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A probabiiity distribution governing the evolution of a stocha

tic process has infinitely many Bavesian representations of the form

i = Jgpediifi. Among these. a netural representation is one whose

Componen?\ {151 are “learnable’ [one can approximaie is by condi-

tioning x on observation of the process; and “sufficient for prediction’
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process:. \We sl w the existence and uniqueness of sucil a representa-

tion under a suitable asvmptotic mixing condition on the process. This
representation can be obtained by conditioning on the tail-field of the

process. and nv learnable representation that is suﬁicient for predic-
tion is asvmptotically like the tail-fleld representation. This result is
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weakened to an asymptotic mixing condition, and with his conclu-
sion of a decomposition into iid component distributions weakened to
components that are learnable and sufficient for prediction.



1 Introduction

Researchers in economics and decision theory often represent the probability
distribution governing the the evolution of a stochastic process as a convex
combination of the form g = [g pedA(6). Such a representation describes
a two stage Bavesian process. In the first stage nature chooses, according
to the prior probability measure X, one of the component measures yg. In
the second stage the selected yg governs the evolution of the process. Zellner
(1971). Rothschild (1974). and Aumann and Maschler (1995) present classical
examples of this approach in Bayvesian statistics. decision theory, and game
theory. respectively.

It is easv to see, however, that a given p can have infinitely many different
representations. For instance, a researcher representing u by p = fg pedA(0)
could have used an alternative representation u = [o nerdA'(8"). Moreover.
different representations may provide more or less convenient models of the
same process.’

The purpose of this paper is to identify a specific natural representation
of a probability distribution for a discrete-time finite-state stochastic pro-
cess. We define a natural representation by imposing two requirements on
the component distributions. First, we want the representation to be fine
enough so that the component distributions are sufficient for (asymptotic)
prediction, without needing to condition on additional information. Second,
we want the representation to be coarse enough so that it does not consist
of component distributions that are not learnable no matter how long the
process is observed. As it turns out. such a natural representation exists, and
this representation is essentially unique (in a sense to be made precise). Fur-
thermore. this representation can be obtained by conditioning the original
distribution on the tail field.

To make this discussion concrete, we first discuss a simple special case.

Example 1: A coin is chosen and then flipped an infinite number of times.
The coin is not necessarily fair. i.e.. it has a probability § of turning up heads.
‘H’. and a probability 1 — 8 of turn up tails. “T". and # is not necessarily

'¥or example. Nyvarko (1996) argues that it is important for learning results in incom-
plete information games to be robust to equivalent reformulations of type spaces. He
discusses examples which are not robust to such reformulations. In the language of this
paper the reformulations are different representations of the process associated with the
same game and sirategies.



1/2. In fact. 8 is chosen according to a uniform distribution over {0,1].
So we may think of this process as first choosing a coin. and then flipping
it an infinite number of times. This process corresponds to a probability
measure y over infinite strings of ‘H” and “T’s. Note that there are many
different convex combinations of component distributions that we could use
to represent u. Let us discuss three. First, there 1s a representation which
naturallv corresponds to the description we gave for the process. That is,
g = fy ugdf where g corresponds to the measure induced by flipping a
coin with parameter 4. From our perspective this will turn out to be a
natural representation. Second. there is a representation of y = 1/2uj0y +
1/2ptnign. where pow corresponds to choosing a coin parameter by a uniform
distribution over 0 to 1/2 and then flipping the coin. and pnign to choosing
a coin parameter by a uniform distribution over 1/2 to 1 and then flipping
the coin. From our perspective this i1s too coarse a representation since
the component distributions do not capture the relevant information about
the realized coin that will be observed in the process. As we will make
precise, this representation fails to be sufficient for prediction. Third, there
is a representation of u as a convex combination of Dirac measures, each
giving weight one to some infinite sequence of heads and tails. Specifically,
p = [qb.du(w) where each w corresponds to a single infinite sequence of ‘H’
and ‘T’s and &, is a degenerate measure with weight one on the sequence
.. From our perspective this extreme is too fine a representation because
it captures information that an observer could never hope to learn. The
implication of the main result of the paper for this example is that if one
looks for a representation of u that satisfies both sufficiency for prediction
and learnability. then one recovers preciselv the representation of u as a
convex combination of the coins.

Let us be a bit more explicit about the definitions of sufficiency for predic-
tion. learnability (formal definitions appear in the Section 2). and our main
results: and then discuss the relation of our results to de Finetti’'s theorem.

Sufficiency for Prediction. A component distribution is sufficient for
prediction if the unconditional probabilities of late events are arbitrarily close
to their probabilities when additionally conditioned on initial segments of
the process. In other words. knowledge of the distribution alone. without
any knowledge of the realizations of the process. is sufficient for making
asvmptotic predictions. A representation. p = [ ugdA(8), is sufficient for
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prediction if each of its component measures. 4. is sufficient for prediction.
So. the basic idea behind sufficiency for prediction i1s that the knowledge
of the component distribution might be thought of as a statistic which 1s
sufficient for the information an observer might learn from initial histories of
the process for the purpose of making predictions of far-off events.

