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I Introduction

Adter many vears of intensive research our understanding of optimal and cquilibrium intertemporal
allocations in convex cconomic models has become lairly complete. The recent literature has turned
its focus to characterizing intertemporal allocaiions in models with dynamic nonconvexities. At
least two approaches can be distinguished. The first approach—referred 10 as the ageregative
framework by Mujumdar and Mitra (1982 p—starts from dynamic nonconvexities at the aggregate
level by assuming that aggregate production is a convex-concave {unction of the aggregate capital
stock, see Skiba (1978). Majumdar and Miwa (1982). Dechert and Nishimura (1983). and Brock
and Malliaris (1989) among others. There are two main drawbacks to this approach: First, nothing
can be said about decentralized market equilibrium allocations: second. the assumption of a convex-
concave production-lfunction. quite natural at the disaggregate level because of fixed costs or

divisibilities for example. is difticult o defend at the aggrecate level. The second approach starts
from dynamic nonconvexities at the disaggrevate level, see Judd (1983), Romer (1987, 1990). and
Grossman and Telpman (1991) among many others: despite the dyvnamic nonconvexities at the
disageregate Jevell there are no dynamic nonconvexities at the aguregate level in this approach.

This paper reexamines the ageregate implications of  dvnamic nonconvexities at  the

disaggregate level for optimal as well us decentralized market equilibrium allocations. We do so in
a framework where the production of diflerentiated intermediate inputs is subject to dynamic
nonconvexities Jdue o start-up costs. The main question we ask is: When will dynamic
nonconvexities at the disaggregate level translate into dynamic nonconvexities at the ageregate
level? We show that the answer depends on the degree of IHicks-Allen complementarity
(substitutability) between ditferentiated inputs. In our simplest model. an extension of Judd (1983).
Grossman and Telpman (1991) and many others. there are dynamic nonconvexities at the aggregate

level i and only il differentiated inputs are Hicks-Allen complements.



Dynamic nonconvexitics in the production of differentiated intermediate inputs and Hicks-
Allen complementarities between  ditferentiated inputs can therefore provide microeconomic

foundations for the convex-concave ageregate production-function in Skiba (1978). Majumdar and

Mitra (1982). and Dechert and Nishimura (1983). These microeconomic foundations of aggregate
nonconvexitics allow us to define and characterize decentralized market equilibria tfollowing Judd
(1985) and Grossman and Helpman (1991). We find that Hicks-Allen complementarities imply that
the private return to - investment increases with the avercoate level of investment and that
decentralized market cquilibrium allocations are qualitatively similar o allocations in the
aggregative framework. We also find that cconomies may get mefficiently stuck at very Jow levels
of income when there are Hicks-Allen complementaritics between differentiated inputs produced
with dynamic inercasing returns.

The rest ol the paper is organized in the following wav. Section 2 desceribes the framework we
use. Scetion 3 churacterizes the pmduumn possibility set and links dynamic nonconvexities at the
aggregate fovel to the degree ot Hicks-Allen complementarity between difterentiated inputs
produced with dyvnamic incrcasing returns. Scction 4 determines the optimal  intertemporal
allocation. Section 5 defines and describes decentralized market cquilibria and compares optimal

and equilibrium allocations. Section 6 summarizes.

2 The Framework
The total quantity of labor in the cconomy is normalized o unity. The cconomy produces three
tpes of woods: Investment goods. consumption goods. and an endogenous variety of differentiated
mtermediate nputs. Differentiated inputs are indexed by = 0. Although the space of differentiated
mputs is unbounded. only o finite ranue 7 < 7 is produced at any moment in time (all en
variables, Tike n2 for example. depend on time but time subscripts will generally be suppressed).
Over time. this range can be increased by allocating /7 units of the investment cood 1o start-up
operations: the technology for start-up operations is 7=/ (dots denote time derivatives). All
differentiated intermediate inputs i < # are produced with constant returns to scale at the margin: X,
units of labor used to produce input 7 < #7 produce /1, = x, units of the input.

The consumption-goods technology is given most generally by ("= F(m =000 where ¢
denotes the quantity of labor and »f the quantity of intermediate input i employed in the
production ol consumption goods. We assume that the consumption-goods technology can be

rewritten as
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where /() 15 a lincar homogenous. concave. and twice continuously differentiable function. and
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where the second equality makes use ot the fact that only differentiated inputs 7 < ;7 are available at
any moment in time. We refer to M/ as intermediate-input composites. This specification implics
weak separability between difterentiated inputs and labor. The assumption that o =1 ensures that
no single differentiated input is essential for producing intermediate-input composites. All
dificrentiated inputs enter symmetrically into the production of the intermediate-input composite.
and the clasticity of substitttion between any pair of inputs in the production of intermediate-input
composites is constant and cqual to o = 1.

The production of investment goods also ecmploys differeniated intermediate inputs and labor.
with ' the quantity of input 7. 37 the quantity of intermediate-input composites (produced
according to (2) using m . i< n.as inputs) and £ the quantity of labor used in the production of
mvestment goods. The production of investment goods may. however. emplov a different

technology than the production of consumption goods.
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where G(e) 1s alinear homogenous. concave. and twice continuously diticrentiable function.

The clasticity of substitution between ditferentiated inputs in the production of investment
goods and consumption poods will depend on the invesiment-goods technolony (o) and the
consumption-goods technology £7(e). The model is suiliciently gencral to allow differentiated
mputs to be cither Hicks-Allen complements or Hicks-Allen substitutes. We can therelore use the
model to discuss the relationship between dynamic nonconvexities at the agereeate level and the
degree of Hicks-Allen complementarity (substitutability) between ditterentiated inputs produced
with dynamic increasing returns.

The form of product differentiation specified in the intermediate-input composite in (2) has an
important property for the analysis of intertemporal allocations: Total factor productivily increases
with the variety of differentiated inputs available. To see this. let .V be the total amount of labor

used in the production ol differentiated inputs. Because of svmmetry and convexity. it is optimal to

[}



produce the same quantity m, of cach existing variety my=m=x,=.X/n for all i<n. The
quantity of intermediate-input composites that can be produced with X" units of labor is therefore
M=n""""m=n""X_Since & =1, the average productivity of labor in producing intermediate-
mput composites increases with the variety of differentiated inputs 2. Ethicr (1982) describes this
property as increasing returns due to specialization (and 1/ (o —1) is sometimes referred to as the
degree ol increasing returns due to specialization in the production of  intermediate-input
composites). and Romer (1987) observes that this captures Young's (1928) notion of increasing
returns due to the progressive specialization of’ industrics.

The basic specilication of intermediate-input composites in (2) always has a built-in link
between the degree of increasing returns due to specialization 1/ (o —1) and the clasticity of
substitution between differentinted inputs in the production ol intermediate-input composites o .
We o will—however—-extend  the discussion of the relationship between aggrecate  dvnamic
nonconvexities and Hicks-Allen complementarities between differentiated inputs produced with
dynamic increasing returns to a specification of the intermediate-input composite that unlinks the
degree of increasing returns due to specialization and the clasticity of substitution between

differentiated inputs in the production of intermediate-input composites.

3 The Shape of the Aggregate Production Possibility Frontier

The analysis of the shape of the agaregate production possibility {rontier will proceed in two steps.
First, we determine the rate of transformation between consumption and investment at the same
point in time as a function of the varicty of ditferentiated inputs (the shape of the “static production
possibility fronticr”™). Sceond. we determine the rate ol transformation between consumption at

different points in time as a function of the variety of differentiated inputs (the shape of the

3.1 The Shape of the Static Production Possibility Frontier
We start with the rate of transformation between consumption and investment goods at the same

pointin time as a function of the variety of ditferentiated inputs 1.

