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Abstract

We study the financial value of subcontracting by analyzing a competitive stochastic in-
vestment game with recourse. The manufacturer and subcontractor decide separately on their
capacity investment levels. Then demand uncertainty is resolved and both parties have the
option to subcontract when deciding on their production and sales. First, we study price-only
contracts where an ex-ante transfer price is set for each unit supplied by the subcontractor. We
characterize the sub-game perfect investment strategy and present an outsourcing condition.
Manufacturer and supplier capacity levels are imperfect substitutes that, surprisingly, are more
sensitive to changes in the cost structure than in the revenue structure. Uncertainty is the
key reason, and we show that manufacturers will subcontract more when the level of market
risk increases and when markets are more negatively correlated. As with financial options, this
is accompanied by an increase in the option value of subcontracting. Second, we consider an
incomplete contract, so that both parties negotiate over the subcontracting transfer. Depending
on the manufacturer’s “bargaining power,” system performance can exceed that with price-only
contracts. Finally, the third contract type is a state-dependent price-only contract for which we
show an equivalence result with the bargaining contract. While subcontracting with these three
contract tyf)es improves system performance, it cannot eliminate all decentralization costs (or
“coordinate” the supply system).

Key Words: Real investments, capacity planning, subcontracting, outsourcing, supply contracts.

1 Introduction

We present analytic models to study subcontracting and outsourcing, two prevalent business prac-
tices across many industries. While the word subcontracting has been used for nearly two centurles,
outsourcing first appeared in the English language only as recently as 1982 [2]. Both terms refer to
the practice of one company (the subcontractor or supplier) providing a service or good for another
(the contractor, buyer or manufacturer). Subcontracting typically refers to the situation where the
contractor “procures an item or service which is normally capable of economic production in the
contractor’s own facilities and which requires the contractor to make specifications available to the
subcontractor [7].” Outsourcing refers to the special case where the contractor has no in-house
production capability and is dependent on the subcontractor for the entire product volume.

Many literatures discuss the costs and benefits of subcontracting. According to the strategy
literature, subcontracting and outsourcing occur because a firm may find it unprofitable or infeasible
to have all required capabilities in house: “a firm should concentrate on its core competencies and
strategically outsource other activities {19]” and “not one company builds an entire flight vehicle,
not even the simplest light plane, because of the exceptional range of skills and facilities required



[1]". Subcontracting and outsourcing may also be “an impetus and agent for change” and “may
improve unduly militant or change-resisting” employee relations [4]. These benefits come at a
cost by exposing the contractor to strategic risks, such as dependence on the subcontractor (with
its inherent loss of control and associated hold-up risk) and vulnerability (e.g., lower barriers to
entry and loss of competitive edge and confidentiality) [19]. The operations literature highlights
the flexibility that subcontracting offers to production and capacity planning. Like demand and
inventory management. subcontracting allows for short term capacity adjustments in the face of
temporal demand variations. The key distinction between subcontracting and these other two
production planning strategies however, is that subcontracting “requires agreement with a third
party who may be a competing firm with conflicting interests [14].” (The implication being that any
reasonable model of subcontracting must incorporate multiple decision makers.) From a financial
perspective, the main reported benefits of subcontracting and outsourcing are lower operating
costs and lower investment requirements for the contractor, and the spreading of risk between the
two parties. Empirical studies report that cost efficiency is the prime motivation for outsourcing
maintenance [4] and information systems [16]. It is also argued that contractors ‘push the high
risk’ onto subcontractors by having them “carry a disproportionate share of market uncertainties
[8].” The financial costs of subcontracting and outsourcing include decreased scale economies to
the contractor [10] and the transaction costs resulting from the initiation and management of the
contracting relationship [19]. Finally, an extensive economics literature discusses our topic when
studying vertical integration but that literature generally ignores capacity considerations.

Few papers explicitly study an analytic model of subcontracting. Kamien and Li [14] present a
multi-period, game theoretic aggregate planning model with given capacity constraints and show
that the option of subcontracting results in production smoothing. Kamien, Li and Samet [15] study
Bertrand price competition with subcontracting in a deterministic game with capacity constraints
implicit in their convex cost structure. Hanson [11] develops and empirically tests a model of
the optimal sharing of the ownership of a given, exogenously determined number of units of an
asset between a manufacturer and a subcontractor. Tournas [20] captures asymmetries in in-house
information in a principal-agent model and compares them with the bargaining cost of a captive
outside contractor in a low-or-high demand scenario. Recently, Brown and Lee [5] have proposed
a flexible reservation agreement in which a manufacturer may reserve supplier capacity in the
form of options. Finally, there is significant literature on outsourcing in supply-chains. Cachon
and Lariviere [6] give an excellent overview of various possible contract types and their costs and
benefits, which will be discussed in more detail in Section 4.

The model presented in Section 2 below uses a two-stage, two-player, two-market stochastic
game to examine the financial impact of the subcontracting option on capacity investment levels.
In stage one, the manufacturer and subcontractor decide separately on their investment levels.
Then demand uncertainty is resolved and both parties have the option to subcontract when de-
ciding on their production levels in stage two, constrained by their earlier investment decisions.
Subcontracting is viewed as a trade of the supplier’s product for the manufacturer’s money. We
first analyze two scenarios (the centralized firm vs. two independent firms without any subcon-
tracting) that give us performance references. In Section 3 we study price-only contracts where an
ex-ante transfer price is set for each unit supplied by the subcontractor. We characterize the sub-
game perfect investment strategy and formulate an outsourcing threshold condition in terms of the
manufacturer’s investment cost. We show that optimal manufacturer and supplier capacity levels
are imperfect substitutes with respect to capacity costs and contribution margins. Surprisingly,
optimal capacity levels are more sensitive to changes in the cost structure (i.e., capacity costs) than
in the revenue structure (i.e., margins or output prices). Uncertainty is the key reason. We also
show that manufacturers will indeed subcontract more when the level of market uncertainty (risk)



increases and when markets are more negatively correlated. This is accompanied by an increase in
the option value of subcontracting (real assets). similar to the option value of financial assets. In
Section 4 we study two other contract types. One uses the incomplete contracting approach where
no explicit contracts can be made and both parties negotiate over the subcontracting transfer.
This is the ultimate minimalistic and opportunistic approach to subcontracting. It allows us to
analyze the role of the “bargaining power™ of the contractor on outsourcing decisions and system
performance improvement (which may be greater than with price-only contracts). Our third con-
tract type is a state-dependent price-only contract for which we show an equivalence result with the
bargaining contract. While subcontracting with any of these three contract types improves system
performance relative to the independent scenario, it cannot eliminate all decentralization costs (or
“coordinate” the supply system) due to uncertainty. We close with a discussion of more complex
contracts in the literature and suggestions for further work.

Our model differs from those in the previous papers in that the capacity investment levels of
both the manufacturer and the subcontractor are decision variables. Our multi-variate, multi-
dimensional competitive newsvendor formulation is an extension of univariate, one-dimensional
supply models and of the univariate competitive newsvendor models of Li [17] and Lippman and
McCardle [18]. Our multi-dimensional model allows us to study the impact of subcontracting on
both players’ in-house investment levels and on the buyer’s outsourcing decision, which is pre-
assumed in captive-buyer captive-supplier models. We show that the higher complexity of subcon-
tracting makes coordination more difficult compared to traditional outsourcing models in supply
chains. The multi-variate demand distribution allows us to investigate the important role of market
demand correlation and provides a graphical interpretation of the solution. Finally, we have chosen
to make both models essentially single-period and to posit no information asymmetries between
the two parties. Therefore we shall not discuss how subcontracting can smooth production plans
over time, create or mitigate information asymmetry problems, or affect the long-run competitive
position of the firms.