In Example 1 above, the representation of g as coins with known pa-
rameters is sufficient for prediction. A forecaster who knows the parameter
(8) of the coin will make no use of the realized initial segments in assigning
probability to the event H at future times t. Similarly. the representation
of i by Dirac measures is trivially sufficient for prediction. In contrast. the
coarser representation. g = 1/2p10w +1/2unien. is not sufficient for prediction.
For instance, under punign. the unconditional probability of H at any time ¢
(including late times) is 3/4, while, the probability of H at time ¢ conditional
on an initial long segment that is very rich in H’s is greater than 3/4.

Learnability. ‘Learnability’ has many interpretations. We follow the
recent game theoretic Bayesian learning literature and define a representation
to be learnable if a long term observer of the process. who starts only with
knowledge of the original p. by conditioning on past observations makes
approximately the same predictions as a person who is additionally informed
of the realized component distribution. In other words. the probabilities
of future events conditional on historv alone become arbitrarily close to the
probabilities conditional on history and knowledge of the realized component
distribution.

In the coins example. the representation of u as coins with known param-
eters is learnable since an observer (who is not told the realized parameter
of the coin) who observes a long historv of outcomes will predict the proba-
bility of *H’ arbitrarily closely to the chosen parameter. as if he was told the
parameter. Similarly, the coarser representation of g = 1/2u0w + 1/2pnigh is
learnable. In contrast. the fully refined representation of g by Dirac measures
is not learnable. No matter how long a forecaster observes the process, he will
not predict future realizations of H and T's as if he knew those realizations.

Our Main Results. The above discussion points out that learnability
limits how ‘fine’ a representation can be and sufficiency for prediction limits
how ‘coarse’ it can be. In the coins example we pointed out a representation
which satisfies both of these requirements. More generally one would like to
know if there always exists such a representation and, if so, what does the



class of all such representations look like. Our main results show for a certain
class of mixing processes that there always exists a representation that is both
learnable and sufficient for prediction. and that any such representation is
asvmptotically like the representation that one obtains by conditioning on the
tail field. Thus. the conditions of learnability and sufficiency for prediction
together identify representations corresponding to the tail field.

Relationship to de Finetti’s Theorem. The celebrated de Finetti
Theorem suggests an example of a learnable representation which is sufficient
for prediction. Illustrated in the the space of infinite sequences of H and T’s,
de Finetti considers situations where the probabilitv assigned to every initial
finite sequence is exchangeable, i.e.. the probability depends entirely on the
number of H's and T’s and not on their order in the sequence. De Finetti
shows that the overall probability of such a process may be represented as
a convex combination of distributions induced by repeated 1.1.d. coin tosses,
where the parameter of the coin is random. Thus, in the language of this
paper. he represents an exchangeable distribution by a convex combination
of learnable distributions that are sufficient for prediction.

Qur representation result is similar to de Finetti’s. except that we re-
place the exchangeebility condition with a weaker condition of asymptotic
reverse-mixing (which is loosely that conditional on sufficient observation
additional far-off information does not significantly change the forecast of
nearby events). Our conclusion is therefore weaker: we obtain a learnable
representation by component distributions that are sufficient for prediction.
but not necessarily i.1.d. across time.

The following example illustrates the importance of weakening exchange-
abilitv. The process in the example is not exchangeable but satishes our
mixing condition.

Example 2: Consider a finite state Markov chain with n states and an n xn
transition matrix M. Suppose that A is not known, but that is randomly
chosen according to a measure A over possible n x n transition matrices. The
measure y governing the resulting stochastic process can be represented as
p = [uadA(M).? This process is not exchangeable (as. for instance. the
probability that the process is in state 1 at both dates 1 and 2 can be quite

2 An example of such a process arises in game theory when one considers an evolutionary
process of the sort described by Kandori. Mailath. and Rob (1983}, with an unknown
mutation rate.



different from the probability that the process isin state 1 at both dates 1 and
10). Nevertheless. one would like a theorem that recovers u = [ padA(M) as
the natural representation of this process. A natural candidate for a condition
to replace exchangeability would seem to be a mixing condition. However,
note that this example does not satisfy standard mixing conditions. Initial
events provide significant information concerning much later events. since
initial realizations help one to estimate Af. which influences the forecast late
events. Therefore, initial events and much later events are not approximately
independent. Nevertheless. the example does satisfv the asymptotic version
of a (reverse) mixing condition that we define in this paper. Conditional on
sufficient observation there is approximate independence between near and
far events.

While exchangeability is too strong for most economic applications, asymp-
totic reverse mixing 1s significantly weaker and thus admits many new ap-
plications. as illustrated by the example above. Asvmptotic reverse-mixing
permits long run effects being generated by random early events. One way
to test for such an effect is to see whether conditioning on far off events in-
fluences forecasts of nearby events. Asvmptotic reverse mixing allows such
forecasts to be influenced intiallyv, but requires that conditional on sufficient
observation of history, conditioning on far off events no longer influences
forecasts of nearby events.

2 Definitions

Let {(Q:.G:)}.Z, be a sequence of finite state spaces and corresponding o-
fields. Let @ = x2,€,. and let F be the o-field on O generated by {G;}i- .
le.. F =0 (UZ,G:). where G; denotes the o-field on ©Q, and its corresponding
extension to ). Note that F is countably generated. Let F: = ¢ (U§:1 Q'j>.
{F.}iZ, 1s a filtration on (Q. F). The notation G} denotes V!_,G;. Let A be
the set of probability measures on (2. 7). We treat Q, {G;}Z,. and u € A
as fixed.

