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Abstract

This paper provides an axiomatic foundation for a maxmin expected utility over a
set of priors (MMEU) decision rule in an environment where the elements of choice are
Savage acts. This characterization complements the original axiomatization of MMEU
developed in a lottery-acts (or Anscom.be-Aumann) framework by Gilboa and Schmeidler
[9]. MMEU preferences are of interest primarily because they provide a natural and
tractable way of modeling decision makers who display an aversion to uncertainty or
ambiguity. Characterizing MMEU in a setting with Savage acts, as we do here, is of
particular interest given a number of recent papers (for example, Ghirardato [6], and
Sarin and Wakker [14]) that point out that there may be real differences when using
uncertainty averse preferences between a two-stage lottery-acts formulation and a one-
stage Savage acts setting. MMEU over Savage acts also appears prominently in related
papers that examine randomization and uncertainty averse decision makers (Eichberger
and Kelsey [4], Klibanoff [11}]).

JEL Classification Number: D81.



1. Introduction

This paper provides an axiomatic foundation for a maxmin expected utility over
a set of priors (MMEU) decision rule in an environment where the elements
of choice are Savage [15] acts. This characterization complements the original
axiomatization of MMEU developed in a lottery-acts (or Anscombe-Aumann (1})
framework by Gilboa and Schmeidler [9]. MMEU preferences are of interest
primarily because they provide a natural and tractable way of modeling decision
makers who display an aversion to uncertainty or ambiguity. A leading motivation
for examining such preferences is the evidence described by Ellsberg [5] and many
afterwards demonstrating that such aversion seems common and is incompatible
with standard expected utility theory. A closely related representation that has
also been used to capture uncertainty aversion is Choquet expected utility (CEU).
CEU was first axiomatized in a lottery-acts framework (Schmeidler [16]) and later
in settings with Savage acts (Gilboa [8], Wakker [17], Nakamura [13], Sarin and
Wakker [14], and Chew and Karni [2}). In contrast, MMEU has never before been
characterized in a setting with Savage acts.

A great attraction of settings with Savage acts is, of course, that no primitive
notion of probabilities need be assumed. That probabilities nonetheless appear
in a representation is then quite satisfying and provides a strong foundation.
However, the interest in a Savage act characterization of CEU and MMEU is not
only philosophical. It is of particular interest given a number of recent papers (for
example, Ghirardato [6], and Sarin and Wakker (14]) that point out that there
may be real differences when using CEU preferences between a two-stage lottery-
acts formulation and a one-stage Savage acts setting. Since MMEU is closely
related to CEU, this suggests value in having a foundation for MMEU in both
settings. CEU and MMEU over Savage acts also appear prominently in papers
that examine randomization and uncertainty averse decision makers (Eichberger
and Kelsey [4], Klibanoff [11]). The latter paper in particular suggests a privileged
role for MMEU over CEU in modeling uncertainty aversion and randomization
simultaneously in a Savage acts setting.

The remainder of the paper presents two overlapping sets of axioms and two
corresponding representation theorems proving the equivalence between these ax-
ioms and an MMEU rule. One set of axioms is appropriate when there exists an
event that is perceived to be unambiguous and that is neither null nor universal
(ie., in the representation, an event that is assigned a fixed probability strictly
between zero and one). The other set of axioms describes the more general case
where only the existence of an event that is neither null nor universal (but not
necessarily unambiguous) is assumed. In the case with an unambiguous event, the



novel axioms are weakenings of Gul’s ([10], axiom 2) act-independence condition.
In the general case, the novel axioms are formulated using standard sequences, a
measurement theory construction (see Krantz, Luce, Suppes and Tversky [12]).
Results in Nakamura [13] and Gilboa and Schmeidler [9] are useful for the proofs.

2. Notation and framework

Q is the set of states. A state in € is represented by w. X is an algebra of
subsets of . FEuents are elements of £. X = [m,M] C R, m < M is the set
of prizes or outcomes. An act f is a function f : @ — X. A simple act is
an act with only finitely many distinct values. A simple act is E-measurable if
{weQ| flw)yeW}leZforal WC X. F is the set of all ¥-measurable acts
defined as the uniform closure in the supnorm of all Y-measurable simple acts.
A constant act f is one for which f(w) =z for all w € Q, for some z € X; we
denote this constant act by z* or simply z when no confusion would result. F* is
the subset of F consisting of all constant acts; note that F* can be identified with
X. For any event B € ¥ and z, y € X, zpy denotes f € F such that f(w) =7
for w € B and f (w) =y for w ¢ B; such acts are referred to as B-measurable.
Z, and Z, denote, respectively, the sets of all positive and all strictly positive
integers. P is the set of all finitely additive probability measures P : ¥ — [0, 1).
Finally, > is a binary relation on F.

Note that this environment is similar to that in Savage [15] with the difference
that we impose more structure on the prize set (X). The important aspect of this
structure is that X is connected and separable. This, together with a continuity
assumption on preferences that we will make below, generate a richness in prefer-
ence equivalence classes that is heavily used in what follows. As a consequence of
this richness in the prize set, we do not need to impose axioms that require the set
of states () to be infinite as Savage does. In fact, other than the uninteresting
case of Q containing only one state, our axioms allow for € to be of any size,
finite or infinite.

As mentioned above, we will analyze two alternative axiomatizations of MMEU
over Savage acts with a set of priors. The first one assumes the existence of an
unambiguous event — that is, of an event that will end up having the same weight
according to every measure in the set of priors used by the decision maker. The
second axiomatization does not assume the existence of such an unambiguous
event, and hence, it is more general. The reason we study the less general case
at all is that in a framework with such additional structure, we are able to write
down somewhat simpler and arguably more attractive axioms.



3. A theory when there exists an unambiguous event

3.1. Axioms
Axiom 1. (Weak order) = is complete and transitive.

Definition 3.1. An ordered null event B € X is an event for which forallz,y,z €
X, zgz ~ ypz whenever x 2y = 2.

Definition 3.2. An ordered universal event B € Y is an event for which for all
z,y,2 € X, zgx ~ zpy whenever z 2y <.

Hence, an event B is ordered non-null if there exist z, y and z in X with z <
y = zsuch that zpz »~ ypz. Likewise, an event B is ordered non-universal if there
exist z, yand zin X with z Ry <z such that zgz ~ zgy. Intuitively, B ordered
non-null implies that the prize given on B matters sometimes; and B ordered non-
universal implies that the prize on B is not always the only thing that matters
to the decision maker. Note that since we impose restrictions on the ordering of
z, y and z, our definitions of null and universal (borrowed from Nakamura {13])
are weaker than the corresponding notions in Savage [15]. Section 5 contains a
discussion of why the ordered notion is appropriate here.

The next axiom is structural and contains two parts.

Axiom 2. (Structure)

(a) z >y=z"~=y"

(b) There exists an event A € ¥ such that A and A€ are non-null and non-
universal.

Regarding part (a), note that this will require preference over prizes to be
increasing in the real number ordering. This is purely a simplifying assumption
which allows the easy identification of the set of equivalence classes and eliminates
the trivial case where preference is never strict. Excepting the trivial case, the
richness and separability of the set of equivalence classes given by this assumption
is already required by the continuity axiom (Axiom 4, below) together with the
assumption that the set of prizes is connected and separable. In part (b), note that
because of the ordering conditions in the definitions of ordered null and ordered
universal events, B ordered non-null does not imply B¢ ordered non-universal,
nor does B ordered non-universal imply B¢ ordered non-null. Therefore it is
not redundant to assume that both A and A are ordered non-null and ordered
non-universal.

The next axiom is a weakening of the act-independence axiom introduced in
Gul [10]. Specifically, it imposes act-independence only for A-measurable acts.
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Axiom 3. (A-act-independence) Let r1, T2, Y1, ¥y2, 21 and 22 € X and let
f = 21472, g = y14Y2 and h = z1422. If f', ¢ € F are such that, for either
B = A or B = A

f(w)~h(w)gf(w) forallwe

and
g (W) ~h(w)gg(w) forallweQ

then,
frgef-d.

Suppose f, g and h are acts and B is an event. We will use the following
terminology: If, for every state w, h (w) is indifferent to the act that gives f (w) on
B and g (w) on B, then we say that his a statewise combination of f and g over
the event B. With this terminology, this last axiom reads: given A-measurable
acts f, g and h and given the event B = A or B = A¢, if f' is a statewise
combination of h and f over the event B and g is a statewise combination of
h and g over the event B, then f is at least as good as g if and only if f!is at
least as good as ¢'. As discussed in Gul [10}, act-independence is analogous to the
independence axiom in the theory of expected utility over lotteries. As we will
see below, assuming A-act-independence will help generate an expected utility
representation for A-measurable acts, thus requiring that a fixed probability be
associated with the event A. It is this aspect of the theory that will be relaxed
in section 4.

The next axiom is a standard continuity assumption. Together with the struc-
tural assumptions on X (crucially that X is a connected and separable set) and
the weak order axiom, it guarantees the existence of a real-valued representation
of preferences and a certainty equivalent of any given act. It also implies that the
utility function, u, in the representation is continuous.

Axiom 4. (Continuity) For all f € F, the sets M(f)={g9€F|lg= f} and
W (f) ={g € F|f = g} are closed.

The following axiom is a monotonicity requirement. Specifically, part (a)
requires that if, in every state, the prize that f gives is at least as good as the prize
that g gives, then, overall, f must be at least as good as g. Part (b) requires this
monotonicity to be strict on ordered non-null and ordered non-universal events
(ie., if f gives a prize strictly better than g on an ordered non-null event or on
the complement of an ordered non-universal event and is weakly better than g
elsewhere then. overall, f must be strictly better than g), subject to ordering
conditions as in the definitions of ordered null and ordered universal. In this



sense, each ordered non-null event (and complement of an ordered non-universal
event) “matter” in determining overall preference.!

Axiom 5. (Monotonicity)

(a) Forall f, g€ F, if f (w) = g(w), for all w € Q then f = g.

(b) If B € ¥ is ordered non-null and z = z and z = y, then xgz = ypz implies
z > y. If B € ¥ is ordered non-universal and ¢ = z and y > z, then zgx = zBY
implies = y.

As is shown in lemma A.12, these first five axioms guarantee the existence of
an expected utility representation for A-measurable acts. That is, there exists a
strictly increasing and continuous function u : X — R and p € (0,1) such that if
z,y, v, w € X then

24y = vaw & pu(z) + (1= p)u(y) 2 pu(v) + (1 - p)u(w).

Moreover, u is unique up to positive affine transformations and p is unique. We
refer to the event A as unambiguous because the decision maker always assigns
the same weight, p, to the event A when evaluating A-measurable acts.

How do preferences extend from A-measurable acts to all acts? From the
above, overall preferences must be a continuous, monotonic, weak order. Fur-
thermore they must satisfy act-independence on A-measurable acts. Where else
must act-independence hold, and when it is violated, what form can the violation
take? Different answers to these questions characterize different functional repre-
sentations of preferences. If (in addition to the other axioms) act-independence
is required to hold for all acts f, g, and h, expected utility preferences result.?
This act-independence is incompatible, for example, with the Ellsberg Paradox.
To characterize MMEU, act-independence must be required to hold on a much
smaller set of acts. What is this set of acts? We know from Ghirardato, Klibanoft,
and Marinacci [7] that the MMEU functional must satisfy additivity in general
only on sets of functions that are affinely related. This concept translates to acts
in the following way, making use of the utility function u as above:

Definition 3.3. Two acts f and g are affinely related if there exist a > 0 and
3 € R such that either u(f(w)) = ou(g(w)) + 3 for all w € Q or u(g(w)) =
au(f(w))+ 3 for all w € Q.

ISince, in any state, preference between prizes is equated with preference between the corre-
sponding constant acts, this axiom also implicitly rules out state dependent preferences.

2For finite state spaces, this is essentially Gul's {10] result, although it is closer to that of
Chew and Karni [2], who, by using — as do we - results of Nakamura [13] are able to dispense
with Gul’s assumption of a symmetric (“half-half”) event.



