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Abstract

We study the existence of correlated equilibrinm payoft in stochas-
tic games. The correlation devices that we use are either autonomous
(they base their choice of signal on previous signals. but not on pre-
vious states or actions) or stationaryv (their choice is independent of
any data. and is drawn according to the same probability distribution
at every stage). We prove that any n-plaver stochastic game admits
an autonomous corrclated equilibrimu payoff. and obtain a stronger
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1 Introduction

A stochastic game is plaved in stages. At every stage the game Is in some
state of the world. and cach plaver. given the whole history (including the
current state). chooses an action in his action space. The action combination
that was chosen bv all plavers. together with the current state. determine
the dailv pavoff that cach plaver receives and the probability distribution
according to which the new state of the game is chosen.

Stochastic games were introduced by Shapley (1953) who proved the ex-
istence of the discounted value in two-player zero-sum games. as well as the
existence of stationary optimal strategics. This result was generalized for
discounted equilibria in n-plaver games by Fink (1964).

Existence of the (undiscounted) value in two-player zero-sum stochastic
games was proved by Mertens and Nevman (1981). It is well known (sec.
e.g.. Blackwell and Ferguson (1968)) that optimal strategies when using the
undiscounted evaluation. as well as stationary e-optimal strategies. need not
exist.

Vieille (1997a) proved that if every two-player positive recursive game
that satisfies some property has an equilibrium payvoff then every two-player
stochastic game has an equilibrium pavoft. Existence of equilibrium payoffs
for this class of ganies was proven by Vieille (1997¢).

Recursive games have been introduced by Everctt (1957). These are
stochastic games. with finitelv many states and actions. where the payoff
for the players i1 non-absorbing states is zero (a state is absorbing if the
probability to leave it. whatever the players play. 1s 0). A recursive game is
positive if the pavoft for the plavers in absorbing states is positive.

Everett proved the existence of the value for two-player, zero-sum recur-
sive games. and the existence of stationary e-optimal strategies. A simpler
proof was obtained by Thuijsman and Vrieze (1992). Recently. Rosenberg
and Vieille (1997) extended the value existence result to recursive games
with more general state spaces (and obtained some results on incomplete
information recursive games).

For stochastic games with more than two playvers. very little is known
(sce Solan (1997). Solan and Vieille (1998)) and proving. or disproving, the
existence of equilibrium pavofls seems a daunting task. even for the simplest
games. We study here the existence of correlated equilibrium payoffs in n-
player stochastic games.



Correlation devices were introduced by Aumann (1974, 1987). A correla-
tion device chooses for every plaver a private signal before the start of play.
and sends to cach plaver the signal chosen for him. Each player can base his
choice of an action on the private signal that he has received.

For multi-stage games. various generalizations of correlation devices have
been introduced (Fudenberg and Tirole (1991)). (i) The most general device
receives at every stage some private message from each player. and chooses
for cach plaver a private signal for that stage (communication device, Forges
(1986. 1988). NMverson (1986). Mertens (1994)). (i) The most restricted
device chooses. as in the case of one-shot games. one private signal before the
beginning of the game (correlation device. Forges (1986)). (iii) In between.
there are devices that choose private signals at every stage. but base their
choice onlyv on the current state (weak correlation devices. Nowak (1991)) or
only on previous signals (autonomous correlation devices. Forges (1986)).

Solan (1998) proved that every feasible and individually rational pavoft
i a stochastic game is a correlated equilibrium pavoff where the correlation
device chooses at every stage a signal that depends on the previous signal.
as well as on the sequence of the states that the play has visited.

In the present paper we study two tvpes of correlation devices: (i) sta-
tionary devices. that choose at every stage a signal according to the same
probability distribution. independent of any data. and (ii) autonomous de-
vices. that base their choice of new signal on the previous signal. but not on
any other information.

We prove three results: (a) Every stochastic game has a correlated equi-
librium. using an autonomous correlation device. The equilibrium path is
sustained using threat strategies. in which players punish a deviator by his
max-min value. This means that plavers need to correlate also in the pun-
ishment phase. However. punishment occurs only if a player disobeys the
recommendation of the device. (b) If the game is recursive. then the equilib-
rium path can be sustained using the min-max value. In particular. players
need not correlate their actions in the punishment phase. (c) If the game is
positive recursive. then the correlation device can be taken to be stationary.
and deviators are punished by their min-max value.

The proofs utilize various methods that appeared in the literature. They
are divided into two steps. First we construct a “good” strategy profile:
nmeaning. a profile that vields all plavers a high payoff. and no player can
profit by a unilateral deviation that is followed by an indefinite punishiment



(where in (a) punishment is given by the max-min value, and in (b) and
(¢) by the min-max value). Second we follow Solan (1998) and define a
correlation device that mimics that profile: the device chooses for each player
an action according to the probability distribution given by the profile, and
recommends cach player to play that action. In order to make deviations non-
profitable. the device reveals to all plavers what were his recommendations
in the previous stage. This way. a deviation is detected immediately, and
can be punished. In particular. the device that we construct is not canonical
(Forges (1988)).

The construction of the “good™ strategyv profile uses the method of Mertens
and Nevinan (1981) for (a)‘. and a variant of the method of Vieille (1997¢)
for (b) and (c¢).

The paper is arranged as follows. In Section 2 we introduce the model
and the main results. After some preliminaries in Section 3 we provide in
Section 4 several sufficient conditions for existence of correlated equilibrium
pavofl. Finallv. in Section 5 we prove that each sufficient condition is satisfied
in a corresponding class of stochastic games.

2 The Model and the Main Results

A stochastic game G is given by (i) a finite set of plavers N. (ii) a finite set of
states S. (iii) for every plaver i € V. a finite set of available actions A’. We
denote 4 = x;envA (iv) A transition rule ¢ : S x A — A(S). where A(S)
is the space of all probability distributions over S. and (v) a daily payoff
function r: S x 4 — R, We assume w.lo.g. that |r] < 1.