~1



Representations

Definition: A quadruple (©.5. A, (g¢)sco) consisting of a probability space
(0.8, ) and probability measures yy € A is a representation if vS € F
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4(S) = fo uelS) dA(B).

For anyv fixed p. there are various representations from which to choose.
Two extreme examples are

© consists of a single point § and pg = u. and

O =0Q.8B=F. =y and g (S} = Is(w) (where Is is the indicator
function. i.e., the Dirac measure on w).

With a representation. we can think of a random draw of w according to
u as equivalently first choosing a parameter § by A and then choosing w by

us. In other words. a representation consists of a prior A over (O,5) and a
collection of posteriors yg over (2.

We now provide precise definitions for sufficiency for prediction and learn-
abilitv which will be used to identifv a specific class of representations.

Sufficiency for Prediction
Definition: A measure 7 is sufficient for prediction if for all ¢

lim sup p(AF) — (A =0 g —ae.
ToAggE

{1

This definition states that conditioning on the filtration will not change
the forecasts of far-off events by someone who alreadv knows a measure g.
We apply this definition to each ys.

Definition: A representation (0.5, A.(ug)) is sufficient for prediction if ug
is sufficient for prediction for A-a.e. § € 0.

(0¢]



To see the intuition behind the above definition (and especially the role of
t). consider an agent who knows the transition probabilities of an irreducible.
aperiodic Markov chain but i1s unfamilar with the history or current state of
the chain (as in Example 2). Her forecast regarding the next period state
may be incorrect (relative to someone who knows the history), vet the agent
knows the pattern that the chain will follow asymptotically: her prediction
about events on the far horizon are independent of the current state of the
chain. In this case. knowing the transition probabilities (modeled as knowing
8) is sufficient for making predictions.

Learnability

Learnability is made precise by means of the notion of merging of mea-
sures originated by Blackwell and Dubins (1962). We use a weaker notion
from Kalai and Lehrer (1994). which has proven to be useful in the Bayesian
learning literature {(e.g.. Kalai and Lehrer (1993). Lehrer and Smorodinsky
(1997). and Jackson and Kalai (1997)).

Definition: Consider v and o € A. 7 merges with v if ¥ ¢ > 0. £, and
v—ae w&Q 37T suchthatforallt>T
sup  [p(AlF) —vlAlFR) <.

n2t.,4€§2+l

If & merges with v, then eventually forecasts provided by U regarding any
finite horizon events at arbitrary times in the future will approach the “true”
forecasts provided by v.

This definition appears to be stronger than the definition of merging that
appears in Kalai and Lehrer (1994), where sup, ., 4o+« would be replaced
by max4eg,.,. However. it is proven in the appendix (see Lemma 1) that the
two definitions are equivalent.

The notion of merging formalizes what we mean by a learnable represen-
tation:

Definition: A representation (0. B, A.(pe)) is learnable if 4 merges with pg
for A-a.e. § £ O.

A representation is learnable if an observer of the filtration will eventually
make predictions as if she had been informed about the realized parameter 4.



Thus. given what the observer has learned through the filtration, knowledge
of # has become redundant in that i1t would not change the observer’s forecast.
This means that the observer learns the distribution ug (at least along the
realized path). which is different from learning 8 as we illustrate in Section

2.
Asvmptotic Reverse-Mixing

The following example shows that one cannot have a theorv of learnabil-
ity and sufficiency for prediction that applies to all stochastic processes. as
for some stochastic processes learnability and suffiency for prediction are in-
compatible. The distribution in the example continually brings in new. vet
unlearned information.

Example 3: Let Q, = {0.1}. Consider yu generated as follows: Partition
the set of periods IN = U, \N.. where the \;’s are defined by letting .V, be
{1.4.....n",...}. and then \; is enumerated by renumbering the remaining

N\ N7 and taking the corresponding slots {1.4,.... n". ...} (so N, works

out to be {2.6..... n™+n....}). and so on. Let © = [0, 1]"" be the parameter

space. Given 8 = (61,....0,....). ¢ is the measure representing a sequence of
independent coin flips where the probability of heads at time ¢ is given by 4;
when ¢ € \;. Assume that the prior A used to select a § € © has the propertv
that the selection of the component §; is independent of other components
g, for j # ¢. This means that if we do not know the entire infinite length 8,
then no matter how long we wait. there will be new. independent coins used
in future periods that we will have no useful information about. In fact, this
happens on a non-trivial (positive density) set of periods. Thus. there will
always be periods in which the forecast of an agent who has only observed
history will differ from that of an agent who knows the information of 8 from
the representation. Finally, note that in this example any representation that
is sufficient for prediction must make predictions as if one knew the entire
sequence of coins and therefore will fail to be learnable in a similar manner.
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This example illustrates the problem that there may be clear patterns
associated with the sequences that arise from the filtration. and vet there is
always important information that cannot be learned from any finite history:
the information one needs in order to make predictions. is always contained
further in the future. The asymptotic reverse mixing condition defined next
rules out such chaotic distributions and guarantees that the patterns identi-
fiable from the filtration are learnable.

