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Abstract

We explore sequential voting in symmetric two-option environments. We show that the
(informative) symmetric equilibria of the simultaneous voting game are also equilibria in any
sequential voting structure. In unanimity games, (essentially) the whole set of equilibria is the same
in all sequential structures. We also explore the relationship between simultaneous and sequential
voting in other contexts. We illustrate several instances where sequential voting does no better at
aggregating information than simultaneous voting. The inability of the sequential structure to use
additional information in voting models is distinct from that in the herd-cascade literature.
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1 Introduction

Theoretical research on voting has focussed on the case where the clectorate
voles simultancously; in this paper we explore sequential voting models. We
wish to analyze the relative eflectiveness of sequential voting vis a vis si-
multancous voting at ageregating private information and preferences.! As
is standard in this literature, we restrict attention to elections with only
two options. (Our results immediately extend to a sequence of votes over
binary agendas). We view this as a preliminary step in investigating more
generally the efleets of sequential voting structures on equilibrium outcomes,
both when the timing is exogenous and when it is determined by the voters
themselves, as in the case of states choosing their primary dates.

One would expect, that sequential voting structures facilitate the reve-
lation and aggregation of private information: in sequential voting, carlier
voters can convey (partly) the content of their information to later voters
through their votes. On the one hand, this observation naturally poses the
question of whether allowing voters to choose when to vote leads to an efli-
cient structure. On the other hand, it raises the concern that the outcome
ol sequential clections would be biased toward the preferences, or, as in the
herd-cascade literature, toward the private information, of carly voters. Our
first, result suggests that the situation is surprisingly more subtle but simple:
in a symmetric environment with incomplete information (which is what we
consider throughout), any symmetric equilibrinm of the simultancous voting

game in which players usc their information — which is precisely the equi-
librium on which the information-aggregation literature has focussed - is

in fact a sequential cquilibrivn in any sequential voting game. This result
has two notable implications. On the negative side, it completely demolishes
any hope ol obtaining strong conclusions about endogenous timing in this
context: given any scquential structure there is an equilibrinm in which the
players sclect that structure and vote according to the symmetrie simulta-
ncous cquilibrium.  Fssentially, the sequential structure is ignored. On the
positive side, it extends the successful-ageregation results of eddersen and
Pesendorfer (1997) to any sequential voting environment.

Naturally, this conclusion raises the issue of asymmetric equilibria: while

""The question of how well voling mechanisms aggregate private information. and related
questions, have been explored in Austen-Smith (1990). Austen-Smith and Banks (1996).
Feddersen and Pesendorfer (1996a, b, 1997), Fey (1996), Lohman (1994), McKelvey and
Ordeshook (1985). Ordeshook and Palfrey (1988), McLennan (1996), and Wit (1997).



no scquential structure necessarily improves on simultancous voling, as the
symmetric equilibrium in the latter remains an equilibrium, perhaps asym-
metric equilibria make a sequential structure more suitable for information
transmission. We identify several cases in which they do not.

First, we identify a class of asymmetric equilibria that are also indepen-
dent, of the sequential structure. An interesting feature of these equilibria
is the presence of secemingly cascading behavior: carly voters votes informa-
tively and later voters vote for the same options regardless of their signals.
Such appearance is of course deceptive since these equilibria are cquivalent
in outcome to simultancous voting,.

Sccond, in unanimous voting games, the set of (essentially) all equilibria
coincide regardless of the sequential structure.” While unanimity rules are
rare, this resull is otherwise quite general (within the class of two-option
environments).

The third case is rather special but further demonstrates the subtlety of
the timing issue when volers are strategic. Consider a pure common-values
cnviroument, (where the value of the candidate is the same for all voters),
so that the equilibria can be ranked in terms of the (common) welfare of
the players. If there are only two signals, then there is a best equilibrium in
monotonic strategics which is the same regardless of the sequential structure.
(A monotonic strategy is one where the probability that a voter votes in
favor of a particular option is higher when her private signal concerning the
value of that option is better.) In the casc of simultancous voting, if the
best. equilibrium uses information -— i.e., not all players vote for the same
option independently of their signals - it is also (generically) the only strict
cquilibrium. This raises doubts about the common practice of locusing on the
symmetric equilibrium, since the strict and Parcto dominating equilibrium
seems al least as natural a candidate to focus on as the symmetric one. The
restriction Lo monotonic strategics, however, is without loss of generality only
for simultancous voting: sequential elections can do better than simultancous
clections if non-monotonic strategies are used.

The main point underlying our results is well known: strategic voters con-
dition their actions on being pivotal. Therefore, for the sequential structure
to make a difference, it needs to reveal more information than is contained

“This result strengthens the surprising conclusions of Feddersen and  Pesendorfer
(19961), which focussed on unanimity rules (e.g.. jury voting) in the case of simultancons
voting.



in the cvent that the voter is pivotal.? The results demonstrate some strong
implications of this observation.
In the rest of the introduction we discuss related literature; the model and

results are stated in the next scction; proofs are i the subsequent scction.

