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Abstract

This paper proposes a preference-based condition for stochastic independence of a randomizing
device in a product state space. This condition, when imposed on Choquet Expected Utility
preferences in a Savage framework displaying uncertainty aversion, results in a collapse to
Expected Utility (EU). In contrast, Maxmin EU with multiple priors preferences continue to
allow for a very wide variety of uncertainty averse preferences when stochastic independence is
imposed. These points are used to reexamine recent arguments against preference for
randomization with uncertainty averse preferences. In particular. these arguments are shown to
rely on preferences that do not treat randomization as a stochastically independent event.

Journal of Economic Literature Classification Number: D81.



1 Introduction

An example seminal to interest in uncertainty (or ambiguity) aversion is Ellsberg’s [8] “two-color™
problem. There is a “known urn” which contains 50 red balls and 50 black balls, and an
“unknown urn” which contains a mix of red and black balls about which no information is given.
Ellsberg observed (as did many afterwards, more carefully) that a substantial fraction of
individuals were indifferent between the colors in both urns, but preferred to bet on either color
in the “known urn” than the corresponding color in the “unknown urn”. This violates not only
expected utility. but probabilistically sophisticated behavior more generally. One contemporary
criticism of the displayed behavior was put forward by Raiffa [21] who pointed out that flipping a
coin to decide which color to bet on in the unknown urn should be viewed as equivalent to betting
on the “known” 50-50 urn. One can think of such preferences as displaying a preference for

randomization.

Jumping ahead to more contemporary work, there is a burgeoning literature attempting to
model uncertainty (or ambiguity) aversion in decision makers. Some of this work (e.g. Lo [18],
Klibanoff [16]) accepts this preference for mixture or randomization as a facet of uncertainty
aversion, while other work (e.g. Dow and Werlang [5]. Eichberger and Kelsey [6]) does not. This
has led to several papers. most directly Eichberger and Kelsey [7], but also Ghirardato {10] and
Sarin and Wakker [22], related to this difference. In particular, all three papers observe that the
choice of a “one-stage” or Savage model as opposed to a “two-stage” or Anscombe-Aumann
model can lead to different preferences when modeling uncertainty aversion. In Eichberger and
Kelsey [7] the authors set out to “show that while individuals with non-additive beliefs may
display a strict preference for randomization in an Anscombe-Aumann framework they will not do

so in a Savage-style decision theory.”!

This paper was motivated in part by the intuition that the one-stage/two-stage modeling
distinction is largely a red herring. at least as it relates to preference for randomization. In
particular. while appreciating that there can be differences between the frameworks. one goal of
this paper is to relate these differences to violations of stochastic independence and to point out
that thev have essentially no role to play in the debate over preference for randomization in
uncertainty aversion. In making this point. the related finding of the restrictiveness of Choquet

expected utility preferences in allowing for randomizing devices is key.

An additional contribution of the paper is to provide preference based conditions to describe
a stochastically independent randomizing device in a non-Bayesian environment. Section 2 sets

out some preliminaries and notation. Section 3 describes two frameworks in which a randomizing
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device can be modeled. Section 4 provides the key preference conditions and contains the main
results on the restrictiveness of Choquet expected utility when stochastic independence is required

and the relative flexibility of Maxmin expected utility with multiple priors. Section 5 concludes.

2 Preliminaries and Notation

We will consider two representations of preferences. each of which generalizes expected utility and
allows for uncertainty aversion. The first model is Choquet Expected Utility (CEU). CEU was
axiomatized first in an Anscombe-Aumann framework by Schmeidler [23], and then in a Savage
framework by Gilboa [13] and Sarin and Wakker [22]. In a Savage framework. but with a finite
state space, Wakker [25], Nakamura [19], and Chew and Karni [4] have axiomatized CEU. The
second model is Maxmin Expected Utility with non-unique prior (MMEU). MMEU was first
axiomatized in an Anscombe-Aumann framework by Gilboa and Schmeidler {14]. In a Savage
framework, but with a finite state space, MMEU has recently been axiomatized by

Casadesus-Masanell, Klibanoff. and Ozdenoren [3].

Consider a finite set of states of the world S. Let X be a set of consequences. An act f is a
function from S to X. Denote the set of acts by F. A function v : 25 — [0,1] is a capacity or

non-additive probability if it satisfies,
(i) v(0) = 0.
(if) v(S) =1. and

(ili) A C B implies v(A) < v(B).

It is convez if, in addition,

(iv) For all A, BC S,v(A)+v(B) <v(AUB)+1v(ANB).