Definition: u is asymptotically reverse-mixing if for any 6 > 0 and u-a.e.
« there exists T such that for any t > T'

Tim, im; max (A7) () — mAF v Grh(w)| < &

.
S OES)

The definition of asymptotic reverse-mixing requires that conditioning on
events far in the future of the process does not significantly alter predictions
about nearby events. conditional on sufficient observation of the initial re-
alization of the process. Thus, asvmptotic reverse-mixing allows for lasting
initial effects and dependence. but requires that eventually short run events
have no lasting effect on the process in that they are approximately indepen-
dent of far future events.

Our definition of asvmptotic mixing is similar to standard definitions of
o-mixing (see Billingsley (1968)). but differs in two important respects. First,
since we are interested in measures conditional on some observations (and
are not restricting attention to stationary processes). we only require a mix-
ing condition to hold conditional on sufficient information. Hence. the name
‘asymptotic’ and the role of T in the definition. Second. the condition is
stated in terms of probabilities of nearby events being approximately inde-
pendent of conditioning on far future events. whereas other mixing conditions
are often stated the other wayv around (and this type of independence can
be asvmmetric). We need such a condition since our representations involve
conditioning on the knowledge of §. which when sufficient for prediction turns

3 A similar example appears in Al-Najjar {1998) to demonstrate a chaotic asset market
which is impossible to model with linear patterns (factor structure as in the Arbitrage
Pricing Theory).



out to be equivalent to knowing limiting future patterns. captured through
Gr7* in the definition above.

The u described in Example 3 is not asymptotically reverse-mixing. For
anv I one can find a date ¢t > T swhere a new coin is brought in and so
conditioning on additional future observations can significantly impact the
forecasts.

3 The Main Theorems

We now state the main results of the paper.

Let 73! denote the tail o-field, 7! = N%,0(UZ,G,). Let F denote
the representation induced by the tail field: (2. F, u. ufm ). where p7 " de-
notes the measure conditional on F**! at w (i.e.. fixing versions of conditional
expectations. yfa“(:ﬂ) = E(I4]F=),, where I denotes the indicator func-
tion). It 1s shown in the appendix (using results of Dellacherie and Mever
(1978) and Stinchcombe {1990)) that this is in fact a representation. and in
particular that ;453“(-) 1s a probability measure for pg-a.e. w.

The following results show that the tail field precisely captures the asymp-
totic information that an observer will learn through the filtration. This is
stated in three pieces. First, the tail field is sufficient for prediction. Second,
the tail field is learnable. Third, any representation which satisfies these

tail

properties is equivalent to the tail fleld.

—,,:tall

Theorem 1: F  is sufficient for prediction.

tai

—=tail . ) e :
Theorem 2: F ° is learnable if, and onlyv if, g is asymptotically reverse-

mixing.

Collecting these two results. it follows that 7' is learnable and is suff-
cient for prediction if, and only if. g 1s asymptotically reverse-mixing.

The above results suggest that the representation based on the tail field 1s
the ‘natural’ representation we were searching for. Note however, that there
may be other learnable representations that are sufficient for prediction. Nev-
ertheless. as we show below all such representations are asvmptotically like
the tail field. in that after sufficient time and conditional on any cobservation
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their component measures behave like the component measures in the tail
field representation.

Representations Asvmptotically like the Tail Field Rep-
resentation

As our definitions of sufficiency for prediction and learnability are asymp-
toticallv based. there may be many representations which are learnable and
sufficient for prediction, and yet are differentiated in how their component
measures describe finite horizon behavior. A simple example illustrates this
point and motivates the definition of equivalence to follow.

Example 4: Consider a process where a coin is flipped at each date. From
time 2 on. a fair coin (probability 1/2 of heads) is flipped. At time 1 (and
onlv time 1), either a coin with probability 2/3 of heads is flipped. or a coin
with probability 1/3 of heads is flipped. The choice of the coin at time 1 is
made by a flip of a fair coin. Thus. in fact g corresponds to the process by
which a fair coin is flipped at every date. However, a valid representation
is to have © = {#,.6,} and ps have probability 2/3 of heads at date 1,
and 1/2 thereafter. and pg, have probability 1/3 of heads at date 1, and
1/2 thereafter; and to have A(f;) = A{f,) = 1/2. This representation is
learnable and sufficient for prediction. but the same is also true of the trivial
representation of g as itself. These two representations are asymptotically
like the tail field representation. as defined below.

., - - . . ail .
Definition: © is asvmptotically like F* iffor A-a.e. § and for every £

tail

Bmp sup; peps iy MaXycgrense|pl, (AIF)(w) = pe(AlF) e} =0
P = T-Ttdn

.....

for pg-a.e. w.

Note that > is asvmptotically like _.;Etml, so that such representations
exist.*

The essence of the definition of asymptotic likeness 1s that one does not
care about the particular labels § to the extent that the associated measures

4This is not quite as obvious as it seems. Applving the definition of asymptotically like
ail —tail

to 7 leads to comparisons of the sort E T AVF) (@) — 12 (AlF)(w)] where ' may
differ from w. This is handled by Lemma 3 in the appendix.
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we lead to the same predictions as the corresponding measures obtained by
conditioning on tail field. The role of A" in the definition ensures that the
given representation provides approximately the same predictions both for
very far off events conditional on an arbitraryv history, and also on nearbyv
events conditional on sufficient observation of history. The definition does
not require that a given representation provide similar predictions for nearby
events conditional on a short history. This captures the idea that the given
representation may contain some additional finite information, but may not
contain additional arbitrarily long run information relative to the tail field.

