j begin calculating
the period-t allocation in period { — 7; — d;.

o
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Next we determine what the latest available cost function C’kt is for k& € ©; when office

7
t' € Z. k finishes calculating the period-#' allocation of its own immediate subordinates at

J collects {C‘k,} at the beginning of period t — 7; — d;. If k is an office then. for each
k

the end of period t' — 7, — 1. An intermediate result of this calculation is C’kt’ = EBleek Cu .
which (from Table 5) is available two periods earlier, or at the beginning of period ¢ — i —2.
If k is an shop then we can also define 7, = 2(hy — 1} = —2 (since hy = 0) and we can
define Cyp = Cry: hence it is also the case that Crp is available at the beginning of period
t' — 1. — 2 =t'. Therefore. whether k is an office or a shop. ék, = éktr for ¢’ such that

f,——Tk—Q = f*TJ'—([j.
th =2 —1) -2 = t=2(h; - 1)-d, .
o= ted, =20 —hp - 1),

Let

ij = dj+2(hj—hk—l) .
which is the lag of the data about k& used by j (i.c.. C’H = Chwk_t_L]k). Observe that if &
does not skip-level report then h; —h; —1 = 0 and L = d;. That is. these various timing
complications cancel and the lag of the data used by j is equal to j's delay.

As we move up a hierarchy, each office adds an extra lag to the data due to computa-
tional delay. For ki, ks € T U J such that ky - ks, we define the cumulative lag Ly, g, of

~

k1’s information about k» to be the sum of L;, for [} € J and , € ©; such that /; and J,
are on the path from &y to k9 in the hierarchy:

(1) Lk, = Z Ly, .

HES heoy
k-l ke

Note that we have not redefined Ly 4, if &y € J and k» € ©;. and that if &, = A, then
Lk, = 0. Furthermore. if By, ko ks € TUJ and k1 77 ko 7 ks, then Ly gy, = Liyhy + Lighs-

~

We now obtain the following characterization of the information on which each office’s
allocation decisions are based.

Proposition 1 For j€ J. Cj = Dico, Cit—L.-

ProoF: The proof is by induction on the tier of .
If hj = 1. then all of j's immediate subordinates are shops (©; = 6;): hence C’j, =
@kEOJ Cri-ry = EBieHJ CitmLj-

Let h € {1,... .H — 1} and assume that éj[ = @ia}] Cit—r,, for j € J such that
hj <h. Let j € J be such that h; = h + 1. Then

ij = @kEGk Cke’—L;‘k = @ke@, (@ie()k Ci'[_Lki_L]k) :
Since Ly; + Ljz = Lj; and since {gk}keej is a partition of ;. it follows that C’jt =
@Igm Cimryi U

We can also decompose the cumulative lag as follows.

Proposition 2 For j € J and k € I UJ such that j > k.

(2) Lix = 2(h; —hg) + E [log, si1] -
leJ
J bk



The summation is the cumulative aggregation delay and 2(hy, — hg,) is the cumulative
disaggregation delay.

Proor: Since Ly, =dj + 2(h; — hy — 1) and d; = flog, s;] + 2 for j € J and k € ©;. we
can rewrite (1) as
Lk, = > Nogysy]+2(hy, — hy) -
hES ey

kizmh~la ko

In the summation of the terms h;, — hy,. intermediate terms cancel. leaving 2(hg, — hy,)-

Hence.
Lklk'.? = 2<h/~‘1 - hkz) + Z ﬂoé-’;z 5111 .
hes
kymh-ko
which is the same as equation (2) for j = &y and & = k,. d

Proposition 3 The total number of operations per period is 2(n + #J — 1).

Proor: From Table 6. office j € J has 2s; operations per period. Hence. the total
number of operations is Zje] 2s;. Each shop and cach office (other than the root) is the
subordinate of one and only one office. and the root is not a subordinate of any office.
Hence. 3 ;. ;85 =n+#J -1 O

The costs of decentralization are (a) 2 operations per period per additional office and
(b) 2 periods of cumulative delay per tier. The benefit of decentralization—that is. the
benefit of having an office k& € J\ {R} compared to eliminating that office and having its
immediate superior j allocate resources directly to &’'s immediate subordinates—is that
k suballocates the resources using information about the shops inferior to & that is more
recent than the information used by j if & is eliminated.

We conclude by defining an iterative analog of these general hierarchical procedures. as
described in Section 7.2. The elementary operations are arithmetic and differentiation ( fs).
We assume that each arithmetic operation takes one period and that differentiation takes
dy periods. We treat the shops as offices that process information because the calculation
of marginal costs (shadow prices) from cost functions is performed only at the level of the
shops in any hierarchy. By the beginning of each period t. each shop i finishes calculating
Dit = Pit—dy =y q,(it-d,). The operations performed by each managerial office j € J
in the hierarchy are shown in Table 6. The hicrarchy recursively aggregates the shadow
prices and disaggregates the resource allocations.

Compare a two-tier and three-tier hierarchy. In a two-tier hierarchy, allocations are
updated using cost information (marginal cost) that is do + [log, n] + 5 periods old. In
a balanced hierarchy. allocations within each division are updated using cost information
that is dg + [log, s1 ] +6 periods old. which is approximately [log, s2] periods less than the
delay in the one-tier hierarchy. Resources are allocated between divisions by the center.
who uses the cost information {p;j;—q, }jeen' which are aggregates of marginal costs from
period t —dy — d; — d». This cumulative delay is approximately 6 periods greater than
the delav of the two-tier hierarchy. As in the hicrarchies in Section 4. the decentralized
hierarchy has more operations. and the shadow prices (p;;) at different nodes at a given

point in time are different.

o
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Periods Operations

(t—7j—) Calculation Type # Delay
dj.....5 Pit =3 Lkeo, Prt +. % 5j [logy 551 + 1
4.3 AR =Bt — Pre) - X 285 2
4.3 Sppr= (e = ) —x | s;+1 2
2.1 pi= o+ A+ A + 2s; 2

Total: 6s; +1 [log,s;]+5
TJ':'-I(/IJ‘—I)

d;=[logys;]1+5
Pit = Drt—d;—4(h; —hx—1)

TaBLe 6. Calculations by office j € J for the period-t allocation in the hierarchical
iterative procedure.
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