In other words, f and g are affinely related if either f is a constant utility act
or g is a constant utility act or there is a positive affine transformation relating
the utility f gives in each state with the utility g gives in each state.

The next axiom expresses a limited form of act-independence directly through
preferences (i.e., without referring to the u function). The key step in formulating
the axiom is the use of statewise combinations over the event A to form what
will turn out to be sets of affinely related acts. This requires the following three
definitions:

Definition 3.4. A set S C F contains all statewise combinations over the event
Aif fi, f2€ S, and

f (@)~ fi (@) g fo () forallw € Q
implies f € S.
Recall that F* is the set of all constant acts.
Definition 3.5. Fix f € F. We define
Sf={fyuF~.

Definition 3.6. Let 5/ D S/ be the smallest closed set containing all statewise
combinations over the event A.

As will be shown in the proof of lemma A.35, given an act f, the set 5/ may
be constructed by the following iterative method: at each step 1 = 1,2,3,... we
produce a set Sif in the following way

Sl ={fleF:flw)~f0(w)sf9w), forall w € Q where f7, flesf}
SI={f2eF:f2(w)~flw),flw), forallweQwhere f}, f} es{}

Si={fmeFifr @~ @afi @), forallwe Qwhere mlpptes!

Finally, 5/ = closure (ug};ls{) C F. Observe that in the first step, we take
statewise combinations over the event A of either f or a constant act with either f
or a constant act; so, by the expected utility representation for A-measurable acts,
we end up with either a constant utility act or a positive affine transformation of
the state-by-state utility of f. Either way the resulting acts are affinely related
to f. In the second step, we take any two acts constructed in step 1 and combine
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them statewise. Since both of these acts are affinely related to the act f, the
resulting act will also be affinely related to f. This argument plus continuity
shows that the set 57 consists only of acts that are affinely related to f. In fact,
if f is not a constant act, the set _S-f contains all acts that are affinely related to
f. (This is shown in Proposition A.37 in section A.4.)

Using these sets of statewise combinations, we are ready to state the appro-
priate weakening of act-independence.

Axiom 6. (S-act-independence) For any f, g, h € F such that there exist [,
k€ {f, g} for which f, h € 5" and g, he §k, if f', g’ € F are such that, for either
B =Aor B= A°,

f'(w)~h(w)g f(w) forallw e Q

and
g (W) ~h(w)pg(w) forallwe Q

then,
frgef=g.

S-act-independence requires act-independence only for certain set of acts
f,g,h € F. Using the representation for A-measurable acts and the definition of
§f, it can be shown that the axiom applies only if: (1) h is a constant act; or (2)
h is not a constant act, but f, g and h are pairwise affinely related.

It is useful to compare S-act-independence to the certainty-independence (C-
independence) axiom of Gilboa and Schmeidler [9):

(C-independence) For any acts f and g, any constant act h, and any o € (0,1),
if f', ¢’ are such that,
ff=af+(1—-a)h

and
g =ag+(1—-a)h

then,
frgef =g

Note that the convex combination operation is defined statewise and is well-
defined since acts in their setting are functions from states to probability distribu-
tions over prizes. C-independence relaxes the independence axiom of Anscombe
and Aumann [1] so that it is only required to hold when the third act, h, is a
constant act.



S-act-independence and C-independence are quite similar in form, with two
salient differences. First, statewise combinations over A or A€ replace convex
combinations. Second, as pointed out in possibility (2) above, S-act-independence
applies to some h which are not constant acts. In fact, the first difference leads
to the second one. In an Anscombe-Aumann framework, all probabilities in the
unit interval are available (see also our section 4.1 where a in the constant-
independence and uncertainty aversion axioms may be any number between 0 and
1). Consequently, to express the fact that preference is preserved by homogeneous
transformations (of utility),3 one need only consider convex combinations of the
act in question and the constant act that gives utility 0 in each state. In contrast,
the only effective probabilities that are available through statewise combinations
over A are those of A and A°. So, for example, if the revealed probability of A
happens to be % and we want to show that multiplying the utility of a pair of acts
by % preserves the preference ordering between them, we cannot construct the
“%—acts” through statewise combinations over A without taking combinations of
two non-constant acts. This is why we cannot restrict h to be a constant act in
the S-act-independence axiom. This is the only place where possibility (2) above
is important. (In particular, it is used in the proof of Lemma A.14).

The final axiom, act-uncertainty aversion, restricts the way that act-independence
can be violated. Essentially it requires that the decision-maker weakly like to
smooth utilities across states of the world, since this leaves her less exposed
to any uncertainty or ambiguity about the probability of various states. In an
Anscombe-Aumann framework, Gilboa and Schmeidler’s uncertainty aversion ax-
iom states that if two acts are indifferent, any convex combination of these two
acts should be at least as preferred as either of these acts. The following seems
to be the natural generalization of such an axiom to the Savage acts framework:

Axiom 7. (Act-uncertainty aversion) For all f,g,f' € F, if f ~ g and
ffw)~ fw),9(w) forallwe

then

ff=f

Thus, as in the earlier axioms, statewise combinations over A play the role of
mixtures. These seven axioms lead us to our first main result.

3This is true for an MMEU representation.
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3.2. A Representation Theorem

Theorem 3.7. Let = be a binary relation on F. Then ~ satisfies Axioms 1-7
if and only if there exists a continuous and strictly increasing function u : X —
R, and a non-empty, compact and convex set C of finitely additive probability
measures on % such that

> i dP > mi dP| for all d F.
[f_g]@[rgércl/uol’ _rlgleucl/uog } orall f andg €

Furthermore, there exists an event A € ¥ and a p € (0, 1) such that P € C implies
P(A) = p. Moreover, u(-) is unique up to positive affine transformations and the
set C is unique.

Proof. See section A.2 for the proof that the axioms are sufficient and see
section A.3 for the proof that the axioms are necessary. As the sufficiency proof
relies in part on the sufficiency proof of the more general representation theorem
below, that theorem will be proved first. B

4. A General Representation Theorem

In this section, we provide a more general characterization of MMEU, in that
we no longer require the existence of an unambiguous event. A characterization
without an unambiguous event is of interest given that ambiguity or lack thereof
may truly be in the eye of the beholder. The cost of this greater generality is a
somewhat more complex axiomatization. In particular, the statewise combina-
tions over A which were so helpful in the previous section become much less useful
in the absence of an unambiguous event. We work instead with the somewhat
more involved, and possibly less familiar, tool of standard sequence constructions.

4.1. Axioms

Weak order, continuity, and monotonicity are taken exactly as in the previous
section. Structure, A-act-independence, S-act-independence, and act-uncertainty
aversion of the previous section are replaced by the four axioms below.

Axiom 8. (General structure)

(a) z >y=z" >y~

(b) There exists an event A € & such that A is ordered non-null and ordered
non-universal.
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Note that part (b) requires less structure on the set of events than in the
previous section, in that no requirements are placed on A°.

The next axiom is a weakening of A-act-independence. We will refer to an
act f = r4y as an ordered A-measurable act if x Xy.

Axiom 9. (Ordered A-act-independence)? Let z1, 22, y1, ¥2, 21 and zp € X
be such that z1 < T2, y1 = y2 and 21 < zo. Let f = x14%2, § = y14Y2 and
h = z142>. Then,

o . ' (w) ~ h{w), f(w) forallw €
() if{z wi}zz (i=1.2) and{ g (w)wh(w)jg(w) for all w € Q2

then (f =g« f = g'];

s . f' (W) ~ fw),h(w) forallw e Q
(i) if iz {z i} (1= 1,2) and { g (w)~g (w)‘:h (w) for allw €
then [f =g« f > 4]

Observe that there are two differences from A-act-independence. The first
is the restriction to specific orderings; that is, f, g and h are all ordered A-
measurable acts. The second is that the axiom applies only when either f and
g both dominate h (case (i)) or h dominates both f and g (case (ii)). Within
each case, the only statewise combinations allowed are required to have the less
preferred prizes on the event A (rather than on A°). This is because, in this
more general theory, we do not assume that A° is ordered non-null or ordered
non-universal. Therefore, the restriction on statewise combinations is needed to
ensure that non-zero weight is placed on f and g.

Just as in the previous section, these two axioms together with the axioms
weak order, continuity and monotonicity imply the existence of an expected util-
ity representation. However, the representation here holds only for ordered A-
measurable acts. That is, there is a strictly increasing and continuous function
uw: X — R and a real number p € (0,1) such that for all z, y, v, w € X, if z <y
and v < w then

zay = vaw & pu(z) + (1= p)u(y) = puv) + (1 —p)u(w).

Moreover, u is unique up to positive affine transformations and p is unique.

4This is essentially a restriction of Chew and Karni’s [2] comonotonic act-independence axiom
to the event A and A-measurable acts. We choose the term ordered to distinguish this axiom
from the one that is appropriate for the “reverse” ordering discussed in section 5.
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Observe that the decision maker attaches probability p to the event A when
evaluating ordered A-measurable acts. Thus. while A is not necessarily unam-
biguous, when evaluating only ordered A- measurable acts it behaves as if it were.
This is the weakest version of act-independence for A-measurable acts that is
compatible with MMEU.

Recall that in the S-act-independence axiom, the set 5/ gave us a convenient
way to describe the set of acts that were affinely related to f. Now, since the event
A is not necessarily an unambiguous event, the set 57 need no longer contain only
affinely related acts. This occurs because statewise combinations on ambiguous
events can combine utilities with differing weights depending on the ordering of
the prizes involved. Therefore we will need an alternative approach to identifying
affinely related acts. The approach we follow uses standard sequences.

Definition 4.1. Given B € ¥ which is neither ordered null nor ordered universal
and a and b € X with a = b, we define a standard sequence with respect to a and
b, denoted by SSa ,asaset{a;:a; € X,1€ Z, .} for which either (i) a < a; and
apa; ~ bpaiyq for alli € Z,; or (ii) a; X b and a;gb ~ a;y1a for all 1 € Zyy.

We use standard sequences as rulers with which to calibrate preferences. Any
consecutive elements in a standard sequence are the same “distance” apart, in
that the difference between receiving, say, a;+1 instead of a; on the event B¢
just compensates for the difference between receiving b instead of a on the event
B. Since axioms weak order, continuity, monotonicity, general structure, and
ordered A-act-independence guarantee an expected utility representation for A-
measurable acts, we can translate this notion of distance into utility terms by
forming standard sequences using the event A. In particular, it is not hard to see
that in any standard sequence using the event A,

u(eian) —ulas) = 75 [ula) — u(®)].

Hence, having an expected utility representation for ordered A-measurable acts,
is what lets us associate distance measured by standard sequences with distances
measured by ratios of utility differences.’

Definition 4.2. Given n € Z,., we define SS(n) = SST’j1+l Y {ap} where

ao:manda1=m+%.

SFor an excellent discussion of standard sequences and their use in both preference measure-
ment and other types of measurement, see Krantz, Luce, Suppes, and Tversky [12].
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{5S8(n)}>, is a sequence of finer and finer grained standard sequences. As
n grows large, we can use these rulers to measure more and more accurately the
ratios of utility differences between any two pairs of prizes. Using this idea, we
state an independence axiom that replaces S-act-independence.

The easiest way to understand this axiom is by thinking about it in terms of
utilities. Fix acts f, g, f/, ¢’ and a constant act h. The idea is that for all w,
if f' and ¢’ are such that u (f’ (w)) = au(h) + (1 - a) u(f(w)) and u (g (w)) =
au (h)+(1 — a) u(g (w)) for some a € (0,1), then (assuming u (h)—u (f (w)) # 0),

u(f @) —u(f @) _
u(h) —u(f(w))
and, (assuming u (h) — u (g (w)) # 0),

u (g (W) —ulg (@)
u(h) —u(gW))
In the limit, the standard sequence approximations of these ratios are correct.
In this way we can “check” to see if f' and g’ are a given convex combination
of h with f and g. If so, the axiom requires that the preference between f and
g be the same as the preference between the convex combination. Thus, this
axiom is a standard sequence approach to implementing Gilboa and Schmeidler’s
C-Independence axiom.

