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The existing dual theory of competitive exchange at non-market-clearing
prices and of competitive price adjustment lacks a simple consistent logical
foundation comparable to that underlying the theory of equilibrium competitive
trading and price determination. Anyone who has attempted to do theoretical
research on these topics is fully aware of the reason for this sad state of
affairs. The standard elegant theory of individual trading behavior is based
on an assumption which simply cannot hold where trade takes placeat non-market-
clearing prices.1 Specifically, not every trader can effect his most preferred
affordable exchange in such a situation.

Of course, approaches exist which handle this problem. For example, one
can either postulate a decentralized exchange process in which small groups of
traders who are willing and able to exchange among themselves do so or maintain
the central market place construct but introduce rules to determine who is to
be rationed. However, most writers using the first approach seem only to ask
whether the usual ad hoc price adjustment rule will find a market clearing price

2
vector given that exchange takes place during the process. To date, writers
applying the second approach have restricted their concern to the effects of
non-price rationing on allocation.3 Neither group has addressed the central
question. Why are competitive prices slow to adjust and why do traders exchange
at disequilibrium prices?

One possible reason that the question is not central in the literature 1is
that the answer is too obvious. Prices simply don't adjust instantaneously
because the cost of finding the market clearing vector that quickly far out-
weighs the benefit. Equivalently, finding equilibrium in an economical manner
requires time. Because there are real costs associated with "waiting to exchange",

each agent finds it in his interest to trade during the adjustment process. Such

reasoning has been used to justify modelling price adjustment as though there



were an auctioneer who changes prices with a lag in response to demand and
supply signals.

Personally, I find this story convincing. Nevertheless, the question
deserves a less superficial answer - one which casts more light into the black
box. Ideally, such an answer would specify the costs which are economized
by lagged price adjustment and would provide a logical foundation from which
the "law of supply and demand'" could be derived. The purpose of this paper
is to suggest one possibility.

The suggestion is anticipated in my earlier work on the market implications
of price search. Indeed, the model analyzed in this paper is a dynamic
generalization of one developed in [9 ]. Exchange is decentral-
ized in the sense that the process takes place at meetings of many trader
coalitions which form at specified "local markets.” 1In any short interval
of time those traders who happen to be at a given local market trade among
themselves at prices which maximize exchange among them subject to the ability
and willingness of each to participate.

In general, a single exchange ratio between any two commodities does
not characterize either all the market at a point in time or a given market
over time. Consequently, an incentive to speculate exists. Specifically,
each trader in a particular market and period must decide whether to trade
now or to wait in anticipation of a better price. Those traders who decide
to search or are unable to trade carry over speculative stocks which depend
on expected future prices and the costs of seeking a better price. Finally,
current transaction prices are jointly determined by the composition of the
coalitions and the rules by which traders decide to search rather than trade.
Present and future prices and stocks are tied in these various ways.

Given a large number of heroic simplifying assumptions, the following

results are obtained in the case of a single durable commodity. If traders



search the local markets at random and if search costs increase as the

frequency with which these markets are searched, then speculative gains

are never eliminated in the sense that price dispersion across markets persists.
Moreover. the distribution of prices converges over time to a steady state
characterized by the equality of flow supply and demand. Indeed, the mean

of the price distribution changes at a rate which increases with the difference
between the aggregate flow demand and volume of transactions per period and decreases
with the difference between the aggregate flow supply and the aggregate volume
of transactions per period. Finally., if there are no costs of search or if

they vanish as search becomes instantaneous. then the price distribution
collapses and the speed with which the common price adjusts to its competitive
equilibrium value tends to infinity with the search frequency. In other words.
both price dispersion and lagged price adjustment can be explained in principle

by transaction costs which rise with search frequency.

1) The Model
A single durable commodity is exchanged in a set of identical local
markets denoted as M = {1, ..., m}]. Let N ={1, ..., n} represent the set
of traders. This set is the union of two disjoint sets, the set of sellers,

N and the set of buyers, N

1’ 2’

All sellers are risk neutral in the sense that each acts to maximize
the expected present value of a future stream of monetary benefits attribut-
able to their activities. 1In the case of a seller, the flow equals the
difference between the value of sales and the sum of transaction and production

costs. The stream equals the net value of purchases less ordering and trans-

actions costs in the case of a buyer.



We begin the analysis by formulating the model in discrete time. The
length of the representative period has a dual interpretation. Its inverse
is the average search frequency. on the one hand, and exchange takes place
among the traders represented at each local market during the interval on
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the other. The costs associated with both search and exchange. total trans-
actions costs. presumably depend on the length of the interval. Specifically.
instantaneous search and exchange are likely to be prohibitively expensive and
decline with the length of the interval. Later we show that a positive length
is socially optimal under these conditions.

Search is assumed to be random in the sense that each trader assigned
each unit in his stock to markets with equal probability. Given these assign-
ments, inventory and orders are matched in a manner which maximizes sales
given the willingness and ability of the agents associated with the stocks
to trade. Willingness to trade is determined by a trader's reservation
price. In the case of a seller, we refer to the minimum price acceptable
as his ask price. The maximum price that a buyer will accept is referred
to as his bid price. Ability to trade in a given market is determined by the
quantity of a seller's inventory assigned to the market in the course of search
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and by the number of orders assigned to the market in the case of a buyer.
The price in a market during any interval is set conditional on reservation
prices and stock assignments so as to maximize sales.

Given the pricing and trading rules outlined above, the future price
in every market is a function of future reservation price and future stock
assignments to the market. Since the latter is a random variable by virtue of
random search, so is price and quantity traded. Moreover, the distribution

function characterizing these variables in any two markets are identical since

the price setting and matching rules used are the same.