PROPOSITION 3.1. The production possibility fronticr is

L= R+ 1 GO o)
where
Flny= Max  F("7 v — v, (3)
N, Ofxd

and



Gimy= Max G Vel-x). (6)
X, 0=x =]

PROOF: In the appendix.
Making usc of (1). (2). (3). and the intermediate-input technology. it is straightforward to show that
]4‘(11) and ()'()z) correspond to the maximum amount of consumption and investment goods that
can be produced with one unit of labor when a variety # of differentiated inputs is available; (4)
mmplies that the rate of transformation between consumption and investment goods at the same

point in time is [}(}z)/ ().

3.2 The Shape of the Dynamic Production Possibility Frontier
We now turn to the analysis of the intertemporal rate of transformation of consumption. Our main
results Tink the intertemporal rate of transtormation of consumption to the degree of Ficks-Allen
complementarity (substitutability) between differentiated inputs.

3.2.1 Aggregate Dynamic Noncenvexities: Definitions

To determine the intertemporal rate of transformation ot consumption in the iramework in Section 2

itis usetul to rewrite the production possibility frontier in (4) as
2 (1n)=C+-x—=1 (7)

Fquation (7) can be interpreted in the following way: /(i) is the maximum output of consumption
goods (keeping in mind that the total quantity of labor is normalized to unity) and 17“(/7)/ G(iz) 1s
the cost ol one unit of the investment good in terms of the consumption good. This mmplies that
(,Ai(}z) / /j‘(\n) i3 the increase in the variety of differentiated intermediate inputs that can be achicved
by consuming one unit less “today™ (keeping in mind that the start-up technology is 7= /: we use
quotation marks because time is continuous in the modely and that ]:"(;z )(A/(n‘) /'-f‘(n) 15 the Increase
i maximum output of consumption goods “tomorrow™ that can be achicved by consuming one unit
less “today.™ The intertemporal rate of transtformation of consumption /A”(/zy)(ff(/z)/ /3'(11) 1S a

function of the existing variety of differentiated inputs 2 only.

DEFINITION 3.1 (Intertemporal rate of transformation of consumption; dynamic
aggregate returns schedule). The intertemporal rate of transformation of consumption.
denoted by r£n) . s

)= ]?"(n)(;'(n)/ F(n). (8)

Wealso refer to 7(n) as the dynamic aggregate returns schedule

(4



This definition allows us to distinguish between dynamic decreasing and dynamic increasing

aggregate returns.

DEFINITION 3.2 (Dynamic deereasing aggregate returns; dynamic inercasing
aggregate returns schedule) Dynamic decreasing (increasing) aggregate returns refers to
instances where the intertemporal rate of transformation of consumption decreases (strictly
mcreases) with the variety of difterentiated inputs. 7/(1n) <0 (#'(n) >0)

We also refer to dynamic increasing aggregate returns as agercgate dvnamic nonconvexities.

oo

3.2.2 Aggregate Bynamic Nonconvexities: An Example

Before turning o the general analvsis of aguregate dynamic nonconvesities. it may be useful to
illustrate dynamic increasing cgegregate returns in an example that allows us to determine the
production possibility set in () explicitly. To do so. censider the case where the production of
consumption goods and investment coods uses identic al perfectly symmetric. constant-elasticity-

o=

of-substitution technolovies, ("= /= ( ;' R ) o supposce also that the clasticity of

substitution between intermediate-input composites and labor is equal to 3. «=35. while the

clasticity of substitution between differentiated inputs in (2) is equal to 3, o =3. In this case, the

production possibility sct in (+h) becomes
FLSFGn=(eaty

and (). ch can be interpreted as the “agurecate production-function.” is convex-concave:!
There will be dynamic increasing aggregate returns (£(n) = /(1) strictly inereasing) il 7 <+/2 and
dynamic decreasing aguregate returns (£() = /(1) decrcasing) it = J2 (See Section 3.2.4A

for the more general case.)

3.2.3 Aggregate Dynamic Noneconvexities and Hicks-Allen Complementarities

When do dynamic nonconvexities in the production of ditferentiated inputs translate into ageregate
dynamic nonconvexitics. e, dynamic increasing aggregate veturns? This section uses the well-
known concept of” complementarities due to Iicks and Allen (1934) w0 relate the degree of
complementarity (substitutability) between differentiated inputs to the existence of dynamic
increasing (decreasing) aggregate returns. The next subscction develops some useful preliminary

results.

' We thank one of the referees for suggesting this example.



3.2.3.A Hicks-Allen Complementaritics: Definitions and Preliminary Results

To apply the concept of complementaritics due to Ticks and Allen (1934) to the framework in

Section 2, it is necessary (o first define the cost-minimizing intermediate-input demand.
PROPOSITION 3.2, Denote the opportunity-cost of one unit of labor in terms of
consumption goods with « and the opportunity-cost of one unit of intermediate input 7/ in

terms of consumption goods with «,. The quantity of input 7 that minimizes the cost ol

producing one unit of' the consumption cood. 17, . can be wiitten as

>

m (d,.

agoa)y=(u,la, ) A la) a,, for i<n. (9)

where «,, denotes the opportunity-cost ot one unit of the intermediate-input composite in (2)
[ pn b
Vo, N
a, = | z/zj « (10)
’ K DR /
and A(a,, /) denotes the cost-share of intermediate inputs

M, fay={F (M LM B e Ly FOM L Y=a, Lab (11)

PROOF: In the appendix.

The definition of complementarities that we use is due to Hicks and Allen (1934).

DEFINITION 3.3 (Iicks-Allen substitutes; Hicks-Allen complements). Intermediate
inputs 7 and j. i /oare Hicks-Allen substitutes (complements) it the Hicks-Allen partial
clasticity ol substitution Flow iy (¢, a,,.a)/ cloga; is positive (strictly negative).

1

Finally. it will be usclul to introduce the Hicks-Allen partial clasticity of substitution between
ditferentiated intermediate mputs and the mtermediate-input composite.

4

clogimy (aroa. )/ Cloga,, . and 1o relate this clusticity o some of the parameters of the

consumption-goods technology.

PROPOSITIGN 3.3. The Hicks-Allen partial elasticity of substitution between difterentiated
intermediate inputs and the intermediate-input composite satisfics

clogm (ap.a.,.a)/ cloca, = a, la)=(o -1)- (ela,, /a)=1)1 = cA(a., /a)), (12)
where e(a,, 7 «) denotes the clasticity of substitution between intermediate-input composites

and labor in the production of consumption goods as a {unction of their relative opportunity-
cost a,, /a.



PROOF: In the appendix

The definition of Hicks-Allen substitutes (complements) combined with (9) and (10) implies that

differentiated inputs are Hicks-Allen substitutes (complements) if S(a,, /a)>0 (&a,, /a)<0).

3.2.3.B Aggregate Dynamic Nonconvexities and Hicks-Allen Complementarities: Results

The next proposition allows us to prove the main results linking the degree of Hicks-Allen

complementarity (substitutability) to dynamic increasing (decreasing) agaregate returns.
PROPOSITION 2.4, There will be dynamic increasing agurevate returms if and only if

P(l-7)

S ')<.\A"(;z). (13)

PROOF: In the appendix.