2 A Subcontracting Model

2.1 The Model

Consider a two-stage stochastic linear model of the investment decision process of two firms. In stage
one when market demands are still uncertain, both firms must decide separately, yet simultaneously,
on their capacity investment levels. At the beginning of stage two, market demands are realized and
both firms must decide on their production levels to satisfy optimally market demands, constrained
by their earlier investment decisions. At this stage, both firms have the option to engage in a
trade. The subcontractor S can supply the manufacturer M a quantity z; > 0 in exchange for
a payment pyx;. Before we explain the specifics of the supply contract in the next section, let us
discuss model features, notation and two reference scenarios that are useful to evaluate the impact
of subcontracting on firm performance.

In the first reference scenario subcontracting is not an option (x; = 0) so that both firms operate
completely independent of each other. Both firms go solo and each will sell to its own market as
shown in Figure 1. For simplicity, we will assume that both firms have exclusive access to their
respective markets. Because the subcontractor lacks the assembly, marketing and sales clout of the
manufacturer, she does not have direct access to market M. In practice, however, the manufacturer
may have access to market S through wholly owned upstream subsidiaries that provide them and
others with parts or subsystems. General Motors, for example, owns Delphi Automotives which
supplies GM and other auto assemblers with brake systems and other parts. At the same time, GM
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Figure 1: The Subcontracting Model.

multisources some parts from outside, independent subcontractors. Thus, market M would repre-
sent the end market for cars and market S the intermediate market for parts. GM could compete in
market S but we will abstract from such competition to highlight the subcontracting option. Also,
notice that direct sourcing from market S instead of from the subcontractor is not an option for
the manufacturer. This modeling assumption reflects the relationship-specific information typically
present in subcontracting and it implies that we are not discussing the purchase of standardized,
off-the-shelve products in commodity markets.

The second reference scenario represents the other extreme in which both firms are integrated
and controlled by a single decision maker. In this centralized scenario the integrated firm will
serve both markets. Subcontracting, then, is the intermediate scenario in which both firms are
independently owned so that we have two decision makers, yet trading is possible. ~(Thus the
subcontractor’s technology is sufficiently flexible that it can produce the same product as the
manufacturer’s technology.)

Let K; > 0 denote firm ¢’s capacity investment level, where i = M or S. Firm ¢ is assumed to face
a constant marginal investment cost ¢; > 0, so that its capacity investment cost ¢;K; is linear in the
investment level. The manufacturer’s production level z,; and the supplier’s production xgs + x4
are linearly constrained by the capacity investment levels: zps < Kjr and g +z¢ < Kg. For
simplicity, we assume that both firms make constant unit contribution margins p; per unit sold in
market 7. To avoid trivial solutions we assume that ¢; < p;. Let D; > 0 denote the product demand
in market i. Like Kamien and Li [14], we assume symmetric information in the sense that each firm
has complete information about the other’s cost and profit structure and investment level, and they
share identical beliefs regarding future market demands. (They have the same available market
information or use the same forecasting method.) Beliefs regarding future market demands can
then be represented by a single, multi-variate probability measure P(-). For simplicity, we assume
that market demands are finite with probability one and that P has a continuous density f(-) on
the sample space RZ. The expectation operator will be denoted by E. We assume zero shortage
costs and zero salvage values for both products and production assets'. Finally, both firms are
assumed to be expected profit maximizers and the research question can thus be formulated in the
two reference scenarios as follows.

2.2 Independents: Going Solo

When both firms do not subcontract, each firm decides on its production and sales decision x; in
stage two by maximizing its revenue m; = p;z; subject to the capacity constraint z; < Kj and the

IRelaxation of these assumptions to include convex investment costs, market-and-firm specific unit contribution
margins p;;, shortage costs and salvage values, and non-unit capacity consumption rates is relatively straightforward
at the expense of added notational complexity.



A
D
: Q, Q, Q,
.
oD
X,
Ks M d
Y
Q, R Q p
N .
Ql
Ky K. Dy

Figure 2: Production decisions and total market supply vector X, represented by arrows, depend on the demand
D realization and the scenario.

demand constraint z; < D;. This “product mix” linear program can be solved by inspection to
yield the optimal activity level and revenue: z$°° = min(K;, D;) and 75 = p; oo In stage 1,
firm 7 chooses its optimal investment level Kf""’ S0 as to maximize its expected ﬁrm value, denoted
by V;, which is the expected operating profit minus investment costs:

Ko = arg max Voo (K) where Vsol(K) = Ent?°(K, D) — ¢;K;. (1)

The optimal solution is given by a simple newsvendor solution Kf"“’ =G; (}9}_), where G;(-) is the

inverse of the marginal tail probability function: P(D; > G;(z)) = z. To build some intuition for
the solution technique that will be used below, let us summarize briefly how this familiar result
can be derived using the multi-dimensional newsvendor model of Harrison and Van Mieghem [12].
It will be convenient to partition the demand space as in Figure 2 (where we abbreviated the sum
of the components of K by K, = K; + K3). Any given capacity vector K partitions R? into 7
regions (K),l = 0,1,---,6. The rectangular region Qq(K) is the capacity region of this two-firm
supply system without subcontracting. Whenever D is within the supply system’s capacity region,
all market demand can be met. Outside the capacity region, some demand will be lost and the
optimal production-subcontracting market supply X = (zpr,zs) < D, represented by an arrow
emanating from D, will be on the capacity frontier.

Linear programming theory vields that the revenue vector 7s°°( K, D) is unique and concave in
K. Thus, the linear superposition Ex$°°(K, D) and thus V;*°°(.) are also concave so that the first
order conditions of (1) are sufficient:

V_solo — solo and l/soloKsolo — 0’

OK; !
where 1/3010 > 0 is the optimal Lagrange multiplier of the non-negativity constraint K; > 0. Invoking
(12], grad1ent and expectation can be interchanged to yield EX;(K*%°, D) = ¢; — 5010 ,where A,
is firm’s ¢ capacity shadow value: A; = —377} The shadow value A;, which is the optlmal dual

variable of firm i’s production linear program, equals a constant /\l in each domain € of Flgure
2. Thus, the expected marginal revenue can be expressed as g—[”{h = E\ Zl ALP(U(K)).
To simplify notation, define a 2 x 6 matrix A whose [-th column is the shadow vector in domain
Q : Ay = AL Similarly, define a 6 x 1 vector P(K) whose [-th coordinate is the probability of
domain € : P[( ) = P((K)). When both firms “go solo” the marginal vector is

= ar 0 Dar PaM DM PM | 5 p-solo prP(Dy > K3°)
E)\ — AsoloP Ksolo — DAr P(K _ 1
( ) 0 ps ps ps 0O O ( ) psP(Da2 > K5%°)



Because contribution margins exceed investment costs (p; > ¢;) both firms will invest (19 = 0)

and the optimality equations directly yield the simple newsvendor solutions G; (%)

2.3 Centralization

When both firms are controlled by one central decision maker, the optimal production and sales
vector z in stage two maximizes system revenue. subject to system capacity and demand constraints.
Transfers z; are possible and optimal activity levels x®"
product mix linear program:

and revenue 7" are the solution of the

cen

T = maxpar(Tar +1¢) +psxs (2)
>0

sit. ar < Kap,ze+ 15 < Ks 20 +2ar < Dar,zs < Ds.
The optimal investment vector K" maximizes expected system value:

K" = arg max Ver(K) where Ve (K) = En*“™(K,D) - K. (3)
The option of transfers x; enlarges the supply system’s capacity region to Qo U2;, or €g; in short.
Using this shorthand notation, if D € (223456, demand exceeds supply and the optimal supply vector
X = (zpr + x4, z5) will be on the boundary of the capacity region €2p;. The linear program (2)
can be solved parametrically in terms of K and D (thereby directly manifesting the domains
defined earlier). If market M is more profitable than market S, it gets priority in the capacity
allocation decision yielding market supply vector X, in Figure 2. Otherwise market S gets priority
yielding vector X, in Figure 2. As before, 7%"(K, D) is concave and the shadow vector A(K, D) is
constant in each domain so that the optimal capacity vector K" solves A" P(K ") = ¢ — p%"
and K¢™ye™ = (0, where

cen _ | 0 0 min(p) par par min(p)
A = . . (4)
0 ps ps max(p) par min(p)

If M-capacity is less expensive than S-capacity (cpr < cg), it is profitable to invest in both types
of capacity (v*™ = 0). Otherwise, it is optimal to supply both markets using only the cheaper
S-capacity: v§7* > 0 and K§5* = 0. In the Appendix of [23] we show that V" is strict concave at
K" so that the optimal investment vector is unique.

