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Abstract

We present a model of entry and exit with Bayesian learning and
price competition. The value of the new product is initially unknown
in the market, but purchases of the product yield information on its
true value. We assume that the performance of the new product is
publicly observable. As agents learn from the experiments of others,
informational externalities arise.

We determine the Markov Perfect Equilibrium prices and alloca-
tions in different market structures. In a single market, the informa-
tional externality among the buyers leads to too much learning. If the
entry of the new product occurs in many distinct markets, then effi-
ciency is reestablished in the limit as the number of markets grows. We
finally analyze entry into different market segments and show that the

new firm starts by selling to the informationally inexpensive buyers.
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1 Introduction

In multi-agent learning situations, informational externalities may reduce
the number of experiments undertaken below the socially efficient level. As
buyers choose among new experience goods or firms decide whether to adopt
a new technology, the availability of information from others’ decisions leads
potentially to a free rider problem. Rather than perform a costly experi-
ment herself, a buyer may opt to wait and see how the market evaluates
a new product. In this paper, we develop a simple market model of ex-
perimentation and analyze the informational effects in a model with buyers
and sellers. In contrast to the one-sided experimentation problems, we find
that equilibrium experimentation often exceeds the Pareto optimal level in
two-sided models.

The first model we consider is a dynamic duopoly in continuous time
with homogenous buyers. Two firms with differentiated products engage in
price competition over time. One product has a known value while the other
is new and its true value is initially uncertain to all the parties in the model.
The value of the product is determined by the quality of the match between
consumer preferences and product characteristics. Additional information
is acquired only through repeat purchases. In each period, buyers observe
a noisy signal of the true value of the product. We assume that all signals
are publicly observable and that all uncertainty is about a common value
component. With this assumption, all buyers and sellers condition their
behavior on the same information and we can abstract from individual dif-
ferences in past observations. This is justified in economic situations where
public data on other buyers’ choices is available and informative. For ex-
ample, when choosing among providers of communication or transportation
services, such as mail delivery firms or airlines, it is reasonable to rely on
consumer reports and other published data in addition to one’s private expe-
rience. We also show that our model has an alternative interpretation as one
where a flow of buyers make a once and for all purchase of a durable good.
Under that scenario, signals from others’ purchases are the only source of

information for a given buyer. In both interpretations of the model, the



public observability of signals gives rise to an informational externality in
the market.

We determine the paths of sales and prices in Markov Perfect Equilib-
rium and compare them to the Pareto optimal paths.! In a model without
sellers, informational externalities among the buyers result in too little in-
vestment in information acquisition as in Bolton and Harris (1993). When
we allow the firms to set their prices optimally, a new source of potential in-
efficiency is discovered: experimentation determines the future competitive
positions of the two firms. The new firm extracts benefits from successful
experiments through higher future prices while the buyers bear the risk of
unsuccessful experiments. When buyers become more pessimistic about the
new firm’s product, the established firm is able to charge higher prices on its
product in equilibrium. The new seller has to compensate each buyer for the
costs resulting from higher future prices charged by the established seller.
The individual buyer fails, however, to take into account the effect of her
own purchases on all other buyers. This makes sales relatively inexpensive
for the new firm and the equilibrium displays excessive experimentation. A
well known result on optimal learning states that the ex post efficient alter-
native is not always selected in the long run along the ex ante efficient path
(e.g. Rothschild (1974)). Our results therefore imply that introducing price
competition on the supply side of the market may achieve ex post optimality
with a larger probability.

In the remaining sections, we analyze price competition in multiple mar-
kets. First, we consider a model where each market has a separate estab-
lished producer, but the new product is a competitor in all markets. One
may think of each market as a different geographic location or, alternatively,
as the customer base of a small firm producing under a capacity constraint.
Multiple markets introduce a new externality. Sales of the new product in
any given market provide information to all of the small producers. As a re-

sult, they are more aggressive in their own pricing decisions as undercutting

IThere is a multiplicity of equilibrium prices. The situation is similar to the static
Bertrand model with differentiated products. We concentrate on equilibria in trembling

hand perfect prices.



the new firm no longer results in a complete stop in the flow of information.
As the number of markets increases, the equilibrium experimentation path
converges to the efficient path.

Finally, we consider a market where the buyers in different market seg-
ments differ in terms of the volume of their purchases in each period. For
simplicity, we assume that one segment consists of a large number of small
buyers while the other segment is formed by a single large buyer. An exam-
ple is the provision of telephone services to private customers in one segment
and to a corporate customer in the other. In this case, an incentive for se-
quential entry emerges from informational considerations. The small buyers
don’t internalize the cost of their experiments and hence are willing to pur-
chase the new product even at relatively pessimistic beliefs. In consequence,
the new firm enters first the segment with small buyers. If the new product
proves to be successful there, then the segment with the large buyer is en-
tered as well. However, the prices charged to the two segments continue to
be different and the large buyer receives the new product at a discount.

The continuous time techniques we use allow us to derive the equilibria
in closed form. In particular, we can analyze the prices in a more detailed
manner than would be possible in a discrete time model. By examining the
price paths, we gain new insights into the strength of the rivalry between
the firms at various points in the game. In the last section, we use optimal
stopping techniques in conjunction with a limiting version of the model
where we take discounting to zero. In this framework, the analysis of the
model becomes much simpler than in any reasonable discrete time model.

There are a number of papers examining learning and experimentation in
multi-agent settings. The most relevant papers for our purposes are Bolton
and Harris (1993), Felli and Harris (1996) and Bergemann and Valimaki
(1996). Bolton and Harris analyze a continuous time game of strategic
experimentation and our methodology follows theirs closely. They focus on
the pure informational externality between a set of identical agents and show
that all the equilibria involve too little experimentation. Bergemann and
Valiméki present a model with a single buyer, and consequently the issue of

informational externalities between the buyers does not arise. Finally, Felli



and Harris study the wage dynamics in a continuous time learning model
about an employee’s firm-specific productivity. Again, the model considers
only a single employee and hence informational externalities do not arise.

The first paper to address the potential free rider problems in the pres-
ence of informational externalities is Hendricks and Kovenock (1989) anal-
ysis of oil exploration games. They showed that experimentation can be
insufficient or excessive due to the externalities. Rob (1991) studies the in-
formational impact of entry decisions into an industry with uncertain prof-
itability. Successful entry attracts more entry which reduces the long run
profits of early successful entrants. As a result the amount of entry in each
period is inefficiently low. Chamley and Gale (1994) present the free-riding
aspect in a similar timing game in which each agent has to make a single in-
vestment decision. Vettas (1998) allows for two sided learning in a market of
new products. The firms learn about the market size while the buyers make
inferences about product quality. Bergemann and Valiméki (1997) consider
the diffusion of a new good in model of horizontal differentiation. Keller and
Rady (1998) consider experimentation in a changing environment by a mo-
nopolist. The public observability of the utility signals, or a subset of those
signals, is central to some recent models of word-of-mouth communication
and social learning such as McFadden and Train (1996) and Banerjee and
Fudenberg (1997).

Section 2 introduces the elements of the dynamic game in a two period
example. Its structure is kept as simple as possible to convey the basic
aspects of the two-sided market environment. The continuous-time model is
introduced in Section 3. The single market model is analyzed in Section 4.
In Section 5 we present the model with many markets. Section 6 considers
a single market with market segments consisting of small and large buyers.

Section 7 concludes.



2 A Two Period Example

Two sellers provide quality differentiated products to a unit mass of identical
buyers with unit demand in each period.? The incumbent supplies a product
with known quality, while the quality supplied by the entrant is initially
unknown. The value of the established product is s per period and the
new product has a value of either py or puy with pp < s < pg. Let o be
the common prior probability that the product has value uy and denote
the expected quality by p(a) £ apy + (1 — @) pup. The marginal costs of
production are identical and normalized to zero.