The intuition is that there are two forees that can potentially result in dynamic increasing
aggregate returns. The first s the Hicks-Allen complementarity between differentiated inputs:
this is because new differentiated inputs will increase the productivity of existing inputs if
differentiated inputs arc Hicks-Allen complements. The second force arises when the production
of investment goods also uses differentiated inputs: the introduction of new differentiated inputs
will. i this case. decerease the opportunity-cost of investment because of increasing returns duc
to increasing specialization.

Proposition 3.4 vields the next two results,

PROPOSITION 3.5, There will be dynamic increasing aggregate returns i differentiated

mputs are Hicks-Allen complements.

This follows because THicks-Atlen complementarity between ditferentiated inputs. (9). (10). and the
intermediate-input technology imply Ja,, /@) <0 and o« /a=n "7

The reverse of Proposition 3.5 is not always true. (Later we show that the reverse holds in a class
of models used widely in modern growth theory). But there will be dynamic decreasing aggregate

returns if differentiated inputs are good enough (strong) substitutes.

PROPOSITION 3.6. There will be dynamic decreasing agor

I
oo
[

inputs arc strong Hicks-Allen substitutes in the sense that the Hicks-Allen partial elasticity of

egate returns i difterentiated

substitution between differentiated intermediate inputs and the intermediate-input composite

: Lo e (o
is larger than unity, (' 7> 1,

This follows from Proposition 3.4 and the fact that £'(n) <1



Proposition 3.6 implics that a sufficient condition for globally decreasing dynamic aggregate
returns is that differentiated inputs are strong substitutes for any variety of available inputs 7 ; using
Proposition 3.3. it is straightforward to show that this will be the case if the elasticity of substitution
between intermediate-input composites and labor in the production of consumption goods is smaller

than o -2 e(u,, /a)yso-2

3.2.4 Aggregate Dynamic Nonconvexities in One and Two Sector Models

The previous seetion has yiclded some insight into the determinants of dynamic increasing
dggregate returns, Now we want to better characterize the dynamic aggregate returs schedule in
two widely used classes of models. First. the one sector model of standard neoclassical growth
theory. see for example Solow (1936) and Cass (1963). Second. the two sector model that has
become the workhorse in more recent work in growth theory. see Judd (19835) and Grossman and
Helpman (1991) among many others

3244 The One Sector Maodel

In the one sector model. consumption and investment goods are produced with identical
technologies, or LA L= G ML interms of the framework in Section 2. In this case, the
production possibility set is '+ 7 < /(i) where (i) plays the role of the aggregate production-
function in the standard neoclassical growth model, sce Cass (1963) for example. Propositions 3.3
and 3.4 can now be used to obtain suflicient conditions for dvnamic decrcasing (increasing)
aggregate returns: it can be shown that thev impl\' that thcrc \\'ill be dynamic increasing aggaregate
returns 1 and only if (rv2<(‘z—:(n1 oy 251 - f(n ). Hence. there will be globally

decreasing dyvinamic ag

oregate returns i o 2 ¢(e) and o 22 in this case. the offect due o the
substitutability - between  differentiated  inputs outweichs  the effeet due to the decreasing
) ] g g

opportunity-cost ol investment goods. There will be ulobally increasing dyvnamic aguregate returns

)

o <ele) and o <2,

Lo determine simple sufficient conditions for a convex-concave "ugol >oate production-

Clc
<

function” F(n) . we spectly the consumption- and investment-goods technology in (1) and (3) as

Llae)

POMLY= GOML Ly = (M0 ey (14)

where ¢ is the constant elasticity of substitution between intermediate-input composites and labor.

In this case. the aggregate production-function”™ becomes

oy ey e e . ~/ \ v N
*This is because in the one sector model ' (n) = ()z 2 this follows from (M Ly=G(A L)
and (A9) in the appendix.

9
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Using cither the “aggregate production-function™ in (13) or Propositions 3.3 and 3.4. vields that
there will be dynamic increasing aggregate returns if and only if

=

'

o=y T s g (16)

Our disaggregate lramework therefore provides microcconomic foundations for the convex-concave
aggrewate production-tunction in Skiba (1978). Majumdar and Mitra (1982). Dechert and
Nishimura (1983). and Brock and Malliaris (1989) i ¢ > >2. The convex-concave Tagyregate
production-function™ arises because difterentiated inputs produced with dynamic increasing returns
are Hicks-Allen complements when fov are available and become strong Hicks-Allen substitutes as
the available varietv inereases.

The specitication in (I4h) allows us to fully characterize the global shape of the “a

agure

(&

S

ate

(I

production-function”™ in (13) in terms of the clasticitics of substitution .o in (14) and (2). The
results i the beginning of this subscction imply that the “ageregate production-function™ will be

globally: concave if ¢ <o and 22 and globally convex il >0 and o< 2. The “avorcoate

= =
= oo

(¢4

production-function” will be concave-convex it 2> o > ¢ and convex-concave if ¢ > o > 2. Figur
I summarizes the relationship between the clasticities of substitution .o in (14) and (2) and the
global shape ol the “aggregate production-function™ in (13).

3.2.4.83 The Two Seetor Model

Judd (1983) presents a growth model that has been widely used in recent contributions to orowth
theory. see Grossman and Helpman (1991) for examples and references. The version of Judd (1983)
m Grossman and Telpman (1991) has two sectors as consumption and investment coods are
produced with different technologies. Tn particular. investment goods are produced with labor only.
or GeM.L)y=1 i terms of the framework in Section 2. In this two sector model. ¥ (12)— and
Proposition 3.4 therefore implies that Ticks-Allen complementaritics between differentiated inputs
are necessary and sutficient for dynamic inereasing aggregate returns. Propositions 3.3 and 3.4 yield
stmple sufficient conditions for the global shape of the dynamic apgregate returns schedule in terms
of parameters of the consumption-goods technology: There will be globally decreasing dynamic

aggregate returns il «(u,, /«) <o (which includes the Grossman and Helpman (1991) case where

PR . N o s=heto— Ae=1Ve Ve c-1)/ e &/t

*Fquation (13) is caleutated as F(in) = Max (1! Dietoh el + /3 “pleh) D where use
N1l

has been made ot (2). (14), and the intermediate- imput technology.

10



consumption goods are produced with a Cobb-Douglas technology): differentiated inputs can never
be Hicks-Allen complements in this case. If, on the other hand. b= &(a.,/a)> o . where b is some
constant, then there will be dynamic increasing aggregate returns for a low variety of differentiated
inputs. but dynamic decreasing aggregate returns for a large variety of difterentiated inputs;* this is
because differentiated inputs will be Tlicks-Allen complements when few are available and become
Hicks-Allen substitutes as the available varicty increases. The two sector model with an elasticity of
substitution e(«¢,, /@) that may be larcer than  therefore extends Judd (1983) and Grossman and
Helpman (1991 1o include the case of the inverted U-shaped dynamic ageregate returns schedule
typical ot the aggregative framework.

3.2.5 Aggregate Dynamic Nonconvexities and Returns to Specialization

Fhe sp::ciﬁculiun ol the intermediate-input compesite in (2) has a built-in link between the clasticity
of substitution between differentiated inputs ¢ and the degree of increasing returns due (o
specialization in the production of” intermediate-input composites. This is why we now twrn o a

speciiication of intermediate-input composites—due o Ethier (1982)—that separates the de cgree of
mereasing returns due to speciatization from the elasticity of substitution between differentiated
itermediate inputs in the production of intermediate-input composites. see also Benassy (1996). In

particular, we replace (2) by
N N (a1
- v S R
M=n (JA /)zf(. ' «Jlj (17)
) )

where

and o =1 and o> 1. The specification n (17) introduces a “direct specialization eftect” of the
variciy of dificrentiated inputs »2 that is captured by 7 @ the inroduction of new inputs has a direet
elfeet on the productivity of other inputs that is independent of the quantity of new mputs actually
used in production. This direet specialization cricet separates the degree of increasing returns due
to specialization from the elasticity of substitution between differentiated intermediate inputs in the
production of intermediate-input composites. The specitication in (18) implies that the degree of
mereasing returns due to specialization is o ~1 while the elasticity of substitution between

ditferentiated inputs in the production of intermediate-input composites is o .