We show in the appendix (Lemma 5) that one can rewrite the above
definition of asymptotic likeness in terms of two comparisons that are analogs
to the comparisons made in the definitions of learnabilitv and sufficiency for
prediction. More precisely, we show that:

O is asvmptotically like Fif and only if for A-a.e. §. anv £ and ps-a.e.

— ; tail ‘ .
hm: Suant'AEg:+li,U: l\.’i}.iff>(d) - /lg(4|.7'—1)(w'\’

;

=0

and for A-a.e. 8. any fixed ¢’ and £. and pz-a.e. w

ESI

limy max, onee'pl, (AlFe){e) — pe( AlFu) ()] = 0.
With these comparisons in hand. one can establish the learnability and suf-
ficiency for prediction of a given representation ©. from the corresponding

. —=tail . - .
properties of F . as captured in the following theorem (whose proof appears
in the appendix).

Theorem 3: If u is asvmptotically reverse-mixing, then a representation of
i, ©. is learnable and is sufficient for prediction. if and only if © is

—=tail

asymptotically like 7
The following corollary summarizes our results:

Corollary 1: F¥ s sufficient for prediction. and is learnable if and only
if 4 is asymptotically reverse-mixing. Moreover, if g 1s asymptotically
reverse-mixing. then a representation of u. ©. is learnable and suffi-
cient for prediction. if and only if it is asvmptotically like the tail field
representation.



4 Discussion of Learnability

Example 4 shows that there may be asvmptotically equivalent representations
that have different sets of parameters mapping into the same (or asvmptot-
ically similar) measures. One implication of this is that even though an
observer may learn the distribution and thus to forecast as if he or she knows
the parameter 4. the observer may never be able to identify §. This clarifies
the scope of the ‘learnable’ condition and distinguishes it from another con-
dition which is known as ‘consistency’ (see Diaconis and Freedman (1936)).

Definition: The representation (0. B, A, (ug)sco) Is consistent if © is a topo-
logical space and for A-a.e. § € © the posterior probability measure
on © conditional on F; ® weakly converges to the Dirac measure on ¢
as t — oc, pg-a.e.

Consistency savs that observing the filtration allows one to narrow 1n on
the parameter 6, in the weak sense of convergence. This is quite different
from learning the distribution associated with § and being able to make
predictions as if one knew #. Example 4 shows that there are representations
that are learnable but not consistent. Example 5. below. shows that there are
representations that are consistent but not learnable. Therefore consistency
and learnability are different notions. neither weaker than the other.

Example 5: A consistent, but not learnable, representation: ! = 0O =
{0,1}>*. B = F. and p corresponds to a measure representing indepen-
dent flips of a fair coin (where “heads” is represented as 1 and “tails”
as 0). Let pz be the Dirac measure on § =« and set A = p.

Note that Example 5 shows that the weak convergence in the definition
of consistency allows the observer to place weight 0 on the “true” § all along
the sequence.

5Let ¢ denote the product measure A x pp, so for B € Band £ € F ¢{B x E) =
f@eB pe(E)dA(6). The the posterior referred to is 0e(-|#:). the marginal ¢ conditional
on F;.

—
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5 Additional Remarks

Our analvsis mayv be used to identify the natural models that an econome-
trician or a statistician could learn by observing a stochastic process. The
arbitrage pricing theory (APT) model is an example in which the factor
structure underlying a stochastic process of security prices is drawn from the
data.

The representation identified in this paper may also be useful in assessing
the value of information obtained from observation of a stochastic process.
The representation tells one in advance what patterns the observer is likely
to learn and with what probabilities. This is precisely the information an
observer needs in order to compute the expected benefit of observing the
process.

It would be useful to obtain additional results connecting our representa-
tions to specific attractive alternatives. For example, Theorem 3 provides a
characterization of representations that are learnable and sufficient for predic-
tion. and one might want to refine this class to representations with the least
redundancy, e.g. where different parameter values imply different asymp-
totic distributions. This would mean adding consistency to the conditions of
a desired representation.

Other tvpes of connections between learnability and representations can
also be examined. A new paper by Sandroni and Smorodinsky (1998) ex-
plores conditions on a set of measures that are sufficient for there to exist a
measure which merges with all the measures in the set.

A recent paper by Al-Najjar (1996} considers continuum economies where
agents mayv be indexed by the interval (0,1]. Associated with each agent is a
random variable representing some action or characteristic. Al-Najjar consid-
ers decomposing the uncertainty in such an economy into ‘aggregate states’
and ‘micro-states’. where an observer of a random sample of agents may learn
the correlation pattern in the aggregate states. but not the micro states. His
aggregate states bear an intuitive similarity to our parameters 4. Al-Najjar’s
work differs in the extent to which states are broken down. His decomposi-
tion is driven by independent residuals (conditional on the aggregate states),
while ours driven by learning and is thus based on the asyvmptotic reverse-
mixing notion. Nevertheless, there may be interesting connections between
decompositions in cross-sectional and time series models.