Firm j chooses price pz» in period t € {1,2}, where j = 0 indexes the
entrant, and j = 1 the incumbent. The net utility of a purchase to the buyer
is the (expected) quality of the product minus its current price. Buyers and
sellers maximize the sum of their per period payoffs.

The revelation of uncertainty takes an extremely simple form. If a frac-
tion z of the buyers experiment with the new product, then its true quality
is revealed to all agents in the second period with probability z. With the
complementary probability, no new information arrives. If full experimen-
tation occurs in the first period, i.e., = 1, then with probability «a, the
new product is worth py in the second period. The second period prices
are given by Bertrand competition: pd = puy — s and p? =0, and all buyers
purchase from the entrant. With probability 1 — «, the quality is low and
the second period prices are p3 = 0 and p? = s—pur, and all buyers purchase
from the incumbent. Conditional on full experimentation in the first period,

the expected second period profits for the two firms are 7§ = a(py — ) and

72 = (1-a)(s - pr).

If there is no experimentation in the first period, then second period
prices are given by pf = max{u(a)— 5,0} and p? = max{s — p(a),0},
and the firm with a positive price sells to the entire market. We assume
for the rest of this section that p(a) < s. This implies that from a myopic
point of view, experiments are costly.

The first period equilibrium prices, pj and pi, are found by backward

2We are grateful to Eric Maskin for suggesting this example.



induction. Since each consumer is of measure zero, the future payoff of an
individual buyer is independent of her current product choice. The equi-
librium condition under Bertrand pricing requires then that the buyer be

indifferent between the two offers:

pla)—ph=s—-p (1)

and hence the price differential has to be equal to the (expected) quality
difference. Moreover, we require that the non selling firm be indifferent
between selling and not selling at equilibrium prices. Prices satisfying this
requirement are called cautious. With the linearity of the payoffs in x, either
all buyers or none buy from the new firm in equilibrium. The values of a
at which experimentation occurs in equilibrium are characterized by two
conditions. First, the incumbent must prefer to concede the market in the
first period and to make sales in the second period if the new good fails in
the first period:
pl+s—p(a) <1 —a)(s—pL).

With cautious pricing, this holds as an equality and

p1 = a(un — ). (2)

Second, the entrant has to make nonnegative expected profits by selling

today and betting on a favorable resolution of uncertainty tomorrow:
Ph + iy — ) > 0. (3)

The values of a that satisfy (1)-(3) induce experimentation in the first pe-
riod. The conditions (1)-(3) imply that

1
py=ca(pg —s)+p(a) —s = —aluy = $).
Hence experimentation occurs in equilibrium whenever

s —
a>at = KL

=5 T (pm - pL) +2(pa —8)




On the other hand, the socially efficient policy requires experimentation

whenever current costs of experimentation are outweighed by future gains:®

Q’(/LH—S) 23_/1'(&)7
or
S~ HL
(uo = o) + (= 5)
As a* < &, we conclude that the cautious equilibrium exhibits excessive

a>a=

experimentation.

This inefficiency can be traced to the divergence of the private cost from
the social cost of experiments in equilibrium. The social benefit, a(uy — $),
coincides with the entrant’s private benefit. The social cost is given by the
myopic losses, s — (). The private cost of supporting the experiment, i.e.
the negative price that the entrant has to quote, is pb = pla)—s+a (g — ).
The additional term o (uy — s) is the price of the incumbent, and thus
reflects his informational gain through cautious pricing. The failure of the
buyers to take the future surplus extraction into account reduces the private
cost to finance experimentation. In contrast to the duopoly, where the
identity of the benefiting seller depends on the outcome of the experiment, a
monopoly would extract the social surplus at every stage and the equilibrium
would be efficient. More insight into the discrepancy between the efficient
and the equilibrium allocation may be obtained by considering the case
where all buyers act collectively and make purchases as a cooperative.?

In equilibrium, the cooperative is indifferent between the two products
at current prices. Hence the price differential is equal to the sum of the
quality differential and the change in the continuation payoff resulting from

experimentation,

phopl=p(a)—s+as+(l—a)uL—pla)=pla)—s—als—un). (4)

By cautious pricing, p} equals the expected gain from experimentation for

the incumbent when the entrant is selling in the first period. Notice that

3Note that the model is quasilinear and hence Pareto optimality is equivalent to surplus

maximization.
4This is the case analyzed in Bergemann and Vilimiki (1996).



3 The Model

The market consists of buyers and sellers. The buyers are indexed by 7 €
{1,...,N}. Two sellers, j = 0,1, offer differentiated products and compete
in prices in a continuous time model with an infinite horizon. Firm 0 is
called the new firm or the entrant. The value, u, of its product is initially
unknown to all parties in the market and we refer to it as the new or

uncertain product. It can be either low or high:

,Lte {:u“Lalj“H}v

with 0 < gy < s < py. The value of firm 1’s product is s, and the
frm is called the established firm or the incumbent. All players share a
common prior Pr(u = py) = ag. Let n; (t) denote the number of buyers

that purchase firm j's product in period t.

3.1 Bayesian Learning

The uncertainty about the value of the new product can be resolved only by
experimenting. The performance of the new product is, however, subject to
random disturbances. The information resulting from any single purchase
provides a noisy signal of the true underlying quality. The flow utility from

the uncertain alternative is
du; (t) = pdt + odWi(t),

where dW; (t) is the increment of the one-dimensional standard Wiener pro-
cess. We assume that dW; and dW; are independent for i # ¢'. The flow
utility of the established product is given by

dui (t) = sdt.

The aggregate performance of the product over all buyers is the sum of
flow utility realizations, which we assume to be publicly observable. The

aggregate performance of the new product is given by

> duy (t) = no () pdt + 0 > dwi(t). (5)

no(t) no (t)



utility of the established product is given by
dui (t) = sdt.

The aggregate performance of the product over all buyers is the sum of
flow utility realizations, which we assume to be publicly observable. The

aggregate performance of the new product is given by

S du, (t) = no (t) pdt + 0 > dWi (t). (5)

no(t) no(t)

All relevant information is contained in the aggregate outcome.® As the

value of p is either pp or py, the posterior beliefs are given by a(t), with

a(t)=Pr(p=pu|F @),

where F (t) is the filtration generated by the past observations. The condi-
tional expected quality u (a (t)) of the uncertain product is

pla(t) =1 —a@)u+a(t)pn-

The players extract the information contained in the noisy market outcome
(5) to update their beliefs. The game is thus one of incomplete but sym-
metric information, and no issues of asymmetric information arise. As the
beliefs are characterized by a (t), the inference problem reduces to the de-
scription of the law of motion of a(t).5 It can be shown that a(t) is a
diffusion process with zero drift and instantaneous variance no ) Z(x(t)),

where

a(t) (1 —o(t) (pr — uL))2

a

Sar(t)) = (

The process of the posterior a (t) has zero drift since posterior beliefs form

a martingale and any change in « (t) has zero expectation. The variance

5Recall that in Bayesian learning models with normal distributions, the sample mean
and the number of observations constitute a sufficient statistic for the observation of n

iid. draws from a distribution with known variance and unknown mean.
6Gee Liptser and Shiryayev (1977), Chapter 9, for the filtering equations of the Brow-

nian motion in continuous time.
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¥ (a (t)) measures the additional information obtained through an experi-
ment. An increase in the variance causes a more rapid change in the poste-
rior. The variance of a (t) is linear in the size of the aggregate experiment,
ng (t), and in the “signal to noise” ratio ﬁ“L;;“—LLz A large market share
for the new firm results in a faster change of the posterior a (t) as more
information is generated.