Axiom 10. (Constant-independence) Let f, g, f' and g € F,he F*. For
eachwe Qandn € Zyy

(i) let a; () € SS(n) be such that a; (n)41 = flw) = a; m
(ii)  let ay (n) € SS(n) be such that a; (ny4+1 = fl(w) = ay
(iii) let a;, )y € SS(n) be such that a;, (ny41 = g(w) = a;,my
(iv) let aj () € SS(n) be such that a;, (n)41 = g (W) = ajr (n
(v)  let aggpy € SS(n) be such that ay(ny+1 = h = ag(n)-
If for some « € (0,1), we have
for all w € Q such that f(w) = h, limp o 2= = o

and

for all w € Q such that f(w) ~h, f'(w)~h

and i1 ]
for all w € Q such that g(w) » h, lim, . J"‘_‘k'((nn))__' j]; ((nn)) =
and

for all w € Q such that g(w) ~h, ¢'(w)~h

14



then,
frgef =g

Recalling the discussion of S-act-independence, note that since a may be any
element of (0,1), constant-independence need only consider cases where h is a
constant act.

Our final axiom is a standard sequence approach to uncertainty aversion.

Axiom 11. (Uncertainty aversion) Let f, g, he Fand f ~g. Forallwe )
andn € Z4 4,

(i) let a; (n) € SS(n) be such that a;_(ny+1 = f(W) = Qi (n)
(i) let aj (n) € SS(n) be such that aj,(n)+1 = g(w) = aj_(n)
(iii)  let ag_(ny € SS(n) be such that ag_(n)+1 = h(w) Z @k, (ny-

If for some « € (0,1) we have

ko(n)—iw(n) _

Foln)—tu(n) &

for all w € Q such that f(w) » g(w), limp—

and
for all w € Q such that f(w) ~ glw)., h{w)~ f(w)

then,
h = f.

Again, the easiest way to understand this axiom is by thinking about it
in terms of utilities. Here, if f ~ g and h is such that for all w, u(h(w)) =
au(g(w)) + (1 — ) u(f(w)) then the axiom requires h = f.

4.2. A Representation Theorem

Theorem 4.3. Let = be a binary relation on F. Then = satisfies axioms weak
order, continuity, monotonicity, general structure, ordered A-act-independence,
constant-independence and uncertainty aversion if and only if there exists a con-
tinuous and strictly increasing function u : X — R, and a non-empty, compact
and convex set C of finitely additive probability measures on & such that

> ] > mi .
(fr-gl & [r}glencl/uofdP_r}gleucl/uogdP} for all f and g € F.

Furthermore, there exists an event A € ¥ for which 0 < maxpec P(A) < 1.
Moreover, u (+) is unique up to positive affine transformations and the set C is
unique.

Proof. See section A.1 for the proof that the axioms are sufficient and see
section A.3 for the proof that the axioms are necessary. |
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5. Discussion and Conclusion

5.1. Discussion of null and universal events

In the above theory, we used the concepts of ordered null and ordered universal
events. These concepts differ from the more familiar notions of null and universal
as in Savage [15]. A natural question is why the ordered notion is appropriate in
our setting and what occurs when an ordered non-null and ordered non-universal
event does not exist. To address this issue formally, consider the following al-
ternative definitions of null and universal (including ordered null and ordered
universal as above):

Definition 5.1. A Savage null event B € ¥ is an event for which for all z,y, z €
X, rpz ~ ypz. An ordered null event B € ¥ Is an event for which for all
r.y,z € X, zpz ~ ypz whenever r Xy = z. A reverse-ordered null event B € &
is an event for which for all z,y,z € X, xpz ~ ypz whenever z Jy 2 .

Definition 5.2. A Savage universal event B € £ is an event for which for all
z,y,z € X, 2t ~ zpy. An ordered universal event B € Y is an event for which
for all z,y,z € X, zpr ~ 2py whenever z <y <. A reverse-ordered universal
event B € ¥ is an event for which for all z,y,z € X, zpx ~ zpy whenever
Ty=z

Hence, an event B is Savage non-null if there exist z, y and z in X such that
TRz ~ ypz, is ordered non-null if there exist z, y and z in X with z <y < z such
that zgz ~ ypz and is reverse-ordered non-null if there exist z, y and z in X with
z <y < z such that zpz = ypz. Likewise, an event B is Savage non-universal if
there exist z, y and z in X such that zgz ~ 2y, is ordered non-universal if there
exist z, y and z in X with z <y <z such that zpz = zpy and is reverse-ordered
non-universal if there exist z, y and z in X with z <y = z such that zgz ~ zpy.

Since the Savage notions of non-null and non-universal are the most permis-
sive, we begin by asking what can be said in the case where there does not exist an
event that is Savage non-null and Savage non-universal. In such a case, an event
will either always get zero weight or always get all the weight in determining pref-
erences over acts. There will never be any trade-off between prizes on one event
and prizes on another. Therefore, preferences will only be ordinally determined,
and thus the utility function, u, in the representation will be determined only up
to increasing transformations. There will be a unique probability measure that

16



assigns weight 0 to all Savage null events and weight 1 to all Savage universal
events.

To explore the remaining possibilities, assume that there exists a Savage non-
null and Savage non-universal event A. Since A is Savage non-null, there exist z,
y, z such that 4z = yaz. Let’s consider the possible orderings of z, y and 2:5
(i) If {z,y} = = then A is reverse-ordered non-null.

(ii) If z = {z,y} then A is ordered non-null.

(iii) If z = z > y then, by monotonicity, part (a) and x4z » yaz, we have
Taz > yaz. Also by monotonicity, part (a), T4z = 242 = YAz, with at least one
of the preference relations being strict. Hence, there are two cases:

Case 1: 42 > z42z. Here, A is reverse-ordered non-null.

Case 2: z42 > yaz. This implies A is ordered non-null.

Thus, A is either ordered or reverse-ordered non-null.

Since A is Savage non-universal, there exist z, y, z such that zaz = z4y. Let’s
consider the possible orderings of z, y and z (again assuming x = y):
(i) If {x,y} = z then, A is ordered non-universal.
(ii) If z = {z.y} then, A is reverse-ordered non-universal.
(iii) If £ > z > y then, by monotonicity, part (a), 24z > z4y. Also by mono-
tonicity, part (a), 24T = zaz = 24y, with at least one of the preference relations
being strict. Hence, there are two cases:

Case 1: z4x > z4z. Here, A is ordered non-universal.

Case 2: z42 > z4y. This implies A is reverse-ordered non-universal.
Thus, A is either ordered or reverse-ordered non-universal.

Therefore, assuming A Savage non-null and Savage non-universal implies that
at least one of the following four possibilities must be true:
(1) A is ordered non-null and ordered non-universal.
(2) A is reverse-ordered non-null and reverse-ordered non-universal.
(3) A is ordered null and reverse-ordered universal.
(4) A is reverse-ordered null and ordered universal.

Case (1) is the one considered in the general axiomatization in the main body
of the paper. Case (2) can be handled with a few small modifications to the
axioms. Specifically,

1. replace “ordered” with “reverse-ordered” in the general structure axiom,

2. replace monotonicity, part (b) with the following:

SWithout loss of generality, we may assume z > y, as ¢ and y play symmetric roles in all
that follows.

17



If B € ¥ is reverse-ordered non-null and z <z and z <y, then zgz = ypz
implies z = y. If B € ¥ is reverse-ordered non-universal and z < z and
y = z, then zpz = zpy implies = = y. and,

3. replace ordered A-act-independence with the following:
Axiom 12. (Reverse-ordered A-act-independence) Let 1, T2, y1, Y2,

z; and zp € X be such that 71 = T2, y1 = y2 and 21 = z2. Let [ = z14%2,
g = y14Y2 and h = z1422. Then,

o . f (W) ~ h{w) 4 f(w) forallw e 2
(i) if{zi, yi} =2 (0=1,2) and { g (w) ~ h(w)::g(w) for all w € §2

then [f = g< f' = 4¢'];

(i) if z; < {xi, yi} (1=1,2) and {
then [f mge f = 4]

f' (W)~ f(w)yh(w) forallw € Q
g (W) ~g W), h(w) forallw e Q

With these modifications, the axioms are equivalent to the same represen-
tation as in the general theorem except that 0 < minpec P (A) < 1 instead of
0 < maxpec P(A) < 1.

Case (3) implies all weight is placed on the more preferred prize when eval-
uating A-measurable acts. Similarly, case (4) implies placing all weight on the
less preferred prize when evaluating A-measurable acts. Therefore, in these cases
there is no trade-off between any two events, and preferences are only ordinally
determined.

In sum, if we wish to have an MMEU representation with meaningful cardinal
preferences, then we need an event that is non-null and non-universal according
to either the ordered or reverse-ordered notions. Note that the structure axiom,
part (b) in the development with an unambiguous event is equivalent to requiring
that A is non-null and non-universal in both the ordered and reverse-ordered
sense. In the context of expected utility, any Savage non-null and non-universal
event must be both ordered and reverse-ordered non-null and non-universal.

5.2. Conclusion

In this paper, we have provided two axiomatizations of MMEU over Savage acts.
These axiomatizations require a rich prize space and continuous preferences, but
place virtually no restrictions on the state space. The key axioms in the treatment
with an unambiguous event were S-act-independence and act-uncertainty aver-
sion, each of which weaken the act-independence condition in Gul [10]. Another
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work that weakens act-independence is Chew and Karni [2]. They characterize
CEU on a finite state space using a comonotonic act-independence axiom. In the
presence of our other axioms, S-act-independence is weaker than comonotonic
act-independence.

In the treatment without an unambiguous event, we use ordered A-act-independence
to give meaning to standard sequences as a way of measuring preference distances.
Then, using standard sequences, we are able to state the needed independence
and uncertainty aversion axioms. In both axiomatizations, the essential feature
involves deriving a cardinal utility function over prizes and showing that prefer-
ence between two acts is preserved under convex combination (in utility space)
with a third act that is affinely related to the first two.
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A. Proofs

A.1. Sufficiency of the Axioms for the General Representation Theo-
rem

Given any f € F, denote its certainty equivalent by m (f). That is, m (f) is an
element in F* such that m (f) ~ f. For 21,22 € X, B € X, define m? (z1,17) =
m (z1577). The next lemma shows that a unique certainty equivalent exists for
each act.

Lemma A.l. For each f € F, m(f) exists and is unique.

Proof. By Axiom 5 (monotonicity), part(a), the sets M (f), = {z € X|z = f}
and W (f), := {z € X| f = x} are non-empty. By continuity, both of these sets
are closed. By weak order, M (f)_UW (f), = X. Therefore, since X is connected,
M (f), "W (f), # 0 and there must be at least one z € X such that z ~ f.
Suppose there are two such prizes, £1 < z2. Then, by the structure axiom, part
(a), and weak order, z; < z2 ~ f, a contradiction. Wl

Definition A.2. We say that > is bounded if, for each f € F, there are z,y € X
such that x = f = y.

Consider the following axioms following Nakamura [13]:

Al. < on F is a bounded weak order.

A2. For fe F,BeXand z,y,z € X, if zpz X f < ypz then f ~apz for
some a € X.

A3. If B € ¥ is ordered non-null and r < z and y < z, then z <y if and only
if 2z < ypz; if B € ¥ is ordered non-universal and z < z and z <y, then z <Xy
if and only if zpz <X zpy.

A4. If r <y and B C C then z¢cy X TRY.

A5. Every strictly bounded standard sequence is finite.

A6. If £1 < 22 and y; < yo with z; < y; for i = 1,2, then
By

m?B (z1,72) g mP (y1,y2) ~ mP (21, 91) g M (22, 92) -

The next two lemmas show that our axioms for the general case imply Naka-
mura’s Al-A5 and A6 with B = A. This allows us to use several lemmas from
Nakamura [13] to show that an expected utility representation for ordered A-
measurable acts exists.
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Lemma A.3. Axioms weak order, continuity, monotonicity, general structure
and ordered A-act-independence imply Al-AS.