Now define the (finite) Choquet tntegral of a real-valued function a to be:
[adv = arv(Er) + 0 (v( 321 E;) - U(U§;1 E;)]. where a; is the ith largest value that a takes
on, and E; = a7 (ay).

Let > be a binary relation on acts, F. that represents (weak) preferences. A decision maker
is said to have CEU preferences if there exists a utility function v : X — R and a non-additive
probability v : 2° — R such that, for all f,g € F, f = g if and only if [u- fdv > [u-gdv. CEU

preferences are said to display (weak) uncertainty aversion if v is convex.? A decision maker is

2This characterization of uncertainty aversion for the CEU model stems from an axiom of Schmeidler's 123 of



said to have MMEU preferences if there exists a utility function u : X — R and a non-empty.
closed, convex set B of additive probability measures on S such that, for all f,g € F, f > g if and
only if mingep [u- fdp > minpep [ u - gdp. All MMEU preferences display (weak) uncertainty
aversion. Finally, note that the set of MMEU preferences strictly contains the set of CEU

preferences with convex capacities.

3 Modeling a Randomizing Device

Corresponding to the two standard frameworks for modeling uncertainty (Anscombe-Aumann and
Savage) there are at least two alternative ways to model a randomizing device. In an
Anscombe-Aumann setting, a randomizing device is incorporated in the structure of the
consequence space. Specifically the “consequences” X, are often taken to be the set of all simple
probability distributions over some more primitive set of outcomes, Z. In this set-up, a
randomization over two acts f and ¢ with probabilities p and 1 — p respectively is modeled by an
act h where h(s)(z) = pf(s)(z) + (1 — p)g(s)(z), for all s € S,z € Z. Observe that h is, indeed. a

well-defined act because the set of simple probability distributions is closed under mixture.

Returning to the “unknown urn” of the introduction, Figure 1 shows the three acts (a) “bet
on red.” (b) “bet on black,” and (c¢) “randomize 50-50 over betting on red or on black”™ as

modeled in this setting.

Figure 1: Unknown urn with randomization in the consequence space (Anscombe-Aumann)

R(ed) B(lack)
a $100 SO
b $0 $100

c 18100 € 380 1$100 = %0

Alternatively, consider a Savage-style setting with a finite state space (e.g. Wakker [24].
Nakamura [19]. or Gul [15]). Here a convex combination of two elements of the consequence space
X need not be an element of X. Therefore, to model a randomization, we may instead expand
the original state space, S, by forming the cross product of S with the possible outcomes (or
“states” ) of the randomizing device. For example, Figure 2 shows the acts (a) “bet on red.” (b)
“bet on black,” (c) “bet on red if heads, black if tails.” and (d) “bet on black if heads. red if tails”

in the case of the unknown urn with a coin used to randomize.

the same name. This notion of uncertainty aversion has been by far the most common in the literature. Recently,

Epstein [9] and Ghirardato and Marinacci [12] have proposed alternative notions of uncertainty aversion.



Figure 2: Unknown urn with randomization in the state space only (Savage)
R(ed), H(eads) B(lack), H(eads) R(ed), T(ails) B(lack). T(ails)

a $100 $100 $0 $0
b $0 $0 $100 $100
c $100 $0 $0 $100
d $0 $100 $100 $0

In comparing the two models, observe that the Anscombe-Aumann setting builds in several
key properties that a randomizing device should satisfy while the Savage setting does not. In
particular, the probabilities attached to the outcomes of the randomizing device should be
unambiguous and the device should be stochastically independent from the (rest of the) state
space. Arguably these two properties capture the essence of what is meant by a randomizing
device. Both properties are automatically satisfied in an Anscombe-Aumann setting. In a Savage

setting. as we will see below, these properties require additional restrictions on preferences.?

Several recent papers (including Eichberger and Kelsey [7], Ghirardato [10]. and Sarin and
Wakker [22]). have noted that CEU need not give identical results in the two frameworks.
Specifically, they suggest that the choice of a one-stage (Savage) or two-stage
(Anscombe-Aumann) model can lead to different behavior. To see this in the unknown urn
example, consider the case where the decision maker’s marginal capacity over the colors is
v(R) =v(B) = % In the Anscombe-Aumann setting this is enough to pin down preferences as

c > a~b. (i.e., the Raiffa preferences or preference for randomization).