We now have completely characterized the optimal investment strategies in both reference
scenarios. Clearly, system values under centralization V" (weakly) dominate those when both
players go solo: V%" > Vj"l" = Vpole 4 Vpolo. The value gap Aysole = een Vj"lo captures the
costs of decentralization. In the remainder of this article, we will investigate how subcontracting
can decrease the value gap and whether it can “coordinate” the supply network. That is, can
subcontracting increase system efficiency and eliminate the value gap?

3 Subcontracting with Price-Only Contracts

A price-only contract specifies ex-ante the transfer (or “wholesale”) price p; that the manufacturer
must pay for each unit supplied by the subcontractor. Because this simple contract does not
specify a transfer quantity x; or any other model variables, it cannot force a party to enter the
subcontracting relationship. Using Cachon and Lariviere’s [6] terminology, contract compliance is
voluntary and both parties will enter the subcontracting relationship (or “trade”) only if it benefits
them. First we will consider p; as given and known by both parties from the start and analyze this



contract structure for any value of p;. Later we will discuss the choice—or contract design—of the
transfer price p;.

As before, both players must decide separately, yet simultaneously, on their capacity investments
in stage 1 before uncertainty is resolved. The resulting capacity vector K is observable and becomes
common information. After demand is realized, both parties make their individual production-sales
decisions x in stage 2 where they have the option to subcontract. Thus, the manufacturer can ask
the subcontractor a supply x} and the subcontractor has the option to fill the order zM (up to
her capacity constraint). Thus the subcontractor offers a quantity xf < ,r;”. which is accepted by
the manufacturer in exchange for a payment p;x;.

When making decisions, each player acts strategically and takes into account the other player’s
decisions. Any capacity vector K (production vector x) with the property that no player can
increase firm value by deviating unilaterally from K (x) is a Nash equilibrium in pure strategies
and is called simply an optimal investment (production) vector. Its resulting firm value (revenue)
vector is denoted by V(K) (w(z)). The analysis of our subcontracting model involves establishing
and characterizing the existence of a Nash equilibrium in this two-player, two-stage stochastic game.
As with any dynamic decision model, we start with stage 2 and solve the production-subcontracting
subgame for any given pair (K, D). We will show that there exists a unique optimal revenue vector
(K, D), which will allow us to solve the full investment game in stage 1.

3.1 The Production-Subcontracting Subgame

For any given capacity vector K > 0, both players decide sequentially on their production and
transfer levels in order to maximize their own revenue:

max pmTar +  (Par — pr)T max pSTS + piT
Tar,Te,xy 20 zs,zy >0
st.  xa < K, and s.t. rs+17 < Kg,
xl\[_!'_‘rt S DAfv s S D57
r, = min(zM, 7)), r; = min(z!,zy).

Depending on the value of p;, the manufacturer M and supplier S have a higher or lower incentive
to subcontract. First, M will only subcontract if p; < pas, otherwise the independent solo solution
emerges. Thus, for the remaining of this article we will assume p; < pas so that M will always
prioritize his internal capacity and will ask S to fill the remaining demand: zps = min(Djyr, Kar)
and zM = Dy — zpr = (Dar — Kar)' . Second, S has an incentive to fill M’s demand if p; > ps,
while if p; < pg, she will prefer to fill her own market demand. Thus, we must distinguish between
two cases: high transfer price (ps < p: < par) and low transfer price (p: < min(p)).

If the transfer price is high, S prefers supplying M to serving her own market and will fill M’s
order to the best of her capacity: z¥ = min(Ks,z}). Thus, the subcontracting supply is z; =
min ((DM — Kt ,Kg), and both players prefer subcontracting whenever M has excess demand,
that is if D € Qy3456. S will use any remaining capacity to fill her own market demand: zg =
min(Dg, Ks — 7). (The resulting market supply vector in Figure 2 is X.) If the transfer price is
low, S has little incentive to supply M and prefers serving her own market: g = min(Dg, Kg). S will
use any remaining capacity to fill M’s demand: xy = min(zM, Ks — zs). Thus the subcontracting
supply is z; = min ((DM - K" (K — D5)+), and subcontracting will materialize when M has
excess market demand and S has low market demand, that is if D € Qy56. (The resulting market
supply vector in Figure 2 is X,.)

In both cases (high or low transfer price), the production vector x forms a unique Nash equi-
librium because no player has an incentive to deviate unilaterally. At any transition point between

the regimes where an equality sign holds (e.g., ps = p¢), players are indifferent between the two

=]



regimes because they receives the same revenue in either regime, and a continuum of production
vectors are Nash equilibria. This poses no problems, however, because linear programming theory
yields that the associated revenue vector (K, D) is unique and concave in K:

Proposition 1 For any demand D and capacity K vector, there is at least one Nash equilibrium
z(K, D) in pure strategies and all equilibria have identical revenue vector (K, D), which is concave
in K.

3.2 The Full Capacity Investment Game

To demonstrate the existence of a Nash equilibrium in pure strategies, we will show that the capacity
reaction curves have an intersection point that is stable. (A simple three step sequential game like
our subgame always has an equilibrium.) Firm i's capacity re “ion curve k;(-) specifies firm i’s
optimal investment level K; = k;(Kj;) given that firm j has capacity K;. Thus, k;(-) is defined
pointwise for each K; > 0 as k;(K;) = arg maxg,>0 Vi(K). As before, because 7;(K, D) is concave
in K, so too is the linear superposition E7,(K, D) and thus V;(-). Thus, the first order conditions
(FOC) are sufficient and can be represented in matrix notation:

AP(K)=c—vand VK =0, (5)

where

[Pt 0 pt py PM Dt
0O ps ps pt pt DPs

} if ps < pt <pa,
Asub:
[p: 0 pa Py Prao PuM

if < min(pg, par)-
0 ps ps Dps Pt P } bt (P, par)

Thus, firm i's reaction curve is found by solving equation ¢ in (5) as a function of K. Implicit
differentiation of the FOC shows that —1 < ;—Ik{‘—_ < 0 (details can be found in the Appendix of
J
[23]). Axis crossings and asymptotes are as shown in Figure 3. It directly follows that the reaction

curves have an intersection K**. Moreover, at least one reaction curve has a slope f—}} > —1 at
an intersection so that the corresponding equilibrium is unique and stable (Nash).

Proposition 2 The unique solution K*“* of (5) is the unique optimal investment vector.

3.3 Complete Subcontracting (Outsourcing): K3 =0

From the structure of the capacity reaction curves, it follows that the optimal investment strategy
has one of two distinct forms. Either both firms invest or only the supplier invests. In the latter
case, the manufacturer relies for all sourcing on the outside party. Formally, one can express an
outsourcing condition in terms of a threshold ¢js on the manufacturer’s investment cost cps as
follows. Set K = (0,ks(0)) and define the threshold cost &y = A{**P(K), where A$¥® is the first
row of As¥?. Then the manufacturer should outsource if and only if his investment cost cps exceeds
the threshold cost ¢ar.