*To see this, notice that ¢(a,, /a)> o >1 implies that Ala,la)y—>1as a,,/a—0 and that (10)
implies that «,, /'« — 0 as n-> . Combined with (12) and (13), this viclds the result.

11



[t can be shown that the basic relationship between the degree of Hicks-Allen complementarity
(substitutability) and dynamic increasing (decreasing) aggregate returns developed in Propositions
3.5 and 3.0 generalizes—although it must of course be augmented to take into account the
additional considerations formatized in (17) and (18). To sec this in the simplest way possible.
notice first that Proposition 3.5 will hold with (17) replacing (2) i p =20, This is because the
mtuition behind Proposition 3.5 1s that it there are Hicks-Allen complementarities between
ditferentiated mputs. then the introduction of new inputs makes other inputs more productive. and
thus. results i dynamic increasing aggregate returns, The specification in (17) with a positive direct
spectalization effect. >0 (new inputs directly inerease the productivity of other inputs through
the positive direct specialization effect). retnforees this effect of Hicks-Allen complementarities
between differentiated mputs. I on the other hand. y < 0. then the complementarity between
differentiated inputs needs to be sufficiently strong 1o outweigh the negative direct specialization
cffect. Similarly. Proposition 5.6 will hold with (17) replacing (2) if ¥ <0. The intuition is that if
ditferentiated inputs are Hicks-Allen substitutes. then the introduction of new inputs makes other
mputs less productive, and thus, results in dynamic decreasing acercuate returns. The specification
m (17) with a negative direct specialization effect. 7 <0 (new inputs directly decrease the
productivity of’ other inputs through the negative direct specialization effect). reinforces this etfect
of Hicks-Allen substitutability between differentiated inputs. 11, on the other hand. ¥ > 0. then the
substitutability between differentiated inputs needs to be sufficiently strong to outweigh the positive

direct specialization effect. These results are proven in the appendix.

4 Bynamic Optimality swith a Reprecentative Consumer
We now i to the issue ol dynamic optimality when there is a representative consumer. The
mtertemporal pretecences of the consumer are | ¢ CU(C )deowith U(C)) twice continuously
differentiable. strictly concave, U/(C)=> % as C— 0 and p>0. We analvze dynamic optimality
m o steps. We first derive necessary conditions for dvnamic optimality and then develop a
criterion o determine the path that vields higher intertemporal utility among any two paths
satistymg those necessary conditions.

We focus throughout on convex-concave dynamic models and assume that dynamic aggregate
returns fall below the rate of time preference p as the variety of differentiated inputs becomes
sulficiently large. More precisely. we assume that there is a variety of differentiated inputs 12, > 0

that satisfics:



ASSUMPTION L. #(n,)=p and F(n)y<p for n>n,. (19)

This assumption also ensures the existence of a dynamically optimal path.

Fora given initial varicty of differentiated inputs n, > 0. the dynamically optimal allocation

solves
\rmmm eTUC e (20)
r( p . "
subject to
H\H:/:(f(h)———fj(—{]f) (21)
o

The next proposition gives necessary conditions for dynamic optimality.

PROPOSITION 4.1, The [ollowing conditions are necessary for dynamic optimality,

MG (n \ . ~
[7((')( ’*‘( {J’L* el U< (i)
o L) ) (22)
¢ ] - o I'(n V(i
0 i C=/1n) and pz=—- f—](ﬁ«
()
where #(Cy= U/(CY/U(Cy denotes the mtertemporal clasticity of substitution. The

transversality coi uhlmn In nc e A ) Gnoyn. =0 s also necessary.

PROO: In the appendix

It can be shown that the necessary conditions in Proposition .1 and (21) have a solution for all
1, >0 10 (19) holds. The condition in (22) confirms that the dynamic agoregate returns schedule
F(in) defined in (8) plays a crucial role for the optimal intertemporal allocation.

The main complication introduced by dynamic increasing agore cgate returns is that the necessary
conditions for dynamic optimality in Proposition 4.1 and (21) may have more than one solution.
Lhe next proposition seleets the consumption profile with higher intertem poral utility between any
two consumption profiles that satisfy the neeessary conditions in Proposition 4.1 and (21).

PROPOSITION 4.2, Consider any two paths, indexed by i and /i, that for a given 1, >0

satisly the necessary conditions for dynamic optimality in Proposition 4.1 and (21). Then.

path /i vields strictly higher intertemporal utility than path i if and only it it has a strictly
lower initial fevel of consumption.

PROOK: In the appendix.



4.3 Dynamic Optimality in the One Scctor Model
When consumption goods and investment goods are produced with the same technology. then the

dynamic system in (21) and (22) simplifics to

e

(O ()= p)
7 =Flmn-C
m the intertor. This system is identical to the dynamic system of the standard neoclassical growth
modell see Cass (1963) for example, with F(a) taking the place of the aggresate production-
tunction and 7(n) = /7'(#1) taking the place of the marginal product of capital.
Spectiving the consumption- and investment-goods technology as in (14). allows us to better
characterize optimal interiemporal allocations. 1f ¢ < ¢ and o > 2, then the “aggregate production-

tunction”™ (i) will be globally concave. As a result. there will be globally decreasing dynamic

aggregate returns and optimal intertemporal allocations will be qualitatively similar to optimal
intertemporal atlocations in the standard neoclassical. convex erowth model in the following sense:
Optimal intertemporal allocations in economies that start with a varicty of differentiated mputs i
strictly below the values for 72 that satisfy F'(n) = p will be characterized by an increasing variety
of differentiated inputs and an increasing level of consumption. and converge to the same steady-
state level of income.

If. on the other hand. &= o > 2 then our disaggregate framework provides microcconomic
foundations for the convex-concave aggregate production-function and hence optimal intertemporal

allocations i the agar

(

ceative framework in Skiba (1978). Majumdar and Mitra (1982). Dechert and
Nishimura (1983). and Brock and Malliaris (198‘)]). The dynamic ageregate returns schedule will be

mverted Usshaped. and, generally. there will be either no value or two values for 2 that satisty
1’7"(/1):/). Assuming that there are two values, optimal intertemporal allocations are: Optimal
ntertemporal allocations in cconomies that start with a variety of difTerentiated inputs # strictly
between the two values that satisly /(1) = , are characterized by a rising variety of differentiated
inputs and increasing levels of consumption. and converge to a variety of differentiated imputs equal
to the larger of the two solutions of F/(17) = = p:ecconomies that start just below the lower of the two
values that satisty /() = p will experience temporarily falling levels of consumption and rising
levels of investment. and also converge to a variety of differentiated inputs equal to the larger of the

two solutions of [7'(n) = p: optimal investment will be zero and consumption will be constant in

cconomies that start with a very low variety of differentiated inputs. Optimal allocations in the one



sector model with consumption and investment produced according to (14) and s> 0o >2 arc
lustrated in Figure 2 which makes use of Proposition 4.2 to select optimal intertemporal
allocations whenever there are multiple paths that satisty the necessary conditions in Proposition
LT and (21).