Part of our interest in the problem studied here arose from thinking about
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Bavesian updating in the context of a game where a plaver is faced with an
opponent playing an unkown strategy. If. for instance, plavers choose finite
automeata to play for them then the resulting process will be asymptotically
reverse-mixing and so our results would apply. In this sense a learnable repre-
sentation that is sufficient for prediction provides an alternative endogenous
definition of types to the exogenous notions already in the literature (e.g..
Harsanyi (1967-68) and Mertens and Zamir (1983)).° This perspective can
be explored in more detail.

Finally, one may consider roughly the reverse of the question we have
analyzed: that is. given types {which may incorporate some posterior beliefs
about such things as patterns). one may examine conditions under which
there are well-defined priors. or even common priors. consistent with the
types. Recent papers by Samet (1996ab) address such questions.

5See Nyarko (1996) for some discussion of equivalent reformulations of type space, and
Bergin {1992) for more discussion of posteriors and type distributions in the context of
games.
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Appendix: Proofs
We begin by showing that merging according to the definition of Kalai

and Lehrer (1994) is equivalent to the definition in this paper.

Lemma 1: Consider v.v' € A. f ¥ ¢ > 0 and v -a.e. w 3T = T(e.w) such
that forall t > T

max [P(A|F) — v(AlF)] <e.

A€G, 1,
then, V € >0, £, and v -a.e. «w 2T such that forall t > T

sup  (P{A|F) —v(AlFR) <e

n>t.42607

Proof:” In the following, we make use of a lemma from Kalai and Lehrer
(1994), which is stated below.

Lemma (Kalal and Lehrer): Let g; be a sequence of measurable functions
that converge v-a.e. to g 3 0. For every € > 0 there is a time ¢y such
that v({w | v(C: | Fio1)(w) > € for at least one ¢ > tp}) < ¢ where

C}:{vﬁi ;gS(w)_lf >6forsom652f}-
()

We apply the lemma to the following sequence of indicator functions

gilw) = ]pgv AEG 1 ID(AIF ) —v(AlFD] <€}

In this case, g:(«) — 1 for g-a.e. wand C; is

C!:{:,J[ sup | V(A | Fn) —vlA | F) i>€}

n>t AEG, L

and its complement, denoted C7, is

CC:{WI sup [D(A!fn)—z/(_.4[fn)i<e}.

n>t.A€0n11 -

“We thank Ehud Lehrer for this proof.



By the lemma above. there exists {5 such that ¢ > ¢; implies
v{{w | v(Cin | F) <eVt>to})>1—c¢
This implies
v ({;:) | v(Ci | F)>1—eVt> to}> >1—¢
Let Dy = {« | D(C:; | i) > 1 —efor all t > tg}. By the assumption of

Lemma 1, 37(w. ¢) such that ¢ > T implies that for alln > ¢ and A € G, .,

DA F) —v(A | F
< (Do)n(Chey | Do) | #{A | Fi0 Do Clyy) = v(A| Fi Do N CE,) |
-—:-V(Do)V(C lD)ll;/4|f mDoﬂCt 1)—1/(4|ftﬂDoPC..1),

+v{Dg) (A Fe N Do) — v(A | Fo 0 D)
(1—6)(1—6)5+(1—6)(6)+(6)
< 3e

Then, by Remark 5 in Lehrer and Smorodinsky (1997b). we can add an
arbitrarv { to obtain the desired conclusion. I

=t

Next. as promised in the text the fact that Z = is a representation is
established by noting that p? * can be chosen to be a probability measure
u-a.e., according to the following theorem.

Given H which is a sub o-fleld of 7. let ATx(w) = Niscwjweard. (See
definition 3.2.4 of Stinchcombe (1990).)

Theorem A: [Stinchcombe (1990)°! If H is a sub o-field of F, then there
exist versions of E(14|H) for all A € F such that p(A) = E(14]/H) is
a probabilitv measure p-a.e.. Furthermore, if H is countably generated
then p{(ATx(w)) =1 for u-a.e. w.

Let us now turn to proving Theorems 1-3.

8Stinchcombe assumes Blackwell measurability of the underlying probability space -
while we have not made that assumption here. Consult Dellacherie and Meyer (1978)
pages I11-70, 71. 79, to see that this result holds 1o our setting.

29



Useful results are that if H and H' are equivalent sub o-fields of F (that is,
for everv A € 'H there exists B € H' with u(AAB) =0 and vice versa), then
p = p’' p-ae.. and that for every sub o-field of F. there exists an equiv-
alent countably generated sub o-fleld of F (see Stinchcombe (1990) section
2.4 and Lemma 3.2.2). These two facts imply that we can find a countably
generated sub o-field of F, H such that y’f = pfm and g7 (ATx(w)) = 1
for p-a.e. w. (We offer this construction since the tail-field is not necessarily
countably generated. See Blackwell and Dubins (1975).)

c

The following Lemmas are useful.