Clearly, the threshold cost ¢j; depends on the manufacturer’s margin pas, on “his cost to
subcontract” as expressed by the transfer price p;, and on the joint probability measure P of
the demand forecast. The supplier's margin ps and investment cost cg, however, also impact
the outsourcing decision. reflecting the strategic interactions in our game-theoretic model. In
the Appendix of (23] we show that for low levels of demand uncertainty, the threshold level is
independent of the demand distribution:
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Thus, with little demand uncertainty and low transfer prices, no outsourcing will happen because
such low transfer prices give the supplier not enough incentive to invest in extra capacity to serve
the manufacturer. (Even when p; < min(c), M must still invest in in-house capacity because
supply is not guaranteed by S who will prioritize her own market when capacity-constrained.) For
transfer prices higher than the supplier’s capacity cost, outsourcing is possible. For medium transfer
prices, the threshold s is decreasing in p; so that outsourcing becomes more likely with higher
transfer prices p;. When the transfer price exceeds the suppliers margin, a discontinuous drop in
¢ps reflects the fact that the supplier now has a very strong incentive to invest in extra capacity.
As the transfer price increases, however, subcontracting increasingly becomes more expensive for
the manufacturer compared to in-house capacity so that outsourcing becomes less likely. (From
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the structure of the manufacturer’s reaction curve it follows that the threshold cost ¢y cannot be
smaller than p;, because a necessary condition for outsourcing is that car > pg so that G‘\[(ﬂf) =0.)
Figure 4 illustrates the outsourcing vs. (partial) subcontracting strategies. Recall that a centralized
system would not invest in manufacturing capacity (and hence “outsource”) if cas > cg, covering a
wider ‘outsourcing’ zone of the strategy space. This is a first indication that subcontracting with
simple price contracts will improve system coordination as compared to the solo scenario (never
outsourcing), yet it will not eliminate the value gap AV.

When the level of uncertainty in the demand forecast rises above a certain level, the threshold
cost ps will decrease for low to medium transfer prices (p; < ps) but increase for high transfer
prices (ps < p¢ < par). Thus, for low to medium transfer prices, more uncertainty creates a
stronger incentive for the supplier to invest in extra capacity making outsourcing more likely. For
high transfer prices, on the other hand, more uncertainty increases the expected total transfer cost
to the manufacturer who will prefer more in-house capacity making outsourcing less likely.

3.4 Sensitivity of the Investment-Subcontracting Strategies

The sensitivity of the optimal investment strategy with respect to changes in capacity costs c,
contribution margins p, and transfer price p; is summarized in Table 1. Let us highlight some in-
teresting factors. First, strategic decision making captured by our game-theoretic model makes one
party’s investment level and firm value dependent on the other party’s cost and revenue structure.
When the manufacturer faces higher investment costs, for example, he will decrease his investment
level. The supplier, on the other hand, anticipates the manufacturer’s decisions and her decision
reflects the externalities in our model. Lower manufacturing capacity most likely will lead to higher

supply requests £}, giving the supplier an incentive to increase her investment level. The increase

in K g“b, however, does not make up for the decrease in K f\}‘b (because transfers are only made with
a probability strictly less than one). This shows that optimal manufacturing and supplier capacity
levels are imperfect substitutes with respect to capacity costs ¢ and margins p.

Second, optimal manufacturing and supplier capacity levels are more sensitive to changes in
capacity costs ¢ than changes in output prices (margins) p. This is a direct result from the presence
of uncertainty. For example, an increase in pys only warrants an increase in manufacturing capacity
if demand is sufficiently large (e.g., D € S5 if pr > ps). An increase in cpr, on the other hand,
always justifies a decrease in manufacturing capacity, regardless of the demand realization. This
result is in stark contrast to deterministic systems and one expects this sensitivity differential to
increase in the amount of demand variability.

Third, while the supplier’s value sensitivity directly reflects the externalities in the model, the
manufacturer’s value is a little more intricate. Clearly, an increase in supplier costs leads to a
decrease in total system capacity, which impacts both parties’ value negatively. An increase in
manufacturing cost benefits the supplier who increases her capacity in anticipation of a larger total
demand z + Dg. This effect can dominate to yield the unexpected result that the manufacturer’s
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Figure 5: Optimal investment levels as a function of demand variability when market demands are uncorrelated

(left) and of correlation when market demands are uniform (right).

value can be increasing in its investment cost. The manufacturer enjoys spill-over benefits from
increased supplier capacity that may outweigh his increased investment costs.

Fourth, the table shows that an increase in the transfer price p, has a similar effect as a
simultaneous increase in margins pas and ps. The absolute effect on investment levels and firm
values is ambiguous. An increase in p; makes subcontracting more expensive for the manufacturer
relative to internal capacity investment. This is reflected by a rightward move of the manufacturer’s
reaction curve kjs in Figure 3. Increased transfer prices, however, give the supplier a higher incentive
to increase her “relationship-specific” investment. Thus, while we expect Ks“b to decrease and Kg“b
to increase, the supplier’s reaction curve kg can move upward more than AM moves right so that
KS"” increases and K;“b decreases; again, illustrating the intricate externalities that can occur in
stochastic games.

Finally, to study the effect of uncertainty on the optimal investment strategies, we consider a
probability measure P (-|v) with density f(- |v) that is parameterized by v, where vy represents
an uncertainty measure of importance such as variability or correlation. Formally, the impact of
changes in 4 on the optimal investment strategy can be expressed as:

0 sub _ -1
5y =M {

Zz- (JQ?AU - J21Asub) P7
Zl—l ( J12A -+- JllAsub) P‘Y ’

where J is the Jacobian of the optimality equations (5) and

. _ 0
P = —P(Q(K*™*) |~ —_/
t 8'7 ( [( )| ) Ql(Ksub (9’7

(z |v)dz

Although this expression is of limited practical value, it may be useful for estimating the sign
of a K“‘b. The appendix of (23] shows that Jy < Jp; < 0 and Jyy < Jiz2 < 0. Thus, 67K“"“b and
8 Ks”b may have opposite signs so that the optimal manufacturer and supplier investment levels
would respond in opposite ways to changes in the demand distribution, akin to the substitution
effect stated earlier. This effect is present for changes in the level of demand uncertainty or demand
correlation in the example shown in Figure 5. This example was generated numerically using a
demand distribution parameterized by correlation and standard deviation in market demand. Given
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that the mean is constant. we can use the standard deviation as a measure of variability or market
risk. Correlation varies between —1 and +1 for perfect negatively and positively correlated demand.
respectively. (Explicit expressions for this family of distributions were first presented in {22, pp.
75-77).) For simplicity we assume identical mean and standard deviations for Dys and Dg, so that
both markets are ‘equally risky’.

As shown in the left graph of Figure 5, optimal investment levels are monotone in variability
but they can be increasing or decreasing. This is similar to the well-known effect in one-dimensional
newsvendor models with symmetric demand distributions where optimal investment increases (de-
creases) in variability if the critical ratio % > (0.5 (< 0.5). Also, the supplier’s investment increases
when the manufacturer’s investment decreases, and vice versa. More importantly, compared to the
independent “solo” setting, an increase in market risk decreases the manufacturer’s relative invest-
ment if there is a subcontracting option. This can be paraphrased as saying that the manufacturer
will subcontract more as market risk increases and the subcontractor’s response is to invest more.
(The subcontractor’s optimal investment level seems to be less sensitive to risk, which may be
explained by risk pooling: the supplier’s effective demand pools over both markets and therefore is
less variable.) The graph at the right in Figure 5 shows that the manufacturer’s (supplier’s) invest-
ment level is increasing (decreasing) in the correlation between the two market demands. Thus, the
manufacturer will subcontract less as market correlation increases. Indeed, when market demands
are positively correlated the subcontracting option has less value so that the optimal fraction of
capacity that is subcontracted decreases.