Each trader controls two variables. In any period the typical seller
must set the ask price and production rate associated with that period.
Analogously. the buyer sets his bid price and new order rate. In each case
the rules by which the values of the controls are determined are optimal
solutions to a stochastic control problem. One aspect of the specification
of this problem concerns the manner in which traders are assumed to forcast
the future outcomes of the pricing and matching process outlined above.

The specific assumption used is crucial in the sense that the nature of the market
solution obtained depends on the traders' strategies which in turn depend on
the manner in which traders forcast.

In the paper we adopt the so called 'rational expectations hypothesis"
suggested by Muth [1ll]. Specifically, the probability distributions that
traders expect to characterize future prices and sales in each market are
those generated by the traders' anticipations. The reason that expectations
of this type are rational is that traders would find it in their interest to
forcast in such a manner if they had the information which would allow them
to do so. Hence, a valid objection exists to the hypothesis which is
based on the contention that traders find it uneconomical to obtain information
which will allow them to make predictions which are selffulfilling in this
strong sense. In spite of this objection, we maintain the hypothesis because
it allows for a clear view of the potential role of trader speculation in
the price adjustment process.

Finally, we remind the reader that we are concerned with competitive
analysis in this paper. Specifically, each trader acts as if his decisions
have no effect on the nature of the process which determines price and trading

opportunities.



2) Trader Behavior

Later we will show that the price in any market in period t can be
characterized at the beginning of the period by a probability distribution
function, denoted as F(p,Qt). The argument Qt represents a set of para-
meters which completely characterizes the state of the entire system of local
markets as of the beginning of period t. One implication of the rational
expectations hypothesis is that the typical trader knows both the form of the
function F and the past and current values of Qt. Moreover, a joint pro-
bability distribution on future states conditioned on the sequence of past
states exists and is known to the trader. The notation E{-| Qt} represents
the expectation of some random variable taken with respect to this distribution.
In the sections which follow, the determinants of the state of the market system
and the nature of the distribution on future states are derived.

Because each trader is one among many, the current value of his own stock
has an indiscernable effect on the elements of Qt now and in the future.
However, the value of his controls depends on the value of his own stock in
general. When it does, the trader must also forecast the future values of his
own stock as well as the future states of the market system. In the specifi-
cation which follows we eliminate this addition complication by assuming that
each trader is risk neutral in the sense that he maximized a discounted sum of
a sequence of future net monetary benefits and that each element in the sequence
is linear in the trader's own stock. The latter condition holds when the cost
of attempting to sell a unit of inventory is independent of the size of the
stock held by a seller and when the cost of attempting to fill an order is
independent of the size of the buyer's unfilled order stocks. These assumptions

are not unreasonable as first approximations and allow for a considerable



simplification of the analysis which follows.

At the beginning of period t, the typical trader inherits a stock denoted
as  x from the past. Let 9 denote the trader's reservation price in period
t. Because the matching rule in every market insures that no trader will be
prevented from exchanging a unit when the price is acceptable, the
trader's reservation price and the price in the market to which any unit in the
stock is assigned determine whether or not it will be sold? If the trader is a

seller, then

1 if p, 2 q,

0 otherwise

where v, = 1 means that the ith unit of the stock X, is sold and P; denotes

the price at which the transaction takes place. Total sales made by the seller in
Xt

question can, then, be expressed as z vy, Consequently, the seller's inventory

i=1
in the next period is determined by the identity

where St denote the seller's production rate during the period.
The net cash flow generated by the seller's activities is defined as
x

t
™ .Z piyi - @j(st) - ij

j eN
t i=1

t’ 1

where @j(-) denotes the cost of production and cj denotes the cost of attempting
to sell any unit in inventory. These costs are incurred in storing the unit,
searching for an acceptable price and engaging in the exchange process itself.
Consequently, cj represents the total transaction cost incurred per unit of
inventory held. Finally, the subscript j simply distinguishes the seller's

cost functions from those associated with all other elements in the set Nl'



The present value of the future cash flow is defined by

Vo= 2 B o B = 1/(1+n) (1)

where r 1is the interest rate at which the trader can borrow and lend financial
capital and T 1is the sellers horizon. At each date the seller is assumed to set

his ask pr'ce and his production rate (qt,st) according to a strategy which

maximizes

Efv | Q)
Vel Q

subject to the identity determining the evolution of his inventory stock. For
the reasons already stated his strategy is a function from the state space

‘s 2
characterizing the market to R".

Because the ith unit of inventory is sold only if it is assigned to a market

in which the price is no less than his ask price, the following relationships hold:

= x = - r‘w . A
Ex gl al=x = x(0-Jdrm;n)) +s , v (2a)
9
©
Efr ' Q) =x TpdF(p. Q) -w.(s) -c.x , ¥Yrand j ¢ N (2b)
T T Ta ¥ J o7 1T 1
T

Of course, F(p; C%) represents the distribution function defined on price in
any market during period 7., Consequently, the first term in (2a) represents
the number of units in inventory which the sellers expect not to sell and the
first term in (2b) equals the value of expected sales.

Since the expected value of the operation at date ¢t  can be expressed as
elv,] 0 = Eln ] o)

2
+eE(E fmog ) 0 ) 1 o) + B BRIV 0 a0 T ol



appropriate substitutions suggested by the equations of (2) yield

r‘
1P dF(p; xt) - @j(st) - Cth 3)

Q-
rt UB
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. o A t+2
where Xeq1 denotes the expectations of X 4 8lven Qt as defined in (2a).