The game lasts for infinitelv manv stages. The initial state s is given.
In stage n. the current state s, is announced to the players. Each player ¢
chooses an action (Ifl e A% the action combination a, = (ail),ve\v is publicly
announced. s, is drawn according to ¢(+|s,.a,) and the game proceceds to
stage n + 1.

A state s in a stochastic game is absorbing if ¢(s|s.a) = 1 for every a € A.
We denote by S* the subset of absorbing states.

The game is recursive if r'(s.-) = 0 for every non-absorbing state s € S\ S*
and every player 7 € N, It is positive if r'(s.-) > 0 for every absorbing state
5 € 5™ and every player i € N,

DEFINITION 2.1 An autonomous correlation device is a pair D = (M) ien. (Dn)nen).



where (i) M is a finite set of signals for player i. and (it) D, : M"™' —
A(M). where M = x,exM'. The device 1s stationary if D, is a constant
function which is independent of n.

If the functions D,, depend also on previous states that the game has visited
-thatis D, : (S x A" ' xS — A(M) - then the device is an extensive-form
correlation device.

Given a correlation device D we define an extended game G(D). The
game G(D) is plaved exactly as the game G. but at the beginning of each
stage n. a signal combination m,, = (m! ), is drawn according to D, (my, . . ..
and cach plaver / is informed of m!. Then. each player may base his choice
of a}, also on previous signals mi. .. .. m! that he received.

At stage n. plaver i observes an element of H! (M) = (SxM'x A)""1x S5 x
M. Therefore. a strategy for player i in G(D) is a function ¢' : H{(M) —
A(AY). where H(M) = U,enH (M), We denote by Z¢(M) the set of all
strategies of plaver i in G(D).

A profile 0 = (0');en is a vector of strategies. one for each player. We
denote X(M) = XexXZ(A). the space of all profiles in G(D). ¥ denotes
the space of all profiles that are independent of the messages. We identify ¥
with the space of profiles in the game G. Stationary strategies of plaver 7 are
strategies that depend only on the current state. and not on previous signals,
states or actions. Thus. a stationary strategy of player ¢ can be identified
with an element 2/ = (1) cq € (A(A))®. with the understanding that z? is
the lottery used by plaver i to select his action in state s. We denote by X*
the set of stationary strategies of player 7.

The set of finite histories is denoted by

H(‘\[) = UHEN(S X J\[ X }1)"‘1 X S x M.

This is the set of all histories which are observed by an observer. who observes
the signals that are received by all the players. The set of all infinite histories
is denoted by

Ho (M) = (S x M x AN,

We endow this space with the g-algebra generated by all the finite cvlinders.

Every correlation device D. every profile ¢ € 3(A[) and every initial
state s € S induce a probability measure over H, (M) that is, the proba-
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bilitv measure induced by ¢ and D. given the initial state is 5. We denote
expectation w.r.t. this measure by Ep ¢,

Let 1 (D.s.a) be the expected pavoff that player / receives at stage n
oiven the initial state is s and the plavers follow the profile ¢ in G(D).
Formally

' (D.s.o)=Ep,.r(s,. a,).

Define the expected pavoff during the first n stages byv:

1 n .
V(Doso) == ri(D.s.o).

"=t

DEFINITION 2.2 A payoff vector ~ € R s an autonomous (resp. sta-
tionary) correlated equilibrium pavoft if for cvery e > 0 there exists an au-
tonomous (resp. stationary) correlation device D. a profile o in G(D) and a
finite horizon ng € N such that for every n > ny. every player i € N. every
strategy o' € LA of player i and every initial state s € S

N N , i i i i

Lt e>r(Dosag)>Al—e>~(Dos.o o) — 2e
where 07" = (07) ;4.
Note that for every e > 0 a different correlation device may be used.

The main result of the paper is:

THEOREM 2.3 Every stochastic game possesses an autonomous correlated
cquilibrium payoff.

The equilibrium path is sustained by threat of punishment by the max-min
value. and a plaver is punished only if he disobeys the recommendation of
the device.

I[f the game is recursive. then one has a stronger result:

THEOREM 2.4 [If the game is recursive. then there 1s an autonomous corre-
lated equilibrium payoff. where the equilibrium path is sustained using threat
of punishment by the min-max value.

In particular. in recursive games. correlation is needed only on the equilib-
rinm path. and not in the punishment phase.

When the game is positive. one can find a correlated equilibrivuim payoft
where the device 1s stationary:



THEOREM 2.5 FEvery positive recursive game possesses a stationary corre-
lated cquilibrium payoff. where the correlation device is independent of €.

[ this case. however. the profile that is used by the plavers depends on e.

3 Preliminaries

The mixed extension of g to s x x;evA(AY) is still denoted by ¢. For every
finite set ' and probability distribution g € A(K), u[k] is the probability
of & under p. For anyv probability measure g and real valued function u
defined over S. we denote ju =Y o pe[sju(s) the expectation of u under p.
In particular. for everv v € X and every s € S. g, u = Y geqq(s|s. x)u(s)
is the expectation of v under ¢(-|s. x).

Denote H, = (S x A)"! x S the space of all histories of length n in G.
and H = U, exH, the space of all finite histories. H, = (S x A)N is the
space of all infinite histories.

Anv ' € A" s identified with the element of A(AY) which assigns prob-
abilitv 1 to «'.  For anv subset L € N. we denote A" = x;; A" and
A = e A

We denote by o' the punishment level of plaver /. It will sometimes be
the max-min value. and sometimes the min-max value.

Every history h € H and every profile 7 in GG induce a probability measure
P . over H - the measure induced by 7 in the subgame starting after the
history h.

[n general. the svmbol 7 denotes a profile in G. whereas o denotes a
profile in an extended game G(D).