3.5 System Coordination and the Value Gap AV = V*" — Vsub

Comparing the capacity reaction curves (in bold in Figure 3) with the optimality curves that define
the optimal centralized and solo investment (in light in Figure 3) directly yields:

K < Ki}zb < Krsolo and Kcen > Kgub > Kg‘olo.

Intuitively, this is what one expects: subcontracting allows the manufacturer to decrease his invest-
ment in capital and/or labor. The option of subcontracting means potentially more business for the
supplier and thus warrants additional (or ‘relationship-specific’) investment. Figure 6 illustrates
how the subcontracting capacity investment levels compare to those in the reference scenarios as a
function of the transfer price p;. As argued earlier, the capacity levels are imperfect substitutes
while total industry investment level Ki“b is increasing in p;. The figure also shows that in the
context of our model subcontracting may reduce or increase industry investment compared to the
solo or centralized setting. (While the figure shows that Ki"l" < Ki"b, this is not true in general
either.) Thus, in contrast with the one-dimensional competitive models of Li [17] and Lippman
and McCardle [18], in our model centralization and its implicit monopoly power need not result in
industry under-investment compared to the subcontracting and independent (solo) settings. Sim-
ilarly, subcontracting and outsourcing need not result in a decrease of total capacity compared to
the solo setting.

A key question is how effective price-only subcontracting is in inducing system coordination;
that is, by how much does it reduce the costs of decentralization as measured by the value gap
AV = Veen — VS“l” Because the optimal centralized and subcontracting investment vectors are
the unique solutlons to AnP(K™) = ¢ — 1" and A P(K*%) = ¢ - V5% respectively, and
A®™ #£ AS¥ | both investment vectors are different in general: K" # K** and thus system
value V‘“‘b < Ve (because the value functions are strictly concave at the optimal investment
Vectors) Therefore, subcontracting with price-only contracts does not coordinate the supply network.
It does, however, mitigate the decentralization costs in that it reduces the value gap compared
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Figure 6: Capacity levels, the option value of subcontracting V and the decreased value gap AV as a function

of the transfer price Py when market demands are uniform but strongly negatively correlated.

to the no-subcontracting setting. From the structure of the capacity reaction curves shown in
Figure 3 it is clear that the optimal subcontracting investment vector K*¥® moves toward the
centralized investment K™ (and thus V% moves toward V") if ¢)s increases, ceteris paribus (so
that kg remains unchanged). In that case, an increasing supplier cost advantage improves system
coordination compared to the solo setting. Indeed, subcontracting becomes more profitable to both
parties when the supplier has a cost advantage and her capacity increase can be made at lower cost
than if the manufacturer were to invest himself.

The impact of the contract transfer price p;, however, is ambiguous. Because both reaction
curves change as p; changes, the result on K sub and thus Vj“b is unclear. Higher transfer prices
give higher incentives to the supplier yet lower to the manufacturer. The overall result on firm and
industry values can go either way because of the externality effects in our strategic model. (Partial
pe-derivatives in Table 1 cannot be signed in general.) Contract design, or the choice of the optimal
p: (whether one wants to maximize manufacturer, supplier or system profits—depending on which
party has most ‘power’ in setting p;), becomes thus very case specific. In all our numerical test
problems, system profits where maximized at p; = ps yielding a substantial improvement in the
value gap AV, which is in agreement with economic theory stating that transfer prices should be
set equal to outside opportunity costs. If the manufacturer sets the transfer price, however, he
does not necessarily set it at pg. Indeed, because of demand variability, a transfer price below pg
may yield optimal profits for the manufacturer. Figure 6 illustrates this possibility when market
demands are strongly negatively correlated (p = —0.9).

Finally, the presence of demand uncertainty is a key driver in the option value of subcontracting.
Figure 7 illustrates that the option value of subcontracting is increasing in variability. Thus,
similar to many financial options, more uncertainty is good for this real option. In absolute terms,
however, more variability reduces firm values. Figure 7 also confirms intuition that negative demand
correlations increase the option value of subcontracting. In terms of our graphical solution technique
of Figure 2, the triangular option region € gets more probability mass as correlation becomes more
negative.
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4 Subcontracting with Other Contracts

Many contract structures other than price-only contracts can be used to regulate subcontracting.
In this section we will discuss two other types of contracts and relate our results to more complex
contracts studied in the literature.

4.1 Incomplete Contracts: Bargaining

In some situations, ex-ante contracts may be too expensive or impossible to specify or enforce.
Start-up companies and companies in developing countries may find it too expensive to enforce
execution of a contract [11], while “investments by suppliers in quality, information sharing sys-
tems, responsiveness and innovation are often non-contractible. Without the ability to specify
contractually in advance the division of surplus from non-contractible investments, this surplus
will be divided based on the ex-post bargaining power of the parties involved [3].” This incom-
plete contracts approach was first suggested by Grossman, Hart and Moore (9, 13] to study vertical
integration. In our setting, it may be thought of as the ultimate minimalistic and opportunistic ap-
proach to subcontracting: no contracts are needed and subcontracting only happens if both parties
profit from it.

The model is similar to before and both firms have the option to engage in a trade at the
beginning of stage two. The firms can decide jointly on production-sales decisions so that the
resulting activity vector equals the vector ™ (K, D) chosen in the centralized scenario. Engaging
in subcontracting thus yields a revenue surplus A (K, D) = 7" (K, D) —n%°"°(K, D) > 0 compared
to going solo, and both parties thus have an incentive to engage in the trade z;(K, D). Without
the ability to contractually specify in advance the division of the surplus, the firms must negotiate
this division, which can be cast as bilateral bargaining. Many bargaining games are possible (c.f.
Kamien and Li [14, p. 1357]). Nash introduced a game that leads to splitting the surplus evenly.
Rubinstein presents a sequential game in which player i gets fraction § = % of the surplus,
where 6, is the “impatience” or discount factor of player ¢, which is ex-ante observable. Whichever
bilateral bargaining game is used, the manufacturer can ex-ante erpect (but not contractually
specify) to receive fraction 6 of the surplus while the supplier will get fraction 6 =1-6. One can
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Figure 8: The option value of subcontracting with an incomplete contract and its outsourcing threshold (with

dashed bounds) as a function of the manufacturer’s bargaining power for the same model parameters as Figure 7.

also think of # as the ‘bargaining power’ of the manufacturer.

In summary, with incomplete contracting the manufacturer’s revenue function is TT‘R/(;IO + gmeen
while the supplier receives WSSOZ" + @rce™. Thus, as before, the capacity reaction curves can be
constructed in terms of a shadow matrix A% = A% + diag(8,8)A%". Both curves have a unique,
stable intersection that defines the optimal investment vector K®". Thus, whereas price-only
contracts can explicitly induce additional supplier investment through a high transfer price, the
division of the ex-post surplus here gives the supplier an indirect incentive to make a relationship-
specific investment.