The results for the two sector model with the consumption-goods technology as specified in
(I4) are similar, If' ¢ < o then there are globally decreasing dyvnamic aggregate returns and optimal
mtertemporal allocations are qualitatively similar (in the sense explained in the previous
subscction) to optimal intertemporal allocations in the standard neoclassical. convex growth model.
[f >0 then the dynamic aggregate returns schedule has an inverted [ shape and optimal
mtertemporal allocations will theretore be qualitatively similar to optimal mtertemporal allocations

m the agprepative framework with a convex-concave aggrevate production-function.

o "1

5 Dynamic Eauilibrinm Allocations
One advantage of our approach to aggregate dyvnamic nonconvexities—compared to the approach in
Skiba (1978). Majumdar and Mitra (1982). Dechert and Nishimura (1983). and Brock and Malliaris
(1989)—is that it allows us to define and characterize decentralized dynamic market cquilibria and
assess thelr optimality. We define and characterize dynamic market equilibria in the framework in
Scction 2 using the following market structure: Markets for consumption goods, investment goods,
and labor are perfectly competitive but the market for differentiated intermediate inputs produced
with dynamic inereasing returns is monopolistically competitive: this market structure is common
to the many recent contributions to growth theory that. following Judd (1983). Romer (1987.1990).
and Grossman and Helpman (1991), associate cconomic growth with the introduction of new
nputs. Our objective is o analyze  how the deerce of  Hicks-Allen complementarity
(substitutability) between differentiated inputs affects the characteristics and optimality of dvnamic
market equilibria

There are two related main results in this section. First, Hicks-Allen complementarities play a
similar role for dynamic market cquilibrium allocations than for optimal dynamic allocations: they
mnply that the private return to investment increases with the aggregate level of investment and
therefore result in dynamic market equilibrium allocations that are qualitatively similar to optimal
itertemporal allocations in the aggregative framework. Second, Hicks-Allen complementaritics
give rise to dynamic equilibrium allocations that are “alobally inefticient”™ in the following sense:

Economies that start with low levels of income may be stuck in cquilibrium, although the optimal



intertemporal allocation invelves strictly positive investment and growth. and convergence to the
level of income of economies that started with high levels of income. These dynamic inefticiencics
cannot be undone by marginal, Pigouvian tax policies but must be addressed with nonlincar policy

imstruments,

5.1 Characterization of Dyvnamic Market Equilibrium Allocations

Denote the wage rate. the price of investment goods. and the price of diftferentiated input 7, all in
terms ol consumption goods. with w. ¢ . and p,. The fact that investment- and consumption-goods
producers take prices as given. then implics that prolit-maximizing intermediate-input and labor
demands satisty: (ML y=w. P y=pocand ' /M =(p /p)” in the production of
consumption goods and ¢G (M LYy =wl gG (M K y=p oo and oM = (p p.) 7 in the

production of investment goods: all variables are defined analogously to the optimal case and

- Sl=a)
P = (J /’}7‘7‘-/1'1
Ty J

.
denotes the minimum cost of purchasing sufficient differentiated inputs to produce one unit of the
mtermediate-input composite defined in (2).

Differentiated inputs are produced by monopolistically competitive firms: Lach [irm produces
one input and maximizes proiits by sctting its price taking all other prices as given. This implies
that profit-maximizing prices for available differentiated inputs are given by a constant markup over
marginal cost. p = v for 1 <n where g=0o/(c—1)>1.as cach firm faccs an intermediate-input
demand with constant price clasticity. The price ol intermediate-input composites relative to labor
Ll

15 theretore equal o p,, /e = m equilibtium. Combined with constant returns to scale of

the consumption-goods technology. this implies that the factor share of differentiated Inputs in the

o0

production of consumption goods. p., M /. can be written as

() = {/:\’((11"./])‘\/“ YRR A A VAN A VI T G VAN A WA } (2

where we made use of the fact that £ (M 1) = p, and F(M. L) = in equilibrium. Delining
the income share ot differentiated inputs in the production of investment goods, B(n). analogously

to (24). yields the next proposition.
PROPOSITION 5.1. Labor market clearing implies that

L=Cl )+ 171G(n). (

o
wh
—

16



where
Fny=Fad 7m0 40— A/ (1= A0n) o)) (26)
and

Gy =G ") Y BOD. (= B/ (1= B(n) /o)) (27)
PROOF: In the appendix.

The variety ot available differentiated mputs 77 increases over time through entry of new firms.
These new firms must start up production by purchasing one unit of the investment good: this start-
up investment is irreversible. There is free entry into the production of new differentiated inputs:
the market value of differentiated input firms v —mnot indexed by i as all firms have the same
market value in equilibrium—will therefore never exceed the start-up cost ¢ in equilibrium. ¢ > v
Free entry also implics that there will be no entry if the market value of differentiated input tirms is
strictly below the start-up cost. v < ¢ when there is entry in equilibrium. then the market value of
differentiated input firms and the start-up cost will be equalized. Summarizing. we obtain that in

cquilibiium. 720, ¢ > v, and
g —=v)=0. (28)
Houscholds supply labor and own all firms. They choose their consumption profile to maximize
mtertemporal utility subject to their intertemporal budget constraint.

o ”
J e MCdr<ny, + [ e dr (29)
0 o '

where R = | 'rde is the real interest rate between periods 0 and 7. Their optimal consumption

profile satistres the Fuler condition.
C/C= 7 (Cxr— ). (30)

where ()= -U(Cy/ U () denotes the intertemporal elasticity of substitution. The next result
summarizes the cquilibrium conditions in terms of the level of consumption and differentiated

inputs available. (C.n).

PROPOSITION 5.2. For any initial varicty of differentiated inputs 12, > 0, dynamic market
cquilibria are characterized by levels of consumption . and differentiated input varieties
n_.r =0, that satisfy



. () ﬂ@+ Am)YC =+ By (n)n Cpl i Ce R
o - Lyl ay(1m)n (a) G1)
0 it C=/f(nyand b(n)<p '
no= s Max {Gon(1=C/ F(m).0} (h)
and
lve 07 (C i G )=1) (32)
where
hin)= ANy oyln)n (33)
and
qli)y=(o—-AnNluny/ (- Bn)Gin). (34)

PROGE: [n the appendix.

5.2 Dynamic Equilibrium and Optimality in the Gne Sector Model

We now prove existence and further chavacterize dynamic market equilibria. and also compare
dynamic equilibrium and optimal allocations. in the one sector model in Section 3: the results for
the two sector model are similar and therefore omitted.

In the one sector model. the cquilibrium dynamic system in (31) simplifics to

ClOo= Oy = p)
b =[(ny-C

m the interior, where r(n)= A(n)F(n)/ on s the rate of retum to differentiated input firms’
mvestment: #(n2) will be called the aggregate dynamic private returns schedule. Focusing on

convex-concave models by assuming that there is a 17, >0 - such that ()= poand (i) < p torall

7> n . makes U straightforward to prove existence of a dynamic equilibrium. 11 n, satisfics

r(n,) < p.then there is a stationary allocation with C.=1(n,). 020 that satisfies all equilibrium
condilions. [f. on the other hand. r(n,)> p. then there is a dynamic equilibrium with mcereasing
levels of consumption and an increasing difterentiated input variety that converges to a variety of
differentiated inputs cqual to the solution of (1) = p closest above M.
Hicks-Allen complementaritics between differentiated inputs affect the aggregate dynamic

private returns schedule #(n) in the same way as the aggregate dynamic returns schedule 7(n) :

PROPOSITION 5.3. There will be dynamic increasing aggregate private returns #'(12) > 0 if
|

differentiated inputs are complements in the sense of Hicks-Allen.