In the Savage setting, consider the capacity given by
v(Rx {H,T})=v(Bx {H.T}) =
v(H x {R,B}) =v(T x {R,B}) =
v(RxH)=v(RxT)=v(BxH)=v(BxT)=

V(RxH)UBxT)=v((RxT)U(Bx H))=

Wl W — O = rol = Wi

v(any 3 states) =

This capacity yields the preferences a ~ b ~ ¢ ~ d, and thus does not provide a preference

3 A randomizing device could be modeled in an Anscombe-Aumann setting by expanding the state space in exactly
the same way as illustrated for the Savage setting. In this case, the same additional restrictions on preferences as
in the latter setting would be required to ensure that the randomizing device was unambiguous and stochastically

independent.



for randomization as in the Anscombe-Aumann setting. Why can this occur despite the fact that
the marginals are identical in the two cases and the product capacity is equal to the product of
the marginals on all rectangles? Mathematically, as Ghirardato [10] explains, the source is a
failure of the usual Fubini Theorem to hold for Choquet integrals. Intuitively, however, it is not

clear what is going “wrong” in the example.

To gain some insight. it is useful to examine the weights applied to each state when
evaluating the randomized acts. For example, as Figure 3 shows, “Bet on Red if Heads, Black if
Tails™ is evaluated using non-product weights. The fact that such non-product weights can be
applied suggests that the CEU preferences with the capacity above reflect ambiguity not only
about the color of the ball drawn from the urn but also about the correlation between the
randomizing device and the color of the ball. While such ambiguity is certainly possible, it runs
directly counter to the stochastic independence we would expect of a randomizing device. In the

next section, therefore, I propose conditions on preferences that ensure this independence.

Figure 3: Non-product weights for randomized act
R.H R T B.H B. T

C S100  $0 $0 8100

il 1 1 1
weights 5 3

1
3 6

4 Stochastic Independence and Preferences

Here I propose conditions on preferences that are designed to reflect two properties of a
randomizing device: unambiguous probabilities and stochastic independence. These two

properties are essential to what is meant by a randomizing device.

Formally. consider preferences. >, over acts, F : S — X. on a finite product state space.
S =51 x Sy x...x Sn. Denote by Fs, the subset of acts that are measurable with respect to 25,
For f.g € F and A C S, denote by fag the act which equals f(s) for s € A and equals g(s) for

s € A. We now state some useful definitions concerning preferences.

Definition 1 > satisfies solvability on S; if, for f € Fs,, z.y.z € X and A; C S,

TaxS_,2 > [ ya,xs_,z implies f~waxs_.z for somew € X.

Solvability should be seen as a joint richness condition on > and X. It is satisfied in all

axiomatizations of which we are aware of EU, CEU, or MMEU over Savage acts on a finite
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state-space. For example, Nakamura [19] imposes solvability directly, while Wakker [24., 25]. Gul
[15] and Casadesus-Masanell, Klibanoff, and Ozdenoren (3] ensure it is satisfied through

topological assumptions on X and continuity assumptions on > .

Definition 2 > satisfies unambiguous probabilities (UP) on S; if > restricted to Fs, can be
represented by expected utility where the utility function is unique up to a positive affine

transformation and the probability measure on the set of all subsets of S; 1s unique.

While the definition is intentionally stated somewhat flexibly, it could easily be made more
primitive/rigorous by assuming that preferences restricted to Fg, satisfy the axioms in one of the
existing axiomatizations of expected utility over Savage acts on a finite state space such as
Wakker [24], Nakamura [19]. Gul [15], or Chew and Karni [4]. This definition is intended to
capture the fact that the decision-maker associates a unique probability distribution with S;.
Note that the uniqueness requirement on the probability measure entails the existence of
consequences z.y € X such that z > y (where preferences over X are derived from preferences
over the associated constant-consequence acts in the usual way). Furthermore, any of the
axiomatizations cited will imply solvability on S; as well. For this reason, it may be best to think

of solvability as part of the foundation for UP rather than as an independent requirement.

Definition 3 > satisfies stochastic independence (SI) on S; if, for any §_; € S_;, any f € F
and any g,h € Fs,,
g~h

implies,

gSz X§..1'f ~ hSixé_tf-

The idea here is that if the realization of s; € S; is perceived to be stochastically
independent from the realization of s_; € S_;, then fixing any s_; and replacing the payofls across
S, with payoffs across S; that are deemed equivalent (when considered as elements of Fi,) should
not affect preferences. Another way to think about this is to think about conditional preferences:
if the outcome on S_; does not affect the perceived probabilities over S;. then overall evaluation
of S;-measurable acts should agree with evaluation conditional on any given s_;. Further
supporting the idea that this axiom reflects stochastic independence is the observation that if
preferences are EU and non-trivial, then SI is equivalent to requiring that the representing

probability measure be a product measure on S; x S_;.