Because the sensitivity of the investment strategy is similar to that under price-only contracts,
we will focus on the role of the bargaining power §. As earlier, we can express an outsourcing
condition in terms of a threshold ¢ps on the manufacturer’s investment cost cy;. The appendix of
(23] shows that if the supplier has higher margins (ps > par), outsourcing will never be optimal
(¢ar > par). If, however, the manufacturer has higher margins (pas > ps), outsourcing is possible
as shown by the bounds on the outsourcing threshold:

o , 9
car < Ocs + Opar < Ty < min | par, Opar + 365 )

The threshold is decreasing (almost linearly) for small § which implies that outsourcing is more
likely for more powerful manufacturers. The argument, however, cannot be generalized to very
powerful contractors (§ — 1): the threshold may be increasing close to § = 1 as shown in Figure
8. There seems to be a range of bargaining powers around 8, ~ 0.75 (and decreasing in demand
variability) for which outsourcing is most likely. If the contractor’s bargaining power is substantially
higher, outsourcing is less likely because the subcontractor receives less ex-post surplus and has
less ex-ante incentive to make a relation-specific investment. If bargaining power is much smaller,
most surplus goes to the supplier. As shown in Figure 8, system value and the option value of
subcontracting with incomplete contracts is maximal when surplus is divided not too unevenly
(but it need not be a fair 50 — 50 split). More importantly, incomplete contracts are not inferior to
explicit price-only contracts. For example, comparing Figure 8 with corresponding Figures 6 and 4
shows that the option value can be larger and that outsourcing is more likely. Yet, as before, mere
supplier cost advantage of the subcontractor is not sufficient for the manufacturer to outsource.
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Indeed, even if car > cg, as long as cys < €ay it is optimal for the manufacturer to invest in some
in-house capacity. Thus. neither price-only nor incomplete contracts can coordinate this supply
system.

4.2 State-dependent Price-Only Contracts

A state-dependent price-only contract is a price-only contract that specifies an ex-ante transfer price
for each possible state vector. The price can be demand dependent p;(D), or also dependent on the
capacity vector p;(K, D). (The latter assumes that capacity levels are not only observable by the two
firms as assumed earlier, but also verifiable by a third party.) Obviously, because of the increased
degrees of freedom, optimal contract design of a state-dependent contract (a calculus of variation
problem) will improve performance (system or one player’s depending on the objective) compared
to a constant price-only contract. Nevertheless, even state-dependent price-only contracts do not
coordinate the supply system in general. Indeed, coordination would require that the expected
marginal revenues equal those in the centralized scenario. Because

E/\sub Pt — pA[P45 + .]Ql ptdp + -[Qge [pt]“{PtZPS} + p‘AIl{Pt<pS}] dp

psPas + _[m max(p, ps)dP + -lﬂs ptdP + -Iﬂe min(ps, ps)dP |’

it directly follows that E/\T{}b Pt > EAST and E/\fg”b P < EA§". Coordination requires equality or
Pi3456 = 0 (and thus outsourcing and high car) if ps < par, or Pis¢ = 0 (and thus Ksub pe — frsolo
if P has (unusual) non-convex support) if pg > par. Thus, in stochastic systems with partial
subcontracting coordination is generally not achieved with our three types of simple contracts. Not
surprisingly, the higher complexity of subcontracting makes coordination more difficult compared
to traditional outsourcing models in supply chains.

This contract type also allows us to relate the price-only contract with the bargaining contract.
Indeed, the execution of the inter-firm supply x%%"(K®" D) and the division of the surplus is
implemented by, specifying the quantity x:(K,D) to be provided by the subcontractor and the
transfer price p%" to be paid by the manufacturer for each unit provided. This transfer price is
defined implicitly in the bargaining model in that it guarantees the correct division of surplus:

T = pgz¥" + pteT e (recall that z%" = z°™). Rearranging terms yields

Pl = Bpaai™ + Ops(a e — 25", ™)
and because " > xss"lo —x g™ we have that Opar < pbo7 (K, D) < Opps +6Ops.The payment ploTzsen
is the composition of two terms: pprz$e” is the gross surplus derived from subcontracting while
ps(mg"l" —z%™) is the subcontractor’s opportunity cost or the profit forgone by subcontracting. The
gross surplus is received by the manufacturer who pays the share 6parz{*™ to the subcontractor.

The subcontractor bears the opportunity cost and is compensated by the contractor for the share
solo cen)

Ops(z§® — 5

Moreover, if the manufacturer has a margin advantage but limited bargaining power such that
Opar < par — Ps, then a price-only contract with state-dependent transfer price p;y = pf‘"(K, D)
will yield the same investment vector as an incomplete bargaining contract. Indeed, in that case it
follows that ps < p:(K, D) < par, so that the production decisions of both parties are independent
of p; and they equal the centralized decisions: > P*(K, D) = z%"(K, D). The particular choice of
p:(K, D) then guarantees that firm price-only revenue functions equal those under the bargaining
model and hence their investment vectors are identical. If the manufacturer’s bargaining power
is high or the margin difference is small, the existence of an equivalent state-dependent price-only
contract is not guaranteed.
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4.3 More Complex Contracts

The price-only contracts studied here are the simplest contracts possible. Clearly, one can include
more variables into the contract specification. Cachon and Lariviere [6] give an excellent overview
of more sophisticated contracts used in the literature and their costs and benefits. These more
complex contracts typically specify not only a transfer price p;, but also some conditions on the
transfer quantity x;, or on the manufacturer’s liability of the supplier’s excess capacity. Cachon
and Lariviere show that these more advanced contracts can. but do not necessarily, improve system
coordination and highlight the role of the information structure and the verifiability (and thus
enforcement) of the players’ actions. In the presence of information asymmetries, complex contracts
provide for a powerful signaling device that can improve performance. Tsay [21] has shown that
some price-quantity contracts also improve system coordination. While we analyzed only simple
contracts, we believe that many of the characteristics of more complex outsourcing contracts will
carry over to our subcontracting model.

5 Discussion and Extensions

We have analyzed three contract types to study some important aspects of the subcontracting
decision. Qur interest was in the financial benefits that subcontracting with these various contract
types may offer in an economic environment where market demands are uncertain. Because our
main results are already summarized in the abstract and introduction, let us discuss briefly some
issues and extensions. It is clear that our analysis is only a first attempt to study the complex prac-
tice of subcontracting and outsourcing. Relatively straightforward extensions are the inclusion of
specific transaction costs and merging costs. We have assumed that the initiation and management
of the subcontracting relationship was costless. A positive cost is directly incorporated so that
both parties would enter into the relationship only if the ex-post surplus exceeds the transaction
cost. Similarly, one can include merging costs which would explain why both parties not always
choose to merge into a single, centralized organization. Another variation is to make both firms
more equal ‘partners’ by dropping the non-negativity constraint on z; to allow for bi-directional
transfers. (This also yields a two-location inventory model with transfers between profit centers.)

In addition to analyzing more complex price-quantity contracts and information structures as
discussed in Section 4.3, other involved extensions to the model would be to allow for demand-
dependent sales prices (and thus margins) by incorporating downward sloping demand curves (our
firms are assumed to be price takers). Such an approach yields a duopoly model more in-line
with traditional economic theory and allows us to incorporate tactical pricing decisions. This
generalization, however, comes at a considerable cost. One not only looses the connection to
the traditional newsvendor model and its intuitive, graphical interpretation, but the competitive
pricing decision under uncertainty greatly increases the complexity of the analysis?. Allowing for
non-exclusive market access is an easier extension that, we believe, will not change the qualitative
insights obtained here. Finally, the time-horizon can be extended to a multi-period setting to study
the effect of predictable temporal demand variations, such as over a product life cycle (stochastic
temporal variations most likely will lead to a production smoothing effect as studied by Kamien
and Li {14)).

Acknowledgments: I am grateful to Sunil Chopra, Magbool Dada, Jim Patell, Scott Schaefer
and seminar participants at Columbia University, Northwestern University and Stanford University.

* Allowing for inter-firm subcontracting transfers would amount to putting yet another layer of complexity on the
competitive investment-pricing model that we studied in [24].
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6 Appendix

All first order optimality equations (OE) are of the form EX = AP = c.where the 2 x 6 matrix A is function
only of p,.pas and ps, while the vector P is function only of K (and of parameters in the probability
distribution). The structure of the OEs (or capacity reaction curves) and uniqueness of an optimal solution
will be established using partial derivatives which are found by implicitly differentiating one or both OE.