The key assumption in our model is the public observability of the utility
signals. This allows us to abstract from the issue of idiosyncratic differences
in posterior beliefs that might arise from different experiences. While this is
clearly a strong assumption, we feel that it approximates well two important
economic situations. In the first, a large number of buyers are faced with
the same dynamic decision problem. Even an imperfect aggregate measure
of performance by the new product is valuable to the buyers’ choices. This
situation is common in the provision of services, and examples include the
data collected by consumer agencies on the percentage of flights arriving on
time on a new airline or average waiting times for internet services on a new
provider. The second class of problems involves once and for all purchases of
durable goods. In Section 4, we argue that our model can be reinterpreted
as one of durable goods sales to an inflow of new buyers. In that case, no
buyer has individual information on the products at the moment when the
choice is made and public information is the only basis for assessing the

products.

3.2 Strategies and Equilibrium

The dynamic game consists of two components: the pricing strategies of the
sellers and the acceptance decisions of the buyers. The strategies depend
on information available to the agents at the instant of decision. Since we
want to analyze how the resolution of uncertainty affects the pricing game
between the sellers, we concentrate on equilibria in Markovian strategies.
This allows us to rule out collusive equilibria with continuation strategies
that depend on information that is not payoff relevant.

We view the model as a continuous time analogue of the repeated exten-

sive form game where the sellers set prices at the beginning of each stage,
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and buyers then choose where to buy. With this in mind, the natural state
variable in period t is a () for the sellers, and for the buyers it is a (t) to-
gether with the prevailing prices, po (t) and p1 (). A pricing policy pj is
a measurable function p; : [0,1] — R. In the equilibrium analysis we show
that the restriction to pure strategies is without loss of generality. Each
buyer has unit demand at every instant and her acceptance policy, a;, deter-
mines where to purchase the product: a; : {0,1] x R x R —{0,1, R}. The
acceptance policy specifies whether the buyer accepts seller O or 1 or rejects
both (R).

The firms offer prices p; (t) at each instant of time and their instanta-

neous revenues evolve as a function of market share n; (t) and price p; (£):
dry(t) = ny (8)p, (8) dt.

The marginal cost of production is constant and normalized to zero. The
flow utility of a buyer is determined by her choice among the competing

products. It is her flow utility net of the current price:
du; (1) — p; (t) dt.

The intertemporal profits of each firm j are a function of the pricing and

acceptance policies of the market players:
> t
V} (a’pjap—j;a) = Ea/() e " dﬂ']' (t)

where 7 > 0 is the discount rate and a = (a1, ...,an). The intertemporal

utility functional of each buyer is the discounted flow of net utilities:
Vilaiaipia) =Ea [ e (dus (1) = p; (1) D)
0
where a; (o, po(t),p1 (t)) = j and p = (po,p1) -

Definition 1 (Markov Perfect Equilibrium, MPE)
A collection of strategies, {a*,p*}, is a Markov Perfect Equilibrium if

(@) V;(a"pp.ptz50) 2 Vs (a”pipt i) VA, VR, Vo

(“’) ‘/‘L (a;>aii7p*;a) 2 ‘/tl (aiva:iap*;a)a Vivva‘iyva-
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Notice that the deviation strategies a; and p; are not required to be
Markovian. The equilibrium analysis presented in Sections 4 and 5 involves
the solution of stopping problems derived from the equilibrium conditions.
The basic technique is most clearly illustrated in the solution of the socially

efficient allocation.

3.3 Efficiency

The efficient allocation policy in the market model can be obtained by solv-
ing a specific multi-armed bandit problem. Here we provide only the es-
sentials of the solution technique and refer the reader to Karatzas (1984)
for details. Since we have assumed quasilinear utilities for all of the players
in the game, finding the set of Pareto-efficient allocations is equivalent to
solving the total surplus maximization problem.

An allocation policy n is a measurable and adapted process with values
n; (t) € {1,...,N}. Clearly, an optimal policy allocates all buyers to one of
the firms. Let n (t) be the number of the new firm’s customers and w. lLog.
assume that for a given n (t), the buyers with the smallest indices buy from

the new firm. The expected value of an allocation policy n is given by

N

V(n;a) = E/ (ZudH—UdW ®+ > sdt}]. (6)

i=n(t)+1

The problem is then to find a policy n* so as to maximize expected value
V(a) 2 max V (n;a), with V (a) =V (n*a), Ya € [0,1].

The controls in the allocation problem are continuous, but due to the
convexity of the value function, it can be shown that (6) is equivalent to the

optimal stopping problem:”

T N
V(a) =maxV (1;a) = Eq [/0 e (Z pdt + odW; (t)) + e-”$} ,

i=1

"The assumed convexity is shown to hold in the solution of the stopping problem and
the uniqueness of the value function then justifies the initial hypothesis.

13



where T is a stopping time.® As the instantaneous payoff u (a) is increasing
in @, one might expect a solution that chooses the uncertain alternative in
a half-open interval (&,1] and stops the process at &. Using Ito’s lemma
and the stochastic differential equation governing the posterior process, the
Hamilton-Jabobi-Bellman equation of this problem for a > & is the following

differential equation:®

V(a)= N (u () + %z (@) V" (a)> (7)

with the initial boundary conditions given by the value matching and the

smooth pasting conditions:

rV (&) = Ns,

Via = 0.
The differential equation (7) represents the flow benefit during the experi-
mentation phase. It consists of the expected payoff Ny (@) and the infor-
mational gains %Z (@) V" (a) which improve the intertemporal policy. The
instantaneous variance 3 (o) indicates the quantity of information released
by a unit of experimentation and the curvature of the value function V" (a)
is the shadow price of information for the planner. It is then optimal to ex-
periment as long as the flow payoff and the flow value of information exceeds

the value of the safe alternative.

Theorem 1 (Efficient Stopping)
The Pareto efficient stopping point & 18

(s—pL)(y=1
(g —pr) (Y= 1) +2(pg — )’

8ra?
=l
N (o — pr)

8Recall that a stopping time is a real valued, F (t) -measurable random variable. In

O =

with

other words, stopping at t has to be decided based upon history at time t.

9The Hamilton-Jacobi-Bellman equation is the dynamic programming equation in con-
tinuous time. It can be shown that the Hamilton-Jacobi-Bellman equation admits a unique
solution that is piecewise twice continuously differentiable. See Dixit and Pindyck (1994)
or Harrison (1985) for the details.

14



Proof. See Appendix. B
For notational brevity, we define p by:

2
2 &ro

o 8
(ui — pr)* ®)

p

The stopping point & is strictly increasing and V (-) is strictly decreasing in
p/N.

4 Single Market

The basic model with a finite number of buyers in a single market is pre-
sented in subsection 4.1. The limiting case with a continuum of small buyers
is analyzed in subsection 4.2. The limiting model is also interpreted as a

model of durable goods sales with a flow of incoming buyers.

4.1 Finitely Many Buyers

Since we are looking for equilibria in Markovian strategies, we can use dy-
namic programming techniques directly. The value functions of the sellers
are functions of the current posterior a (t) € [0,1]. Using It6’s lemma and
the equation governing the posterior process, we get the Hamilton-Jacobi-

Bellman equations:

Vo (a) = max {npo + gZ (a) V' (a)} , 9)
0
and
Vi (o) = mx [V =) + FE (@) W (@) (10)
1
where n is the number of buyers who purchase from the entrant. Note that

the value functions are linear in n.10

Each V; (+) can be decomposed into the flow revenue resulting from sales,

n;p;, and the expected change in the competitive position generated by the

1°ye to the linearity, the restriction to pure strategies is without loss of generality.
Analogously to the static Bertrand competition with different marginal costs and unit
demand, each nontrivial mixed strategy equilibria has an outcome equivalent pure strategy

equilibrium.
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sales of the new product, captured by 25 (@) V/' (a). As the posterior belief
a(t) forms a martingale, B [da ()] = 0, and only the second order term in
the expected change remains. With Markovian strategies, each firm’s future
competitive position is influenced only by the arrival of new information.
Hence 3% (a) V]’ (@) can be interpreted as the value of information to firm
j. Experiments lead to more differentiation (in ex post terms) between the
two competitors as information 1s accumulated. In a more differentiated
environment, competitive pressure between the firms is reduced and they
are able to extract more surplus from the buyers. As a result, one would
expect that V' (a) > 0.