2 Related Literature

The result that sequential voling may not confer informational advantages
may scem similar to the herd-cascade literature (Banerjee (1992), Bikhchan-
dani, Hirshlcifer and Welch (1992)). However, the strategic considerations
and results in the two models are very diflerent. The behavior of agents de-
ciding simultancously in the herd-cascade model will be diflerent from their
behavior when they decide sequentially; by contrast, our results show that i
voting models the lack of an informational advantage for the sequential struc-
ture arises precisely when the equilibrium does not change. The reasoning is
also very different: in the herd-cascade models cach decision-maker’s action
determines the ontecome for that person; in voting models cach voter knows
that the outcome will be determined by the clectorate as a whole. Thus, in
the herd-cascade models the future choices of other players are irrelevant to
the present decision maker, and the sequential structure gives no advantage
since everyone relics on the information revealed by the first few decision
makers. By contrast, the information of future voters can (and typically
will) aflect the outcome for present voters.

While Bikhchandani, Hirshleifer and Weleh (1992) interpret evidence con-
cerning clections as consistent with informational cascades, onr paper sug-
gests that this interpretation may not be appropriate. Coordination ol pri-

<

mary dates by certain states is obviously “an attempt to avoid the conse-
quences of sequential voting,” (op. cit. p. 1011), but we are skeptical that
inlormational cascades are the real issuc. After all, there exist unappealing
equilibria that fail to aggregate information in both the simultancous and
sequential environment, and there seems to be no reason to think that they
are more likely to occur in the sequential environment. Although our paper
does not. bear directly on the issne of primaries because of the restriction to

two-candidate clections, it does suggest that in voting models the strategic

3This also explains why in models with asymmetries or with more than two options.
the sequential structure will be important: as there is more than one way to he pivotal
voters can then learn in which way they are likely 1o be pivotal,



issues are very dilferent from those in the herd-cascade models.”

To our knowledge, three other papers that consider sequential voting.
Sloth (1993), shows that in the context of perfect information the subgame
perfect equilibria of roll-call voting games, in which players vote one after
another, arc closcly related to sophisticated equilibria of (agenda) games
where (on each issuc) the clectorate votes simultancously. Thus, her nter-
ests and ours are (uite different, as she focuses on sequential voting as a
reflinement in a perfect-information environment. Much closer to our work,
Fey (1996) and Wit (1997) bave independently examined a special case of the
two-option, two-signal, common-value euvironment. They show that there
exist two equilibria in this case: one in which everyone votes for an option
if and only if that option is preferred according to their private signal, and
a herd-cascade equilibrium where essentially the same strategy is adopted
until a two-vote lead for an option develops, after which everyone votes for
the leading option. However, as we discuss in section 3.3, optimal equilibria
can exhibit features similar to the herd-cascade equilibrium. For the case of
common values and two signals, the optimal monotonic equilibrium derived
in our paper — which we show to be the same in the simultancous and sc-
quential games - maximizes the lead required, thereby generating the most

mformation possible.

3 The model and results

We assume there are n people who vote on two options, the status quo, N
or “No,” and the alternative, ¥ or “Yes.” The alternative is adopted if and
only if the number of votes in favor is greater than ny,, n, > n/2. The value
of the alternative for cach voter, v;, is drawn from a set V;, and the value of
the status quo is normalized to zero. We assume that ©» = (17, ....7,,) 1s not
observable and that cach voter observes a private signal r; drawn [rom a set
of signals X;. IFor notational simplicity V; and X, are assumed to be finite.
We let X =[], X; and & = (1, ..., 2,). The joint probability distribution
of 1 and x i1s denoted by f(v, ). The expected value of v, conditional on 15
I2;(v5]2). We assume symmetry throughout, for which the [ollowing notation
is uscful: given an n-tuple z, define 7%z to be the n-tuple obtained from =

by exchanging z; and z;.

lowever, sce the discussion of Fey (1996) and Wit (1997) below.



Axiom 1 Symmeciry:
X=X and V=V, foranyi,j =1 ..n.
2. f(uow) = [(TY0,TY2) for any i, j = 1.....n. and any (v,.r).

Axiom 2 [ull support: f(v,x) >0 for any (v, x).

We consider voting games with 7" periods, T < n. A player voles
only one period and knows the previous votes at the time of voting, but
several players can vote simultancously in the same period. Note that the
one-period voling game describes simultancous voting, and n-period voting
games describe roll-call voting where cach player votes in a different period.
Let 1, be the set of players voting in period £; ny be the total number of players
who vote in periods 1,....¢ — 1, and £(7) be the period in which player 7 voles.
For simplicity we assume that /; is non-empty for every L < T". A strategy lor
a player is thus a function which maps the player’s signal and the observed
history of votes into the probability of voting for the alternative. Lor a player
i voting in £(7) > 1, it is a function s; : {Y, N}0 X X; — [0, 1]. For aplayer
voting in period 1 it is a function s; : X, — {0, 1]. For notational convenience
we will sometimes denote the strategy of a voter in period 1 by s, (h,r;),
where h € {Y. N}, with the convention that {Y, N} contains only the
cmply history. A history consisting of m observations of Y is denoted by
(V)™ We say that a strategy s; of player i is imformative if the player uses
her private information, that is, il lor some history I € {¥Y N }"® and some
pair of signals z;, 21 € X;, the voting differs, s,(h, x;) # s;(h..r}).