Proof.
e (Axioms=-A1) This is implied by weak order and monotonicity.

e (Axioms=A2) Consider W(f)p = {b € X | bgz < f} and M(f)p ={b €
X | f X bpz}. W(f)p and M(f)p are non-empty because z € W(f)p and
y € M(f)p by assumption. We want to show that W(f)p is closed. To
do this we will show that X — W(f)p is open, where X — W(f)p = {b €
X |bgz > f}. Let W(f)={g€F|g> f}. Lettbein X — W(f)p. (If
such t does not exist then X — W(f)p = 0 and W(f)p = [m, M] which is
closed, so we are done.) Since t € X — W(f)p, we have that tpz € W(f)°.
By continuity, we have that W(f)¢ is open. Hence 36 > 0 such that Vg €
Us(tpz) we have that g € W(f)¢, where Us(tpz) ={g € F ||| g—tpz ||< 6}
Consider now the set Vs(tgz) = {b € X ||| bgz — tpz ||[< 6}. Note that
{g € F|g=bpgz for some b € Vs(tpz)} C Us(tpz). Since Vg € Us(tpz) we
have that g > f, we must have that Vb € V5(tpz), bz > f, implying that
X —W(f)p is open. Hence W(f)p is closed. Similarly M(f)p is closed. By
weak order, W(f)gUM(f)p = X. Since X is connected, W(f)sNM(f)p #
(. Therefore there exists a € X such that agz ~ f.

e (Axioms=-A3) This follows from Axiom 5 (monotonicity).
e (Axioms=A4) This follows from Axiom 5 (monotonicity), part (a).

e (Axioms=>A5) Let B € ¥ be neither ordered null nor ordered universal
and fix a,b € X such that a = b. Let {ai} be a strictly bounded standard
sequence with respect to a and b. Let’s assume first that {a;} is such that
a < a; fori € Z,4, and aga; ~ bga;4+; for i € Z4,. Since B is ordered
non-null and b < a < a;41, monotonicity implies apa; ~ bpa;y1 < apai+1.
Thus, a; < a;41 for i € Z, 4 and {a;} is an increasing sequence. As {a;}
is strictly bounded it must in particular be bounded above. Hence, if {a;}
has infinitely many terms then it must converge. Towards a contradic-
tion, assume {a;} has infinitely many terms. Let a* = lim; .o a;. Con-
sider W(bga*). Since for 1 € Z44 we have that aga; ~ bpaiy1 < bpa*,
we have that for each i € Z,4, aga; € W(bpa*). Take limits to obtain
lim,_.., aga; = aga*. By continuity, we have agpa* € W(bga*). That is
aga* < bga*. Now, B ordered non-null, b < a and {b,a} = a”, together
with the monotonicity axiom, implies bga® < apa*, which is a contradic-
tion. So {a;} must have only a finite number of terms. The other case where
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{a;} is such that b > a; for i € Z4, and a;pb ~ a;+1Ba for i € Z+ follows
from a similar argument making use of the fact that B is not universal and
{a;} is decreasing and bounded below. Note that Nakamura's definition
of a standard sequence also allows for decreasing {a;} when a < a; and
increasing {a;} when b = a;. It is easy to adapt the arguments just given
above to show that {a;} must be finite in these cases as well. B

Lemma A.4. Axioms weak order, continuity, monotonicity, general structure
and ordered A-act-independence imply A6 with B = A.

Proof. We divide the argument into two cases depending on preference between
y1 and m™ (z1,22). The argument in each case will require two applications of
ordered A-act-independence.

Case 1: y1 = m™ (z1,12). Let f, g and h € F be such that:

[ = zi1a%2
g = mA (1‘17*22)
h = y1ay2.

Consider f’ and ¢’ € F with, for all w € Q,

/ ) ) . T1AU ,weA
P~ feahe) = { e el

A A
"w) ~ w), h = mA (21, 22) 41 W E
7 ~ g h) { Tl el

Since f ~ g, ordered A-act-independence implies f' ~ ¢’. That is,
mA (l‘lvyl)A mA (552»92) ~ mA (mA (xl', I?) 7y1)AmA (mA (xlaIQ) ay2) -

Now, let fA, g and h € F be such that:

f Y1AY2
= m*(ywp)
h‘ = mA (CL'],IQ)~

Consider f' and §' € F with, for all w € 9,

7l W o ra _ mA(Ilvl‘Z) n ,UJGA

fllw)y ~ hw)flw) = {mA(Jfl,fL'Q)iyg e AC

A
(

7w ~ hW,dw) = m*(x,z2),m* (W1,%2).
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Since fw g, ordered A-act-independence implies fA’ ~ g. Hence,
mA (mA (x1,22) ,yl)AmA (mA (z1,72) ,yg) ~m? (T1,22) 4 mA (y1,y2) -
It follows that
mA (z1,72) 4 m? (y1,y2) ~ m? (1, yl)AmA (z2,y2) , which is A6 with B = A.

Case 2: m* (x1,19) = y1. Note that y; = z1 together with m? (z1,22) > ¥
implies x5 > y1. Also, z2 = y1 together with zo >= x7 implies x5 = mA (z1,91)-
Now, let f, g and h € F be such that:

f = T1am
g = m*(z1, 1)
h = z24y2.

Consider f’,¢ € F with, for all w € ,
€A
/ w ~ w h w — mlAIQ ’ w
P~ fan) = {7 e
{ mA (z1,y1) 422 ,wEA
mA (z1,01) ay2  ,w € A°
Since f ~ g, ordered A-act-independence implies f' ~ ¢’. That s,

m? (z1,72) 4 m# (y1,92) ~ m? (mA (z1,91) ,ﬂﬁz)A m# (mA (z1,11), y2) .

Finally, let f, g and h € F be such that:

J? T2AY2
g = m” (z2,y2)
ho= m?(z1.m).
Consider f', § € F with, for all w € Q,
" -~ =~ mA (x1, o ,wEA
i)~ hlolafl) = { m# Eri,zigﬁ yrj ,wE A
T ~ hwadw) = mA,p)m* (@2,0),we

Since fw g, ordered A-act-independence implies f’ ~ ¢ . Hence,

m* (mA (z1.y1) ,22) ,m* (m? (z1.72) ,y2) ~ m4 (z1,y1) 4 m” (22, y2) -

It follows that
m? (x1,72) 4 m? (y1, y2) ~ m? (1,91) 4 mA (x2,72), which is A6 with B=A. R
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Lemma A.5. There is a strictly increasing, continuous function u : X — R and
a real number 7 (A) € (0,1) such that for all z, y, v, w € X, ifr <y and v X w
then

TAY Z VAW
& mAu@E)+1-7(A)uly) 27 (A)u)+ 1 -7(A)u(w). (A1)

Moreover, u is unique up to positive affine transformations and 7 (A) is unique.

Proof. Existence of a function u and a real number 7 (A) satisfying all the
conditions of the lemma other than strict monotonicity and continuity, follows
from Lemmas A.3 and A.4 and Nakamura {13}, Lemmas 1, 2 and 3.

To see that w is strictly increasing, assume x > v. By part (a) of the general
structure axiom, we have z > v. Apply the already proven part of the lemma
toz, y =, v, w = v to obtain u(z) > u(v). Continuity of u follows from the
following argument: Since u is strictly increasing, the only discontinuities can
be (an at most countable number of) jumps up. Therefore, limits from above
and from below exist at each point in X. Suppose there is a jump of height
§ > 0at & € X. Consider the case where u (%) = lim,_;+ u(y). By definition
of 6, u(#) — 6 = limy_;-u(y). By (Al), if y < &, then yaZ ~ z only if
7 (Auly) + (1 =7(A)u(Z) = u(z). Since u(z) — 6 = lim,_ ;- u(y), for any

. ~ A ~ - . 1—7(A)
e > 0, there exists § < 2 such that u (§) > u(Z)— 8§ —¢. Then, fixing ¢ < ~—=5-9,

u(@) > m(Au@)+ 1 -7(4)u(Z)
> 7(A)(u@)-6—¢e)+ (1 —7n(A)u(z)
= u(z)-n(A)(d+¢)
> u(z)—96
= ygr;l_u(y)

But this implies that § 4% has no certainty equivalent, contradicting Lemma A.1.
The case where u(Z) = lim, ;- u(y) generates a contradiction by a similar
argument. This shows u can have no jumps. W

1

Remark 1. v~ is continuous.

Proof. Since u is strictly increasing and continuous, so is u™'. Il
Now we use this u function to show the implications, in utility terms, of the
constant-independence and uncertainty aversion axioms.
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Lemma A.6. Let f,g€ F,he F* and a € (0,1). If
(i) ' € F is such that, for all w € £,

u(f'(w)) = au(h) + (1 - a)u(f(w))

and
(ii) g’ € F is such that, for all w € Q,

u(g'(w)) = ou(h) + (1 — aju(g(w))

then
frgef=4d.

Proof. Observe that if a;(n), @, (n)+1 € SS(n) and 4,(n) > 1, then

™ (A) u(m + %) + (1 =7 (A)wlas, ) =7 (A) u(m) + (1 = 7 (A))u(ay, (ny+1):

Therefore,

=)
=

w( @i, (ny41) — W@y, my) = 1_—7r—(A—) u(m + '71,;) —u(m)| .

Define A(n) € R by A(n) := 1f£r/z34) [u(m + £) —u(m)].

Foreachw e QandneZ,

(i) let a; (ny € SS(n) be such that a; )41 = flw) = a;, )
(ii)  let ai (ny € SS(n) be such that ai (n)+1 = f’(w) Z Qi (n)
(iil) let a;, () € SS(n) be such that a; n11 = 9(w) = a;,(n)
(iv) let aji(n) € SS(n) be such that ay (my+1 = §' (W) = ajr ()
(v)  let ag) € SS(n) be such that agmy1 = b = axm)-

If f(w) # m . for n large enough, this implies that (i.,(n)—1)A(n) < u(f(w))-
u(m + 1) <idu(n)A(n). If f(w) = m then u(f(w)) = u(m) and i,(n) = 0. In

either case since lim, .., A(n) = 0 and u is continuous, these in turn imply that

limy o0 1, (N)A(R) = u(f(w)) — u(m).
We can show using similar arguments that lim, .. i,,(n)A(n) = u(f'(w)) —
u(m), limn—ss ju (R)A(n) = u(g(w))—u(m), limn—oc j,(n)A(n) = u(g'(w))—u(m)
and lim, . k(n)A(n) = u(h) — u(m).
First, let’s look at the case where u(h) # u(f(w)). Observe that feln)—tuln)

k(n)—i,(n)

i, (n)A(n)—iw (n)A(n) . i (n)—i.(n) __ ;
AT ATy - But then limn .o Sry=ry = iMn—oc YAy =, (myA M)
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%_)u_—u(f()—j)) = a. Second, look at the case where u(h) = u(f(w)). In this case

f(w) ~ flw) ~h.
Similarly, let’s look at the case where u(h) # u(g(w)). Observe that —;67;5—]]“77—?)2 =

i (M A(n)— . (1) A(n) ; () —Jw(n) _ (TL)A(n) Jw(ﬂ)A n) _
R Ay But then imn—oo F5r50y = limn—oo %E5RG oAt
2(—};‘;)—)1%)'2 = o. Finally, look at the case where u(h) = u(g(w)). In this case
g'(w) ~ g(w) ~ h.

Applying the constant-independence axiom yields f = g < f' = ¢'. B

Lemma A.7. Let f.g € F and a € (0,1). Suppose f ~ g. If h € F is such that,
for all w € €,

u(h(w)) = au(g(w)) + (1 — a)u(f(w))

then
h - f.

Proof. By the arguments in the proof of Lemma A.6, the hypotheses of the
uncertainty aversion axiom are satisfied for such f, g, h € F'. Applying uncertainty
aversion yields h > f. H

We next construct a real-valued representation of preferences over acts by
fixing u and assigning each act the utility of its certainty equivalent.

Lemma A.8. Given au: X — R from lemma A.5, there is a unique J : F' —
R such that:

(i) for all f and g € F, f = g if and only if J (f) > J (g);

(i) for any constant act f =z € X, J(f) = u(z).