Let z represent a cost or margin parameter of interest. Total differentiation of the OE yields:

d d — (8 \= .08

where J is the Jacobian matrix of the OE: J;; = %%L = W(’%a;?v which can be calculated explicitly:
J 2 T

'

J:A[ 0;3\,1_3 a?f ] =A (VKﬁ,> |

where the 2 x 6 matrix VKI_D/ can be expressed in terms of the line integrals L;; of the probability density
f() over the boundary between domains §2; and §2; and L;jx = Lij + L

VP = Lig —Low Loz  Lags—Laz —Lay —Lse Lsg — Lig
Lis —Loy L3y —Lzg —L3zs~Lys Liys —Lse Lse+Lzs—Lis |

For example: Loy = f;: f(Kar.Ds)dDs. Thus, all effort is reduced to showing that J = A (VK]—D/> is
invertible which then yields

o, ._dc (0 \=
—é;K—J E—-J (EA) P. (8)
Thus, letting x = ¢; we directly have that
[ B?MK %K ] = J_l‘ (9)

and the slope of k;(-), the OE for K given K, follows from totally differentiating the i’th OE: %Ez\i;—f{h +
2_EX; =0or ' ]
K, M T

82
dk; 9K, 0K, Vi _Jy
dKJ %"/1 - Jii.

6.1 Centralized Reference Scenario

The optimal solution K°®" is at the intersection of the two OE curves. We have that

—(par — Ps)L3sse —PsLlie2s  —(par —ps)Lasse — Pslis if ps < pas
Jeen _ —(par = ps)Laase —psLie  —(par — ps)Lasse — PsLloz1e = o
—pamLie2s —parLis

if par < ps.
—paLis  —psLoz — (ps — par)Lasas — pmLis py < ps

All entries in J are nonpositive with Jy; < Ji2 <0 and Joe < Jo; < 0 so that |J| > 0 and

J = (psr — ps)psLasseLoz2s + pE(LigLoz + LagLoz + LasLis) if ps < pas,
parpsLis2aloz + par(ps — par)Lis23Las 36 + p3;Laslis  if par < ps.
dk; Jis

-1 < = — <0.

- dKJ' Jii T

Clearly, if cy; > cg. it is optimal to invest only in S-capacity: vas > 0 so that k§5(-) = 0 and k§™(-) =
K& If ps < par. psPase + parPis = cs. Because Poa = 0, either Lyg and/or Lay 56 are positive so that
OEg is strict concave at K& (Jop < 0), ergo uniqueness. If pas < ps, psPass + parPse = cs and either
L3y 36 and/or Lig are positive, again showing uniqueness.

Otherwise. if cy; < cg, we invest in both capacities and at least one of the terms in |J| is positive so that

Vcen ig strict concave at the unique optimal K°*". We can compute some points of the centralized curves:
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o If .K'S = 0 and car < Cg, then P01356 =0. ng = L34. L15_56 =0and p~\[P4 = pMP(DM > f\’i?m) = Cair.
Thus,

dk __ Pai—ps _ : <
kS5 (0) = K39 and —L = { > -1 ifps < pur,

= Puar
dKs 0 if ps > par.

o If K5 — oc and cys < cg. then Pa3ys6 = 0 so that Liys6.16 = 0 and EXy; = 0 < ¢y so that

dkA\[(OO)

k‘\[(Z)O) =0 and dKS

=0.

a situation that remains if K's decreases as long as Py; ((0. Ks)) = 1. Clearly, this minimal K increases
in correlation and variability.

o If K3y =0, then Pyo =0 and Ly; = 0. Thus,

dk$E 0 .

—jK—Mi—)Z—l if ps < pur,
dksm (0 .

1< B0 <0 ifpg > pyr.

o If Ky; — >, then Pj3456 = 0 so that L3y 5616 =0 and psPy = c5. Thus,

) dkcent(oo)
ket (o) = Gg(2) = Kioto and L5 2 _
§7(00) = Gs(72) = K oy

a situation that remains if Ky; decreases as long as Pyse ((Kar, ks(o0)) = 0. Clearly, this minimal K s
increases in variability.

6.2 Subcontracting with Price-Only Contracts

The Jacobian becomes

—(par = pe)L3ss6 — peLot2s —(par — pt)L3a 56 .
' ' : ' if <p < ,
g ~(pt —ps)Lasse —psLie  —(pt — ps)L3sse — PsLo2.1s Ps = Pt = Pt
—peLor — parLas — (par — pe)Las —(py — pe)L1s . .
if p; < min(p).
—ptL1s —psLoz — (ps — pt)Las 36 — peLis be )

6.2.1 Uniqueness of the solution K%

All entries in J are nonpositive with J;; < Jj2 < 0 and Jyy < Jo1 < 0 so that [J| > 0 and

(ppm — pe)PsLaaseLoz + (pr — ps)peLor.23Lsss6 + pepsLot2aLoz 6 if ps < pr < par.
IJlI = (pm — pe)psLozLie + (P — pe)(ps — pe)L16Las 36 + pe(ps — pr)Lo1Las 36 if pe < min(p)
+par(ps — pe)LasLas 36 + pepsLo1Loz + pfLo1L1e + pypsLosLoz + parpeLasLis ¢ '
o< Ry g
S 4K, TS

Existence of an intersection follows from the relative position of axis crossings and asymptotes:

e If K5 =0, then Fo13se = 0, L2z = L3y, Lo1,16,56 = 0 and par Py = payr P(Dar > Kyy) = car. Thus,

car solo dk{0) —BM=P s 1 if ps < pr < purs
k = V=K d = 1254
wl0) = Car(D0) = Kif* and = 0 if p; < min(p).

(c“;—‘}’(ggZ remains 0 as K increases with low p; until P; becomes positive. Clearly, this maximal K
decreases in correlation and variability.)
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o If KS - ¢, then P23456 = ( so that L34‘56,16 =0 and E/\A\[ = ptPI < Dt. ThUS, if Dt < Cir. we have
kar{oc) =0, else

Cyf ! dkas(20)
kar(oc) = Gar (=) < K39%9 and ——==/
( ( Dt M dKS
a situation that remains if K decreases as long as Py; ((kas(oc), Kg)) = 1. Clearly, this minimal K¢
increases in correlation and variability. Note that ky/(-) is continuous in p; for ps < p; < pas. except
at p = cay if Dyr is bounded from below by a positive number with probability one (the demand
density is zero at Dy, = 0).

:O’

o If Ky = 0. then Py = 0 so that Lgo = 0. For high p; we have that psPsg + pt Pis = cs and because
ps < p:, we have that

dks(0)

dKA\[

With small variability, we have that k5(0) ~ D (exact: P(D, > kg(0)) = 2. Indeed, if K5 <

(>)D4, we would have that P3y56 = 1(0), which cannot satisfy OEs.) For low p; we have that

psPss + piPse = cs. If py < ¢g, then Py > 0. If D has low variability in the sense that PO (K =
(0, K§°'9))) = 0. then ko(-) is discontinuous at p; = ¢, and we have that

= -1

dk
k2(0) = D, (exactly: Psg = c—S) and S,(O) =—-11F p: > cs,
Pt dK
dks(0
ks() = Kg"lo ~ Dg and thus s(0) =01IF p; < cs.
dK

If D has high variability, 0 < 409 < 1,

e If Kyy — oc. then Pi3456 = 0 so that L34,56,16 =0 and psPy = ¢s. Thus,
¢s ! dks(oc)
ks{oo) =Gy (=)= K¥°and ——= =0
() M(Ps) s dKxy

a situation that remains if Ky decreases as long as Pysg ((Kar, ks(o0)) = 0. Clearly, this minimal Ky

increases in variability.
Uniqueness of K**® follows from —1 < ‘;—1;{% at intersection (assume high p;, low p, is similar)

o If par > pe > car : 0 < Pi3ges < 1 and because P is a continuous measure we have that Lz o1 > 0 so
that Vi is strict concave at the optimal K; and thus the reaction curve kar(-) is unique. Moreover

dk g dkas .
. < d - = = .
dKS < 0 (an dKS 0if P45 0)

-1<

o If par > car > pr 1 0 < Pys < 1 so that Ly 56 > 0. Again the reaction curve ks (+) is unique but now,
as long as kp; > O:

dk dk
1< —* <0 (and =21 = —1if Py, = 0).