The value function of buyer i is

n+1
2

1, () = max {s = p1 + SE (@)U (@), (@) =70+

: 2 (@)U (@)}

(i1)
when 7 other buyers choose the uncertain object. The choice of the buyer
is determined by the expected flow payoff and the flow value of information
released through the choice. By selecting the uncertain firm, her future
payoffs are changed by the amount of 3 (a) U{' (@). Equation (11) of buyer
i is representative of all buyers as they have identical preferences and they
have access to the same information. We can therefore omit the index 1
entirely and consider the representative buyer. Differentiation leads to less
competitive prices and hence enables the sellers to extract more surplus from
the buyers. As a consequence, it is to be expected that the buyers have a
negative value of information, or U” (a) < 0.

Due to price competition, each buyer has to be indifferent between the
alternatives, or formally:

s—p1=n(e) —po+ 55 (@)U" (@) (12)

It is never optimal to leave any buyer with more net surplus then she would
obtain from the alternative seller, nor could any seller ever expect to make
sales if he would offer strictly less than any competing alternative.

As the value functions of the sellers are linear in market shares and (12)

holds, we conclude that nontrivial market sharing can happen only if both

16



sellers are indifferent between selling any amount n; > 0 or not selling at
all. But at any such state a, stopping the experimentation must also be an
equilibrium outcome. We then conjecture that the equilibrium allocation
has the following simple structure: Since the payoff of the second seller is
increasing in a, there is a half open interval (a*, 1], called the continuation
region. where experiments occurs at the maximal rate no = N, and a closed
interval [0,*], called the stopping region, in which no experiments takes
place and n; = N.

Before we verify this conjecture, a qualification for the pricing policies
is made. We require that any price quoted by a firm which is not selling in
a given period would make the firm at least weakly better off if accepted.
In an earlicr paper, Bergemann and Valiméaki (1996), we called prices which
satisfy this property “cautious”.!! The value functions in (9) and (10) imply

that cautious prices satisfy:
1
pola) 2 =35 (a) Vi (a) (13)

and

pr(e) > 55 (@)W (). (14)

Condition (13) states that the entrant is willing to sell only if the price is
at least offset by the value of the information flow. In contrast, condition
(14) states that the incumbent is willing to sell only if he receives at least
enough revenue to compensate for the foregone informational gains. A sim-
ple undercutting argument establishes that the prices p; need to satisfy the
appropriate inequality as an equality if n; = 0. With positive sales, the

prices are obtained by using (12):
, , 1
pola) = pla)—s+ 52 (@) (U" (@) + V{"(a)) . if ng >0, (15)

and )
pr(a) =s—pla)— 52 (@) (U" (@) + Vi (o)), if ny > 0. (16)

"'This requirement captures the logic behind trembling hand prefection in this infinite
time horizon framework. Notice that prices p; at which sales, n; > 0, occur always satisfy
the cautious property. Without cautiousness, any switching point between & and the

cautious equilibrium switching point a® can be supported.
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The price of each seller has two components. First, the price extracts or
subsidizes the difference in the current expected value of the alternatives.
The second component reflects the intertemporal incentives of the competi-
tor and the individual buyer. The pricing policies (15) and (16) display an
important asymmetry in the influence the value of information has on the
pricing policies. If the new firm sells its product, then the experiments gen-
erate information in the market. In contrast, if the established firm intends
to make a sale, it has to recognize that it reduces the information flow in
the market. which is reflected in the sales prices in (16).

Since any single experiment provides relevant information not only to
the buyer who purchases the new good, but to all buyers, the experiment of
an individual buyer generates an externality among all buyers. This effect
is not properly reflected in the equilibrium prices. If, as was previously
argued, the value of information, U” («a), is negative to the buyers, then
the equilibrium price overstates the value of an experiment. In fact, if the
new seller were to absorb the cost of the negative externality imposed on all

buyers by a single experiment, then the price would have to be:
1
po (o) = p(a) — s+ 52 (@) (NU" (o) + V] (@) . (17)

The difference between (15) and (17) indicates the divergence between the
market price and the social price of the experiment, which increases in the
number of buyers. Note that if the market is composed of a single buyer,
then the socially efficient price coincides with the market price as in the two
period example.

Using (15) and (16), the sellers’ optimality conditions can be written as:

Vp () = N max {,u(a) -5+ %Z (@) (Vo' (@) + V" () + U" () ,0}
(18)
and
Vi () = N max {%z (@) V' (a), 5 — pi(a) %z () (V' () + U" (a))} .
(19)
It is easily verified that the two value functions represent the same stopping

problem. The indifference condition (12) and cautious pricing reduce the
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two dimensional control problem in pg (@) and pi (@) into a one-dimensional
stopping problem in a which can be stated as: How long can the entrant
afford a pricing policy that captures the entire market? The value function
Vo (@) indicates that the extent of experimentation depends on the benefits
to the sellers and the costs to the buyers. The equilibrium stopping point is
obtained by continuity conditions on the value functions of all players and
a smoothness condition associated with the stopping problem of the new
seller.}? The continuity of the sample path of a (t) suggests continuity in
the value functions at the stopping point. By the “smooth pasting” principle,
the gradient in the optimal stopping problem has to be continuous across

the boundary of the stopping region,!? or:
Vi (@) = 0.
These equilibrium conditions lead us to the first result.

Theorem 2 (Equilibrium Stopping)
There is a unique MPE in cautious strategies. The equilibrium path displays

excessive erperimentation. The stopping point is given by:

,, (s =) AN AN =1) - 1) :

o = - : < &,
(o = pL) (YN = AN = 1) = 1) + 2 (pyr = 8)

with A = /1 + p/ (N —1). and 4 and p as in Theorem 1.

Proof. See Appendix. B

It is easy to verify that the threshold a* at which stopping occurs is
decreasing in the number of buyers. An increase in the market size N
increases the signal to noise ratio of the outcome when all buyers experiment
and thus increases the return from experimentation. The equilibrium price
policies p; (@) and the curvatures of the value functions V;(a) and U ()

follow directly from the solution of the equilibrium stopping problem.

2 The explicit derivation of the value functions is presented in Lemma 1 in the appendix.
13Gee Shiryaev (1978), Chapter 3, for a formal statement of this principle.
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Corollary 1 (Submartingale and Convexity)
1. The pricing policies p; (a) are submartingales.
2. The value functions of the sellers are conver.

3. The value functions of the buyers are concave.

The submartingale characterization of the prices illustrates the dilemma
facing the buyers. As the expected quality of each product follows a martin-
gale, the submartingale prices imply that buyers expect decreasing net util-
ities over time. In fact, the instantancous utilities, du; (o) = p () — po (@),
of the buyers form a strict supermartingale in the continuation region. As
the established seller is indifferent between selling and not selling in the
experimnental phase, we have

P (@) = 55 () VY ()

and in consequence

P (@) = ;;;vl ().

The foregone revenue at any instant of time must be equal to the expected
increase in discounted future revenue, or
E [dp1 (a)]

1 () dt =
7

< Eldp ()] = rpy (a) dt.

from which it follows that the price of the incumbent has a positive drift.
The selling price pg («) has two interesting features. It is negative be-
tween a* and some o with p(a) —s < 0. The negative price compensates
the buyers for their purchases of the (myopically) lower quality product.
But pg («) is not monotone increasing in « as one might have expected. As
a approaches a* from the right, the value function of the incumbent firm
increases as the likelihood of stopping increases and the expected time to
stopping (conditional on eventual stopping) decreases. Through cautious
pricing. this leads to higher prices posted by the incumbent. The competi-
tive pressure on the entrant is thus relieved and he can charge higher prices.