Proof. For constant acts, we uniquely define J () by (ii). For general acts f € F,
let J(f) =u(m(f)). Clearly, J(-) satisfies (i) and is unique. H

Remark 2. For any z, y € X such that x <y,
J(zay) =7 (A)u(z) +(1-7(4))uly)
where 7 (A) is given by Lemma A.5.
Proof. Let u be the utility function used in the construction of J. By Lemma
A.5, x4y ~m? (z,y) implies u (m? (z,y)) = 7 (A) u(z) +(1 —7(A))u (y). Note

that J has been constructed so that J (zay) = u (mA (z,y)). Hence, J(zay) =
r(Au(z)+(1—-7m(A))u(y). W
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Let K = u(X). Since u is continuous, K is a closed interval in R. We
normalize u such that K = [~2,2]. Let B be the space of bounded (in the
supnorm), Y-measurable, real valued functions on 2. For v € R, we denote by v~
the element of B that assigns 7 to every w. Let B (K') be the subset of functions
in B with values in K. Observe that for f € F. uo f € B(K), and for d € B (K)
there exists f € F such that uo f = d. Now we use this observation to construct
a functional on B (K) that represents preferences.

Definition A.9. For f € F we define the functional I : B(K) = Rby I (uo f)=
J(f)-

Since J represents preferences, it is clear that I does as well. The next lemma
shows that I satisfies several important properties, and that these properties may
be preserved when extending I from B (K) to all of B.

Lemma A.10. I : B(K) — R may be extended to all of B in such a way that:
(i) I(17) =

(ii) (I is monotonic) For all a, b € B, a > b implies I (a) > I (b);

(iii) (I is homogeneous of degree 1) For allb € B, a > 0, I (ab) = ol (b);
(iv) (I is C-independent) For allb € B,y e R, I (b+~*) =1 (b)+1(v*); and
(v) (I is superadditive) For all a, b€ B, I (a+b) > I (a) + I (b).

Proof. First note that there exists z € X such that u(z) = 1. By construction
then, I(1*) = J(z*) = u(x) = 1. Also, monotonicity of I on B (K) follows
directly from Axiom 5. We will now show that I is homogeneous of degree 1 on
B (K).

It suffices to prove homogeneity for a € [0,1], as @ > 1 then follows by
considering the reciprocal. First note that there exists z € X such that u (z) = 0.
Suppose for a, b € B(K), a = ab for some « € (0,1). (The cases a = 0 and
a =1 are trivial.) Let f, g € F be such that uo f =a and uo g = b. Then for
all w € Q, u(f(w)) = au(g(w)) + (1 — a)u(z). Now let y € X be such that y ~ g.
Also let z € X be such that u(z) = au(y) + (1 — a)u(z). By Lemma A.6, g ~ y
implies f ~ z. Thus, I(a) = J(uo f) = u(z) = auly) = aJ(uo g) = al(b).

This shows that I is homogeneous of degree 1 on B (K). Next, we extend
I to all of B by homogeneity. Such an extension preserves homogeneity and
monotonicity. It remains to be shown that I is C-independent and superadditive.

We now demonstrate C-independence of I. Consider a € B and v € R. By ho-

mogeneity, we may assume without loss of generality that max (ljlrm, ﬁ) aé€
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B (K) and max (1—_71(,4_)’ F%Zi) v* € B(K). Note that by the structure of B (K)
(in particular the fact that K is an interval around 0), it follows that ﬁma €
B (K) and ﬂ%ﬂ'* € B(K). Define 3 = I( — ) By homogeneity, 5 =
m] (a). Let f € F besuch that uo f = ma. Let y, 2 € X satisfy u (y) =
3 and u(z) = Rlzﬂ* By construction of I, J(f) = B and J (y) = u(y) = 5,
implying f ~ y. Now, let ¢’ € F* be the constant act such that, for all w € Q,

u(g (@) =m(A)ulz)+ 1 -7 (A)uly).

Thus, u (g’ (w)) =7+ (1 -7 (A4))8=1(y")+1(a).
Now, let f' € F be an act such that, for all w € Q,

u(f (W) =m(Au(z)+ 1 -7 (A)ulf(W).

By Lemma A.6 and the previously noted fact that f ~ y, we have f' ~ ¢’
Therefore, I (a +~*)=J(f')=J(¢') =1(a)+ I(y*) and I is C-Independent.

Finally, we show that I is superadditive. Consider a, b € B. As above, by ho-
mogeneity we may assume without loss of generality that max (1—_71725, ;(1;47) a€
B(K) and max (1 =) W(A )b € B (K). Specifically, this implies 1_+(A)a €
B(K) and W(A —=b € B(K). Let acts f, g € F be such that uo f = #A)b and
uog = #a The argument proceeds by considering the possible orderings of
I (=2mya) and I (kb).

Case 1: 1 (ma> -y <ﬁb) Then f ~ g. Define the act f by, for all
w € £,

u(f'(w)) = (1 = m(A)ulgw)) + m(A)u(f(w)).

Thus, uof’ =7 (A) (uo f)+(1 — 7 (A)) (uog) =b+aand J (f') =1 (uo f')

I{a+b). By Lemma A.7, we have that f' > f. Therefore, I (a +b) = J(f')
—m(A)+m(A —7(A
J(f) = 251 () = (%)J(b) - (ﬁ)](b) L T(b) = I(a)+1(b)

since I (a) = (1 -7 (A)) I (ﬁb).

Case 2: 1( ) > 1 (=2me). Let vy =1 () =1 (=pa) > 0. Let
a +v*. By C-independence of I, I (T—T%WC) =1 (tﬁa) +

Vol

- w(A)C: jp W(A)
= 1( b) Bycase1,1(c+b) > I(c)+1(b). ButI(c+b)=1(a+(1—7(A)y" +b)=
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I (a+b)+(1 — 7 (4))~y by C-independence. Similarly, I (¢) = (a + (1-m(A)Y") =
I(a)+ (1 —n(A)~y. Thus, I(a+b)+ (1 —7(A)y=1(c+D) >I{(c)+1(b)=
I(a)+I(b)+ (1-7(A)y. Thus, I (a+b) > I(a)~+I(b). The third and final

1

case, where [ (W—(lz)-b) <1 (ma), is proved similarly. This shows that I is

superadditive and completes the proof of the lemma. W

The importance of Lemma A.10 is made clear by the next result which states
that such an I may be written as the minimum expectation over a compact and
convex set of finitely additive probability measures.

Lemma A.11. Let I : B — R be a functional satisfying:
(i) 1(17) = 1;
(ii) I{a) > I(b) ifa > b for all a,b € B;
(iii) I{a +b) > I(a) + I() for alla,b € B;
(iv) I(aa+ 31*) = al(a) + B foralla € B, a >0 and 3 € R.
Then there exists a unique convex and w*-compact set C C P such that

I(a):rglérCl/adP for alla € B.

Proof. See Gilboa and Schmeidler [9], Lemma 3.5. B

Observe that (i) - (v) in Lemma A.10 imply that I satisfies (i) - (iv) of
Lemma A.11. Therefore, we may represent = on F by J(f) = I(uof) =
minpec [ u o fdP with C unique, convex and w*-compact and u strictly in-
creasing, continuous and unique up to positive affine transformations. This rep-
resentation together with the representation (A.1) in Lemma A.5 imply that
maxpec P (A) = 7 (A) and 0 < maxpec P (A) < 1. This proves sufficiency of the
axioms in Theorem 4.3.

A.2. Sufficiency of the axioms for the case when there exists an unam-
biguous event

The proof will proceed by showing that the axioms in this case imply the axioms
for the more general case.

Remark 3. Observe that the structure axiom implies the general structure ax-
iom and A-act-independence implies ordered A-act-independence. Therefore, the
proofs of Lemmas A.1-A.8 apply to the unambiguous event case as well and we
have a strictly increasing, continuous u and a unique J defined from u and an 1
defined from u and J such that 7(1*) =1 and I is monotonic.
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The next lemma shows that there exists an expected utility representation not
only for preferences over ordered A-measurable acts (as in the general theorem),
but for preferences over all A-measurable acts. This will mean that the event A
will always be assigned the same probability in the representation, and thus will
be our unambiguous event.

Lemma A.12. Axioms weak order, structure, continuity, monotonicity and A-
act-independence imply the representation (A.1) holds for all z,y, v, w € X.

Proof. By the previous lemma, (A.1) holds for all z,y,v,w such that y > z
and w > v. Note however that A-act-independence implies that a version of
ordered A-act-independence with A€ replacing 4 holds as well. Thus the following
representation holds: If z <y and v = w, then

TAeY = VAW
& m(AYu(r)+ (1 -7 (A uly) 27 (A)u(v) + (1 -7 (49))u(w).
(A.2)

Combining this representation with that in (A.1), we can represent preferences
over all A-measurable acts. If y > z then in evaluating z4y we use weights
7(A),1— 7(A). If z = y then in evaluating z4y we use weights 1 —m(A°), m(A°).
What remains to be shown is that these two sets of weights are equal, i.e., 7(A) =
1 — 7(A°). We use A-act-independence to show this.

Let z = y = z. Define f,g,h, f,G,h € F by

[ =yaxz,
g =m(y,z),
h=yaz
f=uyaz,
g =mA(y,2),
h=yax.

By monotonicity, y = m“(y, z). Define f',g',—f/,'g" € F by

f'(w) ~ f(w)ah(w) forall we Q,
g (w) ~ g(w)ah(w) forall we
F (W) ~ Flw)ah(w) forall we Q,
7 (w) ~ G(w)ah(w) forall w e Q.

O_l/)serve that f ~ g and f ~ G. A-act-independence then implies that f' ~ ¢’
and f ~ g. Writing these indifferences explicitly yields,

yam?(z, 2) ~ mA(mA(y. ), y) am? (m (y, ), 2)
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and
m*(mA(y, z), y) am? (m? (y, 2), 2) ~ m* (y, ) am? (v, 2),

which together imply,

yAmA(l‘az) ~ mA(y’z)AmA<yvz)' (A3)

We will now show that (A.3) along with the representations (A.1) and (A.2) imply
7 (A) =1—7(A°).

There are two cases to consider.

Case 1: m?(z, z) = y. Then (A.3) implies,

r(Auly) + (1 - 7(A)u(m?(z,2)) =

m(Au(y) + (1 — 7(A))(7(A)ulz) + (1 — w(A))u(z)) =

m(Ayu(m? (y. 2)) + (1 = 7(A)u(m?(y, 2)) =

m(A)(m(A%)u(z) + (1 — 7(A))u(y)) + (1 = m(A)(7(A)uly) + (1 = 7(A))u(z)).

But this implies
m(A)(1 = 7(A) - 7(A%))u(z) = 7(A)(1 = n(A) — 7(A7))u(z).

Since u(x) < u(z) and m(A) > 0, this equality can hold only when 7(A) =
1 — m(A°).

(1 = 7(A9))uly) + 7(AYu(m?(z, 2)) =

(1 = m(A))u(y) + 7 (A)(r(A)u(z) + (1 - 7(A))u(2)) =

T(Ayu(mA(y, ) + (1 — 7(A))u(m*(y, 2)) =

m(A)(m(A%)u(z) + (1 = 7(A)u(y)) + (1 = 7(A)(m(A)uly) + (1 - 7(A))u(z))

But this implies
(1= 7(A))(=1 + m(A) + T(A))uly) = (1 = 7(A))(~1 + 7(A) + 7(A))u(2).

Since u(y) < u(z) and 1 — w(A) > 0, this equality can hold only when m(A4) =
1-7(A°). 1

It remains to be shown that the axioms in the unambiguous case imply the
constant-independence and uncertainty aversion axioms. To do this, we use the
fact that the I functional is homogeneous of degree 1 and that 5/ contains all
acts that are multiples of f in terms of utility. We prove these facts in the next
lemma.
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Lemma A.13. Axioms 1-6 imply I is homogeneous of degree 1 on B(K), i.e.
I(ab) = al(b) for all b,ab € B(K), a > 0. Moreover if some g € F' is such that
uo g = b then there exists f' € SY such that uo f' = ab.

Proof.