~ dKg dKg
At the intersection K**® we have that —1 < %}: which shows uniqueness (indeed P12 = 0 would

imply Ps456 = 1, which cannot be a solution to OEgs : psPsg + p: Pis > min(ps,pt) = ps > cs).
Similarly for firm 2's reaction curves (psPass + p: Pis = cs), if follows that
e Because p; > ps > c5 : 0 < Pags, Pys < 1 and thus 0 < Py; < 1 and Lg2.16 > 0 so that Vg is strict
concave at the optimal Kg and thus the reaction curve kg(-) is unique. Moreover
dkg dkg

. dkg
<0 d =—-1if B =0and —
Ky — (an dK a an dK s

1< = 01if Py3456 = 0).

Given that the two reaction curves are unique with —1 < :—f(h < 0, and the relative axis crossings are as
J

given higher together with —1 < %{-‘f at any solution to the OE, it follows that hey have a unique intersection
which is a stable, and thus Nash, equilibrium.
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6.2.2 Sensitivity of K%

The intersection point K is the unique solution to the OE and it follows from the OE that one will never
invest to cover all demand with probability 1. In other words, if K > 0, then 0 < Py; < 1 and at least one
of the terms in det(J) is positive so that |J| > 0 and J is invertible:

—1 | — (Pt — L3ys6 —psL (Par — pe) Lags .
i1 (Pt = ps) L3y56 — psLoz.e s = Pt) Lasse i pe < b <
gl - e (Pt — ps) Lasse + psLis —(par = pt) Lasse — peLoi 23 Ps = Pe = Par
B —1| —psLoz — (ps —pt) Lis36 — piLis (par —pe) Lis : ,
(g bs o ‘ if p; < min(p).
e peLis =ptLor — parLaz — (par — pi) Lis pr a(p)
_ Q] + Q3 —Q9
- —ay Q9 + ay
Because %—f‘ = Ji;, we have that both capacities are imperfect substitutes w.r.t. the marginal cost vector.

Partials w.r.t. the margins are

5 . ~J! - 8 8 8 (1) (1) 8 P= 01_11013 Pis if ps < pe < par,
Ipas N —J1 8 8 (1) (1) (1) é P= 01_2103 Ps456  if pr < min(p).
FI ~J1 8 (1] ? 8 8 (1) P = a;fzm | Pass i ps < pr < pu,
dps _J-1 L 8 (1) ? (1) 8 8 d P = - 02_324 | Py if p; < min(p).
P Vi o I T N
v o000y s e i 1 it <)

While 5 K cannot be signed in general, we do have that 3 K+ > 0.

6.2.3 Sensitivity of V5%

We have that dd—‘;l = aa[é/‘w ngﬂ ;—)&—%ﬁ + %‘g{ where '67?" = 0 under optimal investment. The cross-partial

g—;(/‘]- = a;ngm = Ea;f(]ﬂ'i = E); ; can be computed as before by the weighted average of the constant /\f‘j
in each domain {:

avsub

ajys = EMoa=(py —p)Pss >0

8VSUb = E/\ = _ptpl _(pt_pS)PBGSO 1fpS SptSPM,
0K a1 -pePL <0 if py < min(p).

Denoting EAj 2 = 35 > 0 and EXy; = —34 < 0, we get

avme . b b oV

T = a3 — K{* = 3, — K3}, —L—aw Bglay + as) = 85 > 0,

avsub Yy Iub . b . b
_Bg{;_ :—(a2+a4)35=—52 SO‘ —355_ :—36(12—[{2}‘ :—ﬁ4—Kgu SO

As expected 5 M ‘Zz are negative and ﬂf{- is positive, while ?L’.& cannot be signed in general. For price

sensitivity consxder high transfer prices (the other case is similar but replace the Pys by Piase, Pass by Ps34,
Pi36 by P, and Py5 by Psg):

sub sub
ARV A%

I =351 Pis + Erjpp = =31 Pis + Eryyy. 52— = —5g(ar + a3)Pys = —33Py5 <0,
AN ) ovamh ;
_Lap; = 35(a2 + ay)Pogg = 32P236 > 0. —L—Bps = 36a2P235 +Ezxg = 3 1 P23 + Ezg > 0.
a‘r:{uh SR 9K av.:mb o OKIub 6
vyt _ g BRI 2KA" A% S 9K _
ope I Ipe €M "7, - Ez¢. 8p¢ ~Je 3p. s 3p -+ Ex,.
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6.3 Outsourcing Conditions
6.3.1 Low transfer price: p; < min(p)

Because Ky = 0, we have that Pys = 0 and Pj3456 = 1 and the optimality equations vield

PPy +pyPyyse = Cur.
psPay+pePss = cg,
cs cs
so that ;‘:— < Pyse < e
PAr — Dt _ 12
Pt + Tcs < Car =pt + (Par — pt) Paase < pr + —pp—tcs.
t

Also,
Car = ¢s + pePy+ (par — ps)Pag + (par — pe) Psg > P32Ps ¢g
Notice that with low levels of uncertainty, one either has
pr < cs:Ks=ks(0)~ Ds (exactly: psPyy = cg). Pass = 1 = Car = puy.
_ _ M
cs < pi:Ks=ks(0) =D, (exactly: p,Ps = cs). Pie = 1, Poozas =0 = Cay = pr + pp—cs -~ cs.
t
As uncertainty increases, ¢x; will decrease. Indeed, if p; < cg, increasing uncertainty will decrease Psz6
from 1 and increase Pp, but P, has lower coefficient p, < pas in the definition of €xs. If p; > cs, increasing
uncertainty will decrease Ps and increase Ps3y. From OE 2 we see that Ps will decrease more than Psy5 will

increase (ps > p;); thus P; will also increase, but again less than the decrease in Ps, so that ¢y will decrease
because p; < pas.

6.3.2 High transfer price: ps < p; < pay

Because Ky = 0, we have that Pys =0 and Pi3ys6 = 1 and the optimality equations yield

ptPi3s + oy Pis = Ty,
psPi +piPis = cg,
so that 0 < Py5 < %—:ﬁ
_ Py — D
Pe < Ty = pi + (par — pe)Pas < pp + “—es,

Dt
Again, with limited levels of uncertainty, one can only have (p; > ps > cs):

Ks = ks(0) ~ Dy (exact: psPs = cg), Pig = 1, Poasss = 0 = s = py.

As uncertainty increases, P will decrease from 1 and Ps45 will grow, leading to an increase in Z; because
pe < par. Finally, notice that €,y is discontinuous at p, = ps.

6.3.3 Incomplete Contracts (Bargaining)
Because Ky = 0, we have that Fy; = 0 and Py3456 = 1 and the optimality equations yield (assuming
ps < pum):
Opar P+ (Bpar +6ps)Pss + parPas = 2u,
psPs + (0par + 6ps)Py + 0pay Ps +6psPs = cs,

so that
~ - 2 = 6’ = 4
Opyr +0cs < Cap = Opar +0cs + 60 ((par — ps) Pa + par Ps + psPs) < Opar + Gcs + 505 = Opas + 565"

If ps > par, we have that

Cxr = M P14 (par + 9par) Paase > par.
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