3.1 Symmetric equilibria

Our first result imposes no further restrictions beyond the two-option and
symmetric structure presented above, and is thus quite general. Theorem
I states that any symnctric equilibrium of the simultancous voting game
that uses informative strategies, is an equilibrium of any sequential voting
game. As noted, one implication ol this result s that il playvers are allowed
to chose their own timing, then any sequential structure is an equilibrivum.
Also, it shows that no informational benefits may be realized when moving
from a simultancous voting structure to a sequential one, since the symmetric
equilibrinm can be played in both. In relation to carlier work, Theorem 1



extends the aggregation result of Feddersen and Pesendorfer’s (1997) to any
sequential structure. They showed that in a simultancous election with a
large number of voters, symmetric and undominated equilibria successfully
aggregate information in that the outcome of the election would be unchanged
if the private information became common knowledge.

Theoremn 1 Consider a symmnetric strategy profile of the simultancous vot-
ing game, say s = (81, ..., Sy ), with s; = s* for all v, in which the strategy of
cach playcr is informative. The profilc s is an cquilibrium of the simultand-
ous voling game if and only if cvery T'-period voting game has a sequential
cquilibrium s* = (sT. ..., sT) such that for all i, s](h,x;) = s*(x;) for any

he {Y, N} and any x; € X;.

The intuition for Theorem | is that in the symmetric equilibrium of the
simultancous gaune, the players chose their optimal action conditional upon
the event that they are pivotal (otherwise their vote is irrelevant). That is,
they vote as if they know that n, — 1 “Yes” votes, and n — n;, “No” votes
have oceurred.  Since the equilibrivm is synunetric, no use ful information
is gained from knowing precisely which players have voted “Yes” and which

" In a sequential game that is the only information gained

have voted “No.
when the players adopt the symmetric strategy profile. Hence, the symmetric
cquilibrium of the simultancous game, remains an equilibrivan in the sequen-
tial game. Of course, along the play of the symmetric equilibrium in the
sequential game, information about the value of the alternative is revealed
and later voters are better informed than carlier voters. Tlowever, these gains
in information are of no use since voters evaluate payolls conditional upon
the pivotal event.

This intuition suggests that only voters who vote informatively need to be
playing the same strategy, and in fact this result is more general than stated,
as it applies to certain natural asymunetric environments and equilibria as
well. Tor example, it extends to the case where there are known “partisans”
whose preferences are cither to always vote Y or to always vote [V, and a
third symmetric group. Then, a strategy profile in which all those i the
third group adopt. the same informative strategy is an equilibrim e the
simultancous voting game, if and only if it 1s a sequential equilibrinm m all
sequential voling games.

Theorem 1 can also be extended to asymmetric equilibria i which some
voters adopt the same partisan strategy, voting uninformatively in favor of



(or against) the alternative, and all other voters use the same informative
strategy. In this case, however, an additional issue arises concerning the
ofl~equilibrium-path beliefs in the sequential equilibrium.  (This issue is ir-
relevant when the uninformative voting results from partisan preferences, as
such partisans will not deviate regardless of previous votes). Therefore we
state two results. Ifirst, these asymmetric equilibria are Nash equilibria i the
sequential game if and only if they are equilibria in the simultancous game.
Second, under a mild monotonicity condition, they are sequential equilibria
in a sequential game in which informative voters go first if and only if they
arc equilibria of the simultancous game.

Given a proper subset of signals 7, deline I5(1;; 25, 00,12, 7) to be the
expected value of 2; conditional 7’s signal being x;, ny signals of different
voters being in Z and ny being in the complement, of 7.

Axiom 3 Monotonicity: Supposc that, for somc ny,ny, I5(vy; x ny ny, 7)

>0 for any . e 7 and (v @i ny ng, Z2) <O for any a; in the complement

of 7. Then, I5(vy; a5, 0y, ng, Z) is nondceercasing in ny and nowimercasing i
- or

ny for any r; € X;.0

Theorem 2 Consider a strateqy profile of the stmultancous voting game s =
(Styees Sn) for which there cxists k > L such that () for all i, j <k, s, = s;;
(i) foralli,j 2k, s; = s; and s;(x;) = s;(wy) for all w1, € X,; and (i)
the alternative passcs with probability strictly between 0 and 1.

[. The profilc s is an cquilibrivan of the simultancous voting game if and

only if cucry I'-period voting game has o Nash cquilibrium s* = (s ... s])
such that for all i, sT(h,x;) = s;(ix;) for any h € {Y, N} and any
x, € X,

2. Under monotonicity, the profilc s s an cquilibrivm of the simultancous
voting game if and only if cvery T-period voting game in which ((i) is
nondcercasing in i has a scquential cquilibrium s = (s,’ , ,..,s,’,) sueh

that for alli, s (h, ;) = s;(;) for any b € {Y, N} and any x; € X,.

As mentioned, the intuition behind Theorem 2 is partly similar to The-
orein 1 in that informative voting i simultancous structures is sequentially

rational in sequential structures. The assumption of monotonicity ensures

* Axiom 3 is satisfied when signals are afliliated.



that uninformative voting is sequentially rational as well.  irst note that
uninformative voting never takes place before informative voting. Then, if
an uninformative Y voter chooses N, later uninformative voters arc pivotal
il a higher number of Y votes by informative voters is realized. Monotonicity
ensures that Y is, a fortiori, still optimal. Note that this argiunent might not
apply if informative voting occurs after uninformative voting. If the mun-
ber of informative voters choosing Y is higher than in the pivotal event i
equilibrium, the optimal informative strategy can change unless out. ol eqpui-
librinn beliefs are chosen appropriately. Further conditions are needed to
ensure that such belicfs can be obtained in a sequential equilibrium. Insofar
as Nash equilibria are concerned, these considerations are of course irrelevant,
and the above result holds independently of monotonicity and the ordering
of voters.