PROOF: In the appendix.

To better characterize dynamic market equilibria and assess their optimality in the presence of
Hicks-Allen complementarities between  differentiated inputs, we return to the case where
consumption goods and mvestment goods are produced as in (14). In this case. we can determine

F(n)y=G(n) defined in (26) and (27) explicitly as

,] _ / // [[ *1‘15"'?))‘1 (IR /0(”) (35)

where /' = and

SOy = +n S D VRN A <. (37)

This vields that there are dynamic increasing agg

(=
Iz
P
:.

¢ private returns (7'(s1) > 0) ifand only if

(e=a)fn T s (o (1= 00n)). (38)

This. combined with the fact that (37) implies that 0(s7) — 1 as 11— =, implics that the aggregate
dynamic private returns schedule #(n) will have the inverted U-shape typical of the convex-
concave aggregate production-function in the aggregative framework il ¢ > o > 2; notice that this
condition is identical to the condition than ensured the inverted U-shape of the aggregate returns
schedule (i) . In this case. differentiated inputs are Hicks-AHen complements when few inputs are
avatlable but become strong substitutes as the available variety increases. Generally. there will be
either no or two solutions to r(n)=p when the necessary  condition for Hicks-Allen
complementarities. ¢ > o > 2 is satisfied and 7#(77) is inverted U-shaped. We focus on the case with
two solutions where dynamic equilibrium aflocations take the following form: In cconomies with
i, larger or equal than the Targer of the two values that satisfy #(n) = p. the unique equilibrium
allocation is €= (1), 720, and there s no investment. Dynamic cquilibria in economies with
n, strictly between the two values that satisty #(n) = p are characterized by an increasing variety
of dilferentiated inputs and rising levels of consumption and production: all these cconomics
converge to the same steady-state variety of differentiated inputs—-cqual to the larger of the two
values that satisty r(11) = p—and the same level of income. There are two equilibria in ecconomies
that start with 7, equal or just below the smaller of the two values that satisly 7(n) = p: the first
equilibrium has a constant level of consumption . = [(1,). >0 and no investment; the second
dynamic equilibrium is characterized by falling levels of consumption  and rising levels of
investment in the beginning and converges to a steady-state variety of differentiated inputs equal to

the larger of the two values that satisfy 7(n) = p. The dynamic equilibrium allocations in the one

19



sector model when the necessary condition for Hicks-Allen complementarities, ¢> o> 2. is
satisfied are illustrated in Figure 3. Comparing Figure 3 to Figure 2 illustrates that dynamic
cquilibrium allocations are qualitatively similar to optimal allocations in the following sense: They
either mnvolve no investment and a constant level of consumption. or a level of consumption
(investment) that is falling (rising) when the variety ot intermediate inputs is low and a level of
consumption that is rising when the variety of intermediate inputs is large. Dynamic equilibrium
allocations 1 the model with Hicks-Allen complementarities are therefore qualitatively similar to
optimal allocations in the aggrceative framework with a convex-concave ageregate production-
function,

1o compare dynamic equilibrium and optimal allocations in the one scctor model when the

necessary condition for Hicks-Allen complementarities. « > o = 2. is satstied. we compare the
optimal. dynamic system in (23) with the equilibrium dynamic system in (33). Notice that the
n—1socline i the equilibrium dynamic svstem in (23) lics below the n—isocline in the optimal
dynamic system in (33) as /7(n) < /7'(/1) (/’(n)i i) tollows trom the delinition of /()z) as the
largest quantity of consumption geods that can be pmduccd with one unit of labor combined with
the fact that /(1) is the average labor productivity in the production of consumption goods in the
market equilibrium;  F(n) < F (1) follows because the markup charged by ntermediate input
producers drives a wedge between the marginal cost and the price of intermediate inputs in the

market equilibrium). Furthermore. it can be shown that the ag

<

eregate private returns schedule r(1)
lies always strictly below the aggregate returns schedule 7#(n) . We focus on two implications of
these observations about dynamic market equilibrium and optimal allocations. First, the “high”
cquilibrium steady-state with a differentiated input varicty equal to the larger of the two values that
satisfv (1) = p is characterized by an inefiiciontly low variety of differentiated inputs. The reasons
tor this are well understood sinee the contribution of Judd (1983): The relative price distortion due
to the markup. > 1. charged by differentiated input producers in the market equilibrium combined
with an clasticity of substitution farger than unity. & > 11 this “local inefficiency™ can be undone by
subsidizing dilferentiated input purchases so as o equalize their purchase price with their marginal

cost ol production. Sceond. and more interestingly from our point of view. there are “elobal

To sce this. notice that /(i) < I"(7) and that AQn) < »}(;1] (17(7)) because the clasticity of
substitution between intermediate-input composites and labor is larger than unity, ¢>1. and the
price of the ntermediate-input composite relative to labor is higher in the market equilibrium than
in the optimal allocation Combincd with the fact that (A6), (A7). and (A9) in the appendix imply
that A(n) = ["(in) = A A )/ (o= this vields 7(n)>r(n) = A(in)F(n)/ on.



inefficiencics™ in the following sense: Economics where the optimal intertemporal allocation would
mvolve strictly positive investment and growth, and convergence to a “high™ steady-state (the
steady-state that corresponds to a variety of differentiated inputs equal to the larger of the two
values that satisty ]?’(}z) = p). may instead be stuck at a “low™ steady-state in equilibrium (steady-
states with a variety of differentiated inputs smaller or equal than the smaller of the two values that
satisty r(11) = p). These global inefticiencies arise because Hicks-Allen complementarities between
differentiated inputs imply that the rate of return 1o investment in new differentiated inputs
increases with ageregate investment. Global inefticiencies cannot be undone with subsidies that
cqualize the purchase price of intermediate inputs to their marginal cost of production but must be

addressed with non-linear policv instruments.

6 Summary

When do dynamic nonconvexities at the disaggregate level wanslate into dynamic nonconvexities at
the aggregate lovel? We have addressed this question in a model where the production of
differentiated intermediate inputs is subject to dynamic nonconvexities and shown that the answer
depends on the degree of Hicks-Allen complementarity (substitutability) between differentiated
mputs. n our simplest model, a generalization of Judd (1983) and Grossman and Helpman (1991)
among many others. there are dynamic nonconvexities at the aggrcgate level if and only if
ditlerentiated inputs are [icks-Allen complements.