3.1 Communicating Sets

Let € X be a stationary profile.

The profile 2 is a perturbation of v if supp(x
plaver 7 € N and every state s € 5.

A set O C S is stable under @ if ¢(C'ls.a) = 1 for every s € C. The set is
communicating under v if for every state s” € € there exists a perturbation
2" of » such that (" is stable under &7 and

i
s

) C supp(z?) for every

P, (3neN.s,=¢)=1 Vs e C.

-



This is a property of the support of &/. In particular. &' can be chosen
arbitrarily close to r. Let ye,.s be such a perturbation that satisfies t
Yorran — 1 ||< e
This definition captures the idea that the players can reach any state in
(' from anyv other state in C' by slightly perturbing the stationary profile x.
We denote by C(a) the collection of all the sets that communicate under

3.2 On Exits
Let v € X and C' € C(r).

DEFINITION 3.1 An exit from C (w.r.t. ) is a tuple e = (s.07 " a™) where
seC.0#4LC N ae A ¢(Cls.rF.a") > 0 while ¢(Cls.a " .a") =0
for every strict subset L' of L.

For simplicity. we sometimes write ¢ = (s.a*) when no confusion may
arise.  The set of all exits from ' w.r.t. x is denoted by E(x.C'). For
o = (s.o7loal)y € E(x.C). L(e) = L is the subset of players that need to
pertwrh. If L{c) = {i}. we sayv that e is a unilateral exit of playver /. Other-
WISC. ¢ 18 & joint crit.

For anyv subset (" C S we denote

e =inf{n.s, ¢ C}:

that is. the first exit stage from .

[t is well known (see Vieille (1997¢)) that for every communicating set
(" € C(r). every probability distribution € A(FE(x, (")) and every € > 0
there exists a profile 7 in G such that || 7(h) —a ||< € for every history h. and
the probability that the play leaves €' through any exit in E(x, (') is plel.
provided that the initial state is in C'. Formally, there exists a profile 7 such
that. provided that the initial state s is in C'. e is finite Py -a.s.. and a.._;
is distributed as if an exit e = (s'. r=F.at) € E(x.C) is first drawn according
to g. and then an action combination is drawn according to (z=L.a%). We
denote such a profile by 7.



3.3 On Correlation Devices
For the rest of the section. we fix M = A for every i € N. Let D be any
autonomons correlation device defined over M. Define a profile gy in G(D)
by »

oy(spmypay.. ... Sy Iy ) = M.

In words. the plavers follow the recommendations of the device.

Let 7 € ¥ be arbitrary.
Define an autonomous correlation device D as follows:

D, (s0. M. S1. ... My Sy) = 7(Sg.my. 8100 .. My Sy)

for everv finite history (sg.mip.sp... .. Mmy.s,) € H (recall that A/ = A).
Clearly the probability measure P, over Hy = S x (A x S)N coincides with
the marginal probability measure Pp,,, over H,. We say that the device
D mimics the profile 7.

4 Sufficient Conditions for Existence of Cor-
related Equilibrium

For every profile 7. every historv h € H,, and every n € N define

~hoT) = E, {r(s;.a1)+ -+ 7(Snem QGuem) )
,n( ) N+ m h. ( ( 1 11) ( + + ))

that is. the expected average pavoff in the first n stages. conditional that the
history 1 has occurred.

Let € be fixed. A pavoff vector ~ € RY*% is an e-payoff of a profile 7 if
there exists ng € N such that for every n > ngy and every finite history i

(o) =5 < e

[n words. whatever be the history. if the current state is s then the expected
pavoft for the plavers if they wait long enough is approximately 7.

In the following theorem. ' stands for the punishment level of player
i. In the sequel it will either stand for the max-min value or the min-max
value. according to whether the plavers correlate their actions or not in the
punishment phase.
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THEOREM 4.1 Let ~ € RY*Y be a payoff vector. If for every e there exists a
profile 7 such that ~ is an e-payoff of 7. and for every state s. cvery history
h whose last state is s. ceery player i € N. every action o' € supp(7'(h))
and every action b’ € A’

N i
Qsr i(h).a’ > s7 (Vv — ¢ (1)
then ~ is an autonomous correlated equilibrium payoff.

Proof: This theorem is a weaker version of Proposition 3.7 in Solan (1998).
We provide here a sketch of the proof.

We construct an extensive-form correlation device in the following man-
ner. At every stage the device recommends an action to cach player. and
reveals to cach plaver the actions that it recommended to all the plavers
at the previous stage. This way. a deviation of any player is detected im-
mediately by all other plavers. and can be punished with the punishment
level.

Assuming that the plavers follow the recommendations of the device.
the device knows what is the realized history that occurred. since it knows
the previous states that the game has visited. The probability distribution
according to which the device chooses actions for the plavers is 7(h). where
fr 13 the history that the device assunes that occurred.

The strategy profile of the plavers in the extended game is to follow the
recommendations of the device as long as no deviation is detected. Once a
deviation is detected. the deviator is punished with his punishment level.

Since ~ is an e-pavoft of 7 and by (1). no player can profit more than 4e
by deviating.

The way to construct an autonomous correlation device would be to en-
large the message space. Instead of sending at every stage to each player a
single signal. the device sends a vector of signals. one for each possible his-
tory. The plavers. who observe the realized history. know which is the signal
that theyv should follow. and discard all other signals. ]

For the rest of the section we restrict ourselves to recursive games. Hence.
we may assuie that the pavoft function is independent of the action combi-
nation. and we denote the pavoff for the plavers in state s by r(s). In the

sequel. ¢f stands for the min-max value of plaver 7.
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PROPOSITION 1.2 Assume the game is recursive. Let v € R be a payoff

cector. v € X be a mized action combination. and (C.Cy. .. .. Cn.T) be a
partition of S\ S* such that Cy € C(x) for every k = 1..... K. and every
s € T (s transient w.r.t x. Assume that for every b =1..... I there exists a

probability distribution py, over E{r.Cy) such that the following hold:

1. The Markov chain over S induced by juy. for every s € Cy and by x for
coery s € T is absorbing.

2. For cvery state s € T and cvery player i € N. ¢~ = ~L. and for
ceery action a' € supp(at) and cvery action b € A

i N
Qs "' Z Gor 10U

3.~ =rts) for every player i and every absorbing state s € S*.