Theorem 2 also shows that evidence of cascades in sequential clections
can be deceptive: the equilibria in Theorem 2 are equivalent in outcome to
cquilibria of sequential clections where voters’ hehavior is such that whenever
a critical mumber of Y (V) is realized, any subsequent voter opts for Y (N)
independently of signals. IFurthermore, as we shall see in section 3.3, these
cquilibria can be optimal.

Remark 1: In our model it is assumed that voters cannot abstain. How-
ever, the equilibria in Theorems 1 and 2 remain equilibria when the voters’
choice sct is enlarged to include abstention. This is because an abstention
is equivalent to a Yes vote if, when a voter abstains, the number of votes
in favor necessary {o pass the alternative decreases and to a No vote if it is

unchanged.

3.2 Unanimity elections

In this subscetion, we study elections such as jury voting where an option is
passed only if all voters are in favor. Our third result states that the set of
(essentially) all equilibria in a unanimity voting game, one where 1y, = n, 15
the same regardless of the sequential structure.

Theorem 3 Consider a strategy profile of a unanimity simultancous voling
qgame, s = (8y,..., 8,), such that for some veetor of signals, x = (). ) €
X, the alternative passes with positive probability, i.c.. s,(x;) > 0 for all 1.
The profile s is an cquilibrivan of the simultancous voling gume if and only if



cvery T'-period voling game has o scquential cquilibrium (sT....s1Y such that
for all i and h = (Y)Y, s (h,x;) = s;(x;) for any x, € X,

To understand Theorem 3, note that in a unanmmity voting game, the
players’ behavior after histories in which someone voted “No” is rrelevant.
The theorem says that given any cquilibrium of any T-period game, the
relevant portion of the strategies, those lollowing histories of only “Yes” votes,
constitute an cquilibrium for any other sequential structure.  Asymmetric
equilibria also coincide since in a unanimity game there is only one way to
be pivotal. Ience, voters behave as if they know that everyone else chose
“Yes,” which is exactly what they know i the sequential game.

One should observe that the above argument does not reguire the syme-
metry axiom, and in fact the same proof as provided below formally demon-
strates that 3 holds regardless. Hence, this result is very general. In relation
to jury voting, it yields a remarkable conclusion: regardless of anything that
oceurs prior to voting, the voting procedure itsell is of no consequence.

Remark 2: Sloth (1993) has noted that the sequential structure serves
as a refinement to rule out “implausible” equilibria of the simultancous vot-
ing game. Since we arc not. concerned with sequential voting as method of
climinating such equilibria, we rule them out a priori. Thus, in Theorem 1
we consider equilibria i informative strategies to rule out equilibria where,
for example, everyone always votes N, which need not be a sequential equi-
librium for roll-call voting. lor similar reasons, in Theorem 2 we consider
cquilibria i which the alternative passes with probability strictly between
zero and one, and 1 Theorem 3 we consider equilibria for which the alter-
native passes with strictly positive probability. The full-support axiom also
serves this role: it rules out perfect correlation in order to avold situations
where “uninteresting” profiles are equilibria in the simultancous voting gaune,
but not in the roll-call voting game (for example, if there are two states of
the world --- one 1 which cveryone prefers the alternative, and the second
wm which everyone prefers the statu quo ~— 1t is an equilibriun in the simul-
tancous game for cveryone to vote the opposite of their preference, but this

need not be a sequential cquilibrium of the roll-call game).

3.3 Common Values

We now consider the case where the electorate has a common value, say
i, of the alternative, so that the only purpose of the clection is to aggre-

10



gate private information. The advantage of this case 1s that one can make
unambiguous welfare comparisons among the diflerent sequential structures.
It might be objected that cheap talk, if feasible, would casily solve (as for
any game of common interest) the information-aggregation problem in the
common-value case. While we consider this criticism valid in circumstances
in which communication is available and inexpensive, this special case serves
as an illustration of the subtletics of information aggregation. It is a simple
and natural environment that has been considered previously in the voting
literature (see, c.g., Ley (1996), McLennan (1996), and Wit (1997)).

We focus on the special case where there are only two signals, “good”
and “bad,” X; = {(;, B}, and denote the expected value of the alternative,
conditional on ¢ voters having signal (¢, and b voters having signal /3, where
g+ b < n, by ¢(g,b). We assiume thal ¢ is increasing in g and decreasing n
b.o

We say that a strategy s; is monotouic il s;(h, (7)) > s;(h, 13) for all
hoe {Y, N}, and denote the set of monotonic strategy profiles by M.
A strategy profile is Af-optimal if it maximizes the expected value of the
clection over all profiles m Al

We now describe an M-optimal equilibrivun for all T-period voting games.
This will be an asymunetric, pure-strategy, history-independent equilibrivun
in which some players vote uninformatively (i.e., their choice does not depend
on their private signal) and the remaining players vote perfectly informatively
(i.c., they vote Y il their private signal is (G and N if they observe 13).