Because the optimal strategy is independent of the sellers own stock and
the future states of the market are independent of the seller's actions, the value of the
last term is independent of the choices made with respect to the values of the
current controls. However, the current controls enter the first term directly
and the second term indirectly through the first two relationships in the

sequence defined in (2a). Consequently, (qt,s ,ib+1)maximizes the sum of these

t

two terms subject to the first two equations of (2a). The Lagrangian function
associated with this sub-problem can be written as

[--]
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where ﬂt and ﬂt+1 are the multipliers associated with the first and second
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constraints respectively. These too are functions of the gtate of the market
in their respective periods. Consequently, in period t when Qt is known,

is a random variable independent of x . This fact justifies the last

m
e+l t+1

line in the expression.
Finally., then, a solution interior relative to any natural boundzries con-

straining the choice set must satisfy the following first order conditions for

all j ¢ N1 .7
mn - . =
(*, - a) dF(q; a) =0 (4a)
m - ﬂ' = /)
“t Q,J,(St) 0 (4b\
r e
- M - + ! e - . 1 =
- Bey *BELT p ARG L) +T (- [ aFGin )] ) =0 (b

e+1 e

where w; (st) denotes the marginal cost of production incurred by seller j.
The conditions hold in every period prior to the seller's horizon date. 1In the

case of a horizon date in the indefinite future, the end point condition is

lim BL ¢ 1 = 0. (4d)

T T
The first necessary condition implies that the value of inventory held over
from period t to t+l equals the minimum acceptable price in period t, his
ask price. According to the second, the production rate must be set to equate
the cost of producing the marginal addition to inventory to the imputed value of
a unit in inventory. Finally, the last equation, given the first, can be interpreted
as an optimal stopping rule condition. The lowest acceptable price in period
t plus the present value of the cost of attempting to sell a unit in period
t+l equals the present value of the expectation from the viewpoint of period t

of the expected outcome attributable to search in the next period. The latter is



.he average of the price obtained if the unit is sold and the value of the unit
as inventory if not sold with weights equal to probabilities of the two events.
Consequently, the cost of searching for a better price in the next period plus
the current imputed value equals the expected present value of the two possible
outcomes of search in the next period.

For the sake of a story, it is convenient to regard the buyers as firms.
They might be viewed as 'retailers'" all of whom resell what they purchase at the
common price 4. In other words, | represents the value of the commodity to
the ultimate consumer? To obtain a determinant optimal flow of new orders we
postulate the existence of an ordering cost. Let @j(dt) denote the total cost
of ordering at a rate dt faced by buyer j. Costs of search and other ex-
change activities are assumed to be proportional to the buyver's stock of unfilled

orders. Let c¢,, j ¢ N

i ) denote the transaction cost per order and let X, denote

the stock of orders.

The typical order is filled only if it is assigned to a market with a price

no greater than the buyer's bid price, qt? Let
i <
1 if P; <9,
y; T
0 otherwise

th order in the stock x 1is

where v; < 1 corresponds to the event that the i c

sold. We have, then,

T

X
xt+1=xt+dt_ii Y1

and
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The buyers controls (qt,.dt) are determined by a strategy which maximized

E(vtl Qt)

where the present value of the future net cash flow is defined as in (1).

The formal equivalence between the typical buyers problem and that of the
typical seller is obvious. For precisely the same reasons,the buyer's optimal
strategy depends only on the state of the market. Indeed if we replace S, by
dt' P, by u - P; and take account of the fact that the buyer purchases

rather than sells, the same formal argument used to derive the equations of (4)

can be applied to obtain the following necessary conditions for all j ¢ N2:

@ =-aq -7 dF(q ;a) =0 (5a)
o ot - 5b
Ne o (d) =0 (5b)
Qe r‘q t+1
_ - cr _ . - . } 1 =

0f course, the multiplier nt is to be interpreted as the inputed value of

an  unfilledorder and @,(dt) is the marginal cost of ordering at a rate
J

dt' Finally,

lim B N, =0 (5d4)

is the end point condition.
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In the case of a buyer. the bid price equals the difference between the
value of a purchased unit and the inputed value of an unfilled order. The
optimal new order rate is such that the marginal cost of ordering is equal
to the value of an unfilled order. The last condition can also be given an
optimal stopping rule interpretation. The buyer is indifferent between purchasing
now and speculating in the hope of finding a lower price in the next period
when the value of a unit to him less the highest acceptable price in the current
period plus the cost of search equals the expected present value of the two
possible outcomes attributable to search in the next period.

An inspection of (4) and (5) reveals that the variations in transaction
costs is the only reason for differences in the reservation prices set by members
of the same trader type, given that all have the same expectations. In the
case of the typical seller, equations (%4a) and (4c) reduce to

-]

= r - . ’z 3
*Bey S BEfa g + (P - g PdFR; O IR, Fe (6)

qt+1

9t

and (5a) and (5c¢) implying

A

- - = r - . 3
(1-B)u + Be; = q BE{q, . + éqt+1 p) dF(p; Q. 1 Q. Je N, (6b)

t
in the case of the typical buyer. Note that the current ask price decreases

with the cost of attempting to sell a unit from inventory and increases with

next period's ask price. In the finite horizon case, the ask price of all sellers
at the horizon date is zero. Consequently, an induction argument implies that

the seller facing the highest transaction cost has the lowest ask price at

every prior date. An analogous argument can be used to prove that the buyer
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facing the highest transaction cost is willing to pay the highest price among
all the buyers.

Necessary second order conditions for optimal trader strategies requires
that the marginal cost of production and ordering not be decreasing functions
of their respective arguments. TIf we strengthen those conditions slightly. a
flow supply function exists for each seller and a flow demand function exists
for each buyer. Let

sj(qt). j e N1

1§

and dt dj(u - qt), je N,

denote the inverses of (4a) and (4b) respectively. All such functions are
positive, increasing and continuous. The equations of (6) and (7) form the

basis of the analysis which follows.