It suffices to prove homogeneity for o € [0,1], as @ > 1 then follows by
considering the reciprocal. First we need five lemmas:

The first lemma shows that the statewise combination over A of any two
acts in the same S set is indifferent to the statewise combination over A of their
certainty equivalents. Two applications of the S-act-independence axiom are used
to show this. This result is then used in Lemma A.15.

Lemma A.14. Ifh€ F, fi, fo € 8", 21,22 € X, 21 ~ f1, 22 ~ f2 then

flw) ~ filw)afo(w), (A4)
and
T ~ T1AZ9, (A.5)
implies
f~z

Proof. Let g be defined as follows:

g(w) ~ fi(w)aza, (A.6)
Since f1,z),x2 € gh, (A.5) and (A.6) imply (by S-act-independence),

g~z fi~vm

To finish the proof we need to show that f ~ g. To see this note that fi, fo,z2 €
S". Then (A.4) and (A.6) will imply (again by S-act-independence), fo ~ z2 <
f~g W

The following lemma provides a single step in the homogeneity argument.
Specifically, it shows that if I satisfies homogeneity with respect to two spe-
cific coefficients, then I must also be homogeneous with respect to two specific
weighted averages of these coefficients.

Lemma A.15. Let b € B(K) and s,t € [0,1]. Let a = sb, a = tb, s’ = w(A)s +
(1-n(A)t and t' = (1 = m(A))s + n(A)t. Suppose

(i) there exists f1, fo € S for some g € F such that uo fy = a and uo f, =1,
and
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(i) I(sb) = sI(b) and I(tb) = tI(b).

Then,

(iii) there exists hy, hy € SY such that uo hy = s’b and uo hg =t'b,
and

(iv) I(s'b) = s'T(b) and I(t'b) = t'I(b).

Proof. Let z1 ~ f1 and xo ~ fo where 21,22 € X. Let hy be defined as follows:
For all w € (),

hi(w) ~ fi(w)afo(w). (A7)

This implies u o hy; = 7(A)a+ (1 — n(A4))a = s'b.
Let z € X be defined as
T ~ T1ATo. (A.8)

This implies u(z) = 7(A)u(zy) + (1 — 7(A))u(z2).

By Lemma A.14, h; ~ z. So, I(s'b) = J(h1) = u(z) = 7(Au(z1) + (1 -
T(A)ulzz) = 7(A)J(f1) + (1 = 7(A))JI(f2) = 7(A)I(a) + (1 - 7(A)I @) =
(n(A)s + (1 — =(A))I(b) = s'I(b). Note that h; € 59

The argument for hs, defined by, for all w € €,

ha(w) ~ fa(w)afi(w) (A.9)

proceeds similarly. Bl

In proving homogeneity, we will need to apply Lemma A.15 iteratively. In
fact, we will want to be able to take the limit of an infinite sequence of iterations.
To ensure that homogeneity is preserved in the limit, we must show that I (ab)
is continuous in «. To this end, the next lemma shows that J is continuous.

Lemma A.16. J: FF — R is continuous.

Proof. Let A be an arbitrary open set in [u (m),u (M)] C R. Since u continuous
and strictly increasing, J is onto [u(m),u(M)] by construction. Let O;, ¢ =
1,2, ... be a collection of disjoint open intervals such that U;eaO; = A, where AC
Zoy. Let O; = (0;,3;). Fix g; € J™! (¢;)and g, € J~! (3;). Then, J7 1 ((0;,0:)) =
{feF|f>g}n{feF|g,~ f} By the continuity axiom each of the sets in
this intersection is open, therefore their intersection is also open. Note now that
J™1(A) = UieaJ ' ((0;,3:)), and thus it is an open set. Hence, we have that
J~1(-) maps open sets to open sets, therefore J (-) is continuous. W

Lemma A.17. I (ab) is continuous in a for b€ B(K), a € (0,1].
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Proof. Let g € F be such that uog = b. Let a, o’ € (0.1]. Define f', f € F
such that, for all w € §Q,

u(f (w)) = a’u(g(w)) and,
u(f (W) =aulgw)).

Thus,
f(w) =ut (@'u(g(w))) and,
fw)=u"(au(g(w)))-

By Remark 1, u~1 (-) is continuous. Therefore, for each ¢ > 0, there exists a
§ > Osuch that if |o'u (g (w)) — au (g (w))| < (5then ju™! (u (g (w))) — u~! (au (g (W)| =
lf (w) = f ()] <e. Thatis, if o’ — o] < me w))l then |f’ (w) — f (w)| < €. Note

that |u (g (w))] < 2 by our normalization of u. Therefore, 1f o' —al < 5 ¢ then
|f' (w) = f (w)] < &. Since this is true for any w, if |o’ —a| < 3 then Wf - f|| < e.

Fix v > 0. By continuity of J, there exists 1) > 0 such that iflff=fll<wv
then |J (f) — J (f)] = |I (@’b) — I (ab)| < . By continuity of u~! and the above
argument, there exists A > 0 such that if |o’ —a| < A then |[f' —f|| < .
Therefore, I (ab) is continuous in « for b € B(K), o € (0,1]. B

Now we show that if I satisfies homogeneity with respect to two specific
coefficients, then I must also be homogeneous with respect to the average of
these coefficients. To do this we take limits of the convex combinations used in
Lemma A.15. Notice that this limiting argument is needed because a “half-half”
combination may only be able to be reached in the limit if the weight on A or A°
is not a power of %

Lemma A.18. Letb € B(K) and s,, t, € [0,1]. Let @ = sob and @ = tob. Suppose
(i) there exists f9, f2 € 59 for some g € F such that uo f =g anduo f§ =1
and,

Then

(iii) I(2eFteb) = 2odle[(b) and there exists f € S’ such that uo f = Saftab,

Proof. Suppose w.lo.g. that so < to. Define {s;} and {t;} by s; = 7(A)si-1 +
(1 -7m(A)tio1 and t; = (1 — w(A))si—1 + m(A)ti-r for i =1,2,3...

We will show that lim; ..o s; = lim;_t; = ﬁ”;—t" The proof will proceed in
three cases.

t;, = ﬂ%ta for all 7. So limi_.oo 8 = 1irnq-_.oo t;, = ﬁ‘%ﬁl
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We will use an induction argument to prove this case. Observe that s1 <
f‘%tﬁ < t; and s + 1, = sg + to. Suppose for all k& < n, s < ﬂ%’—t‘l < tk
and sp + tx = sg + to. We now show sp41 < ﬂ%m < tpt1 and Spy1 +ipyr =
sp + to. Since s, + t, = So + to, sn and t, are equidistant from i“;—tﬂ Thus
Spg1 = 7(A)sn + (1 = (At < ﬂ%ﬁl < (1 = 7(A))sp + m(A)tn = ta1. Also,
Sna1 + tnyr = (7(A) +1 —7(A))sn + (7(A) +1 — 7(A))tn = sp +tn = So + to-
So for any 7 = 0,1,2,..., 85 < 50—?;—“1 < tj and s; +t; = so + to. Observe that
sj > sj—1 and t; < tj_q forall j = 1,2,3,... Since {s;} and {t;} are monotone
bounded sequences, lim; ., s; and lim; . t; exist. Furthermore lim; o0 8; <
fﬂ;—tﬁ < limi_sc ti. Let 5= limjoo 8; and 7 = lim; . ti. Suppose 5§ < t. Fix any
¢ > 0. There exists N(¢) such that for all n > N(g), $—sp < € and t, —i<e.
Consider spi1 = m(A)sn + (1 — 7(ANtn > 1(A)(F—¢€) + (1 = 7(A))t = m(A)s +
(1 —7(A))f—em(A). But for € small enough sp41 >3, a contradiction. Therefore
§=1= 2}t

Case 3: 5 > m(A) > 0.

Observe that t; < ﬁ%tﬂ < 81, 81 +t1 = sg+tp, 52 < ﬂ;ﬂﬂ < tp and
Sg + tg = s + tg. Using arguments similar to those in case 2 one can show:

sj<§°i2rﬂl<tj, sj +t; = so +to, Jeven,
S]’>ﬂ)—;—tQ>t]‘, s; +1t; = so + to, j odd.

Then by the argument in case 2 applied to even and odd subsequences,
limj_.o 85 = limj.ootj = 54‘2—'12 for j even and, lim; o 855 = limj_ootj = i‘%t&
for j odd. Thus imj .o s; = limjt; = ﬁﬂ—'zf‘—tﬂ

By lemma A.15 we know that if s;_1,ti-1 € [0,1] , if there exists ff”l, ;‘1 €
S7such that u o ff_l = s;_1band uo f;"l = t,_1b and if I(s;_1b) = s;—11(b)
and I(t;—1b) = t;—11(b) then there exists ff, fﬁ € 5%such that uo f{ = s;b and
wo fi = t;b and I(s;b) = s;I(b) and I(t;b) = t;I(b). But then by induction for any
i € {0,1,2,...} we have I(s;b) = s;I(b) and I(t;b) = t:I(b). By lemma A7 we
have homogeneity for the limit so I (%23%b) = 2024 J(b). Now let f = limi—.co fL.
Since fi € 57 for all i and 5 is closed, then f € §”. Furthermore u continuous
implies u o f =lim;_.cuo f{ = limy;— oo Sib = ﬁﬂ%tﬂb. [ |

Now we complete the proof of Lemma A.13. Let b € B(K). Let g € F be
such that wog = b and z € X be such that u(z) = 0. We want to show that
for any a € [0,1], if a = ab then I(a) = al(b). First, we will show this for all
a= QL,C where k = 0,1,2,... and t =0, 1,2,3,...,2F — 1. We will also show that
for any such a there exists f € 57 such that u o f = ab. The proof will be by
induction. First we will show that the statement is true for kK = 0. This is true

since 1(0*) = J(u=1(0)*) = u(u~}(0)) = 0. Assume that the statement is true for
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some k—1 € {1,2,3,..}, in other words for all ¢ € {0,1,2,..., 2k=1_1}, assume that
I(zb) = 51 1(b) and there exists f; € SY such that uo f; = z—rb. Now we want
to show that the statement is true for k, or for all ¢t € {0,1,2, ..., 2k _ 1}, we want
to show that ](i%;b) = f,;](b) and there exists f; € S° such that uo f; = Etk-b. But
by the induction hypothesis we need to only show this for t € {1,3,5, ..., 2k — 1}

since for t even 2% = -gik_&l Since Q—tk-, t odd, is exactly halfway between t—z‘k—l and

t—}} lemma A.18 shows that homogeneity for the even ¢ implies homogeneity for
the odd . Furthermore the same lemma also implies that for all ¢ there exists
f, €SY such that uo fy = fk-b.

Now that we have we have homogeneity for all a € {Q—tk- -k =0,1,2, ... and
t = {0,1,2,..,2F — 1}, we want to extend this to all @ € [0,1]. Since for any
o we can find a; € {-2—t;; k=0/1,2,...and t = 0,1,2,3,...,2F — 1} such that
lim;_.oc a; = &, homogeneity follows for the limit by lemma A.17. Furthermore,
for each «r; we know that there exists f; € 5?9 such that uo f; = a;b. Since 59 s
closed f' =lim; . fj € 5% and uo f' = ab since u is continuous.

This shows that I is homogeneous of degree 1 on B(K). Next, we extend
I(-) to all of B by homogeneity. Such an extension preserves homogeneity and
monotonicity. ll

The next two lemmas use homogeneity of I and S-act-independence to show
that the axioms in the unambiguous case imply constant-independence.

Lemma A.19. Axioms 1-6 (weak order - S-act-independence) imply Lemma
A.6.

Proof. Suppose f,g € F, h € F* and « € (0,1). Assume that
(i) f/ € F is such that for all w € {2

u(f'(w)) = au(h) + (1 - aJu(f(w))

and
(ii)g’ € F is such that for all w € 2

u(g' (@) = au(h) + (1 — a)u(g(w))-

There exists £ > 0 such that 5max{T_l—;(°‘m, R%} < 1. By Lemma A.13 there
exists | € S/ and k € 57 such that for all w € Q, u(l(w)) = Eﬁ%u(f(w)) and
u(k(w)) = sli—;(%u(g(w)). Let t € F* be such that u(t) = eﬂ‘—’f—ﬁu(h).