It is well known that the number of informative voters will in general be
less than the total number of players. Consider the simultancous game lor
simplicity, and assume, for example, that e(n, — 1, n —ny, + 1) > 0. In this
case, when all but one player vote perfectly informatively (Y if ¢, N if B3),
that one player will know that if he is pivotal, n, — 1 players have voted Y
and observed ;) while n — n,, have voted N and observed 3. Then, even il
he observes 3, he should vote in favor of the alternative.

In fact, the same argument implies that when e(g.n —n, + 1) > 0, for
g < ny,— 1, i n—n, + g vote perlectly informatively, then the remainimg

M

n,, — g should vote “Yes” uninformatively. More precisely, if players 1.....n —

n, + g vole perfectly informatively, then it is optimal for any other player

SFey (1996) and Wit (1997) consider the special case of this model when the signals
are ii.d. across voters: Wil also restricts attention further to the case where the value of
the alternative is cither 1 or —1 and the probability of 7 receiving a good signal when the
alternative is 1 equals the probability of a bad signal when it is — L

11



regardless of what other players, n — ny, + g.....n, do (as long as they use
monotonic strategies) to vote ¥ uninformatively. In the case where c(n;, —
1,n—n,+1) > 0, the largest number of informative voters is thus 7. —ny, +7,
where 7 is the smallest ¢ for which e(g,n — ny, + 1) > 0. Theorem £ below
states that in this casc it is an Al-optimal strategy profile in any T-period
game, for n, — v to vote Y and the remainder to vote informatively.
Similarly, il ¢(n,,n —mn,) < 0, deline /3 to be the smallest b such that
e(ny, 0) < 0; below we show that in this case 1t 1s an M-optimal strategy
profile for n, + /3 — 1 to vote informatively, and the remainder to vote N.
Iinally, if ¢(n,,n —n,) > 0 and e(n, — 1,n —ny, + 1) < 0,1t s AM-opltimal
for everyone to vote informatively. This last case is one where the threshold

1, has been determined optimally.
Theorem 4 Consider a 'I'-period voling gamne.

L If e(n, — 1, n—n,+1) >0 then the history-independent, purc-strategy
profile s, dcfined as follows, is M-oplimal:

o for i < n—mny+7y, s(hG)y =1 and s;(h,B) = 0 for any h €
{}/,N}n'“).

e [or i > n—n, -+, s;(hox) =1 for any x; € {G, B} and any h €
{)/’N}n,(i).

2. If e(ny,n —mny) < 0 then the history-independent purc-strategy profile
s defined as follows 1s M -optinal:

o Ior i < n, 140, s;(h.G) = 1 and s;(h.B) = 0 for any h €
{)/’ 1\]}11,(,):

o Jor i >mn, — 1+, si(hya;) =0 for any vy € {G, B} and any h €
{Y, N},

3.0 e(ny,n —mny) >0 and e(ny, — Lin —ny, + 1) <0, then the history-
indcpendent, purc-strategy profile s defined as follows is M-optimal:

o loralli, s;(h.GG) =1 and s;(h, B) =0 for any h &€ {Y,N}"w.

12



Morcover, if the optimal strategy profile involues some informative voting
then the strategics identificd above arc gencerically a strict cquilibrivin, and
constitute the unique strict cquilibrivm in the simultancous voting gumc.

It is not dillicult to show that the strategy profile in Theorem 4 is also
a sequential cquilibrium in any 7-period game. Consider part (1). Clearly,
only deviations by uninformative voters need to be considered.  Following,
such deviations, assume that the posterior beliefs about signals are identical
to the equilibriun ones. Then, a subsequent uninformative voter is pivotal
only if more Y votes by informative players than in equilibrium are realized.
Thus, a fortiori, voting ¥ independently of the signal observed is optimal.
The arguments for parts (2) and (3) are analogous. The theorem then says
that in this environment there exists a history independent equilibrium (i.c.,
an equilibrium in all sequential structures) that is a best strategy profile
among, all monotonic strategy profiles.

This ecuilibrium is equivalent in outcome to an herding-like cquilibrium
where the informative voters vote first, and, after a critical number of NV or
Y votes, everyone voles N or Y. Ilowever, the critical munber for cither
N or Y is the same as the number required to determine the outcome. In
particular, the equilibrium in case 1 is equivalent to everyone voting Y alter
v Y votes, and everyone voting N after n — n,, N votes.

To sce that the restriction of monotonic strategies is necessary, we present.
an example where n = 3, n, = 2, and the expected value of the alternative
is positive if and only if three positive signals are observed (i.c., ¢(g.0) > 0
if and only if ¢ = 3 and b = 0). Consider the two-period game, where
in the lirst period one player votes Y il she observes B, and she votes N
il she observes (7, and in the next period the two players vote N if the
first. player voted Y, and otherwise vote informatively (Y upon observing (7,
N upon obscrving 13). This is an equilibrium that obtains the best possible
outcome- -the alternative passes if and ouly if it 1s better than the status
quo. It is casy Lo sce that no strategy profile in the simultancous game can
achicve this outcome.