Definition 4 s; € S; is null #f fq xs_,h ~ gs,xs_,h for all f.g,h € Fys,.



Definition 5 If > satisfies solvability, UP and SI on S; and S; contains at least two non-null
states, then S; is a candidate randomizing device (CRD).

Note that given UP, the requirement of two non-null states is equivalent to at least two

elements of S; being assigned non-zero probability.

4.1 MMEU and Randomizing Devices

This section develops the implications for MMEU preferences of one ordinate of the state space

being a CRD. MMEU will be found to be flexible enough to easily incorporate both a CRD and

uncertainty aversion.

Theorem 1 Assume = are MMEU preferences satisfying solvability for some S; that contains at

least two non-null states. Then the following are equivalent:
(i) Si is a CRD;

(i) There ezists a probability measure on 25§, such that all probability measures, p, in the
closed, convez set of measures, B, of the MMEU representation satisfy

p(s) = p(si)p(Si x s—;), for all s € S.

Proof: ((i) = (1)) We first show that all p € B must have the same marginal on S;. CRD
implies that > restricted to Fs, may be represented by >, s u(f(s:))p(s:) where p is the unique
representing probability measure on 2%, and u is normalized so that u(z) = 1 and u(y) = 0.

Using the MMEU representation of > yields,

min > u(f(s))p(s: x S=i) = 3 ulf(s))p(s:) for allf € Fs. (1)

5:€S5; s:€5;

Suppose there is some p' € B such that p/(s; x S_;) # p(s:) for some s; € S;. Without loss
of generality, assume that p(s}) > p/(s; x S_;) for an s} € S;. Consider the act f = zyxs_y. By
MMEU and our assumption,

min u(f(si))p(si x S—i) < u(x)p'(si x S-:)
peB s;€85;

< u(z)p(s))

> u(f(s:))b(si),

5:€85;



contradicting equation 1. Therefore it must be that p € B implies p(s; x S_;) = p(s;) for all

s; € S;. In other words, all the marginals on S; agree.

Now we show that each p € B is a product measure on S; x S_;. This part of the argument
proceeds by contradiction. Suppose that p € B does not imply that p(s) = p(s;)p(S; x s—;). for all
s € S. Then there must exist a pp € B. non-null s;, s, € S; and an s_; € S_; such that

po(si,s_;)  po(si;sty)
B(si) B(s;)
According to pg. the probability of s”_; conditional on s} is higher than the probability of s’ ,

conditional on s;. We now show that this difference in conditional probabilities is inconsistent
with stochastic independence on S;. There are two cases to consider: the case where p(s;) > p(s;)
and the case where p(s;) < p(s:). Assume the former is true and consider the act f € Fs; such
that f = zgxs_.y- Since x4, xs_,y = f = y, solvability on S; implies there exists a w € X such

that wg,xs_,y ~ f. Define g = ws,xs_,y. Observe that our normalization of u and the preference
p(s])

representation imply u(w) = O

Define the act h = 951><s’_1f- By SI. f ~ g implies f ~ h. We have the following

contradiction:
min S ulf(s)p(s) = A
sES
= ;%iESESU(h(S))p(S)
< Y u(h(s))po(s)
s€S

= u(w)po(si,s_;) +u(z)(po(s; x S_;) — po(s.s_,))
po(si,st;) . polsi-st,
0 B

A similar argument yields a contradiction for the case p(s;) < p(s;) using acts
f=Zs,xS_ Y ~Wyxs_Yy=9g~h=fsxs g, where u(w) = %(%'%' Therefore each p € B must in

fact be a product measure on S; x S_; and (i) is proved.

((11) = (1)) That (1) implies UP is satisfied on S; is clear because p is the unique
representing probability measure. To see that SI is satisfied on S;, consider acts g.h € F§, such
that g ~ h and any act f € F. Fix §_; € S_; and define acts d = gs,xs_,fand e=hs «;_ f. By
(41).

mlnz d(s))p(s) = gém }: p(S; X 5-4) [Z (d(si,s_i))ﬁ(si)j\

$_1€S—1 5165

10



and.
min 3 ule(s)p(s) = min 5 p(Six s_) | 3 wlelsi s ))lsi)
peB ses peB s_;€S_; $:€S,

Since g ~ hand f ~ [,

Z u(d(s;. 5-:))p(si) = Z u(e(s;,s—;))p(s;) for all s_; € S;.