3) Market Equilibrium

The purpose of this section is to find the price distribution generated
by the pricing and matching rules assumed to characterize exchange by random
search and by individual trader strategies which are optimal relative to the

\10
price distribution. This object is an equilibrium in the sense that it is the
only distribution consistent with optimal behavior when the traders know the
distributions. 1In this sense it is a stochastic generalization of the concept
of a competitive equilibrium price in the standard deterministic theory. How-
ever. the system of markets does not clear in the usual sense in a stochastic
equilibrium.

As an introduction to the analysis, it is useful to show that the range of

possible prices is determined solely by transactions costs and by the inputed

(7a)

(7D)
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cost of waiting to trade that are tncurred because search and

exchange require time. Recall that variations in reservation prices across
members of either trader type are due only to differences in transactions costs
when all have the same expectation. Specifically, the seller who must spend the
most in his effort to sell a unit of the commodity has the lowest ask price and
the buyer with the highest bid price faces the highest transaction cost per
order. These two reservation prices,the lowest ask and the highest bid.
obviously bound the set of possible prices at which trade can take place.

Below we show that the difference between them equals the total cost per period
of attempting to match an inventory-order pair held by the seller-buyer pair who
face the highest combined trahsactions cost.

Let ¢

1

denote the maximum element in the set {cj ] jie N17 and <,

denote the largest element in the set fcj | j e Nzl. All sellers who face

cost < have the same ask price in every period which we donote as pl(t).

The bid price common to all buyers who pay transaction cost ¢ is represented

2
by pz(t). The sequences of each of these satisfy
P, (t+l)
Py (E) + By = BEfp, (ce+1) + [(p - py(£)) dF(p; 2 ) | 0]
P1(t+1)
pz(t+l)
(1-Bu + Be, - py(t) = BE{-pZ(tH) +u['(p%(t+1) - p) dF(p; Qt+l)‘ Qt}
Py t+1)

by virtue of (6), the argument made subsequent to (6) and the fact that the
range of possible prices is the closed interval (pl, pz) in every period. Since
the rational expectations hypothesis implies that all traders have the same
expectations and know the range of possible prices given the current state of

the market. the two equations above can be rewritten as
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p () + e, = BE{p(t+1) | Qt} (8a)
(1-B)y + Be, = py(t) = - BE{p(t+l) | ] (8b)
where pz(t+1>
p(e+l) = "p dF(py 0 ) =Efp ., | 2 1. (8¢
. pl(t+l) t+1 t+1 t+l

Since (1-B)/B =r, equation (8a) and (8b) implying

\11
pz(t) - pl(t) =B u + cq + cz). (9

Hence, the range of possible prices equals the present value of the total
waiting cost and the maximum transaction costs incurred in the next period
associated with any inventory-order pair not matched in the current period.
Equivalently. the maximum value of a match in the current period, the maxi-
mum difference between the price which some buyer is willing to pay and some
seller is willing to accept, equals the present value of the maximum cost of
attempting to ebtain the match in the next period.

In the sequel we assume that all sellers face the same transaction cost
per unit of inventory and all buyers pay the same amount per order in their
effort to fill orders. One might argue that sellers and buyers facing the
lowest cost would specialize in the exchange activity,if such were not the cases,
and the others would purchase the service from them. Equivalently, one may
simply view ¢ and c, as the prices paid by producers and consumers to the
specialized traders. In any case the derivation of the equilibrium distribution

which follows can easily be generalized to account for differentials in trans-

actions cost.
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Given the assumption, pl(t) is the ask price common to all sellers and
pz(t) is the common bid price. Since all possible prices are in the interval
bounded by these two. they are all acceptable to the traders represented in any
local market. Consequently. the number of units of the commodity traded equals
the size of the stock assigned to that market at the beginning of the period
representing the short side given any price in the interval (pz(t). pl(t)).
Finally, let

v(8) = min fx (). x,(8)]

where y(t) is the quantity traded during period t in any local market charac-
terized by the vector (xl(t), xz(t)) where xl(t) represents the inventory as-
signed to the market and xz(t) represents the number of orders assigned to the
market by the search process at the beginning of period t.

If the inventories assigned to a market exceed orders. then the quantity
which sellers prefer to exchange exceeds the quantity which sellers are able
to purchase at every feasible price except the ask price. At a price equal to
the minimum acceptable to the sellers, the sellers are indifferent between
trade and further search. Because buyers are indifferent between trade and
search only when the market price equals the bid price, an excess local demand
exists at all prices less than the bid price when orders exceed inventory
assigned by the search process. When the inventory and orders are equal in
the local market any price bounded by the bid and ask price will do. It is
convenient to resolve this indeterminancy by assuming that trade takes place
at the average price in this case. We maintain, then,

p2(t) if x2(t) > xl(t)

p(t) = ) p(t)  if x,(t) = x (©)

pl(t) if xz(t) < xl(t).
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V12
as the local market clearing price rule.

In sum. a local market is characterized by the vector (xl(t). x2(t)) in
the sense that both the quantity traded and the price at which they are traded
in period t are determined by these given the bid and ask price. Since the
process determining this vector is random. so are price and quantity prior to
search. Specifically, the joint distribution of the stocks assigned to any
market is a bivariate binomial since each unit in the aggregate stock of either
type is assigned to each local market independently with the same probability

equal to 1/m.

i (0 % (0) S Cxp 3} = GGy, xpi (9, 2p(0) (10)
= B(xlz m. mll(t)) B(x2; i. mkz(t))

where B denotes the binomial distribution functions and Kl(t) and \z(t)
denotes the aggregate stock of inventory per market and of orders per market
respectively.