Morecover. for every b =1..... I we have:

4. For cvery uniateral exit ¢ € supp(ux) of player i and every action
ate A
] Ri
4 Z e rart’

5o qunt =L > el for every player ioand state s € C).
Then ~ is an autonomous correlated equilibrium payoff.

Note that condition 2 implies that ~! > ¢! for every state s € T'.
Proof: Fix ¢ > 0. We shall coustruct a profile 7 that. together with ~.
satisfv the conditions of Theorem 4.1.

The profile 7 indicates the players to play g in transient states s € T. and
to leave each communicating set Cy through the exits in E(x. Cy) according
to the probability distribution p. That is. once a communicating set C}. is
reached. then regardless of the past historv. the plavers follow the profile
Tey e Ut the play leaves C'y.

By condition 1 the game is bounded to be eventually absorbed. and by
conditions 2. 3 and 5 the expected pavoft for the players if they follow o is
~s. where s 1s the initial state. By condition 2 equation (1) holds for every
state s € T. and conditions 4 and 5 and since || 7¢, 4, . (h) — @ ||< € for
every history A, it holds for s € () as well. ]

The third condition that we derive is for positive recursive games.

11



PROPOSITION 1.3 Assume the game is positive recursive. Let o € RY* be
a payoff vector. and + € X a stationary profile. Let (Cy... .. Cr.T) be a
partition of S\ S* such that Cy. € C(x) for every kb = 1..... K. and every
s € T is transient w.r.t. x. Assume that for every k =1..... K there exists
a probability distribution uy over E(x.Cy) such that the following holds:

1. The Markov chain over S induced by . for every s € Cy and by x for
ceery s € T is absorbing.

SN

For cvery state s and every player i € N. q,.~' = ~.. and for every
action at € A’

e ai

Aso tat’ S is°

3. ~L=1r'(s) for every state s € S* and every player i € N

4.~ > vl for every player i and every state s € S.

is
Moreover. for every h = 1... .. K we have:

1

S5 qpn' =~ for every player i and every state s € C.
6. At least one of the following holds:

(a) pxie] > O implies that ¢ is a unilateral exit of some player.

(b) If ¢ is a unilateral exit of player i with uyle] > 0. then g~ = ~!
for cvery s € C.

7. 0f pier] > 0 s a unilateral exits of player i. then qo,v' < qe, 7' < Al
for every unilateral cxit ¢y of player i from Cy and every s € C}..

Then ~ s a stationary correlated cquilibrium payoff.

Proof: It is casy to verifyv that the conditions of the proposition imply the
conditions of Proposition 4.2. Indeed. by condition 2 ¢, 7 = ~. for
every state s € T. every player / and every action a' € supp(zl). Thus
by conditions 2 and 4 it follows that condition 2 of Proposition 4.2 holds.
Condition 4 of Proposition 4.2 holds by condition 4. 7 and since the game is
positive.

Thus ~ is an autonomous correlated equilibrium pavoff. In order to trans-
form the device into a stationary one. we note the following:

12



e By condition 2 each playver 7 is indifferent between actions in supp(z).
and by conditions 2 and 5 he prefers those actions over playing an
action outside supp(r!). provided he will be punished afterwards by
his punishment level.

Therefore. in states s € T the plavers do not need the device: each
plaver can privately choose an action according to z'. and play it. If a
plaver playvs an action outside supp(x’) his deviation is noted. and can
be punished by his punishment level.

o If the play enters a communicating set C that satisfies condition 6(b)
then plavers are indifferent between their unilateral exits. Since the
cace is positive. all plavers prefer absorption to indefinite continuation
of the game. It is well known (see Vieille (1997¢)) that the profile
Ty e €Al be constructed in such a way that any deviation of a
plaver that changes the exit distribution from Cj by more than € is
noticed by the other plavers. and can therefore be punished.

Thus. in this case the plavers do not need the correlation device as well.

e If the plav enters a communicating set C that satisfies condition 6(a)
then all exits are unilateral exits. and by condition 7 each player is
indifferent between his unilateral exits. Moreover. by conditions 5 and
7 the expected pavoff for cach plaver if the game leaves (). conditional
that the exit is not a unilateral exit of plaver 7. is at least ~. for any
5 € (.

These observations leads us to the desired device. Denote a; = a,(Cy) =
>~ pfe]. where the sum is over all unilateral exits ¢ of player i. At the
stage in which the game enters the set C the device chooses a player
according to the probability distribution (a;). The device then tells the
chosen playver that he was chosen. and the other players that thev were
not. The plavers then play a profile that visits any state in Cy infinitely
often without leaving 'y, and the chosen player tries to use one of his
unilateral exits. according to the probability distribution induced by s.

Since the device does not know when the play enters such a communi-
cating set (. it should choose at every stage and for every such set Cj,
one plaver. and send to each plaver the sets for which he is the chosen

13



one. In the case that the play entered a communication set. each player
checks whether he was chosen by the device. and plays accordingly.

5 Proofs of the Theorems

As we will see. the technique that is used for the general case is different
from the technique used in the special case of recursive games. The first uses
the method of Mertens and Nevman (1981). whereas the latter uses methods
similar to that of Vieille (1997¢).

5.1 Proof of Theorem 2.3

In this subscction we prove Theorem 2.3. The punishment level v stands for
the min-max value.