5;€S5; 5;€85;
Therefore the two minimization problems are the same and d ~ e. QFED

Thus. we get quite a natural representation in the MMEU framework:

e All the marginals on the randomizing device agree, reflecting the lack of ambiguity about

the device.

o All the measures in B are product measures on S; x S_;, reflecting the independence of the

randomizing device.

Remark 1 This result may be seen as additional confirmation that SI is a reasonable condition:
in particular that it does not confound stochastic independence with the violations of
independence inherent in uncertainty aversion. In fact, the theorem shows that one ordinate
being a CRD places no restrictions on the preferences over acts measurable with respect to the

non-CRD ordinates of the state space.

Remark 2 It is not hard to see from the theorem that, in the Ellsberg “unknown urn” example.
if “bet on red” is indifferent to “bet on black” then any MMEU preferences that are not EU and
for which the coin is a CRD lead to the “Raiffa” preference for randomization. Thus. at least in
this setting, there is a strong argument that uncertainty aversion implies a preference for

randomization in the sense discussed here.

Remark 3 The set of product measures that emerges from the MMEU characterization is
consistent with a notion of independent product of two sets of measures proposed by Gilboa and
Schmeidler [14]. Specifically, the set B is trivially the independent product (in their sense) of the
(unique) marginal on S; and the set of marginals on S_; used in representing preferences over
Fs_.. It is worth noting that no purely preference based justification for their broader notion is

known.

11



4.2 CEU, Uncertainty Aversion, and Randomizing Devices

This section examines uncertainty averse CEU preferences on a product state space where one of
the ordinates is assumed to be a candidate randomizing device. In stark contrast to the results of
the previous section. this class is shown to include only expected utility (EU) preferences. This
suggests that CEU preferences with a convex capacity are incapable of modelling both a

randomizing device and uncertainty aversion simultaneously.

Theorem 2 If CEU preferences, =, display uncertainty aversion and, for some i, S; is a CRD

then = must be FU preferences.

Proof:

Recall that the state space is S = S1 x Sy x ... x Sy. Without loss of generality. let S; be a
CRD. Define K = #5; and L = #5_1. Again, without loss of generality. assume L > 1. Fix
outcomes z,y € X such that z > y. Normalize the von Neumann-Morgenstern utility function u
given in the CEU representation so that u(z) = 1 and u(y) = 0. Uncertainty aversion implies that

the capacity v in the CEU representation must be convex.

The proof strategy is to assume convex v, S; a CRD and not EU and derive a

contradiction. The following lemmas will be needed.

Lemma 1 If CEU preferences satisfy UP with respect to S1 then the capacity, v. in the CEU

representation of these preferences must satisfy

U({Sl} X S_.l) = p(sl), Vs, € 51, (2)

where p is a probability measure on 251,

Proof: Omitted.

The next lemma is due to Eichberger and Kelsey [7].

Lemma 2 Let A, BC S_; and letY C S1 and Y1, Y2 be a partition of Y. Let
P = (Y1 x A)U(Yz x B). Ifv s a conver capacity on 25 and equation 2 holds, then

v(P) =v(Y; x A) +v(Y2 x B). (3)
Proof: See [7, Lemma 3.1..

12



Lemma 3 If S; is a CRD and v is a convex capacity on 2°, then
’U(441 X B_l) = p(Al)’U(Sl X B_l), (4)

where 41 C S1. B_1 C S_1 and p is a probability measure on 25,

Proof: Fix a non-null s; € S and consider f € Fg, such that f = z5,xs_,y. By lemma 1.
the CEU representation assigns value p(s1)u(z) + (1 — p(s1))u(y) = p(s1) to f. Since z > f = y.
solvability implies that there exists a w € X such that w ~ f. It must be that u(w) = p(s1).

Fix any B_1 € S_;. By Slon Sy, w ~ f implies ws,xB_,¥ ~ fs;xB_,y¥. The CEU
representation assigns value v(S; X B_1)u(w) = v(S1 x B_1)p(s1) to ws,;xB_,¥ and value

v(sy x B_1)u(z) = v(s1 x B_1) to fs,xB_;y. Therefore, it must be that
v{sy x B_1) = p(s1)v(S1 x B_1). (5)
Fixing some A; C S; and summing across equation 5 yields,

S w(s1 x Bo1) = p(A1 (81 x B_y).

s1€41

Using lemma 2, v(A; X B_1) = 3¢ e, v(51 X B_1). Therefore,
’U(fll X B_l) = p(Al)v(51 X B—l)-

QED

Now let s_i1.....5_11 be an enumeration of the elements of S_; and let s11...., S1x be an

enumeration of the elements of S;. Assume without loss of generality that p(s11) > p(s12) > 0.