Now since [,t € 5 and k.t € S, we can apply S-act-independence. In
particular let f”,¢"” € F be such that f"(w) ~ tal(w) and ¢’(w) ~ tak(w) for
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all w € Q. Note that by our representation for A-measurable acts u(f”(w))
m(Au(t) + (1 = m(A)u(l(w)) = eu(f'(w)) for all w € Q. Similarly u(g”(w)) =
m(Au(t) + (1 — 7(A))u(k(w)) = eu(g (w)) for all w € €.

Now observe that

fl=g «J(f)zJ)
& I(uo f') 2 I(uog)
e el(uof) > el(uog)
I(euo f') > I(euog’)
& Iuo ") > I(uocg)
& J(f") = J(g")
<=>f// t gll

where the middle equivalence follows from homogeneity of I on B (K). By S-act-
1ndependence f” = ¢" <& 1 = k. Finally, using homogenelty again, [ = k &
I( 1_7,—(,4 uof) > I( —('_)uog) <:>5117r(aA I(uof) 2 51 7r(A I(uog) <:>f =9
Therefore f' = ¢ < f>g. N

Lemma A.20. Axioms 1-6 (weak order - S-act-independence) imply Axiom 10
(constant-independence).

Proof. By the arguments in the proof of Lemma A.30, we know that if f, g, fl.d €

F, h € F* are as in the constant-independence axiom, then there exists an
€ (0,1) such that
(i) f' € F is such that for all w € Q

u(f'(w)) = au(h) + (1 - aju(f(w))

and
(i) ¢’ € F is such that for all w €

u(g'(w)) = au(h) + (1 — aju(g(w)).

The

Since Axioms 1-6 imply Lemma A.6, f’' = ¢’ & f >= g. This shows constant-
independence holds. B

The next two lemmas use act-uncertainty aversion in addition to the other
axioms to show the uncertainty aversion axiom holds.

Lemma A.21. Axioms 1-7 (weak order - act-uncertainty aversion) imply Lemma
A.T.
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Proof. Suppose f,g € F and a € (0,1), f ~ g. Assume that h € F is such that
for all w € Q2

u(h(w)) = au(g(w)) + (1 — a)u(f ().
There exists € > 0 such that € max{l_l—;(aA—), iz} <1. The proof will proceed
in three cases.
Case 1: a = 7(A). This implies that I ( T og) I (511—;(‘17)11 o f) Let
l, k € F be such that for all w € Q, w(l(w)) = eT=rgy 7_(A)u(f( w)) and u(k(w)) =
u(g w)). By assumption | ~ k. Let h’ € F be such that h'(w) ~ k(w)al(w)
for all w. By act-uncertainty aversion, i’ = k. Observe that el(uoh) = I(uoh’) =
I(uok)y=¢l{uo f). Soh > f.

Case 2: a > 7w(A). This implies that I( )uOg) > I( = 7r(A u0f>

Let v = I(f )uog) I (smuof) > 0. There exists 0 < § < 1 such
that I(6e =25 U © f+ (67)*) € B(K). Let m € F be such that for all w € €,
u(m(w)) = 651 = u(f(w)) + 6v. Since Axioms 1-6 imply Axioms 9 (ordered

A-act-independence) and 10 (constant-independence), the proof of Lemma A.10
part (iv) implies that I is C-independent on B(K). Thus I(uom) = I(6e 255 A UO

f+ 7)) =10 7r(A)uof)+5'y =1 <6s (A)uog) Let n € F be such that for
allw € Q. u(n(w)) = 5EW(A) u(g(w)). Let k" € F be such that b’ (w) ~ n(w)am(w)
for all w. By act-uncertainty aversion, h” > m. Observe that

I(uoh')

I(x(Aywon+ (1 - n(A)uom)
I{(6cauog+de(l —auo f+ ((1 —m(A4))6v)")
I(6euoh)+ (1 —7(A))dy
del(uoh) + (1 —m(A))dy

and,
l—-«

1—n(A)
These imply that éel(uo h) + (1 — w(A))dy > I(Se 2=t AU © f) + 7. Sub-

I(uom) = I(de wo f)+4dv.

stitute v =1 (ejﬁu o g) 1 (51 = A)u of ) in the previous expression and use

homogeneity to obtain I(uoh) > I(uo f). So h = f.
Case 3: a < 7(A). This case can be proved using an argument that is similar
to the one used in proving Case 1. B

Lemma A.22. Axioms 1-7 (weak order - act-uncertainty aversion) imply Axiom
11 (uncertainty aversion).
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Proof. By the arguments in the proof of lemma A.31, we know that if f,g,heF
are as in the uncertainty aversion axiom, then there exists an o € [0,1) such that
h € F is such that for all w € Q2

u(h(w)) = (1 — a)u(f(w)) + au(gw))-

Since axioms 1-7 imply lemma A.7, f' = ¢’ & f > g. This shows uncertainty
aversion holds. B

Lemma A.23. Axioms 1-7 imply that > may be represented on F by J (f) =
I(uo f) =minpec f uo fdP with C unique, convex and w*-compact and u strictly
increasing, continuous and unique up to positive affine transformations. Also
0 < m(A) <1and P(A) =n(A) forall P €C.

Proof. Axioms 1-7 imply Axioms 1, 4, 5, 8, 9, 10 and 11. Therefore, by Theorem
4.3, we may represent = on F by J(f) = I(uo f) = minpec Juo fdP with C
unique, convex and w*-compact, u unique up to positive affine transformations,
0 < maxpec P(A) < 1 and 0 < maxpec P(A°) < 1. By Lemma A.12 7 (A) =
maxpec P (A), 7 (A%) = maxpec P (A€) and 7 (A) + 7 (A°) = 1. But this implies
PA)=7(A)forall PeC. 1

This completes the proof of sufficiency of the axioms in Theorem 3.7. B

A.3. Necessity of the Axioms

Lemmas A.24-A.31 together prove necessity in Theorem 4.3. Note that any real-
valued representation implies Axiom 1 (weak order).

Lemma A.24. The representation in Theorem 4.3 =Axiom 8 (general struc-
ture), part (a) and Axiom 2 (structure), part (a).

Proof. Suppose z > y. Since u is strictly increasing, u (z) > u(y). Therefore,
minpec [ u(z)dP = u(z) > u(y) = minpec [ u(y)dP, which implies 2" > y*. [ |

Lemma A.25. The representation in Theorem 4.3 =>Axiom 8 (general struc-
ture), part (b).

Proof. Consider the event A referred to in the representation theorem. We will
show that such event is ordered non-null and ordered non-universal.

Recall that an event B is ordered non-null if there exist z, y and z € X with
r <y =X z such that zpz < yp=z.
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Pick , y, z € X such that = <y < z, so that u (z) < u(y) < u(z). Consider
the following ordered binary acts: f = 4z and g = yaz. Now,

r}gleixcu/uofszrggécP(A)u(x)+ (1 —nggch(A)) w(z)

and

I}l;lélci/u ogdP = r}rjlgé{P(A)u(y) + <1 - rlrJlgé(P(A)) u(z)
Since 0 < maxpec P (A), we have minpee [uo fdP < minpec [u o gdP. But
this implies that x4z < y4z. Hence A is ordered non-null.

Recall that an event B is ordered non-universal if there exist z, y and z € X
with z <y < x such that zgy < 2pz.

Pick z, y, z € X such that z <y < z, so that u (2) <u(y) <u(z). Consider
the following ordered binary acts: f = z4y and g = zaz. Now,

rlglércl/uofszrggécP(A)u(z) + (1 —r}r;gg(P(A)) u(y)

and

i P= P(A 1- P(A
pin [wosdP = maxP (A1) + (1-maxP (4 ) u(e)
Since maxpec P (A) < 1, we have minpec [ u o fdP < minpec fuogdP. But
this implies that z4y < z4z. Hence A is ordered non-universal. l

Lemma A.26. The representation in Theorem 4.3 =>Axiom 9 (ordered A-act-
independence).

Proof. Let z, T2, y1, 2. 21 and zo € X be such that z; X z2, y1 = 12 and
21 X z9. Let f = x1472, 9 = Y14y2 and h = z1420.
. . fl(w) ~h(w), f(w) forallwe
. ol S o (=
Case (i): Suppose {z;, ¥i} = z (1 = 1,2) and { g (@) ~ (@) 4 9 () for all w € Q
Let a = maxpec P (A). Since the weights are chosen form the set C to minimize

the expected utility,

fl=d
iff au (m? (z21.71)) + (1 — @)
)

(m? (z2,72)) > au (m# (z1,1)) + Q1 — ) u (m? (22,72))
iff afau(z1) + (1 —a)u(r; (

1-a)lau(ze) + (1 - aju(z2)]
(1) + (1 — au(v)] + (1 — @) [ (22) + (1 - a)u (32)]
iff au (z1) + (1 —a)u(x2 u(yr) + (1 — o) u(ye)
fff=g
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. fl(w)~ fw),h(w) forallw e Q
Case (ii): Suppose z; = {z;, y;} (i = 1,2) and { g (@) ~ g (@) 4 h () for all w € O
Let o = maxpec P (A). Again, since the weights are chosen from C to minimize

the expected utility,

f/ tg/

iﬁau(mA(J;l,zl))+(1—a)u(mA(x2,zz))zau( mA (y1,21)) + (1 — &) u (m? (2, 22))

iﬁa[au(z1)+(1—a)u(zl)]+(1—a)[au(m2) + (1 - a)u(z2)]
>alou(y) + (1 —a)ul(z)]+ (1 —a)lou + (1 - a)u(z)]

iff au (x1) + (1 — a)u(z2) > au(y) + (1 — a)u(y2)

iff f>~g. 1

Lemma A.27. The representation in Theorem 4.3 =>Axiom 4 (continuity).

Proof. Let f € F. We want to show that the sets M (f) = {g € Flg = f}
and W (f) = {g € F| f = g} are closed. Let {gn},—, € M (f) such that g, — g.
Want to show that g € M (f). Note that [u o gndP > minpec [uo fdP for all
P e and all n.

Since gn — ¢, gn(w) — g(w) and since u(:) is continuous u(gn (w)) —
u(g(w)). Hence, uog, — uog. Now, since |u(gn(w))| < maxgex |u(z)]
for all w € Q, the dominated convergence theorem ([3], pp.124-125) implies
limn_,ocfu o gndP = fu o gdP for all P € C. Hence, minpecfu o gdP >
minpee f uwo fdP. To show that W (f) is closed, assume to the contrary that
the limiting g is strictly preferred to f while the sequence belongs to W (f). B
continuity of u. there is a neighborhood of g such that for any A in that neigh-
borhood, [uohdP > minpec Juo fdP for all P € C. But then the convergence
theorem yields a contradiction. I

Lemma A.28. The representation in Theorem 4.3 =>Axiom 5 (monotonicity),
part (a).

Proof. Suppose for some f, g € F, f (w) = g (w), forallw € Q. Then, u(f (w)) =
u (g (w)), for all w € Q. Thus, mmpecfuogdP < [uogdP < [uo fdP, for all
P e C. Hence, minpec [uo gdP < minpec fuo fdP. W

Lemma A.29. The representation in Theorem 4.3 =>Axiom 5 (monotonicity),
part (b).