We have also compared dynamic equilibrium and optimal allocations in the presence of
dynamic increasing aggregate returns due to [icks-Allen complementarities between differentiated
mputs. Our main results are that Hicks-Alen complementaritics imply that the private return to
mvestment increases with the aggregate fevel ol investment: that intertemporal cquilibrium

ocations are qualitatively similar to dynamic allocations in the agaregative framework: and that

dynamic cquilibria may be globally inefiicient (cconomies may get inefficiently stuck at very low

levels of income); these global inefliciencies cannot be climinated by marginal. Pigouvian tax

policics but must be addressed with nonlinear policy instruments.
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Appendix

Proof of Proposition 3.1. Define V' as the amount of labor employed to produce ditferentiated
inputs usced in the production of consumption goods and V' as the total amount of labor used in the
production of consumption goods. .. N =X+ Furthermore, define /(N .n) as the
maximum amount of consumption goods that can be produced with N units of labor when a
variety 22 of differentiated  inputs is  available. With these  definitions we  obtain  that
f‘( Ny = FOnN' because i) for a civen variety of difterentiated inputs n. the production of
consumption goods is subject to constant returns to scale to the quantities of existing diflerentiated
inputs and labor: i1) the production of existing differentiated inputs is subject to constant returns (o
scale to Tabor: 1it) all intermediate nputs enter svmmetrically into the production of intermediate-
nput composites in (2) and are produced in the same way. Proceeding in exactly the same way for
mvestment goods. using analogous definitions. yields ;}(A\“’.n)” (1(17)\ Ihis implics that the
minimum amount of labor required to produce one unit of the consumption good is cqual to
1/ F (12) and that the minimum amount of labor required to produce one unit of the investment good

is equal to l'(r(il) The minimum amount of labor required to produce the bundle (C.7) is

theretore equal to (') s ()y+ 17 (/(n) {iciency requires that all labor is used in the production of
consumption goods or investment goods. which vields (4). &

Prootof Proposition 3.2. The minimization problem is to choose {£°: nij 1i <1} to

. (T/((T‘l)

. il (o= o

- . ¢ . . N ¢ (. { ( 4 / .

minimize ol J apngdio subjectto £(N UL )= and M :|'[ <m[ ) di
0 LYo

This minimization problem can he split in two stages. First. determine {2 57 < 1} to minimize the
cost of producing 1/ units of the intermediate-input composite. The solution i < n} to this
problem is 7 = (a/a.) "7 Second. determine (L. MY o minimize the cost of producing 1
unit ol the consumption good given the opportunity-cost of one unit of the intermediate-input
composite  «... The solution {2 .30 o this problem  satisties ["',,(;\A//('.[Af”):u‘._‘, and
[;;(,\Aflf'./:"):u. Combined with constant returns o scale of /(M L), this implics that

A\A/(']:_ﬂ”,(AXA["'./:(',\)/ F(MCI0Y is a function of the relative oppertunity-cost of” intermediate-input

. ey . ~ O 0O .
composites «,,/a onty. This establishes (11). Making use of (11) and #,(M", 17 )=a,, vields
"o - - . . ~ —, 00 FC . .
,\// a, I M= = A(a,, la). Rcarmngmg and making use of (M ,L)=1 implies

. . . P - « .
1((1 fa)!a,, which combined with i, =(a, /«.,) M yields (9). &

Proof of Proposition 3.3." The proof of Proposition 3.2 implies that Ma, la)= AVA]('a“ where M©

15 the quantity of intermediate-input composites that minimizes the cost of producing 1 unit of the

“\We thank Guy Laroque for suggesting this proof.
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consumption good. Partially ditferentiating with respect to a,, yields

clog - (cl lay! cloga,, =1+clog M/ cloga,, . (AD)
By definition.
ela, ! a)==clog M/ cloga,, +Clog L/ dloga,, . (A2)

Partially differentiating the Euler identity associated with constant returns to scale of the
consumption-goods technology with respect to «,, vields

M v al oM e vadl T, =0, (A3)

Solving (A2) and (A3) implics clog AVYAN clova,, =—1—(ela,, Ta)=1)(1- ;}(((u /)y which substi-
tuted in (A1) vields

clog A (u,, rayl cloga,, = —(ela,, fay=1(1- .»Al(ub.‘/ la)). (A4)

Partially differentiating (9) with respect to «a,, and making use of (A4) implics (12).

Proot of Proposition 3.4. Let

(7-- l)

() = Aremax /’(n -x). (AS)
v, O£yl
The envelope theorem applied to (3) vields that
)= 1?',”,12] (aheey o —1). (AO)

The first-order condition of (3) and constant returns to scale of the consumption-goods technology
imply that

/:"J“'i [N — /“ ) ([\7)

Combining (A06) and (A7) with (8) yields

P

F(n)=(3"(n)/ ;z)(;'(n\) /[ (o—=1). (AS)

According to (A8) there will be dynamic increasing aggregate returns, #'(n)> 0. if and only if
dlog(3 (1) )/ dlogn+dlog (J(zz)/d ogn>0. The sccond term on the left-hand side of this
incquality can be rewritten as £'(n)/ (o —1) using the analogues of (A3), (A6), and (A7) for

investment goods. To rewrite dlog(3 (n)/ n)/ dlogn, we use that (AS) and (11) imply

200 =)y (A9)

(=)

To sce this. notice that (10) and the intermediate-input technology imply «,,/a=n which



combined with (11) vields that (" F)) FAM LM T F(M L y=a, X" where we made
use of 1«"”(A\AI(‘,1) y=a, and (81 1y =1. Furthermore, constant returns to scale of the

consumption-goods tcchnolow the definition of ¥ (#) in (A3). the definition of F(n) in (3), and
(-1 .o

(2) imply that X/ F(n) = i (1) as one unit of labor produces F(n) units of the consumption
good. This. combined with a,/a=n ]/(lfﬁ), vields ;’(nl ’(1*0)) =
a”_f/(' :nl"(l"ma(iz[ to=h SO Fn)=ad 0/ F(ny. Reeall that « is the }portunit\‘—cost of
labor in terms ol‘umsumption coods and hence that (5) implics ﬁ()z) =« and (}1 (- 7y ().

Difterentiating (A9) with respect to o making use of (A4) and (., / «) in (12). vields

Ll

dlog(E () /) dlogn=—~((a =" =D = 30" TN (o =D = 2 T (o 1)

and hence  that there  will be  dyvnamic  increasing  agoregs
e

e returns i and only if

)/ (o =1 > 0. which vields (13). Ed

S ie 1= An

Discussion of the case where intermediate-input composites are produced according to (17): Tt
1s possible to generalize Propositions 3.5 and 3.6.

248
o

Proposition 3.3 becomes:

>oate returns 1t

Proposition A.1. There will be dynamic increasing azgre

—
o0

a, Jay<y(o=D/(a—-1)

where «,, is the opportunity-cost ot the intermediate-input composite in (17) in terms of
consumption  goods. ('I".'/:/‘IW’-"(I._/. and (g, /a) is detined analogously to  &(a,,/a),

Ca, lay=clogm (a,. L)l Cloga,,.

Proof oi Proposition A.1. Using an argument that is analogous o the proot of Proposition 3.4, we

can establish that there will be dynamic inereasing aggregate returns if and only if &(d,, /a) <

e .

\ /(;z) +o D/ (a=1 . where 0< 8 () <1, E

As expecied. the inequality in Proposition AT shows that if there is a negative direct specialization
cffect. 7 <0, then it is no longer sufficient for dynamic increasing aggregate returns that

differentiated inputs are Hicks-Allen complements. But there still is a link between the degree of

Hicks-Allen complementarity and dynamic increasing aggregate returns: The complementarity
between differentiated inputs now needs to be sufficiently strong, ic. <(d, /a)<y(c—-1)/(a—
to outweigh the negative direct specialization effect.

Proposition 3.0 becomes:

Proposition A.2. There will be dynamic decreasing aggregate returns if

Ca, layz1+y(c~1)/(a-1).