Thus a segment of decreasing prices (as a function of «) is observed. Less
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aggressive prices by the incumbent allow the entrant to shift the cost of the
experiments to the buyers as beliefs become more pessimistic.

The curvatures of the value functions reflect the attitudes towards infor-
mation. As the posterior belief o approaches the stopping point a*, the value
of information for the entrant declines and at a*, we observe V' (a*) = 0
and by implication pg (a) converges to 0 from the right. For posterior be-
liefs close to a*, stopping becomes almost certain and the buyers become less
averse to experimentation, and at a*, we find by implication U” (a*) = 0
as well. A typical pair of equilibrium price policies p; (a) and flow utilities

du (o) — p; (o) dt as a function of a are presented in Fig.1.

4.2 Infinitely Many Buyers

The previous analysis suggests that the inefliciency increases as the size
of a single buyer becomes small relative to the size of the market. As a
consequence the experiments should extend to threshold levels a* (N) which
decline in the number N of buyers. To make this intuition precise, we have
to be careful when changing N. If we were to simply increase the number of
buyers. we would also change the informativeness of the aggregate outcome
in the continuation region. In fact, as the number of buyers increases, the
instantaneous aggregate outcome would become completely informative by
the law of large numbers, and even the efficient stopping point & would
converge to 0.

It is therefore necessary to keep the informativeness of the aggregate
outcone independent of the number of buyers if we want to analyze the effect
of making the buyers small without eliminating the aggregate uncertainty.
This can be accomplished by decreasing the size of the individual experiment
as we increase the total number of experiments. By normalizing the flow
utility from the experiment to

du; (1) = %dt n %dm (1),
the size of the aggregate experiment remains unchanged as we increase N.
Intuitively, in a market with fixed aggregate variance o2, the effect of in-

creasing N then reflects solely the increase in the externality between the
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buyers. Note in particular that the socially efficient allocation policy is
independent of N.

The inefficiency due to the free-riding aspect increases as each buyer has
an ever smaller influence on the release of information. In consequence, the
entrant has to compensate each individual buyer less and less for the partic-
ipation in the experiment with the uncertain alternative. It then becomes
less costly for the entrant to finance the experiments and the stopping point
a* (N) decreases as a function of N. The equilibrium stopping point a* (N)

is as in Theorem 2 given by

(s —pe) (FN = A(N = 1) - 1)

o (N) = = .
) WH—ﬂw(iN—AUV~U—4>+2wH—S)

(20)

where the only changes are introduced through the parameters 4 and A

which reflect the normalization of the market size, with
3= V1+p, (21)

and

(22)

The parameter 5 is now independent of N as the aggregate market size
is constant and equal to 1. The parameter A represents the share of the
variance in the posterior belief for which the individual consumer is not
compensated. namely (N — 1) /N. The social value of the game is decreasing
in N due to the excessive information acquisition. The monotonicity of the
allocation in NV is associated with the monotonicity of the value functions
of the agents. As N increases, the seller of the unknown product receives a
successively larger share of the social surplus to the detriment of the known
seller and the aggregate value of the buyers. The comparative static results

follow directly from the equilibrium value functions.



Corollary 2 (Convergence and Monotonicity)

1. The equilibrium stopping point o* (N) is strictly decreasing in N and

converges to the stopping point with infinitely many buyers:

. (s = L) (5 —1)°
(=) (7= 12+ 45 (- 8)

(0]

2. The value function Vo (+) is strictly increasing in N for all a > o* (N).

3. The value functions NU (+) and Vj (+) are strictly decreasing in N for
all o > a* (N).

Proof. See Appendix. B

The extent of the inefficiency as N increases is depicted in Fig. 2., which
shows the price path of pg(«) as N varies. As N increases the new firm
succeeds in shifting the costs of the experiments to the buyers. Moreover
the plateau with pg (@) = 0 recedes as N increases.

In the limit as N — oo, any single experiment carries no information
about the value of the uncertain alternative. The single buyer is now in-
finitesimally small relative to the market and her purchase decision has no
impact on the informational content of the market outcome. Consequently.
neither the individual buyer nor the sellers attaches any strategic importance
to her current decision. In the limit the representative buyer then behaves
as if she were completely myopic. The indifference condition of each buyer
simplifies to

p(a) —po=s—p (23)
as the size of the individual experiment is infinitesimal. We can therefore
strengthen Corollary 1 and obtain symmetry in the expected rates of change

of the prices quoted by the sellers.

Corollary 3
In the continuation region, the pricing policies of both firms are submartin-

gales with positive drift:

Eldp; (a)] = rp1 (a)dt, for j=0,1.
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Interestingly, the model with a continuum of buyers can be reinterpreted
as one with a constant inflow of buyers that make a once and for all purchase
of a durable good. With perfect durables. it is natural that the experiences
of past buyers have a large impact on current buyers’ beliefs on product
quality. In the absence of repeat purchases, it is also incentive compati-
ble for all buyers to report their experiences truthfully even in the case of
private observability. The only new constraint that appears in the durable
goods case is that we need to make sure that no buyer wants to delay her
purchase. As prices are always below the expected value of the product and
the expected change in prices is non negative, waiting entails a loss to the
buyers in all periods. Notice also that it is never in the firms’ interest to de-
lay sales. Hence the equilibrium as described above yields an equilibrium in
this durable goods model as well. Instead of having the same buyers switch
from one product to the other, different buyers choose different products in
the durable goods interpretation. As each buyer purchases only once, the

informational effects on future prices are not internalized.

5 Many Markets

In the single market model, the sellers internalize the effect from all in-
formation flows in the model while the buyers are not able to do this. In
this section, we consider the case where the informational externality affects
both secllers and buyers.

We start by considering A/ distinct markets, each having a separate
incumbent offering an established product of value s to the buyers in his
market. The A markets may be thought of as local markets and the en-
trant as a global competitor, who can introduce his new product into all
local markets. An alternative interpretation of this model would be that
the incumbents are using a technology with a capacity constraint while the
entrant has a technology with unlimited capacity available. The true value
of the new product, p € {pup, )}, is the same across all markets. The
main difference compared to the previous sections is that there is now an

informational externality across the markets in addition to the one within
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the markets.

We assume that the buyers in all markets are identical and that each
incumbent is serving the same number of buyers. N/Al with N > Al. We
normalize the size of the sum of all markets to 1 and as a consequence,
each incumbent sells to a market of size 1/A[.}* The main result in this
section is a characterization of the equilibrium stopping for different market
structures in terms of Af and N. We consider only the symmetric equilibria
of the model. The representation of the equilibrium conditions is similar
to the previous section and we focus on the differences. By symmetry, it is
sufficient to consider a representative incumbent and a representative buyer.

Denote the representative incumbent by j and the entrant by 0. The
equilibrium in this model can again be characterized as an optimal stopping
problem. The indifference condition of the buyer is. as before, per unit of

purchase given by:

5= (0) = ()~ po (a) + 55 (a) U (@) (24)

The optimality condition of the incumbent in the continuation region reflects
the trade-off between sales and information:

1A -1
2 Al

rV; () = max {i (o) +

14 1 "
b, SV (), 5E@V (@) (25)

The cautious price per unit of sale is again given by setting the price equal
to the value of information generated by a sale of the new product:

pj(a) = %E (@) VI ().

Despite the similarity to the single market behavior, note how A/ appears
in the decision of the individual incumbent in the Bellman equation (25).
The trade-off between sales and information is now relaxed by the fact that
even if the incumbent makes a sale in his local market. information may still

be generated in the remaining markets. This leads the incumbent to adopt

' This normalization allows us to keep the efficient stopping point constant and inde-
pendent of the size of the individual buyers and sellers. However, the convergence results

to be presented are independent of the normalization.

o
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a more aggressive pricing policy which in turn makes it more expensive for
the entrant to sell in that particular local market.