Finally, to sce that the restriction to two signals is also necessary, we
present a three-signal example in which a sequential procedure is strictly
better than the simultancous one. Counsider the following specilication: n =
3 n, =2, X; = {G, M, B}; Vi = {1,-0.2, =L}, where L will be a large
positive number; the prior probability of cach value is 1/3, ic., f(13)
1/3, for v; € Vj; the signals are conditionally independent, f(xy g, 2s]y) =

13



[(xey) f(walvs) [ (3]vs), where f(r1]v;) is given by the table below. (In the
table, the O-probability events could be changed to s-probability events, for

= small enough, without changing the subsequent analysis. )

==L 1v,=-02]|nn=1
r =G 0 1/3 1/2
x = M 1/2 1/3 1/2
=03 1/2 1/3 0

If anyone observes 13, the best decision is for the alternative to fal, so
in the simultancous vote the best equilibrium will mvolve every player vot-
ing N upon observing 3. While there are equilibria in which two or more
players always vote N, such equilibria are dominated by the strategy pro-
file where everyone votes Y il and only il they observe (7 (which yields
(1/3) [4(1/8) — (7/5) (1/27)] > 0). (It is irrelevant whether this strategy
profile is an cequilibrium, because if it is not then there must be an equlib-
rium that dominates this profile, since the optimal profile is an equilibrium.)
So the only possibilitics are where one player votes N always, and where all
three players vote informatively. Denote a strategy by the signals on which
the player votes Y, e.g., (AL s the strategy of voting Y if and ouly if ;- or A/
is observed, and ¢ is the strategy of N always. If player 1 plays ¢, then two
and three play cither (G, GA), (GALG), or (G, G). In the second case, a
fortiori in the last one, player 1 is not playing optimally upon observing (4. In
the second case, when she observes (¢ and is pivotal, the signal profile, r, is in

P ={GBG,GCGM, GGB,GMM,GMB}. The sign of the expectation of 1,
conditional on [ is the same as the sign ()I",—‘; (—1) (-L)g + [l‘ (-L)‘ — —]‘l, ({)g}

) <

P A [ 0T D @ = - ) 0 I
and three play (G AL G AT, then two is not playing optimally upon observing,
M. The event, that she observes Al and is pivotal, say 7] includes the signal
profile 3A Al whereupon if L is large enough the expected value conditional
on this event is negative. So all three players must vote informatively i equi-
librinun. However, at most one player plays GA: if two players do so, then
the third player knows that when she is pivotal, at least one other player
observed I3, so this third player will always vote N, which contradicts that it
is an cquilibrium in informative strategies. So two players must adopt (7 in
which case the best reply for the third is GAL: the event that this player (say
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player 1) observes M and is pivotal is P = {MGM MMG, MBG MG 3},
and the sign of the expected value of the allernative conditional on [ is

. ol [(1 _ 1.1 11 Sallv il sav blaver
the same as 1,11(3 sign of 2y [(?z — 527) — —);} > (. mally, if, say, player
one chooses (7, and player three chooses (G, then the best reply for player
two is (. This must be the case because there is a best profile that is a

pure-strategy profile and that is an cquilibrium, and this is the only profile
that we have not ruled ont. (That for two playing (7 is a best reply against
player one playing (/M and player three playing G can also be casily verilied
directly: the event that player two observes A and is pivotal is [ " which
equals, up to a pernutation of signals, I — {GMG MMG} U {GMB}; s0
il the expected value given ' is negative, so is the expected value given 1
the expected value conditional on the event that player two observes - and 1s
pivotal is the same as the expected value conditional on /2, which is positive.)

Thus, we conclude that the best strategy profile in the simultancous vot-
ing game is GAL GG (or a permutation thereof). However, in a sequential
game where players two and three vote after player one, there 1s a better
profile: player one plays (7 A, and players two and three play ¢ alter player
one votes N (indicating the signal /3 which implies that » < 0), and they
play (& alter one votes Y.

4 Conclusion

This paper illustrates some important considerations in the aggregation of
information for sequential elections. In particular, we demonstrate weak and
strong forms of equivalence for simultancous and sequential clections. This
contrasts with two opposing intuitions. 1'irst, because voters later in the se-
quence are better informed at the time that they vote (this is true), sequential
structures must enable better information aggregation (this is false). Second,
because of herding, sequential voting is worse at aggregating information.
We wish to mention two possible extensions capable of indermining the
above results. Iirst, if the electorate decides on more than two options, carly
voters may be able to restrict the set of candidates for future voters. This
extension is especially apt for the analysis of primary clections. Second, if
voters are endowed ex-ante with differential information (some voters can be
better informed than others), knowing which voters voted in favor and which
against can allect a later voter’s choice. We wish to address these issues in

future work. Preliminary results for special cases suggest that in an optimal

[
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order better informed voters should be first. This provides an interesting
contrast to the findings of Ottaviani and Sgrensen (1997). They obtain the
opposite optimal order in an environment where information providers care
not. about the outcome but about appearing to be well informed.