Using the method of Mertens and Neyvman (1981) for existence of the
value in two-plaver zero-sum stochastic games, we construct for every e >
0 a profile 7 that satisfies the assumptions of Theorem 4.1. Mertens and
Nevian's work deals with two-plaver games. However. in an unpublished
work Nevman (1988) showed that the results are valid for n-plaver games as
well.

Fix ¢ > 0. For every state s € S and every vector of discount factors
A = (M)iex. let 04(s) be the discounted min-max value of player ¢ when
the initial state is s. and cach player j € N uses M as his discount factor.
Note that ¢} is independent of (V) ;4;. Let (s. A) be an equilibrium strategy
profile in the one shot game G(s. A) where the pavoffs of each player i are
given by

AN (sea) + (1= M) p(ts.a)vi(t).
=

For every state s € S. the set {(A\. ) | a is an equilibrium in G(s. A)}
is semi-algebraic.  Hence there exists a continuous function z(s.-) that is
defined in an open set U = (0.4)". and assigns for every vector of discount
factors A € U an equilibrium in G(s. A). Moreover. x, = limy_ ¢ 2(s. A) exists.
Denote v = (1) ses.

14



Let A = (A)ien € (0.1]Y be sufficiently close to 0 (in the supremum
topologv). Define a strategy profile 7(A)) as follows. At stage n the plavers
playv the mixed action x(s,. A, ). where A, is calculated inductively from A,_,
as appears in Mertens and Nevinan (1981).

By construction we have

('/[\”<5',,) S E.l'(,s,,_/\,,) </\:I]'[(,S‘,,. (l”) + (]_ - /\il)l'i\ (571+|)> .

n

which is the basic equation needed by Mertens and Neyman.
Mertens and Nevman prove the following. provided that A; is sufficiently
close to 0.

1. For every i € N. A/ converges to () with probability 1.
2. For everv i € N.v'(s,) converges with probability 1.

3. Given any finite history /i. the expected average pavoff of each plaver i
in every sutliciently long game. if the plavers follow 7(A(). is. up to an
€. at least ¢'(s). where s is the last state of A.

[t follows that if the plavers follow 7(A;) then with probability 1 the game
enters some communicating set " € C(a). and stays in it forever. Assume
is a minimal communicating set that satisfies this property. By 2 it follows
that v, is constant over €. Denote this common value by ve. Denote by C*
the set of all these communicating sets.

Fix aset ("€ C*. Let £ = {E} be the collection of all ergodic sets w.r.t.
r = (ry)ses that are subsets of C. and let rg be the average undiscounted
pavoft in the ergodic set E if the plavers follow a.

By 3 it follows (for a detailed proof sce Vieille (1997a)) that there exists a
convex combination of (g )pes such that for every state s € C'. every player
i and every action o' € A

. N
Z Gplp 2 Qsa 'l
FeEe

It is easyv to construct a cvelic profile 7o that never leaves C, such that
| 7¢-(h) — & ||< € for every history h. and if the plavers follow 7 then
their expected average pavoff in every sufficiently long game is approximately
ZI‘JEE(' Qpl'p.



The desired strategy profile is, then. to follow 7(A;) whenever the game
is not in any of the communicating sets in C*. and once the game enters such
communicating set C'. to follow 7 forever. ]

5.2 Recursive Games - Preliminaries

For the rest of the section we restrict ourselves to recursive games. This
subsection is essentially a reminder of Vieille (1997b). It contains a number
of useful tools. All proofs are omitted. They may be found in Vieille (1997b).

For every stationary profile x, v(x) = (15(x))ses is the expected undis-
counted payoff forthe players if they follow z. A stationary profile z € X
is absorbing if for every initial state, the probability to reach an absorbing
state is 1. provided the players follow z.

For any stationary profile 2 € X and pure action combination a € AY we
define x(a) = [Tyeqien 24 [d]. -

For every a.b € R". a > b if and only if ' > b' for every i = 1.....n.
[t is of special interest to know how the distribution of exit from a set depends
upon the (stationary) strategies used by the players.

For B € S\ S*. define a B-graph to be a set g of arrows [s.a — '], where
s€ B.ae Als’ € S.such that :

1. for cach s € B. there is a unique pair a. s, such that [s,a — §'] € g ;
morcover. g(s'|s.a) >0 :

o

for cach s € B, there is a path (sg.ap) — (s1.a;) — ....— sy, such
that s = sg. sy € B, [s,.a, — $,11] € 9.

The path in condition 2 is unique. We call it the g-path starting from s.
G is the set of B-graphs and, for s € B. s’ ¢ B, Gg(s ~ ') is the set
of g € GGj5. such that the g-path starting from s ends up in ¢'.
For 2 € X and g € Gp. we set

pe(9)= ] wla)g(s]s.a).

[s.a—s'Eg;

p.(g) should be interpreted as the probability of g under a.
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recall that eg = inf{n.s, ¢ B} is the first exit stage from B. If B is
transient under . ep < +2¢, P, -a.s. for every initial state s € B.
It follows from a Lemma of Freidlin and Wentzell (1984) that

_ Z(}B(s«»s’) [&(g)

PS‘.T ')(’ - 'j/
s, ,<5 B S ) Z(}B [)l-(g)

(2)

For simplicity. set Q.. (s'|B) = P,.(s., = ). We will have to analyze
the limit behavior of the play under a sequence (x,) of absorbing stationary
profiles. From (2). one secs that relevant quantities are the ratios j‘gi;;
arp.ay €AY Assume that (1,),5¢ s a family of stationary profiles such that

for

Lolay)

Ooya, = lim
—0 2 (ay

exists, for every a; € A% a, € supp(x,).

This implies that lim._ 7, exists in X. Morcover, this limit depends only
on (#y,ay )ayan- and not on the exact sequence (z.). The limit is denoted by
x(#). One derives from (2) that lim, o Q. (-|B) exists in A(S\ B). It is
denoted by Q,0(+|B).