The failure of the individual incumbent to take the value of information
to the other local incumbents into account leads to less experimentation
in equilibrium. This is perhaps most clearly reflected in the equilibrium
stopping problem for the entrant. After inserting (24) and (25) into the

value function of the entrant. we obtain:
. . ) , 1 ! "y " i
Vo (a) = max { p(a) = s+ 5% (a) (vo (@) + V" (a) + U (a)) 0% (26)

In contrast. the stopping problem which reflects the social value of all the

players and hence would lead to the efficient stopping point is given by
1
max {/L (@) — s+ 52 (@) (VO” (a) + MV} (o) + NU" (a)) ,O} )

The symmetry in the way that the externalities among buyers and incum-
bents effect the equilibrium stopping is now apparent. The qualitative dif-
ference is that these externalities work in opposite directions in terms of
determining o as V" (a) > 0 and U"” (@) < 0. This symmetry is also evident

in the solution to the equilibrium stopping problem in (26).
Theorem 3 (Many Market Equilibrium)

1. The equilibrium stopping point in the unique cautious equilibrium is:

(Nﬁ —A(N = M) — ]\[) (s —pur)
(N5 — X(N = M) - M) (jer — pun) + 20 (puyg — 5)

o (M.N) =

with 5 and X as in (21) and (22).
2. If M = N, the equilibrium stopping 1s efficient: o* (M,N) = a&.

3. The stopping point o* (M, N) is decreasing in N and increasing in M:
and

lim o (M, N) = a.
AMN-—-o
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Proof. See Appendix. B

The case of Ml = N has a few interesting properties. If there is a
single buyer in ecach market, then the local incumbent and buyer can trade
intertemporal payoffs on a one-to-one basis. They both have control of % of
the total market. Hence the future gains from experiments for the incumbent
equal exactly the future losses of the buyer. Cautious pricing then allows
the new firm to make sales at the myopic quality differential p () — s.

As the number of markets A increases. the strategic aspect in the ac-
ceptance and pricing policies vanishes. In consequence. the sales prices in
the experimental phase converge to the myopic quality differential:

lelivrgxpo (a) = u(a) —s, A[,hzvn—]»oopj (a) =0, for all @ > o™ (A, N),
and o” (M, N) converges to the efficient stopping point. The convergence
result holds also if instead of the single large entrant, each market would
have a small entrant with access to the same new product as all other local
entrants. This may represent a situation where local franchisees share a
common franchising product.

With many markets, the prices at the switching point display a dis-
continuity which is linked to the externality among the incumbents. For
a > a* (M, N), the value Vj (a) of each incumbent is given by the value of

information generated in all markets. or
Vi ( )——12( %4 f > o
rVjla) =3 a) Vi (a), fora>a’.
After the switch the value is determined by sales in the local market, or
* 1 *
rVi(a”) = VL (a™).

We can immediately infer the size of the jump in prices at the switching
point by the continuity of the value functions. We denote the limiting point
from the right by:

+

p; (a*) & lim p; (a).
ala
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Corollary 4 The equilibrium prices at the stopping point display an upward

jump for Al > 1:
MpT (@) = pj(a”) = s — p(a®),
and

N (M —-1)

PSr (a®) = m

((a®) =) <O=po(a’).

The size of the jump is positively related to the number of markets A
and disappears for A/ = 1 and N > 1. The discontinuity of the prices
implies that the flow utility of the buyers decreases discontinuously when

the new firm stops selling in the markets.

6 Markets with Small and Large Buyers

In the equilibria analyzed in the preceding sections, we do not observe gen-
uine market sharing between the firms. This feature of the model follows
when the value functions of the players are linear in the number of buyers
choosing the new firm and the buyers are completely homogenous. In this
section. we allow for heterogeneity by considering buyers of different sizes.
More precisely, we analyze competition in a market consisting of two seg-
ments. The first has a continuum of identical small buyers and the second
has a single large buyer. As an example, one might consider purchases of
phone services by individuals to be one segment and purchases by a large
corporate client to be the second segment. The total size of each segment is
normalized to unity. The sellers compete in both segments and are allowed
to price discriminate between the two segments.

The size of an individual buyer has a strong influence on her intertem-
poral objectives. As the large buyer controls a large part of the current
information flow, she internalizes the impact of her current purchases on all
her future utilities. Since a small buyer has no effect on the aggregate state.
her decisions are based entirely on myopic considerations. As a consequernce,
the willingness to pay for the new good is different across the market seg-

ments. It is then no longer reasonable to conjecture that an equilibrium
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is characterized by a single cutoff belief. In fact the small buyers may be
willing to purchase the new good at prices at which the large buyer would
still prefer the established product. The aggregate market may then change
its purchase behavior only gradually and market sharing emerges naturally.

On a technical level, the simple optimal stopping problem of sections 4
and 5 is transformed into a sequence of optimal stopping problems. While
the resulting system of differential equations can still be derived in its gen-
eral form. it is no longer possible to derive the stopping points analytically.
These complications disappear, however, if we consider the undiscounted
problem under the strong long-run average criterion.'> The optimal policies
under this criterion are the unique limits to the associated policies under
discounting and as such maintain the intertemporal aspect of the policies.
In other words, all the qualitative properties of the equilibria we derive in
the following will hold also for small, but positive discount rates » > 0. In
order to have the strong long-run average well defined, we need to assume
that a strictly positive amount of information about the uncertain product
arrives in each period regardless of the sales. An interpretation of this as-
sumption could be that other sources of information such as the performance
of related products yield data that are correlated with the true quality of
the new product. The strong long-run average criterion refines the long-
run average criterion which discriminates insufficiently between alternative
intertemporal policies.

We introduce these notions for the efficient program, the adaptation
to the value functions of the individual players is then straightforward.
The background noise is modeled as an independent information source
parametrized by a positive real number 6. Formally, we assume that a
stochastic process with drift #p and instantaneous variance §o? is observed
regardless of allocation decisions. Conditional on the true parameter, this
process is assumed to have increments that are independent of any obser-

vations generated by the purchases. With this assumption, the process of

®See Dutta (1991) for a very careful and detailed analysis on the connection of op-
timality criteria under discounting and under no discounting. Bolton and Harris (1993)

employed it in their continuous time model of strategic experimentation.



posterior beliefs is a diffusion process with zero drift and incremental vari-
ance of 3 (n(a(t))+6)Z(a(t)), where n(a(t)) is the measure of buyers
purchasing the new product and X (« (t)) is as before. The long-run average

value of the social program, v (a) is equal to the expected full-information

payoff:
r{a)=av(l)+(1—-a)v(0) =2(apuy + (1 —a)s), (27)

as « converges eventually to 0 or 1 due to the persistence of the background
noise. Hence almost any allocation in finite time is consistent with long-run
payoff maximization. The full information payoffs v (0) and v (1) are the
solutions to the static allocation problems, when ¢ is known to be either pif,
or juy. The strong long-run average is defined by the following optimization

problem:

V (ag) = sup lim Eq, {/F n{a(®) pla()+2—n(a(t)))s—uv(a(t))dt|,
n(a) I—oc 0

where n(a (t)) is the share allocated to the new product. The strong long-
run average maximizes the expected returns net the long-run average. Or in
other words, it minimizes the losses due to imperfect information compared
to the payoff under full information. Because of the background noise, the
limit as T — oo, is well defined and finite and hence this criterion discrim-
inates between policies based on their performance on finite time intervals
as well. Furthermore, this value function has a recursive representation in
the Bellman's equation:

0 = max {n (@) p(a)+ 2 =—n(a))s —v(a)+ (n(e) +6)

n(a)

S (a) V" (a)} .

Next we derive the socially optimal stopping rule. Since the objective
function of the social planner is still linear in n («). the fact that one of the
buyers is large has no bearing on the efficient solution. Hence we conjecture
the existence of a cutoff belief & such that whenever a > &, all buyers should
be allocated the new product and when a < & they should all receive the

established product. The differential equation should then satisfy for o < v :
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=2s—v{a)+ %E (@) 0V (a) > 2u(a) —v(a) + %Z (@) (2+60) V" (a),
and for a > a:
0=2u(a)—via)+ %Z (@) 2+ V" (a) >2s—v(a)+ %2 (@) BV" (a).