Lemma 2: For any H. sub o-field of F. ATx(w;) = ATxy(ws) implies u2f =
Iu'wg’

Proof: Look at arbitrary wy.w; € € such that ATx(w;) = ATlx(w,). For an
arbitrarvset B € F.denotea = E(lg | H){wy)and H = {« | E(lg | H)(«) = a}.
Obviously, H € H. Definitely wy € H and so ATx(w1) C H. Since

wy € ATx(wnr) = ATx(w:) C H, it follows that E{lp | H){w2) = a. As

B was chosen arbitrarily, it follows that E(lg | H)j{ws) = E(1p | H){xy) for

anyv B and so ,u:’fl = pz.l

Lemma 3: Consider H, a countably generated sub o-field of F. and let
Alw) = {1 = p7). There exists X with p(X) = 1 such that
pi(A(w)) =1 for all w € X.

Proof: Note that A(w) € F. since F is countably generated. Note also that
ATw(w) C A(w). (This follows from Lemma 2 since &’ € ATx(w) implies
ATw(") = AT3(w), and Lemma 2 then implies that g’ = p7%). By Theorem
A, uT(ATw(2)) = 1 p-a.e., which implies that g (A(w)) =1 p-a.e..1

Proof of Theorem 1: Since ufan has a trivial tail for y-a.e. «.® the theorem
follows from the fact that for any measure v, having a trivial tail implies that
v is K-mixing. (See page 39. second point in the proof of theorem 7.9, of
Smorodinsky (1971).) In our context, this implies that for py-a.e. w and any
tand C € F

tm sup [l (AN C)— T (AT (C) =0,

mAeCs

9y has a trivial tail if v(4) € {0.1} for all 4 ¢ Frai,
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which divided through by ufaﬂ (C). (when yfml (C') > 0) provides the desired

conclusion. |

Proof of Theorem 2: First, we show that if 4 is asymptotically reverse-
mixing, then 7 s learnable.
Suppose the contrarv. so there exists C \\mh #(C) > 0 such that for each
€ C there exists B, and €, such that u7 (B ) > 0 and for every &’ € B,
there are infinitely many ¢ such that

> €

il
s
w W

max f/z(A!f:)(w') -

Aggi+

Thus, there exists €’ with u(C’) > O and a common ¢ such t‘*-at for each
€ C' there exists B.. such that g2 (B ) > 0 and for every .’ € B, there
are infinitely many ¢ such that

fv—tail "
(AP — s (AR > e (1)
A G"W
~—tail
B\ Lemma 3.%° for y-a.e. « and g7 "ae. &' we can change ¢7 = to read
ail . . . .

, . and so. without loss of generalitv. we rewrite the above inecualitv as

/l . : S 2 2 A

max l (AIF ") — wl T AIFNL)
4 A S a
g

1
=1

> €. (2)

(l] j

Let K be the set of » such that for infinitely many ¢

max, p(AFN) - al T AR )] > e

Notice | that K isin F and U.ec' B, C A and so (R} > 0 (since p(C’}) > 0
and p7 (A > 0 for each w & 7).

As G Nn—oe Ftail by the convergence theorem for reversed martingales
(see, e.g.. Theorem 35.9 in Billingsley (1986). third edition) for any ¢ and
A € Gz it follows that p% (AIF,)(<) converges to yfml(ﬂ}—t)(u) as n —
>, p-a.e.. Thus, for g-a.e. «w € K there are infinitely manv ¢ such that

lim,, max .;L( AlFN ) = pin (4|F\,l\vuji >

o} en

0To be careful, note that ( ) holds for p-a.e. w» relative to H which is equivalent to
F2land for which x7¥ = 7 for p-ae. w. Thus. (2) follows for g-a.e. w € C' relative

taxl

1o p7*. and therefore also for y-a.e. w £ C' relative to “o
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By the martingale convergence theorem. for y-a.e. «w £ A there are infinitely
many t such that

Tim.Jimy may, |u(AIF)(w) = plAIF v OET)(w)| >

degi~

(3)

v&—-|(‘h

This is a contradiction. .

Second, let us show the converse: if Fois learnable. then g is asymp-
totically reverse-mixing.

Using an argument similar to that proceeding (2), learnability implies
that for p-a.e. w

—rail

(A ) = 1l (AR ()] = 0. (4)

lim;, max
Aegttl

Again. noting that G2 N\ .. F2 it follows that for g-a.e. «
lim:lim, may, BAF) () = pf? (AR ) =0,
Finally. by the martingale convergence theorem, for p-a.e. w
Tmidim. e may, [w(AIF)(<) — w(AIF vV 677)(w)| = 0,
which is the desired conclusion. §

Proof of Theorem 3: Fix H which is countably generated and such that
pult = /lfm for y-a.e. w.

Let us say that © is asymptotically like H if for A-a.e. § and for every /

Bk SUD; nens i AN gegiinse [ (AIF) (w) — pe(AIF)() =0 (5)

for pg-a.e. w.

Lemma 4: O is asvmptotically like 7 if and only if it is asvmptotically like
—tail

Proof of Lemma 4: Consider © which is asymptotically like H. Let EJ
be the set for which (5) holds and A to be the set such that u(A) =1 and
rail

o al
plt=pul " forw e A

[RV]
(W11



Observation 1: If O is a representation and u{.4) = 1. then pz(A) = 1 for
A-a.e. 4.