The limit behavior of the play under z, is best described through a hier-
archical decomposition of S into “transient” states and “ergodic” sets. Say
that a set B C S\ S* communicates for 0 if Q,o(s'|B\ {s'}) = 1, for every
s € B.s' € B\ {s}. This captures the property that, starting anywhere in
B. the play will visit “infinitely” many times every state in B before leaving
this set (as e — 0). Denote by C(6) the collection of sets which communicate
for 6. The following properties hold:

L. If C € C(0). Qup(-|C) is independent. of s € C;
2. If C € Cf). then C € C(x(0));

3. Given two sets in C(f). they are either disjoint or one is a subset of the
other.

Therefore. S\ S* can be partitioned as II(0) = (C).....Cx,T), where
Cy... .. C are the maximal elements of C(#), and T is the sct of those states
which belong to no set in C(8) (they are in particular transient under z(6)).

17



We now explicit how Qp(+]C') is related to ¢ and z(0). for C' € C(6). By
possibly duplicating sets. one may assume that, for every s € C. a € A,

q(Cls.a) < 1= q(Cls.a) = 0.

For any cxit ¢ = (s.a”) € E(x(#).C). set g, = q(-|s.27"(#).a"); it should
be thought of as the exit distribution induced by e. Then Qy(-|C') is in the

convex hull of {q..c € E(z(0).C)}:

QO(|C) = Z /10.('[8](1(3

where pp o € A(E(x(8).C) is defined as follows. pgcle] is the (limit, as
¢ — () probability that exit from C occurs through e. The following is true.

Let ¢ = (s.af) € E(x(0).C). Pick a=F € supp(a=*(6)). s’ € S\ C such
that g(s'ls.a™".a”) > 0. and set a = (a"*.a*). One has pyc(e) > 0 if and
only if there exists a graph g, € G (). such that the graph g obtained by
taking the union of g,. and [s.a — ] satisfies:

V.(// € Ge. 9!,!// > ().

Although involved. this condition is highly intuitive: if some ¢ € G did
satisty #,, = 0. for every choice of g;. then exit from € along ¢’ would be
infinitely more probable than exit through (s.a’). This would contradict
po.c(e) > 0.

5.3 Positive Recursive (Games

We now prove Theorem 2.5. The proof goes as follows. For € > 0 small
cnough. we construct a stationary equilibrium z, of some e-constrained game.
We define 6 = (0,,,,) as the limit (up to a subsequence) of (J,EZ;;)maz and
we prove that w(€).~(0) and 11(#) fulfill the requirements of Proposition 4.3.

We assume below. w.l.o.g.. that. if © € X is fully mixed, the only ergodic
sets of the corresponding NMarkov chain are the absorbing states. (If this
were not true, then. by turning all ergodic sets w.r.t. such z in S\ S* into

absorbing states with payoft 0, one would get a game with the same set of

correlated equilibrium payoffs, and with the desired property).
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5.3.1 Constrained Games

For ¢ > 0. define
X, ={rec X | ri(a') > VieN.seS.a e Ai}.

We define a continuous map from X, into itself.
Let v € X, 1 € N. Define the continuation cost of playing «' in state s
agalnst v as

c(a'r) = Inax Us oty (1) = Qoo ' (@), (3)
given the continuation pavoff of player 7 is 4'(r). this is the amount that
playver ¢ gives up by plaving a'. rather than his best reply.

Notice that 0 < ¢ (a’;2) < 1. ¢y(a’:2) = 0 for cach a' which attains the
maximum in (3), and & — ¢,(a’; 2) is continuous over X,.
For a' € A", s € S. set

T
605((1 )

S €@’
and f(r) = (f1(x))ienses. Observe that o S fim)d] <1l.and e fi(z)]a'] =
1. Therefore for e sufficiently small f(r) € X, The continuity of f follows
from the continuity of continuation costs. By Brouwer’s Theorem, f has a
fixed point. We denote it by a,.

Intuitively. in this fixed point cach player ¢ plays the action a' with prob-
ability that depends on its cost - - the higher the cost, the smaller probability
it receives. As € tends to 0. the ratio between the probabilities in which two
actions whose cost differ by a constant tends to infinity. Thus, if, as € tends
to 0. two actions are played with “comparable” probabilities, then their cost
is the same.

5.3.2 Asymptotic Analysis

We study here the asymptotic properties of z,. as € tenuds to 0. Up to a
subsequence, we may assume that @ = lim, gz, and g = lim._g v(z.) exist
(of course. g needs not be equal to ~(x)). Thus. ¢,(a': ) has a limit ¢,(a’; 0),
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for every player i € N and every state s € S. Note that ¢;(a’:0) = 0 does

not imply that a’ € supp(a!). For every a;.a, € AS

~—

o (ay

04,0, = lim
S =0 (ay)

exists. (it is possibly infinite). Moreover. x(¢) = = and

X 7. _ o 7 7
(/s((l' 6) = MaxX s - a7 —4so—1a'l -

arc A

Write T1(0) = (C)..... Cr.T) the decomposition of S\ S* into maximal
communicating sets and transients states w.r.t. z.. For cach k. denote p; =
o, We shall prove that conditions 1 through 7 of Proposition 4.3 are
satisfied. We start with the simplest.

e Condition 1 follows from the definition of I1(6):
o Lor everv e > 0. s € 5™, (1) = r(s). Condition 3 follows:

e For cvery e > 0 and s € 5.

Qsr (:l'.(> = A/'s('r:()' (4)

The first claim of condition 2 follows by taking the limit e — 0. On the
other hand. property (4) means that. for all s. the sequence (v, (2))
is a martingale under P, , (for the filtration (H, ). where H,, is the
a-algebra over the space of infinite histories induced by H,). By the
Optional Sampling Theorem. for every &k and every s € (Y,

ES-JT( [A/Sr,; (IC)] = 78(‘1,()'
Condition 5 follows by letting € — 0.

e By construction. 2’ (a’) > 0 implies lim, ¢, (a’:2.) = 0. therefore ¢, ,—1 g g' =

Log -
max yi ¢, .- ¢g'. By sununation over a' € supp(x?). one gets

Gorg = Maxq - .g'.
A
Since q,,.9' = ¢'(s). the second part of condition 2 is established.
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Condition 7 is implied by the next lemma.