The efficient cutoff is found by requiring that both of the above inequalities

hold simultancously. This yields:

b (s —pL)
O (e —pp) +2(py —s)

o =

The equilibrium policies are derived in the undiscounted case with the
Bellman's equations as in the discounted case. The relevant conditions are
derived directly in the appendix. Here, we discuss the incentives for gradual
entry. With linear payoffs in each segment, the sellers’ problem simplifies to
a choice of the markets in which to sell. As before, the firms benefit from
ex post differentiation and their value of information is positive. Since the
firms are able to extract more surplus from the buyers as more information
becomes available. the buyers have a negative value of information. The
small buyers cannot affect the state of the system and as a result choose
the myopically superior alternative. The large buyer, however, internalizes
her impact on future prices. In order to make a sale in the large market the
entrant has to quote a lower price than in the small market. This suggests
that the equilibrium pattern of sales can be described by two cutoff levels,
ag and ap with ag < ap, where ag and oy, are the lowest posterior beliefs

at which small and large buyer, respectively, purchase the new product.
Theorem 4 (Market Sharing)

1. The unique MPE in cautious strategies is characterized by two num-
bers. ag and oy with ag < ap < &. Small buyers buy from the new
firm if and only if a > ag and the large buyer buys from the new firm

if and only if a > ap.
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2. For all a < ag. the small buyers are receiving a discount. and for all

« > af. the large buyer receives a discount.

Proof. See Appendix. i

The values for g and ay, are recorded in the appendix. The large buyer
receives a discount from the entrant relative to the small buyers since she
internalizes the cost of the experiment and thus requires sufficient compen-
sation from the entrant. By the same token, the large buyer is willing to pay
more to the incumbent to avoid the experiment. The extreme assumptions
on the sizes of the buyers in each market segment are merely to simplify
the computations. The structure of the gradual entry process would be the
same for any two market segments with differently sized buyers.

We allowed the sellers to price discriminate between the segments. In
the absence of price discrimination between the segments, entry would still
occur gradually, but the entrant would delay selling to the large buyer to
an even later stage in order to maintain the revenue from the segment with
small buyers. Depending on the relative size of the segments, this may delay
entry even beyond the efficient entry point. or oy, > &. It may be interesting
to note that if the two market segments were served by separate incumbents,
a similar entry delay would be observed, even with price discrimination. The
reason in this case is the free rider effect between the incumbents discussed in
the previous section. Each incumbent fails to internalize the negative effects
of reduced information flow in the other market in their current pricing
decisions. The entrant can prevent this free-riding by delaying entry into

the relatively less profitable market.

7 Conclusion

This paper shows that the conventional wisdom that informational exter-
nalities lead to inefficiently low levels of experimentation may be reversed
in a two sided learning model. The introduction of sellers into the multi-
agent learning model creates a market where experiments are priced. The

new seller sponsors the uncertain alternative and rewards buyers for exper-
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iments through low prices. In contrast to one-sided learning models, the
seller provides direct incentives for the buyers to experiment. The owner-
ship of the product allows the seller to extract the future benefits of current
experimentation which would have evaporated without the assignment of
property rights.

The main theme of the paper is the importance of the market struc-
ture for efficiency conclusions in a model of informational externalities. To
abstract from other forms of distortions we analyze a stage game without
static distortions. The cost of this modeling choice is that it is very diffi-
cult to generate genuine market sharing between firms. However, the results
in Section 6 suggest that even in this simplified framework, we can detect
informational reasons to target particular market segments. Alternatively,
asymmietries in the informativeness of purchases in different market seg-
ments. or simply differential valuations might generate similar reasons to
target one group of buyers before the others.

When interpreting the model as a durable goods model, an interesting
question arises. Since the buyers have a strict preference to purchase the
product at the moment of their arrival rather than wait for a period, it
might be useful to analyze a model where the entry of new buyers is endoge-
nous. For example, one could imagine a model with a constant population of
buyers that own a physically depreciating durable good. The possibility of
early purchases at an endogenously determined cost might have important
implications on the shape of the price process and the speed of information

{ransnissionn.

33



8 Appendix

The appendix contains the proofs of all propositions and theorems presented
in the main body of the paper.

Proof of Theorem 1: We describe the solution procedure for the inhomo-
gencous second-order differential equation in some detail as it reappears in
the construction of the various equilibrium value functions. All solutions of

the inhomogeneous equation (7) permit the following representation:
Vi(a) =ciHi (o) + cpHa (o) + v (o),

where Hj («) and Hj («) are two linearly independent solutions of the cor-
responding homogeneous equation and v (a) is a particular solution of the
inhomogencous equation. The complete solution to (7) is established by the
variation of parameters method, see Chapter 2 in Birkhoff and Rota (1978).

A particular solution to the inhomogeneous differential equation is given by
w () = uy (o) Hy (@) + ug (@) Hy (o),

where the parameters uy (o) and ug () are determined by

v () - Glo)H(0)
: W (H, (), Ha (a))’
and
uy (a) = Glo)H(a)

- W(Hi(a), H2(a))’
and G («) is the forcing term of the inhomogenecous differential equation.
The Wronskian determinant, W (H; (o), Hy («)), is given by:

W (Hy (), Ha(a)) = Hy () Hy (o) — Hy (o) Hy (o).
The solution to the homogeneous version of the differential equation (7) is
H () = bja /2 (1 = a)=07D/2 4 poq =07 D2 (1 — )02 0 (28)

with 4 = /1 + p/N. The general solution for the value function V («) is
_ Npu(a)

V() + b2 (1 = )72 gy OmD/2 (1 NARAS
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The efficient switching point & is obtained by requiring that the value match-

ing and the smooth pasting conditions are satsified

V(&) = Ns,

V'(a) = 0. (29)

Boundedness of the value function as & — 1 implies b; = 0. The conditions
in (29) determine & and by:

(s=pp)(y=1)
20y —s)H(pn—pr){(v=1)°

i1
by = zNguH—sg< & >§r+z

= Th-or \T-a

In particular by > 0 implies the convexity of the value function. Further
computation shows that the efficient cut-off & is strictly increasing in p/N
and V' (-) is strictly decreasing in p/N. R

To characterize the equilibrium stopping point, we need the solutions to
the differential equations describing the value functions, which is obtained

after inserting the equilibrium prices (15)-(16) in the value functions.

Lemma 1 (Value functions) The value functions have the following gen-
eral form in the experimentation region:

N

r

Vo (@) (e (a) — ) —cNa~A=D/2(1 - a)(’\+1)/2+da_(7‘1)/2 (1— a)(7+1)/2 ’

Vi(a) = ba—(—1)/2 (1- a)(vﬂ)/’z‘
and

Ula) == +ca=G0/2(1 = q)MD/2 _pa=0mD/2 () — q)00+D/2
.

with A= +/1+ p/ (N —1). and v as in Theorem 1.