It follows from Observation 1 that ug(Ef M A) = 1 for A-a.e. 6, which

i
establishes that © is asvmptotically like F
same argument with respect to Frai g

The converse follows from the

Lemma 5: O is asymptotically like 7 if and only if for d-a.e. 8. any £ and
He-a.€. W

Tim, Supnzzﬂ.eg;’*‘ff*'f(-“ﬂﬁ)(”) — pe(A|F)w) =0 (6)

and for A-a.e. §. any fixed ¢’ and {, and pg-a.e.

~1
~—

hﬂﬂ'na\rmﬂluw(ﬂf Jw) = pe(A|Fo)(w)i =0, (

Proof of Lemma 5: It follows directly that (5) implies (6) and (7).

To see the converse. pick ¢ > 0 and any § such that both (6) and (7)hold
(which is a set of A measure 1). Pick any £ and any w such that both ( ) and
(T)hold (which 1s a set of us measure 1). By (6) there exists A such that if
{ > KA. then

SUP,»;THaX Gr-—’]/l (AlF) (@) — pe(AlF)(w)] < e
By (7}, for every t/ there exists Ay such that if n > K. then

max . c‘ﬂ'f# (4[fw(w)—u, (AlFoi(e)] < e

Let K = K + maxycp Ky (which is well defined given the finite set of such
). It then follows that for any ¢ and n witht +n > K

- P Hy N , NN
ma}\qgg::*‘iﬂw ’x"ﬂff)(“") - #5‘(‘4!-7-:)("’” <€,
which establishes (3).

Lemma 6: If 4 1s asvmptotically reverse-mixing and © is learnable and is
sufficient for prediction, then © is asvmptotically like H.



Proof of Lemma 6: Assume that p is asymptotically reverse-mixing and
O is learnable and is sufficient for prediction. Following Lemmas 4 and 5. it
is sufficient to show that (6) and (7) hold.

We first prove that (7) holds. Since © is learnable it follows that for A-a.e.
0 and all £

limy sup, 5 pegpeels(AlF) (@) — p(AlF) () = 0. pe—ae.  (8)
Since O is sufficient for prediction, it follows that for A-a.e. 8 and all # and (
lim, max ¢ gnee|pa( AIF) () — ps(A) ()] =0 ps — ace.. (9)
Note that (9) implies that for A-a.e. § and all ¢, ¢ and (.

lim, max , gree|pe(A|F) (@) = el AIFu) (@) =0 ps —ae.  (10)

Combining (8) and (10) it follows that for A-a.e. § and all £ and #'
5 T, ma e (AIF) () = ps(AVF) ()| = 0 g —ae (1)
Similarly, we can show that for all &’ € D, where u(D) = 1. and all £ and ¢/
Bim, [im,, max,  gnae|p( Al F) () — w2 (A Fo)(w)] = 0 (12)

for w € B(w') where pi(B(w")) = 1.

Next. we show that u(Y) = 1 where ¥ = {&' | &/ € B{&")}. To see
this. suppose to the contrary that u(Y) < 1.!' Therefore. by the definition
of representation there exists a set 5’ such that p(S) > 0 and (V) < 1
for all w € 5" Find w” € 5N DN X where X is from Lemma 3 (these
have a non-empty intersection since u(S’) > 0 and p(X) = (D) = 1).
Then pt(Y¢) > 0 (where Y° is the complement of V), u"t(B(w”)) = 1.
and p’t(A(w”)) = 1. Consider &’ € Y° N B(w' )ﬂ 4( ) This implies
that &’ € B(w'). but also that &/ € B(w”) and y/% = u’% which imply that
' € B(w'), which 1s a contradiction.

Thus, since &’ € B(w') for almost every w’. it follows from {12) that for
all £t and allw € DNY (where y(DNY)=1)

lim; lim,, max g onst | AlF)(w) — p A Fw)] = 0. (13)

*INote that Y is an F-measurable set since it can be written as a coantable combination
of intersections and unions of sets of the form {w : jp(A[F)(w) — pP (AlF)(w)| < %}
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Thus, from (11), (13), and Observation 1 it [ollows that for A-a.e. 0, all (.
any t’, and pe-ae. w

lim, lim,, maerg:qug(Alfg)(w) — p(A|Fo)(w)] = 0. (14)

Since thet in (14) is redundant, this establishes (7).
Next we establish (6). By learnability, and the argument preceeding (13),
it follows that for any £ and all p-a.e. w '

limy sup, 5 gegr+elt(AlF)(w) = po (AlF)(w)] = 0. (15)
This combined with (8) and Observation 1 establishes (6). 1

Lemma 7: If 4 is asymptotically reverse-mixing and O is asymptotically
like H, then © is learnable and is sufficient for prediction.

Proof of Lemma 7: First we show learnability. Again, (15) holds by the
learnability of 7 This combined with (6) and Observation 1. establishes
the learnability of ©.

Next, we show that © is sufficient for prediction. Since 7 is sufficient
for prediction, it follows that for p-a.e. w and all t' and £

it mas e 2 (AIF) () — aH(A)(w)] = 0. (16)

(Again the argument preceding (13) is invoked.) Then (16). (7). combined
with Observation 1, establish that © is sufficient for prediction. I
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