Proof. First of all, note that if B € Lis ordered non-null, then there is at least
one probability measure P € C with P (B) > 0. To see this, suppose BeXis
ordered non-null but that for all P € C, P(B) = 0. Then, given any z, y, z € X
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such that z < y < z we have minpec [uo fdP = minpec [ uogdP. This implies
that the acts f = x4z and g = yaz are indifferent. But this contradicts B being
ordered non-null. Let a = maxpec P (B). We have just shown that o > 0. Let
z,y, z € X be such that z > z and z = y. Now,

TBZ = YBZ

Sou(r)+(1-a)u(z) > au(y)+(1—-a)u(z)
<=>u(x)+@u(z)2u(y)+(—1;—a)u(z)

e u(z) Zuly)

STy

The case in which B € ¥ is ordered non-universal is proved by a similar
argument noting that B ordered non-universal implies maxpec P(B) < 1. B

Lemma A.30. The representation in Theorem 4.3 = Axiom 10 (constant-independence).
Proof. Let 3 = maxpec P (A). Observe that if a;,(n), a; (n)+1 € SS(n) and
iu,(n) > 1, then
1
Bu(m + ;) + (1 = Bufa;, (n)) = Bu(m) + (1 = Bu(a, my+1)-
Therefore,

/ 1
u(@i, (ny+1) — W m)) = -3 u(m + "7;) —u(m)

Define A(n) € R by A(n) := fﬁ [u(m + %) —u(m)] .

Let f.g, ffand ¢ € F,he F*. Foreachw € Qand n € Zy4

(1) let a;,(n) € SS(n) be such that a; )41 = f(w) = a5, (m)
(i)  let ay (ny € SS(n) be such that ay ()41 = f'(w) = ay ()
(iil) let aj_(n) € SS(n) be such that a;,(ny41 = 9(w) = a;, )
(iv) let aj () € SS(n) be such that ajr ()11 = ¢'(w) = ajr (n)
(v)  let agny € SS(n) be such that a1 Z h = Gk

If f(w) # m , for n large enough, this implies that (i, (n)—1)A(n) < u(f(w))—
u(m+ 1) < iu(n)A(n). If f(w) = m then u(f(w)) = u(m) and i,(n) = 0. In
either case since lim, ., A(n) =0 and u is continuous, these in turn imply that
limy e 70 () A(n) = u(f () = ulm).

We can show using similar arguments that limp_.o i, (n)A(n) = u(f'(w)) —
u(m), im0 ju () A(n) = u(g(w))~u(m), lim—o 5;,(n)A(n) = u(g'(w))—u(m)
and lim, .o k(n)A(n) = u(h) — u(m).

42



First consider those w € € for which f(w) » h. Observe that 3;‘:((”"))%1:(%) =

i}%(%)ﬁ(%):iij((:))ﬁ‘(%) . The constant-independence axiom assumes lim, . %;%_‘Z—j(%) =

«, which implies ”(1{ Ig“’)_);?(

u(“')) = a. Second, consider those w € €} for which

f(w) ~ h. Here, constant-independence assumes that f'(w) ~ h, hence u ( fl(w)) =
u(f(w)) = u(h). Therefore, for all w € 2,

u(f'(w)) = (1 = ) u(f(w)) + cu(h).
Similarly, under the assumptions of the constant-independence axiom,
u(g'(w)) = (1 — a) u(g(w)) + au(h) for all w € €.

Note now that h a constant act implies that [u o hdP = [u o hdP’ for all
P e C. Now,

fl=g
iff minpec [uo f'dP > minpec [ uog'dP
iff minpec [ ((1 —a)(uo f) + a(uoh))dP > minpec [ ((1 —a)(uo fy+a(uoh))dP
iff minpec [ (1 —a)(uo f)dP+ [a(uoh)dP
> minpec [ (1 —a) (uog)dP + [a(uoh)dP
iff minpec [ (1 —a)(uo f)dP > minpee [ (1 —a)(uog)dP
iff f = g. This proves constant-independence. B

Lemma A.31. The representation in Theorem 4.3 =Axiom 11 (uncertainty
aversion).

Proof. By the arguments in the proof of Lemma A.30, under the assumptions
of the uncertainty aversion axiom,

u(h(w)) = (1 — @) u(f(w)) + au(g(w)) for all w € Q.
Now, f ~ g = minpec [uo fdP = minpec [ uo gdP. This implies

minpec [uo fdP = (1 —a) (minpecfuofdlz) +a(minpecfuogdP)
<(1-a)(fuofdP)+a(fuogdP) forall PeC
=f((l—a)(uof)—f—a(uog))dfjforallﬁec

= fuohdP forall PeC.

Hence, minpec [uo fdP < minpec [ uo hdP. Therefore, by the representation,
we have h > f. I

We now provide the additional results needed to show necessity in Theorem
3.7.
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Lemma A.32. The representation in Theorem 3.7 = Axiom 2 (structure), part (b).

Proof. Consider the event A referred to in the representation theorem. We will
show that A and A€ are ordered non-null and ordered non-universal.

Observe that 0 < P(A) < 1 for all P € C implies 0 < maxpec P (A) < 1 and
0 < maxpec P (A€) < 1. Therefore, lemma A.25 applies to A and to A° and each
must be ordered non-null and ordered non-universal. B

Lemma A.33. The representation in Theorem 3.7 = Axiom 10 (A-act-independence).

Proof. Let zi. x2, y1, y2, 21 and 20 € X and let f = z1472, g = y14Y2 and
h = z1422. Suppose f’, g’ € F are such that,

fiw)~h(w),f(w) forall weQ
and
g (W) ~h(w),g(w) forall we Q.
By the representation P(4) = p € (0,1) for all P € C. Then,
=4
& pu(mA(z1, 1)) + (1 — p)u(m?(z2,22)) = pu(m?(z1,11)) + (1 = pJu(m?(z2,y2))
& pPu(z1) + p(1 = pu(z1) + p(1 = pu(z2) + (1 — p)u(x2) >
p*u(z1) + p(1 — pluyr) + p(1 = plu(z2) + (1 = p)*u(y2)

< pu(zy) + (1 = p)u(z2) > pulyr) + (1 — p)uy2)
<fzg

Since P(A¢) = 1—p € (0,1) for all P € C, the above argument may be re-
peated replacing A with A€. This proves A-act-independence. B
Lemma A.34. The representation in Theorem 3.7 = Axiom 6 (S-act-independence).

Proof. We will first prove the following lemma which states that the represen-
tation evaluates all acts in 5 using the same probability measure.

Lemma A.35. Let f, | € F where f € ?l, if P! € argminpec [u o ldP, then
P! € argminpee [uo fdP.

Proof. Given S!, let S,I,L be the set of acts obtained after n iterations in the
statewise combination process. That is,

St={fleF:flw)~ f2(w)4f)(w), for all w € Q where f?, fJ € S}
St=1f2cF:f (W)~ fl (W), fi(w), for all w € Q where f}, f3 € St}

St={freF:frw)~ " (wifz (W), forallweQwhere {7, f;71 €5} 4}
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First we will show that the representation evaluates any act f € UnoozlSL using
the measure P!. This is shown by induction.

Suppose f € Si. Then we can find acts 9, 2 e S! such that for each
w e fw) ~ f2(w)4 f2(w). By the representation, u (f (w)) = pu (f2(w)) +
(1—p)u(f9(w)). Hence, forall P€C

/uofdP:p/uof{)dP+(1—p)/uofgdp.

Note that the right hand side of this expression is minimized by choosing P = P!,
Thus, P! € argminpec [uo fdP for all f € St.

Fix k > 1. Assume f € S!, for some n < k, implies P! € argminpec [uo fdP.
Consider an act f € S}c+l' Then there exist acts fF, ff € S,lC such that for all
weQ fw) ~ fF(w), f¥(w). By the representation, u (f (w)) = pu (fl’C (w)) +
(1—-p)u (f§(w)). Hence, forall P€C

/uofdP:p/uoffdP+(1—p)/uof§dp.

By the induction hypothesis, P! minimizes the right hand side. Therefore, Pl e

argminpec [uo fdP forall f € Uf;% St This completes the induction argument.

To complete the proof of the lemma it must be shown that if f € ?l\ Uo2 S,
then P! € argminpec [uo fdP.

We will first show the following: (i) U2 ,S%, D S, (ii) U2, S!, contains all
statewise combinations over A, and (iii) if S 2 S! and S contains all statewise
combinations over A then UX S} C S.

Tosee (i), note that S' = {f1 € F : f1 (w) ~ FO(w) 4 2 (w) where 2= f € St ¢
St. To see (ii), consider f,g € U;'LOZISL. We need to show that the statewise combi-
nation over A of any such f and g is also in U2, S%. Since S4 C S!, ;, there exists
a N such that for alln > N, f,g € S%. But then h such that h (w) ~ f (w) 4 g (w)
for all w € €2, must be an element of Sf\,ﬂ.

Finally, to prove (iii), consider a set S as in (iii). Fix f € U2, SL. If f ¢ S
then S cannot contain all statewise combinations over A since f can be reached
in a finite number of statewise combination operations starting from elements of
St

By (iii) and the definition of gl, we have that the closure of UX S, is 5.
Fix f € ?l\ U, S%. There must exist a sequence of acts {f;} converging to f
with f; € U,szlel. Since u is continuous, for all P € C, {f Uuo fidP} converges to
[wo fdP. Let P/ € argminpec [uo fdP. As [uo fidP' < [uo f;dP/ for all 4,
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Juo fdpPt > Juo fdPf would contradict continuity of preferences. This proves
P! € arg minpec Juo fdP forall f e ?l\ e, st m

Now we complete the proof of Lemma A.34. Assume we have f, g, h € F

such that there exist I, k € F for which f, h € S and g, he€ ShIf f',g € F are
such that
fw)~h(w), f(w) forallweQ

and
g (W) ~h(Ww),9(w) forall we Q,

we have that for all P € C
/uof’szp/uoth+(1—p)/uofdP

and

/uog'szp/uoth+(l—p)/uogdP.

Since f, h, f' € TS’_I, P! € argminpec [uofdP, P! € argminpec [ uohdP and P! €
argminpec [ uo f'dP. Similarly, since g, h, g’ € §k, P* € argminpec [u o gdP,
P* € argminpec [uohdP and P* € argminpec [ uog'dP. Therefore,

rlglilcq/uof’dP:p/uothl+(1—p)/uofdPl
€

and

min/uog’dP:p/uothk+(1—p)/uogde.

PeC

But since [uohdP' = [uohdP*, we have minpec [uo f/dP > minpec [uog'dP
if and only if [uo fdP' = minpec [uo fdP > minpec [uo gdP = [uo gdP*.
Thus, f > g if and only if f/ = ¢’. This proves S-act-independence. B

Lemma A.36. The representation in Theorem 3.7 =Axiom 7 (act-uncertainty
aversion).

Proof. Let f, g € F. Suppose f ~ ¢g and
flw)~ f(w),9(w) forall we Q.

By the representation, we have that u (f' (w)) = pu (f (w)) + (1 — p) u (g (w)) for
all w € Q. Now, f ~ g implies minpec [uo fdP = minpec [ uo gdP. Note,

min/uofdPS/uodeforallﬁGC
PeC
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and

min/uogdPS/uogdﬁforallﬁec.
PeC

This implies

minpecfuofdP:p(minpecfuofdp) +(1-p) (minpecfuogdP)
< p(Juo fdP)+(1-p) (J uogdP)

= [(p(uof)+(1—p)(ucg))dP

= [uo f'dP for all P €C.

Hence, minpec [uo fdP < minpec [uo f'dP and therefore, f' > f. W

The above lemmas together prove necessity of the axioms in Theorem 3.7. H

A.4. Proof that §’ contains all affinely related acts

Proposition A.37. If f € F is not a constant act, then S/ contains all acts that
are affinely related to f.

Proof. By definition, all constant acts are in /. Fix any non-constant act g € F
that is affinely related to f. There must exist an a > 0 and 3 € R such that, for
all w € Q,

u(g(w)) = au(f(w)) + 5.
There exists € > 0 such that ﬁa(uo f) € B(K) and T—_—;(—A)ﬁ* € B(K). Let
h € F be such that uoch = Hsma(u o f) and h' be such that uoh' = 1—_—;(—27,5’*.
Since &' is a constant act, it is in ?f. By Lemma A.13, h € ?f as well.

Let ¢'(w) ~ h(w)4h/(w) for all w € . Since 5/ contains all statewise com-
binations over A, ¢ € S/, Note that by the representation in (A.1), uog =
e(a(u o f) + 3"). Another application of Lemma A.13 yields g € ggl. Since
59 = closure (Ufile/) C F (by Lemma A.35) and closure (Ufile") c5 we

havegegf. |
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