Proof. The construction of the value functions proceeds from the homoge-
nous differential equation (19) for the incumbent to the inhomogeneous dif-
ferential equation of the individual buyer (11) and the entrant (18). The
solution to (19) is as in (28), where the second term vanishes as V} (a) — 0
as @ — 1:

Vi(a) =ba~O07D/2(1 — o) HD/2



The general solution to the homogeneous version Uy, (a)

rUn (@) = 5 (N = 1) X (a) Uy (a),

5
of the differential equation U () is
/\—r-l)/Q )

U (a) = cra O-D/2 | oyq= (172 (1 — g)M+0/2

A particular solution of the equation (11) is

U(a) = ,i — b~ D/2(1 — )TV

The complete solution to the inhomogeneous equation (11) is

Ua) =2 4 eaPD/2(1 = q)PFD/2 _pa=0mD/2 (] _ )0 /2.
-

As before we set ¢; = 0, since the value function of the buyer has to be
bounded as a goes to one. For simplicity set ¢y = ¢. The final step is to
construct V; («v). A particular solution to the inhomogeneous equation is:
N A
vla)= = (p(a)—s)— cNa A"D/2(1 = q)t1/2, (30)
.
The fundamental solutions together with the particular solution v’ (a) give us
the format of all possible solutions of the value function Vj (). Boundedness

of the value function forces one term of the homogenous solution to vanish:

N (N’(a) B 8)+da_(7_1)/2 (1 . a)(7+1)/2_cjva_(,\—l)/2 (1 _ a)(/\'?‘l)/z “
r

Vo (a) =

which completes the construction of the value functions. B
Proof of Theorem 2: The existence of an equilibrium is established by
construction. Given the guess on the shape of the continuation and stopping
regions, we construct the value functions. Following the derivation of the
value functions, it is then verified that the initial guess is satisfied.

The equilibrium conditions for the stopping point «* is the smooth past-
ing condition of the optimal stopping problem for the new seller and the
continuity of the value functions for the sellers and the buyers at the stop-

ping point a*

Vola®) = 0

Vile*y =0 (31)
rVi(a*) = N(s—pu(a*))

rU (") = p(a*)
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The conditions in (31) yield the stopping point a* and the values of the

parameters b, ¢, and d, which determine the curvature of the value functions:

_ T o —
o (s =) BN = A(N =1) - 1) s

(= ) ON = AN = 1) = 1) + 2 (uy — 3)

and L
b = 2N (4111 —5) ( a* )2 2
(Ny—=(N-1)A-1) r 1-a* N
_ 2(N-1) (pr=s) { o 2772 392
¢ = (Ny—(N-=1)A-1) r (1—0(‘)1 X ’ ( )
. N2 (—s) {_a~ 2772
d = (NA—(N—D)A=1) . (kw) :

To show uniqueness, it is sufficient to prove that no other shape of the
stopping region is possible. To see this, let C' C [0, 1] denote the continuation
region and S C [0,1] the stopping region of an arbitrary equilibrium. By
cautiousness and Markovian strategies, it is immediate that sales are made
at all a € 0,1}, 1e., SUC =[0,1].

We need to show that there is an a* € [0,1] such that S = [0,a*], and
C = (a*,1]. First note that p; (a) > 0 for all @ and therefore, a € § =
a < a. By cautiousness, pg (@) = 0 for all @ € S. By the continuity of the
value functions in o we may take S to be closed. Therefore C' is a union
of pairwise disjoint (relatively) open intervals. We need to show that if
(a1, a2) C C, then as > a. But this follows immediately from cautiousness
as pg (1) = po (ag) = 0 and there must be an « € (), ag) with pg (o) > 0.
This yields the desired conclusion. B
Proof of Corollary 2: The equilibrium value functions are as in Theorem
2. with the exception of the normalization as transparent in the stopping
point 20 through the parameters 5 and A. The parameters b, ¢, d are as in
(32) only to be divided through N and inserting ¥ and X. The comparative
statics follow after straightforward algebra. B
Proof of Theorem 3: (1) The value functions are derived as in Lemma 1
with the obvious modifications due to the normalization of the size of the

market. The solutions to the differential equations are given by
Wia) = ! (1t (@) — s)+da~ D2 (1 = )TN 2_eNa=(-D/2(1 — o)A/
-

‘/j ((I) — ba—(’)’—-l)/? (1 _ a)(7+1)/2 ,
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and

U ((I) = N + C(y_()‘_l)/‘z (1 — Q)(’\+1)/2 _ ba—("r'—l)/Q (1 _ a)(’?‘*‘l)/Q’

with 7 = /T+p and A = /1 + pN/(N —1). The equilibrium stopping

conditions are modified only by the normalization in the market size to:

W (a*)=0

Vg (a*) =0

rMVj(a*) = (s — pu(a®))
rNU (a*) = p(a*).

(33)

The stopping point is given as a solution to the equations in (33):

(Ny = A(N = M) — M) (s — pur)
(N = AN = M) = M) (g = per) + 2M (pog — s)

x
=

and the parameters of the value functions are given by

(NMA=MN—AN=31r \T-a~
2AN—AN) (g —s) o V30D
(N AN-AD—ANNr \T-a" :

IN{jipg— o 20D
d = (ny—/\(l(\;/fl\[;)—l\l)r (lAa‘> :

b = 2(ph —s) ( a )é(%&l)’

c =

Uniqueness is proved as in Theorem 2. (2) and (3) follow directly. B

Proof of Theorem 4: (1) We start with the long run average values which
are given by vg () = 2a (py — s). v1(a) = 2(1 —a) (s — pr). and for the
large buyer by u () = as + (1 — «) . We first show that an equilibrium
exists in which for values a < ag, background noise is the single source
of information. For values ag < o < aj, the entrant sells to the small
buyers but not to the large buyer. and for values o > «, the entrant sells
to both types of buyers. The values of ag and «j, are determined during
this process. The differential equations which govern each region are again
established by using the indifference conditions for the different buyers and
the cautious pricing policies of the sellers. We immediately present the
differential equations in the three regions. To identify the different regions,

we add a subscript to the value functions. We identify the lower region by 0,
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the middle region by 1 and the upper region by 2. The differential equations

in the lower region are :

0 = —vo(a)+ 3= (a)8V(a)
= 25— p(a)) — o1 () + 55 (@) OV (@) — 2V (a) — UE (@)
= p(a) —u(a) + 35 (a) (L+ ) UY (a) + Vi (@)

The value function of the small buyer doesn’t need to be tracked as the small

buyer enters the problem only through the myopic indifference condition:

plc) = po (@) = s —pi(a).

The differential equations in the middle region, with ag < a < af, are

obtained similarly after solving for the equilibrium prices:

0 = pla)—s—wvoa)+ I (a) (1 +6) Vi (a) + Vi (@)
0 = s—pla)—uv(a)+I2(a)(1+6) Vi (a) = Vi (a) = UY (a)
0 = p(a)—ula)+3E (@) ((2+8) U] (@) + Vi (a))
and for the upper region with a > ay, they are:
0 = 2(u(a)—s)—1ry(a)+ %E (@) ((2 4 0) Vg (a) + 2V (a) + U3 ()
0 = —vi(a)+3Z(a)(2+60)Vi5(a))
0 = s—ula)+3S(a) (L+0) U (a) — V{5 (a))
The computational advantage of the undiscounted program becomes now
apparent. Since the process of the posterior belief is never stopped, the
smooth pasting condition for the different regions is now continuity of the

second order derivative of the value function of the entrant. We can then

identify the stopping point ag by equating

Voo (as) = Vg (as)
and the upper point by equating

Vot (ar) = Vig (av).

The solutions follow after some algebra:

(s —pur) 6°
ag = 34
57 lnw = ) 02 + (s — 5) (3 + 46) (3)
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and
o — (s —up)6(1+6) (35)
BT G — ) 0 (1+0) + (uy —5) (4 +360)

The equilibrium prices for the two types of buyers can be derived explicitly

in the three regions from the equilibrium conditions. Given our guess for the
equilibrium pattern of sales, the strategies derived above are clearly unique.
For anv other patterns of sales, the systems of optimality equations lead to
contradictions.

(2) The prices offered to the small and large buyer are distinct only by
the value of information $¥ (a)U” (a) of the large buyer. As U”(a) < 0
in all regions. the large buyer is willing to pay more to the incumbent to
avoid experiments, and requires compensation for the experiments from the

entrant.
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Figure 1: Prices p; (a) and flow utilities u («) in a single market:
py =24, =0.s=1N=2.0=4r1= %
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Figure 2: Prices pp (a) in a single market with a variable number of buyers:
py =24, =0s=1lo=4r=3