Given (10). we are able to specify the nature of the equilibrium price

distribution. Let

= = .

fl(.\l,. 2) Pr{x2> xl} | dG(xl, X,3 ,\1, >\2) (11a)
X%

£,000 &) = Prix, < xb = [dG(xy, %55 0 2y). (11b)
VS

The distribution, then, is
£,0v (8)5 2, (1) when p = p,(t)
. = - hY B - bY = -
dF(p; Q) L - £,04(0). () - £, (8), Ny(8)) when p = p(t).

fz(\l(t); \Z(t)) when p = Pl(t)
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Consequently.,
p(t) = Efp | 2.0 = 8C(0). 1 (0)) py(e) + (1 - g0 (B). M ()P (1) (12)

where

£, (0) 1 "y (6))

gy (1), (£) = - \ s (13)
1 2 £ G0 () 4 £, (B) 0 2y (E))
In words, the equilibrium expected price is a weighted average of the bid and
ask prices with weights equal to the conditional own probibility that that
reservation price will prevail given that one or the other will prevail res-
pectively.
The expected quantity traded in any market during period t 1is defined
as follows
\ N =
£ (), () = E {y(t) | Q]
= r 1 [ >
(lenx(Tl, x2) dG(xl, Xy ‘1(t), \2(t)). (14)
17 72
Because (Kl, kz) is the expectation of (xl, x2), the function min(xl. x2) is
concave and the variances of X and x, are both zero only when (Kl, KZ) =0,
the following inequality holds:
AN in( .., Y .
FO s N) < min( N STy £0 (15)

In other words, the expected number of units of the commodity traded per market
is strictly less than either the aggregate stocks of inventory per market or the
aggregated stock of unfilled orders. Consequently, if the stocks are positive

in period ¢t, they are positive in every subsequent period.
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Now, consider the case in which the number of local markets is large.
Formally, this case can be approximated by the limiting model obtained by
letting the number of markets tend to infinity holding average stocks per
market constant. Because B(x; %, m\) converges to the Poisson distribution

function with mean * as m = o,

o1 "t éh2\2y2
.o = | —
dG(xys %95 My M) v, Ty,

holds as an approximation in the large numbers case.

A number of simplifications result as a consequence of the fact that this
\13
function is differentiable with respect to its parameters. First,

SE(\‘]_;A'Z) _ f \ k
T = 1('-1; 2) (16a)
Af ()
_ﬁi T £,07) (16b)
2
where fl and f2 are the functions defined in (11). 1In other words, the

marginal additions to the expected number of units exchanged per period per
market attributable to increases in the aggregate average stocks of inventory

and orders equal the probability that orders exceed inventory and the probability
that inventory exceeds orders in any one of the markets. Second, it can be

s that £ . <0, £, <0 and f£ 0 where f,, denotes the representa-
hown 11 > £y n 12 > r i3 n e P n

tive second partial derivative ., These facts imply that an increase in aggre-
gate inventory decreases the expected price while an increase in aggregate orders
increases the expected price given the bid and ask prices. 1In particular,

Y
% iy

- = 3 17
5x1 gl(xl,\z) <0 (17a)
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and

Bj(#‘]‘}\'2> = g 2('\‘1J/\‘2> > 0 (17b>

el

Finally, the average number of units traded per market equals its expectation

due to the law of large numbers.

Lim 1 ? = £( ot 18
we w250 T ECp(0,0,(0). (18)

We are now prepared to state the principal result of the paper. The

aggregate stock of inventory and orders per market are sufficient to character-

ize the state of the system of markets in any period; i.e. Qt = (Xl(t% \z(t)).

Morever, if the number of markets in the system is sufficiently large, the

process determining the transition from one state to another is approximately

deterministic. The first statement asserts that optimal bid and ask prices in

any period are both functions of the average stocks per market as of the be-
ginning of the period. The second statement asserts that the stocks in each
period are deterministic functions of the stocks in previous periods.

When the first assertion holds, the second is implied by (18). Define

1
s(pll = o _z sj(p1>
JeN1
and
1
d(u-p2> = 5 2 dj(u-P2>
jeN,

as the aggregate flow supply functions per market and the aggregate flow demand
function per market where sj(-), j e Nl’ and dj(-), je NZ’ are the individual

functions derived in (7).
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The stock flow identities and (18) imply

L (EFD) = (0 s (py() - £C (8),0,(E)) (192)

and

L (EFD) = o (8) + d(eepy(6) - £C (0,5, (0)). (19b)

Consequently, if 0 = (ll(t)lkz(t)), then the state in period t+l 1is determined
by the difference equation system (19) since’both pl(t) and pz(t) are functions of Qt
The equations of (8), equations (9) and (12), and the fact that (19) is

a deterministic difference equation imply

pl(t+l) + g(\l(t+l), X2(t+l)) B(ry + c, + c2) = (l+r)pl(t) + cq (20a)

and

p2(t+l) + (1 - g(Kl(t+l),K2(t+l))) B(ry, + c, + c2) = (1 + r)pz(t) - c, - ru(20b)

1 2

if Qt = (Nl(t),KZ(t)), To complete the proof one must show that the solution

to (19) and (20) satisfying

Lim p, (£) Bt =0 (21a)
b0

and
lim (4 - p,(£)) B" =0, (21b)
t-d

the necessary optimal conditions (4d) and (5d) respectively, can be charac-
terized as a function mapping the set of possible stocks to the set of possible
reservation prices. Establishing this fact is the purpose of the next section.
A few comments concerning the assumptions underlying our market model are
in order before proceeding. The local market clearing assumption is, of course,

an abstraction of the outcome of what one might more realistically regard as a



bargaining process. Some will object to the assumption nevertheless on the
grounds that we have simply substituted an army of auctioneers for the single
one common in the standard competitive market model. Although there is substance
to this criticism, one should note that the information gathering, computation
and matching functions implicitly attributed to each of the many auctioneers
of our model are considerably simpler than those which a central acutioneer
must perform. Indeed,it is not unreasonable to imagine that these functions
could be profitably performed by private brokers who charge a fee but compete
among one another.