Consider the act hg € Fs, defined by hg = z5,,xs_,¥. The CEU representation assigns hg

value p(s12). Since zs,.xs_,y = ho = ¥y, solvability implies the existence of w € X such that

p(s12)
p(s11)
f = ws,,;xs_,.y- Observe that go ~ ho by construction.

Wsy;xS_, Y ~ ho. Therefore it must be that u(w) = . Let go = ws,; xs5_,y and let

Define acts h1 = hog. xs_12f and g; = goslxs_mf. By SI on Sy, go ~ hg implies g1 ~ hy. The
CEU representation assigns h; value

u(z)v(siz x s—12) +u(w) v ((s11 X s—11) U (s12 X s_12)) — v{s12 X s-12)]. By lemma 2.

v ((s11 X s—11) U (812 X s_12)) = v{s11 X 5_11) + v(s12 X 5-12).

By lemma 3.

v(s11 X s—11) = p(s11)v(S1 x 5-11)

13



and.
v(s12 X s—12) = p(s12)v(S1 X 5_12).

Therefore, hy gets value
u(z)p(s12)v(S1 X s_11) + w(w)p(s11)v(S1 X s_11) = p(s12) 2, v(S1 x s_1;). The CEU

representation assigns g; value u(w)v(sy; x {s-11,8-12}). By lemma 3.

v(si1 X {s-11,s-12}) = p(s11)v(S1 X {s-11.5-12})-

Therefore g1 gets value p(s12)v(S1 X {s-11, s—12}). Since g; ~ h; it follows that
2
’L/(Sl X {8_11,8._12}) Z Sl X §_ 12 (6)

Now define acts ho = h051x$_1391 and go = 90y xs_1591- The CEU representation gives ho
value u(z)v(s12 X s_13) + u(w) v ((s11 x {s-11.5-12}) U (s12 X s—13)) — v(s12 X s_13)] . Using
equation 6 along with lemma 2 and lemma 3 as above, it can be shown that this value is

p(s12) S50, v(S1 x s_14). As the CEU representation gives gy value
p(s12)v(Sy X {s_11.5-12:5-13}). and SI implies hy ~ go. it must be that
v(Sy x {s_11,5_12,5_13}) = oo, v(S1 X s_1).

We continue this iterative construction for acts,

Ry = hos e (03, 9i-1: 3 =2, L= 1

with value,

7+1
p(s12) Y v(S1 X 5-14)
i=1
and acts.
g; = gOSIXS_l(]_H)gj—l*, .7 = 2', cee rL -1
with value,

p(s12)v(S1 {3_11,...,3_1(j+1)}),

Bv SI on Si. gg ~ ho implies g; ~ hj, j =1....,L — 1. Observe, however, that
9L-1 = Wsy,x5-1Y = go. Therefore g _; is assigned value p(s12) by the CEU representation. Since
gr—1 ~ hr_y. this implies that

L
Z Slxsh 1.

In other words, the capacity v has an additive marginal on S_;. which we denote by p,. We now

show that v must in fact be additive.

14



By lemma 3 and the above.

dYouls) = > plsi)pu(s-1)

sES s€S
= Y pls1) Y. pulso)
51€51 S_1€ES5_
= Y p(s1)
S1€51
= 1.

Since v is convex and v(S) =1, 3 cgv(s) = 1 implies v is additive. QED

Remark 4 This theorem shows that CEU with a convex capacity is a very restrictive class of
preferences in a Savage-like setting. In particular a decision maker with such preferences must be
either uncertainty neutral (i.e. an expected utility maximizer) or must not view any ordinate of
the state space as a candidate randomizing device. Note that this fact is disguised in an
Anscombe-Aumann setting because there the randomizing device is built into the outcome space

and thus automatically separated from the uncertainty over the rest of the world.

Remark 5 The theorem allows us to better understand the result of Eichberger and Kelsey 7].
who find that convexity of v, a symmetric additive marginal on S;, and a requirement that
relabeling the states in S; not affect preference, together imply no preference for randomization.
Note that they do not impose a condition like SI. Thus, the result shown here makes clear that
the lack of preference for randomization in their paper comes from the fact that decision makers
having preferences in this class (with v somewhere strictly convex) cannot act as if the
randomizing device is stochastically independent. In other words, the uncertainty averse
preferences they consider rule out a priori the possibility of a stochastically independent device
and thus of true randomization. Once they admit preferences like MMEU, which, as shown above.

can reflect a CRD as well as uncertainty aversion, preference for randomization reappears.