LEMMA 5.1 Lete; = (s1.att). ey = (s3.a5?) € E(2;CL). If Sier, ¢, (a}:0) <
Yier, Colabi0). then py(ey) = 0.

Proof: For every subset ¢ C S and every graph g € G¢. define the overall

clg0)=> > cyla0).

ieN [s.a—s'|€g

cost of g by

Under yey ves,- Ci 1s stable and. starting from Cj. the play reaches s,
before ¢c,. Therefore. one can constriet a graph g = {[s.a, — §']} € Gy,
such that ! belongs to the support of y. . . for every s € Ci \ 51 and
every pla}m e N,

This implies that ¢(Cyls. 27", a’) = 1. thus ¢ (a’: 6) = 0.

Let ¢' € Geyy, be arbitrary. We now define two graphs go. gy € Ge,

1 2

by adding exits in the support. of at respectively. Formally, pick
ar™ € supp(ay,) " and 8, ¢ Cyr. with ¢(s)}s1.a;™ . af") > 0. and define

[“a{‘l) — )], Define g in an

L
and a. 2

go as g with the additional arrow [s;. («;
analogous way.
By the assumption and the above discussion. ¢(gg) < ¢(gg). which implies
that )
. [)J'( (g(J)
lim
«—0 P, <q0>

Since ¢’ is arbitrary. the result follows. ]

= 0.

COROLLARY 5.2 Condition 6 holds.

Proof: Assume that (a) does not hold: there exist e; = (s,.a') € supp(pir).
with |L,| > 1. Forevery j € Ly. q(Cylsy. 277 . a]) = 1, therefore ¢, (a]; 6) = 0.

Let ¢; = (s2.a') be a unilateral exit of player ¢, with p(es) > 0. From
Lemima 5.1. one deduces

0 < ey, (ay <Z(52 ah: )chsl(a{:f)):O
3

Thus ¢, (@':8) = 0. which is (b) of condition 6. [



LenMA 5.3 Condition 4 holds. that 1s g > v.

Proof: Assume that the inequality ¢ > ¢’ does not hold for player . Let
Sy € S contain the states where v’ — ¢' > 0 is maximal. Since v'(s) = g'(s)
for s € S*. Sy N S* = . Since ¢'(s) > 0 for every s. v'(s) > 0 for s € Sp.
Let S, € S, contain the states of Sy where ¢ is maximized. There exist
s€ S.a €A with

q(Sils.r”.a') < 1 (5)
and ‘
(oo gt = 0'(s) = IIIQE(}X’I'I (6)

(otherwise. plavers N\ {i} could bring player ’s payoff below o' by playing
+~"on S). and punishing him if the play leaves Si). By construction of S,
(5) and (6) imply that ¢(Sp|s.z7".a') < 1.

On the other hand, ¢, ,— ,.¢" < ¢'(s) by condition 2. Thus

qs..’r*’.a’lvl - q‘s‘..l‘*’.u’.(]i 2 I'](b') - (]7(5) = lné}X(I'i(') - (]7())

This implies ¢(Spls.x~".a') =1  a contradiction. =

5.4 Recursive Games

[n this section. we modify the foregoing proof to handle the case of recursive
games. In doing so. we lose some properties. and will only be able to fulfill
the requirements of Proposition 4.2.

It is convenient to divide the construction into two parts. Define S; =
{s € S\ S v(s) <0}, and Sy = {s € S\ S*.v'(s) > 0 for some i}. Thus
S\ S* = S uUS,. We first construct a stationary profile on Sy. then adapt
to S, the previous sequence of constrained games in order to construct the
ingredients of Proposition 4.2,

5.4.1 A Profile on 5,

Let s € S|. For o = (1'),en € I[, A(A'). set o (x) = argmaxA(A,)qs_‘,,71.,7."':

? 7

ol(x) is the set of mixed actions of player ¢ which maximize against x~
the expected continuation minmax value. Set o,(z) = X,evol(z). It is

]
S]



immediate to check that og(x) is a non-empty and convex set, and that o
is upperhemicontinuous on []; A(A’). Therefore, by Kakutani’s Theorem, o
has a fixed point z,.

Given the collection (z,),es,. we simplify the game by assuming that the
playvers follow x, in cach state s € §;. This amounts to replacing each state
s € S| by a dumb state with transitions q(-|s. z,). There may exist ergodic
sets for (ay)ses, within S;. Let C be such a set. Then v is constant over C.
Denoting by ¢(C) its value over C. ¢o(C') < 0. and every unilateral exit of
playver i from C' lowers the expected level of v

Vie N.se(C.a € A Gy - < v'(s) < 0.

£

Therefore. starting from any state in C'. the following profile is an e-equilibrium
profile: play (z,). and punish player i (with an e-min max profile) if the play
leaves (' as a consequence of a unilateral deviation of player i.

In the sequel. C" will he identified to an absorbing state with payoff
(except when punishiment is taking place).

5.4.2 Constrained Games on S,

The definition of X, is amended as follows: player 7 is constrained in a state
s only if ¢'(s) > 0: define

X.={reX|r(a)>e ifa e A v'(s) >0}
The definition of continuation cost is unchanged:

cola ) =max q, - o3 (1) = G oY (2)

arey

To get continuity of the continuation cost. we have to prove that ~ is con-
tinuous over X,. It is sufficient to prove that the ergodic decomposition of S
into ergodic sets and transient states is independent of » € X,

LENMMA 5.4 For every « € X.. the Markov chain induced by s absorbing.