As a consequence of the decentralization of exchange activities and of
random search, matching is imperfect and price differentials across the
local markets persists. As a result, the exchange process is '"inefficient"
in the standard sense; expost in each period Pareto superior trades still exist.
However, the efficiency losses induced by decentralization are balanced to some
extent by the saving in information gathering, computation and matching costs
attributable to the decentralization. Such is our working hypothesis concerning
the reason for the existence of multi-market systems of exchange for the same
commodity.

Although the assumption that all traders search by selecting markets at
random can be rationalized as a non-cooperative solution to the game of finding

\\ 1_4

trading partners, superior cooperative solutions exist. An example of such a
solution is the case in which exactly % of the stock held by each trader is
assigned to each market. 1In this case there is no efficiency loss due to mis-
matching. However, such cooperative solutions are not in the spirit of competi-
tive analysis. Moreover, casual observation suggests that random search is

likely to be a better explanation of observed behavior.
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4) A Theory of Competitive Price Adjustment

In this section we complete the proof of the assertion that the values
of the inventory and order stocks completely characterize the state of the
market in any period. Specifically, the solution to (19) - (21) defines a
function mapping pairs of stocks to pairs of reservation prices. In the process
of this proof we also derive the rules which tie prices and stocks in contigu-
ous periods together. These rules specify the equilibrium market dynamics
implied by our model. This process can be characterized as a generalization
of the proposition that prices adjust in response to supply and demand pressure.
We show that this statement has meaning even though '"the price' is a distribu-
tion in our model.

For our purpose it is convenient to transform the equations of (20) into
a single equation involving the means of the sequence of price distri-
butions. By multiplying (20a) by 1 - g(hl(t) Xz(t)) and (20b) by g(\l(t) Nz(t))

and then adding the two results, we obtain

B(t+D) = (L+0)B(t) +cf = 8O () M(E) (ru + ¢ +c,) (22a)

by virtue of equation (12) and the fact that the left sides of both (20a) and
(20b) equal ©p(t + 1). Then, given the latter fact, we can eliminate pl(t)
in (19a) using (2la) and p2(t) in (19b) using (21b). The results can be

written as
LD =) F sBE(EHD) - o)) = £O (), (6) (22b)
and

\Z(t + 1) = kz(t) + d(B(u - ¢, - p(t+l)) - f(kl(t)lkz(t)) (22¢)

Since both reservation prices are functions of the expected price and the two

stocks by virtue of (12) and (9), it suffices to show that the solution to these
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three equations satisfying

lim
tes

t —_
B~ p(t) =0 (22d)
can be characterized as a function 8 such that

B(E) =8 (. (8), "y (6)). (23)

We demonstrate that such a function exists with the aid of the phase
diagrams in Figure 1. The slopes of the singular curves depicted and the
directions of motion indicated in the diagrams are implied by the following sign

restrictions on the various partial derivatives of the system (22):

4P =g (24a)
R
5&\1
5 = s'/(1+r) > 0 (24b)
P
AAN .
2=-4d/(1+) <0 (24¢)
3
cp f r o X 3
P = ?1 + ( < g1> > 8 = °P _ < Q (244)
le Akl =0 1 T T SXI Ap = 0
- f g ag -
3 -2 2)c 2. 2 . >0 (24e)
M| &, =0 d! 1+r T T 5».2 Ap =0
2 2
where = = (ry + ¢ * CZ) and A is the first difference operator. The sign

restrictions follow from the fact that o and r are positive, the aggregate
flow supply and demand functions are both increasing, the partial derivatives
of the function f£(:) are both probabilities and the partials of the function
g(+) are negative and positive respectively.

Obviously, the singular curves in each diagram intersect once. For now

we will assume that simultaneous solutions to Ap = 0 and A&l = 0, on the
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one hand and to Ap = 0 and A, = 0,on the other,exist. Later we derive

2

the condition which insures existence in both cases.

Figure la Figure 1b

N
Q

LAY

& B0

7

s

Q

Because both phase diagrams exhibit a '"saddle point'" configuration,
a two dimensional surface exists in the 5xklxkz space which corresponds
in the diagrams to the ''stable'" trajectories. This surface has the property
that all solutions to the systems (22a) - (22c) that originate on the
surface remain on it in all subsequent periods. Moreover, if a steady
state solution, a point (p¥ \T, Kg) satisfying Akl = AAZ =Ap =0,
exists,the solution converges to it. Consequently, (22d) is satisfied by all
such solutions. This surface is the sought for function € in equation (23).
The stable trajectories in Figure la represents the curve made by inter-

secting the surface 5 = 6(\1, Kz ) with a vertical plane oriented along

the \1 direction. Similarly the stable trajectories in Figure 1lb is the one
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dimensional projection of the surface on a plane lying in the l2 direction.

Therefore,
56( 5 o)
R = 6,() (250)
1
1 2 _
SN =0 2(.) (25b)

We find, then, that the expected market price decreases with aggregate
inventory, holding crders constant, and increases with the stock of aggre-
gate orders holding inventory constant. This fact, of course, reflects the
behavior of the individual traders. Since stocks adjust with a lag, the
relative magnitudes of the two stocks in the current period will persist
into the near future. This fact is known to the traders given rational
expectations, and is used by them in making their future price forcasts.
When future aggregate inventory stocks are large relative to unfilled order
stocks, future prices will be depressed given the nature of the local market
clearing rule. But expectations of low prices in the near future induce
traders acting optimally to set low reservation prices in the current period.
Since the expected price in the current period is a weighted average of the
current bid and ask price, it too is lower than it would be if the relative
relationship between the current values of the two stocks were reversed.