4.3 Further Discussion of the SI Condition

The kev to these results is the SI condition. I argued above that it is quite natural to accept SI as
reflecting stochastic independence of S; from S_;. However, it is worth elaborating a bit on why

SI seems appropriate in the sense that it is neither too strong nor too weak an axiom.

How might SI be too strong? Since stochastic independence does concern independence. and

uncertainty aversion fundamentally involves violations of the independence axiom/sure thing
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principle of subjective expected utility theory, it is fair to ask whether imposing SI unnecessarily
restricts uncertainty aversion. Theorem 1 answers this question in the negative and suggests that
uncertainty aversion is not restricted at all by imposing SI. Specifically, any MMEU preferences*

over Fs_, are compatible with S; being a CRD.

How might SI be too weak? A natural question to raise here is whether the logic supporting
SI also supports imposing a similar axiom with the roles of S; and 5_; reversed. The key to
understanding why it may not is to think of S; as an ordinate for which UP applies, whereas
preferences over acts in Fs_, display some uncertainty aversion. With uncertainty averse
preferences, the effective probabilities or decision weights over S_; depend on how payoffs vary
across these states — this is the crux of the matter. Therefore, even if the realization of s; € S; is
perceived to be stochastically independent from that of s_; € S_;, there is no reason to think that
the evaluation of a number of conditional payoffs over S_; should aggregate in a way that agrees
with overall preferences over Fs_,. Fundamentally, the weight attached to any particular s_;
depends on the way payoffs vary over the whole space. Thus, imposing SI seems to be appropriate
only on ordinates over which the agent is uncertainty neutral, as in UP. in the sense of using fixed
probabilities when evaluating acts measurable with respect to that ordinate. The following
theorem formalizes some of this intuition by showing that when S; is a CRD and we impose Sl on

S_;° as well, even MMEU preferences collapse to EU.

Theorem 3 Assume > are MMEU preferences satisfying solvability for some S; and S_; that
each contain at least two non-null states. If S; is a CRD and > satisfy SI on S_; then = are EU
preferences. Furthermore there exist probability measures p on 25 and ¢ on 25—+ such that the

representing probability measure p satisfies p(s) = p(s;)§(s—;), for all s € S.

Proof: From the assumption that S; is a CRD, it follows by theorem 1 that p € B implies
p(s) = p(s;)p(S; x s—;), for all s € S. Thus, we already know that B contains only product
measures, and all that remains to be shown is that B is a singleton set. We use a proof by

contradiction.

Suppose that B contains at least two distinct probability measures. Then, for some
5_; € 5_; it must be that

p=maxp(S; x §_;) > minp(S5; x 5_;
p pegp( i) gépr(z i)

.

The idea of the proof is to construct a pair of indifferent acts, g and k. that are measurable with

respect to S_; such that one act is evaluated using weight 7 on §_; while the other is evaluated

4Recall that this includes any uncertainty averse CEU preferences as well.
5To define “SI on S_;” simply replace ¢ with —¢ and —i with 7 everywhere in definition 3
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using weight p. Then we can show that, for a non-null §; € S;, gs5,xs_,h > h which violates SI on
S_; and thus generates the contradiction. The only slight complication is that a single pair of ¢
and h will not work for all values of p and p. Thus we must repeat essentially the same argument

for four possible cases with a different g, h pair for each case:
Fix z,y € X such that z > y. Normalize u(z) =1 and u(y) = 0.

Case 1: Assume 1 >7>p>0and 1 —~p > p. Let g = z5,x;5_,y. According to the MMEU
representation. ¢ has value u(x)p = p. Let A = yg,x;_,w where w is chosen so that A ~ g. Note
that solvability on S_; and our assumption on p and p guarantee that such a w exists.

Furthermore 0 < u(w) = % < 1. Pick a non-null §; € S;. Since g ~ h, Sl on 5_; implies

T—
9s.x5_.h ~ h. (To see this set f = h in the statement of SI.) According to the MMEU

representation, gz, «xs_,h has value:
;%igﬁ(éi)P(Si x 8-i) + (1 = p(3:))(1 — p(S; x 5-3))u(w)

Note that the minimand is linear in p(S; X §—;), so the minimum is attained at p(S; x §_;) = por

p (or both). Substituting in u(w) = 1—_% it is straightforward to calculate that the value assigned
10 gs,xs_, h Is strictly greater than p which is the value assigned to g (and thus h, as well).