The interpretation and proof of this inequality is analogous to the interpretation and proof of

Proposition A.1.
Proof of Proposition 4.1. From the Lagrangian of the problem
L C.0)=U(C)+ (2 + O)Gm(1 - C/En)) (A10)

we derive the necessary conditions for dvnamic efficiency

P (40 <,<n)( Glnfy jf LD _C
k(] (n) “(n) Fny F(n)
c ; (A/(n) \
L =(A+0) > b
) (/ 0)“”) (b) (A1)
//[G(n)—("f@(—'j ~0) (c)
[(n)

where 4 and 0= 0 denote the continuously differentiable adjoint variables and the Kuhn-Tucker
multiplier associated with the non-negativity constraint on investment. To reduce the necessary
conditions for optimality (Alla)-(Allc) to a dynamic system in the (;.C)-phase plane we
distinguish two cases:

(i) Suppose that < /(i) and hence >0 and 9 =0 Differentiating (A11b) with respect to time

and substituting (21) and (Alla) vielc

C () ALl “Q—L&’M J(C )/ 3 (”)(’S’Q /)\, (A12)
¢ ) ‘(J(”) }1)) L

(if) To characterize the dynamic system on the boundary note from (i) that the boundary is
absorbing for all n such that  p< F'OnGOn/ Iy, This implies that. il ¢, = /(n,) and
p< ()G Fiay) for some 1. then no=n, and .= F(n,) tor all r=r. Integrating (Alla).
and using (ATlb) and ¢ >0 implies that /_ < L"(C,)[j‘(n,)/ (A}(n,) for all r>¢. We theretore obtain
that 0. 1s equal to (U’((,',)17‘(;11)/(:'(/1, ) p - 17"(”,)(\/(17,)/ /7‘(11, Y forall >/, which is inconsistent
with the non-negativity o’ ¢. If. on the other hand. ¢ = F(n,) and p= F'(n)G(n,)! F(n,) for some
£, then 1t s straightforward to check that n, =n,, . = ﬁ'(n,), A= U’((_,',)l}’(n,)/p. and
0.= (L"(C,)/?'(N( )/ (;'(n, )X p— 1?’(17,)(;'(11,‘)/ Fj(nl)) for all 7>¢ satisty (Alla)-(Allc).

Finally. to sec that the transversality condition is necessary. first notice that the optimal path for n,
is bounded above by max(iy.n,). where n,, is defined in (19), and bounded below by ,>0. To
see that the optimal path is bounded above, consider an optimal path that at time ¢ satisfics that
C, < () and n >m,. The neccessary condition in (22) combined with (19) implies that

consumption would be falling forever in this case. This cannot be optimal, however, as the path

Ad



C.=F(n). r=t,is feasible and always achicves higher levels of consumption. It follows that no
optimal path can ever satisfy that €, < F(n,) and », >n,, at some point in time, and that all optimal
paths must be bounded above by max(s,.n,,) . The fact that the optimal path is bounded from below
by 1, >0 tollows from (21). This lower bound combined with [}(n”) >0 implies that the optimal
path C_ satisties U'(C.)<d <w, t=t, for some constant ¢ and some ¢. The upper bound on
U'(C,) tor sulficiently large 7 and the upper bound on the optimal path n_ imply the transversality
condition. (This argument is related to the proof of the necessity of the transversality in Dechert and

Nishimura (1983). Sce also Majumdar (1975) and Majumdar and Mitra (1982).) £l

Proof of Proposition 4.3. Skiba (1978) ecstablishes that if (7..C..4_.0.:0<7} satisfies the
necessary  conditions  for optimality in Proposition 4.1 and (21). and if (19) holds. then
/)J e 7r(I(‘(A':)c/f: L(/?J.(A'ﬂ.;‘.”.&‘) vhere L(e) 1s defined in (A10). Let c’(”;’;”@lf)l and
. L denote consumption. shadow prices. and the value of the Lagrangian at 7 =0 along paths /

and « respectively. Then. Skiba's result and (A11b) imply that

Jo ¢ TU(CHdr = [T U

~ s

if () = (A(I) If (A([)’ # C(S then Skiba's result. (A11b), and strict concavity of U yields

Py e U dr = [ TTU(Chdnp

:U((T'(Z;)_U((A'I‘)*'(/“fo U?)I)(’o( 7)‘(()[)/[1> (/Lo ()r) )(Ju(] '(IS)‘/ ﬁ()
=U(CH - U(CH+U (G - Gy -0 )( —Ch)

>0 (((‘; (<” '(,)41 (({,I)(l(, c”) (1<—(3)

= (U(CH=UConl, =y,

This strict inequality, combined with 7 —( , =0 and strict concavity of (7. implics that path &

vields strictly higher utility than path 7 if zmd onlv if ) <(}). 2
Proof of Proposition 5.1. In cquilibrium. A(2)C = npm' = 100X, where .\ is the amount of labor

employed to produce differentiated inputs used in the production of consumption goods. and
(1 - A(n))C =wl . These cquations allow us to calculate the total labor used in the production of

consumption goods as

X+ I == A/ o) C Ty, (A13)

The same cquations imply C=F(' "X 1 = (C )i n YD 4000 = A(n)) and hence,
q pLy

making use of (26), that wages are



w=(1=An)y/ o)l(n). (Al4)

and. making usc of (A13). that ¢ = £(n)(X" + L) . Similarly.

w/ig=(-=B(n)/c)G(n) (A1)
and 7=GONCY" + 7). Combining these results with labor-market clearing. V' + 7/« Y+ [ =1,
implies (23).

Proof of Proposition 3.2, [t is straightforward to verity that it ¢ = £(n,) and b(n) < p attime 1.
then o= p and C. = F(n,). r=1 . satisty all equilibrium conditions. I C < F(n), then 5= 7>0
and (28) yield ¢ =v. Combined with arbitrage between consumption loans and cquity. this implies

;=117 q+q/q.where 77 denotes operating profits of differentiated input firms.

[T=(p—=y)y(m +m"y={Hn)C+ gB(m) 1)/ on. (A106)

Thus. r=(AC+yBn) ! ogn+q /¢ . Substituting in (30) vields the first part of (31;1). The labor-
market clearing condition in (23) and the irreversibility of the start-up investment imply (31b). Th

price of the investment good ¢ in (34) follows from (A14) and (A13). Finally. the nallonul ncome
account  identity  implies v )/ r=rna.+w. —C. and  therefore ¢ (ny)=
TR _l"jefl"-’(ng_ —C)dr. The necessary condition for optimality of the consumption plan.
ne e ¢ TU(Cy with g the marginal utility of wealth, and (30) with cquality imply
ufmlj’(('t.)n_,v: — 0 as - o, which. combined with (28). (34). 0 < A(n) <1, and 0< B(n) <1.

implies (32). &

Proof of Proposition 5.3. Proposition 3.4 cstablished that (3 () /) /! dn >0 if differentiated
imputs arc Hicks-Alen complements. Analogously. it can be shown that it differentiated inputs arc
Hicks-Allen complements then (.4(i7)/ n)/ dn>0. sce Ciccone and Matsuyama (1996). This
mnplies that it differentiated inputs are Hicks-Allen complements, then A'(12) > 0 which making use
of (26). K(M . Ly=w.and F (M. L)=p, = T )/m' implies 77(n)>0. Combined, these
results imply #(n) = A F(n)/ on is strictdy increasing in it differentiated inputs are FHicks-

Allen complements. 2|
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Figure 2: Dynamically Optimal Allocations with

Input Demand Complementarities.
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Notes: The thick line corresponds to the region where it is optimal to not

invest in differentiated inputs because of low current and future returns.



Figure 1: The Shape of the “Aggregate Production

Function.”
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Notes: [For the one sector model with the consumption goods technology and

mvestment goods technology as specified in (24).



Figure 3: Dynamic Market Equilibria with Input

Demand Complementarities

Consumption

Intermediate Input Variety

Notes: The thick line corresponds to stationary equilibria. For differentiated
input varieties where the thick line and the saddle path overlap, there are

multiple equilibria.