Given (23), equations (22b) and (22¢) imply that

S o= / = - - 2
3P =0, AN 48, M, =8 (s - ) +8,(d - ) (26)

holds as an approximation for small changes in the stocks. Consequently,
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the values of the partial derivatives of the function © represent the direction
and speed with which the average price in the system of markets changes in
response to flow supply and demand signals. Specifically, an increase in

the difference between the flow supply rate per market and the average rate

at which trade is taking place in the local markets dampens the rate at which
the average price is changing. An increase in the difference between the

flow demand rate per market and the average transaction rate per market
increases the rate of price change. Finally, (26) reduces to the special

case in which the rate of change in average price is proportional to excess
flow demand when the partial derivatitives of € are equal in absolute

value. In this sense (26) is a generalization of the "law of supply and

demand."

Since Ap = Akl = AAZ = 0 and (22) imply that the steady state expected
price is such that

s(B(P* - ¢;)) = d(Bl - ¢, - P¥)) (27)

it is market clearing in the sense of the standard competitive market model.
Because s(.) and d(.) are both continuous increasing functions, a unique

market clearing expected price exists satisfying 0 < 5* <y 1f and only if

u>c, tc (28)

Condition (28) requires that the value of the commodity to the ultimate
consumer be sufficient to cover transaction costs. It is a relatively simple
matter to show that a unique positive steady state stock pair (Kl*, KZ*)

exists given (28).



As S. Grossman [ 7] points out, the market is solving a control prob-

V15
lem. In the special case of an indefinitely large number of traders and
markets the aggregate control problem reduces to a simple
deterministic dynamic programming problem even though each individual trader
cannot know the prices at which he will be able to trade in the future with certainty.
In the more realistic case of a large but finite number of traders and markets,
the stocks in period t + 1 from the viewpoint of period t are random
because the average number of units traded per market is random. But, the
distribution describing the latter depends only on the stocks. Therefore,
the market solution is a first order Markov process, the simplest stochastic
generalization of our deterministic difference equation. However, if external
stochastic shocks are also added, the market must solve a more complicated

stochastic control problem. Nevertheless, the dynamic properties of our

special case underlies all of these more general versions of the model.

5) Conclusion: An Answer to the Central Question

We have argued that speculative behavior on the part of individual
traders generates a process that eventually findg market clearing prices
if trading is viewed as a sequence of more or less random meetings among
traders, if exchange among those that meet satisfies some rather reasonable
conditions and if the traders have sufficient information about the manner
in which the process functions as well as its state at each stage. More-
over, price adjustments made during the process are in response to supply
and demand signals even though there is no central auctioneer who performs
the explicit act of setting prices according to such a rule. Underlying this
aggregate characterization is the fact that current prices at which trade
takes place are determined by the individual traders' reservation prices,

the reservation prices depend on the current levels of speculation stocks
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and the changes in stocks reflect supply and demand decisions as well as
the current rate at which exchange is taking place.

The complication which we have added relative to the standard approach
to modelling competitive markets is that decentralized exchange over time
generates a distribution of trading prices rather than a single price for
each commoéity. Because price dispersion is necessary as a motive for
speculative behavior, this fact plays a crucial role in the derivation of
the price adjustment process. Finally, the existence of price dispersion
and, therefore, lagged price adjustment is due to the fact that search and
exchange activities require time. Equivalently, both exist if and only if
instantaneous search and exchange are too expensive. We conclude by present-
ing a formal illustration of the sense in which this last statement is true.

Let. h denote the length of a market period, which we now regard as
a variable. As before, it is both the inverse of the frequency of search
and the interval during which exchange activities occur in each local market.
Because the value of the commodity to the ultimate consumer, _, has no time
dimension but the interest rate does, the difference between the bid and ask

price can be expressed as

by - Py = Trp (thu + ¢ (h) + c,(h) (29)

by virtue of (12) where r denotes the interest rate per unit time period and
Cl(h) and cz(h) are the transactions cost per market searched incurred by
the typical seller and buyer respectively expressed as function of the time
required to search and trade in a market.

Consider first the case in which there are no transactions cost; i.e.,

Cl(h) + cz(h) = 0. Then, as search becomes instantaneous (h -+ 0), price
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dispersion vanishes by virtue of (29). One can establish that both the bid

and ask price converge to the competitive equilibrium, the solution to

s(p*) = d( - p*),

with the following argument. The average number of units traded per local

market. f( %,),; 1s independent of the length of the market interval and

12
is positive if stocks are positive. Since both the flow supply and demand
per market period are proportional to the length of the market interval,
the rate of change in both stocks tends to negative infinity as search becomes
instantaneous. In other words, no stocks are held in the limit which implies
that the supply and demand flows are instantaneously matched at a price which
equates the two.

Of course, no formal distinction exists between a decentralized exchange
system and one in which all traders exchange simultaneously when search
is instantaneous. Consequently, no price differential for the same com-
modity can exist. Moreover, as the interval during which prices are fixed
vanishes, so does the lag in the price adjustment process. For these reasons
the model reduces to the standard one in which a single price continuously
equates flow supply and demand in the absense of transactions costs.

Now, let us consider the more realistic case in which transactions costs
per market interval increase with search frequency. Instantaneous search
and exchange are prohibitively expensive in this case when they are such that

no trade takes place given a market period of infinitesmal length. Since

in the steady state, equation (27) implies

S(pl") =d(u - pz*) (30)
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such a situation obtains when u < cl(O) + c2(0) if s(0) = d(0) =0.