5 Appendix

Proof of Theorem 1: Suppose that s is an equilibrinm for the one-period
voting game. Note that player 7 is pivotal for several combinations of the
votes of the other n — 1 players. Let I C {Y, N}" I denote the set of such
combinations. Lor an n-tuple of signals & and a possible action (voting)
profile of the other players p € 1%, define Y(p) to be the set of players voting
Y in p, and N(p) to be the set of players voting N in p. Let f(z]x;) be the
probability of the vector of signals being @ conditional on 2’s signal being ;.
Let f2(p|z;) be the conditional probability of the other players’ action profile
being p conditional on #’s signal being x; and given that the strategy profile is
s. Pinally, let f*(x].r, p) be the probability of x conditional on i’s signal being
x; and the realization of the other players’ votes being p, and given that the
strategy prolile is 5. By the [ull support axiom and the informativeness of the
strategy, every p in ) is realized with positive probability so the conditional

probability is well delined:

S@le) ey gy s (@00) Tengy (= 57(5))
Soex J@ ) H]H,(p) st () HjirN(;))(l — ()

Now, s* is an equilibrium if and only if:

I (@i, p) = (1)

Z 1 (plxs) Z (o) [ (], py > 0if 87(ry) >0 (2)

pe b re X
Z L (plxy) Z (o) o (el p) < 0ifs™(;) =0 (3)
pe by re X

Consider next a T-period game and the strategy profile as in the state-
ment of the theorem, s!'(h,2;) = s*(1;). Consider player i, after history h,
and let F5(h) be the subset of I consistent with h. If 1%(/) is emptly then
player i can have no ellect on the ontcome, and hence sequential rational-
ity must hold. So suppose that 5(h) is not empty, and lor p € 15(h), let
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e (plx:, ) be the probability of p conditional on s signal being ; and upon
the rcalizu(i()n of votes up to £(7) being h, and given that the strategy profile
is s’ . By the full support axiom and because the strategy s* 1s imformative,
this (,()n(htl()lml probability 15 well defined.  Finally, let f ! (1[1Z p.h), for
p € P;(h), denote the conditional probability of x given Lhat the history is
I, 7’s signal i1s 2;, and the profile of other actions is p, and given that the
strategy profile is s7. In the T-period game s7 is sequentially rational if and

only 1f:
Z 7 (pla L L (usle) f27 (g, p, ) > 0l s* () >0 (1)
pe i) X
Z I p s, h Z 19; (1] 37'(;1:];1)“1}, hy < 0s'(e)=0 (5)
pe b (h) re X

The first step is to observe that, f* (|, p) = [ (xje;, p') lor p.p' € I, so
we can replace these with a common term denoted [*(.r]x;, 1 ) The second
step is to notice that for b€ (1) symmetry umplies that [ (e|a;, p, h) =
f*(xw;, p) = f(r|xy, ). This implies that conditions (2) ;md (3) arc equiv-

alent to conditions (1) and (5). A

Proof of Theorem 2:

(1) The proof of this claim follows from combining two arguments. The
first. argument 1s the one contained i the proof of Theorem 1. The sce-
ond 15 the straightforward claun that a pure-strategy Nash equilibrium of a
simultancous-move game is a Nash equilibrium of a sequential version of the
same game. (This in turn is essentially the same as the claim that a pure-
strategy Nash equilibrium of a static game of incomplete information is also a
Nash equilibrium of the sequential version of the same game il the strategies
in the Nash equilibrinum do not. depend on the players’ private information.)
u

(2) Consider the casc in which s; = Y fori > k. Fori < k, let Z be the set
ol signals for which 4 votes Y. Since s is an equilibrium, F5(0; 2, 0, — 2 — 0+
kN —n, Z) = 0for.r;in 7 and Iy(v,;; rpny=2=n+k N—n, 72) <0 foru,;
i the complement ol 77, for any @ < A, By Monotonicity, 1<(i; @, nq,ny, Z)
15 nondecreasing in ny and nonincreasing in ny for any ;.

Let © be the sct of histories which are realized with positive probability
under the strategy profile s7. If a history h is in @, sequential rationality
after h follows by applying arguments analogous to the proof of Theorem 1.
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Suppose then that ) is not in ©. Since (i) is nondecreasing in 7, (i) and
(iit) imply that only players i = k are voting after h and that deviations n
I can only be attributed to players i > k voting N instead of Y. Let 1)
denote the number of deviations in h and select off-equilibrium beliels for
which deviations are independent, of signals. Then, sequential rationality for
a player i alter b is obtained if 12(v;; x;, np—1=ntk+D. N—n,~ D, Z) 2 0 for
any x; Since s is an cquilibrium and 7 2k, F(vy; 05,1, — 1 —n+k,N—n, 7) =
0 for any x; The claim then follows as [S(vy; 0, .1y, Z) 1s nondecreasing,
in n; and nonincreasing in ny for any x;. The proof for the case in which
s; = N for i = k is analogous. W

Proof of Theorem 3: We continue to use notation defined in the pre-
ceding proof. Note that i is pivotal only if all other players voted Y. So we
can simplify (1) as [ollows:

Sl (YY) = S (las) H]-/i s;(r;)
[ ( ’ 3 ()’ ) ) - Zr’< v f(-’lf',’-'lfi) H‘j/i 5‘(,‘(.’1,‘./]-) .

This is well defined because for cach 4, s;(2;) > 0 for some 2. 'The equilibrinm

conditions, (2) and (3) then become

Z Iy(os| ) £ ey, (V) 1) > 0l s,(y) > 0

e X
> Befe) (e, (V)T €00 si(a) =0
ae X

Consider next, the T-period game, and a strategy profile 5T such that for
cach i, s7((Y)"®) . x,;) > 0 for some x;. We can then define similarly

flx)x;) H#i '3’]1-‘(.1:1-7 (Y)r)
Z_,l,/(, X f(-’l,'".’l),;) iji 5;(,/’1 (Y)n,(i)-) .