Proof: Assume not. Let € be an ergodic set under € X,. Let i be a
player such that »'(s) > 0. for some s € C, and let Cy be those states in
C' for which ¢ is maximal. Thus, in Cy. player i plays every action with
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positive probability. Then. starting from s € Cy. players N\ {¢} can bring
player i’s payoff below /() by playing ™" until the first exit from Cp, and
from then on an e-minmax profile. [ ]

We now define a “best-reply” map from X, into itself. Let i € N.s € S.

o if /(s) > 0. define (o), (x) € A(A") by

Gcs(a T)

Z&' e Ecs(&' )

(o) (x)[a'] =

o if ©'(s) < 0. set (o) (r) = Ell'glll‘dewA(x\')qS‘J‘_’J/’I'i'

Set o (x) = (XIEJ\L(O()L(.’I?))SGS. It is obvious that ¢ () is a non-empty and
convex subset of X, and that ¢, is upperhemicontinuous on X,. Therefore.
by Kakutani’s Theorem. o, has a fixed point x..

5.4.3 Asymptotic Analysis

We study here the asymptotic propertics of .. as € tends to 0. Up to a
subsequence. we may assume that the support of z, is independent of € and
that

Hulug = (7)

exists. for every a; € A™.ay € supp(x,). Therefore, the ergodic decomposi-
tion of S into transient states and crgodic sets is independent. of e.

Property (7) implies that g = lim, o v (x,) exists. Write II(0) = (Cy,....Cg.T):

it is a partition of S\ S*. For each k. denote j. = ig.c, -

We shall prove that conditions 1 through 5 of Proposition 4.2are satisfied.

Conditions 1. 3 and the first part of condition 2 hold for the very same
reason as in the case of positive recursive games. The other requirements
follow from Lemmas 5.5 through 5.7 below.

We start with a simple observation: for every state s € S, every player
i € N and every mixed action combination x € X there exists a’ € A" such
that ¢, .~ " > v'(s). From this. one deduces that

U(s) S0 = gt > 0'(s) (8)
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LEMMA 5.5 g > v.

Proof: Assume that ¢! < v'(s). for some player i € N and state s € 5. We

mimic the corresponding proof for positive recursive games (Lemma 5.3).

Denote by Sy € S those states for which ¢! — ¢' is maximal, and set S} =
argmax,q ' (s). There arc two cases. If ¢(S1) > 0, the proof is identical to
that of Lemma 5.3. Otherwise. ©/(S;) < 0. By construction. g, v > v'(s),
for every s € S, and € > 0. This implies

(2,&()('|51>'I‘1‘ 2 Y‘j(Sl). (9)

for every s € S;. By definition of Sy. this implies in turn Q, (S| S1) < 1.
On the other hand. Q,(-|S;)g' = ¢'(s). Therefore. using (9).

Quol-151)0" = Qual-1S1)g" = 1'(s) — ¢'(s).
By definition of Sy, this yields Q,(Sp|S1) = 1. A contradiction. |
This readily implies that condition 5 is satisfied.
Liaivia 5.6 The second assertion in condition 2 1s satisfied:
s vl = Qopipt" Vic N.s€ S.a' €supp(al).b € A"

Proof: Let s.i.a’. b be as in the statement. There are two cases.
If +'(s) < 0. 2" maximizes g, - .1 over A(A"). In particular.

1i V7
Gswiail 2 Goo—i U

The result follows in that case. since g > ¢’
If v'(s) > 0. 2" maximizes ¢, ,— ¢’ over A(A"). In particular.

i 1
Qs.o—7.a' g 2 sz b0 4 -

The result follows again in that case. ]

We finally prove condition 4. It is based on the following technical lemma.

LEMMA 5.7 Let s € C C S\ S*. v € X andi € N. Assume v'(sg) > 0.
Then there erists a sequence sy. ... .. sp € C of distinct states. and actions
a, € A'. r =0.... R such that:

[N}
[



® (, TNATITNIZES (g, . p~i v for cach r =0..... IR
o ¢(Cls,.al.a”)y=1.forr=0..... R—1:

e s, maximizes v'(-) in suppq(-|s,_1.a’_,.a7"). for each r =1..... R;

r—
o ¢(Clsp.ahy.x™") < 1.

Proof: Otherwise. there exists a subset 7 of €' such that sq € C” and any
unilateral exit of player ¢ from C” would lower his expected minmax value:
Vse Cla € A q(Cls.a a7’ < 1= qgo -0t < 0(C).
Therefore. given the initial state is sg. players N\ {i} can bring player i’s
pavoff below 7(sg) by playing x™" and punish player ¢ as soon as the play
leaves C". ]

Lenna 5.8 Let ke {1... .. K} scCr. i€ Nanda b e A Ife = (s.b")
is a unilateral exit of player i such that py(e) > 0. then qs.b,’r-,g’ > Goaia i

Proof: There are two cases. Assume first that ¢/(s) < 0. The assumption
entails in particular that @ (6') > 0. Therefore ' maximizes ¢, ,-:v'. Hence
by Lemma 5.5

Us.ara— o < Asbi v v S qs.b’..r*'.qz'

Assume now that ¢/(s) > 0. Set s, = 5. and construct a sequence sj.. ... Sk
as in Lemma 5.7. Since pi(e) > 0 it follows that

R

oo (0:0) <> e (al:).

r=0

For r < R. q(Cyls,.a'.x7") = 1. hence ¢, (a’:60) = 0. Therefore, ¢, (6% 0) <
Coplaly6), which vields

QSJ)’.J'“'.(]I 2 QSR.a'R.J:"gl' (10)
On the other hand, by construction.
o> (Isu.ujyrll'i = max I A T (11)

(Z.s'R.a'H.JT*’

From (10) and (11). and using ¢' > ¢, one deduces ¢, i o= 9" > Gy g g 0. B
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