If the sum of transactions costs Cl(h) + cz(h) fall with the length of the

market interval, then the total costs of failing to match, the right side of

(29), first decreasesas h increases from zero and then eventually limits

to

h,

bution, Py, = Py and the length of the market period, h, is that depicted in Figure 2.

[P

I1f in some range trade is possible; i.e. L <« Cl(h> + cz(h) for some

then the relationship between the range of the equilibrium price distri-

Figure 2

P2~ ~

Note that the particular interval h* minimizes the maximum possible price

differential between markets and, equivalently, the total cost of waiting

and trading. By virtue of (30), h* also maximizes the steady state rate

at which trade takes place. Of course, at h* the addition to the cost of

waiting attributable to lengthening the market period is just balanced by

the saving in transaction cost. The fact that the optimal length of the

period is positive suggests the following answer to the principal question.



The need to economize on the cost of waiting to trade, on the one hand, and
on the cost of trading, on the other, can explain both exchange at disequi-

librium prices and lagged price adjustment in a competitive market context.
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APPENDIX

The equations of (16) and (17) are based on the following fact:

Lemma: If x 1is an n vector of non-negative random integers distributed
according to the multivariate Poisson with mean vector equal to *, then for

and real valued function ~(x)

Qs
'—A.
X

= EAiG(X)

where \i is the expectation of X5 and Aim(x) = @(xl, 'Xn) -

REREES

(X e e v X, « e X .
(K5 e Ky e X))

Proof: Let X% denote the vector x formed by deleting X, O that

x = (%, Xi)' Then,
=N, X N
e J\, J T
p(x) = 1 R S ¢
j=1 x.. X, .
j i

is the probability of x wunder the hypothesis. Consequently,

-p X.
e lX. b
© R 1
Ex(x) = ZExX)p(x) =% 3 o (X, Xx.) X, ! p(X)
X N i i
x x.=0
i
so that
~X X -1 -N, X
i. i i, 7i
X.e . e \
~ = i i i
OFen (X - - N 2
Se = Tokox) - - — p (%)
1 % x,=0 i® . i’
i SNy Xy XS
(x41l)e . e N,
» i i ® i
= ; - Q’J(S() Xi+l) (x+1) ! p(&) -z B (O(/}\()X ) % ! P(AX)
x x=0 i ’ % x,= i J
i i
[« )
=T z [QD(/}\() XA1)- ok, x,)] P(%) X,)
N - i i i
X xi—O

= ; Ai@(x) p(x). Q.E.D.
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In the case of our model, f(X 12) = Em(xl, XZ) where

l)

- (x

~ 1,‘ X

2) = min (xl, x2).

Since x and x

1 are both integers,

2

0 if x, > x
Aec(x) = min (x+1, x.) - min (x,, x,) =
1 1 2 L 1 if x, < x

Therefore,
of OEs (x)
= - = f = X\ B
o\l 5\1 xlzxzp(x) pr 1< X21 fl(‘l’ ‘2)

as asserted im (16a). By virtue of the symmetry, (16b) holds as well.

To obtain the second partial derivatives of f(\l, NZ)

lemma again to obtain

Bfi BEAi@(x)
ax.j - 5‘~,j = E 8800,

-1 if Xl+l = x2
Since AlAlw(x)
0 otherwise

1 if xl = x2
A1A2@ (%)
0 otherwise
and
-1 if x+l = x
8,80 (%) 2 1
0 otherwise,
~ D b N / / = N
fll('l’ ‘2) < 0, f22('1’ .2) < 0 and le(\l’ \2) fZ('l’

in the text. These signs and (13) imply the results in (18).

, we use the

KZ) > 0 as asserted
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FOOTNOTES

See Arrow [ 1 ] for a discussion of this point.
See Arrow and Hahn [2], Chapter 13, for a review of this literature,
This literature includes {3], [4], [5] and [6].

In general, the interval required to search a market and the interval
between exchange agreements in each market need not be equal as we have
assumed. If the latter is longer than the former, each trader can choose
among a set of known prices rather than simply choosing to accept or reject
a single price. The derivation of the distribution of prices is much

more complicated in this more realistic formulation.

An order is viewed as a promise to purchase one unit at any price less
or equal to the buyer's own bid price. In the exchange process a unit
of "inventory" can be analogously viewed as a promise to sell at any price
equal to or greater than the seller's own ask price. We require that these

promises be backed by an ability to fulfill them in each case.

As we shall see later, rationing does occur in local markets. However,
the assumed pricing rule is such that any rationed trader is indifferent
between exchange and further price search. Consequently, the individual

trader's optimal decision rule is unaffected by rationing.

If Hoe is differentiable, the equations of (4) can be obtained directly.

A more complicated argument is needed to obtain the conditions is general.

In many applications it is reasonable to suppose that the used stock of
the commodity is a determinate of ; e.g. automobiles or any other consumer

durable. 1If one were to take account of this complication, another stock-

flow process would enter the model.
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9
— The comment in footnote 6 applies here as well.
10/ The definition of market equilibrium used in this section is analogous

to that introduced by Lucas and Prescott [8].
—" If the two traders also face different interest rates, this condition
must be modified slightly.

——' These rules can be generalized in the obvious way to account for differences
either in bid prices across buyers or in ask prices across sellers without

affecting the validity of the comment in footnote 6.
—" See the Appendix for the derivation of (16) and (17).
—'" See Mortensen [10].

In our particular case, the expected present value of future sales to
the ultimate consumers less transactions, ordering and production costs
is maximum given the assumptions regarding the nature of the search process

and the rules of exchange in each market.
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