Therefore gz, xs_,h > h in violation of SI on S_;. Thus we have a contradiction.

Case 2: Assume 1 >7>p>0and 1 -7 < p. For this case, let h = yg,xs_,z and
g = ws,x;s_.y. where w is chosen to make g ~ h. Again, solvability and the assumptions on p and
p guarantee such a w exists and we can calculate 0 < u(w) = 1—;2 < 1. Now the argument
proceeds exactly as in case lexcept we use the case 2 definitions of - and g. In particular it is

again true that gs,xs_,h > h. Thus we have a contradiction in this case as well.

Case 3: Assume p > p =0. Let h = yg,xs_,z and g = zg5,xs_,w, where u(w)=1-p<1
exists and guarantees g ~ h. Again it follows from calculations similar to those in the above cases

that Qéle_ih > h.

Case 4: Assume 1 =5 > p> 0. Let h = ws,x;_,7 and g = z5,xs_,y, where u(w) = p <1
exists and guarantees g ~ h. Again it follows from calculations similar to those in the above cases

that g§1><5_1h > h.

These four cases cover all the possible configurations of p > p. Thus it must be that p = p.
Therefore all p € B must assign the same weight to §_,. However. 5_; was arbitrary, so the same
must be true for all s_; € S_;. This proves that B is a singleton set (since MMEU implies B
cannot be empty). QED

Remark 6 The above theorem shows that imposing SI in both directions is in conflict with
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uncertainty aversion as embodied in MMEU. One might wonder whether, as was the case with
uncertainty averse CEU preferences, it is something about the MMEU representation apart from
uncertainty aversion that is causing the conflict with “bi-directional” SI. However, a simple
example in the context of the Ellsberg “two-color” problem shows that the conflict is truly
between the stronger SI condition and uncertainty aversion itself. Recall from the introduction,
and assume for the sake of simplicity only, that an individual is indifferent between betting on red
or betting on black in the 50-50 urn and is also indifferent between betting on red or betting on
black in the “unknown urn.” Uncertainty aversion then manifests itself in the urn problem by a
strict preference for betting on the color red (black) in the 50-50 urn over betting on the color red
(black) in the “unknown urn.” However, one application of SI to the ordinate representing the
“unknown urn” implies betting on red in the “unknown urn” is indifferent to a bet which wins
only if the same color is drawn from both urns (i.e. either red and red or black and black). But
by an application of SI to the ordinate representing the 50-50 urn, betting on red in the 50-50 urn
is also indifferent to betting that the same color will be drawn from both urns. By transitivity
then, betting on red in the 50-50 urn is indifferent to betting on red in the “unknown urn.”

contradicting uncertainty aversion.

5 Conclusion

This paper has provided preference-based conditions that a randomizing device should satisfy-
When these conditions are applied to the class of CEU preferences with convex capacities in a
product state-space model a collapse to expected utility results. This does not occur with MMEU
preferences in the same setting. In particular, it appears that some previous results on the absence
of preference for randomization were driven not by some deep difference in Anscombe-Aumann
and Savage style models as they relate to uncertainty aversion. but by the restrictiveness of the
CEU functional form as it relates to stochastic independence which is exacerbated in Savage style
models. When stochastic independence is properly accounted for, preference for randomization by

uncertainty averse decision makers arises in both one- and two- stage models.

To my knowledge, Blume, Brandenburger and Dekel [2] are the only others to have
developed a preference axiom for stochastic independence. Their work is in the context of
preferences satisfying the decision-theoretic independence axiom. This leads their condition to be
unsatisfactory in the setting of this paper. In particular, their axiom asks more of conditional
preferences than is reasonable in the presence of uncertainty aversion and does not need to

address the consistency of conditional with unconditional preferences.

Some other recent work on shortcomings of the CEU model is Nehring {20]. In the context
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of inequality measurement under uncertainty, Ben-Porath, Gilboa and Schmeidler [1] advocate
MMEU type functionals and show that they are closed under iterated application while CEU

functionals are not.

Differences between CEU and MMEU are also discussed in Klibanoff [17] and Ghirardato.
Klibanoff and Marinacci [11].

It is worth noting that whether or not actual decision makers act as if randomizing devices
are independent, and when and where these preferences for randomization (or mixture) come into
play are questions which cannot be answered here. In addressing these issues in the future. there
is scope for both tackling important theoretical issues relating to dynamic flow of utility for
decision makers and for doing careful experimental examinations of behavior relating to

randomization in decision making.
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