In the T-period game, s! is sequentially rational if and only if

Z Ifi(vz-];l:)f‘qT(.'1;|.'1:i, (V)" Y > 0ifs] () >0

reX

SR G, ()Y 0 s () = 0

FIEAY

[ e, (00 ) =

If for all j # 7, 911 (r;, (YVY"@) = s;(2;), then the conditions for s; and for
T to be sequentially rational coincide. Hencee, since only histories of all V7
votes are relevant, the sets of sequential equilibria coincide. W

S
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To prove Theorem 4, we first develop several lemmas for roll-call voting
pames; this restriction to n-period games is implicit in all the following lem-
mas. ‘To simplify the notation, in what follows it is asswmed that ((z) =
so that the time aud the player index are identical. It is helpful to think
about {inding optimal profiles in this common-value environment as a single-
person decision problem; one decision maker deciding on a strategy prolile
for everyone that maximizes everyone’s expected payoll. (‘The problem s a
little subtle because the decision maker has imperfect recall - the vote in the
(" period cannot depend on previous signals, only on the current signal and
previous votes.) Recall that we say that a players’ strategy is uninformative
if her vote is the same regardless of her signal. The [ollowing notation will be
usclul: let Y(h) denote the number of Y votes and N (1) denote the number

of N votes iy history /.
Lemana 5 Therc cxists an M-oplimal pure strategy profile.

Proof: For any given history, the expected value of the clection condi-
tional on a vector of signals is lincar in the probability of a players’ vote. So,
given any M-optimal mixed strategy profile we can change this, player by
player, to a pure strategy profilc. W

Lemma 6 There caists an M-optimal purc strategy profile i which all the
uninformative voting occurs af the end.  That is, for any L and U’ wilh
' > t, and any L-period history h = (ay,....a; 1) € {Y.N}Y 1 and any
'-period continuation of that history ' = (ay,...;a¢ . ....ap) € {Y, N}V
sy (h, G) = syy(h, 13), then sy (D, () = sy (W' 1),

Proof: Consider any pair of players voting one alter the other, where
after some history the first votes uninformatively, but the second votes infor-
matively. Then clearly, the strategies of these two players after that history
can be switched without changing the payoll. So, by iteratively switching
any such pair of players we can move all the uninformative strategies to the

cnd of the game. W

Lemuna 7 There cxists an M-oplitnal pure strateqy profile in which all the
uninformalive voling occurs al the end, and such that: (1) after any history
Iine which the nuwmber of Y votes is less than n, — 1, the player votes Y upon
obscrving G, .o, Y(h) <mny,—1 = s;(h,G) = 1; and (i) after any hastory h
i which the number of N votes is less than o — ny, the player voles N upon
obscrving B. i.c., N(h) < n —ny, = s;(h.13) = 0.
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Proof: Since uninformative voting occurs at. the end, if at a history /r a
player votes N upon observing (7, then all following strategies are uninformi-
tive and the outcome of the election is alrcady determined at I, So consider
an AM-optimal pure strategy profile with uninformative voting at the end
that docs not satisfy condition (i) of the theorem. Change the strategy ol
the first player who violates condition (i) so that she votes Y after (7, and, if
necessary, change a subsequent players strategy to N after the new history,
so that the outcome of the clection is not changed. Siunilar arguments can
be used for condition (ii). W

Consider an i-tuple of signals (i, ....x; .4, () such that the number of
(s 1s n, and the number of 3’5 is less than or cqual to n — n,. Denote by
7" the set of all such vectors for any i. Given a strategy profile (s,.....5,)
as in Lemmas 6 and 7, consider the history (hy, ..., h;) generated by an -
tuple of signals (..., 1, G) in Z'. Then, for j <i—1, h; = Y il and
only il x; = (| since, al any time a Y vote is cast, the number of Y's 13
strictly less than n, — 1 and, al any time a N vote is cast, the number of
N’s is strictly less than n — n,. Moreover, the outcome of the clection is
determined by the action following the obscervation of ¢ by voter 2: Y passes
the alternative, while N is uninformative and hence all subsequent. voting is
also uninformative. Consider now an i-tuple of signals (. ....x; 1, 3) such
that the number of G’s is less than or equal to 1, — 1 and the number of /37s
is equal to n — n, + 1. Denote by 7" the set of all such vectors for any 7.
Again, for a strategy profile (s, ..., s,) as in Lemmas 6 and 7, consider the
history (hy,....h;) generated by an i-tuple of signals (1, ...,z ¢, 3) i 7"
As belore, for j < i—1, h; = Y if and only if ;; = (5, and the outcome of the
clection is determined by the action following the observation of I3 by voter
it N fails the alternative, while Y is uninformative and so is all subsequent
voling.

Ience, by the preceding lemmas, we need to specify the clection outcome
for an Al-optimal strategy alter the realization of signal vectors i AT
For this purpose, let Y* = {h: N(h) > n—n, and Y (h) > ~}.

Lemma 8 If c(n, — 1,n —n, + 1) > 0, then the strategy profile (s1, ..., 8n)
where s;(h,G) = s;(h,B) =1 for ho € Y* N {Y. NY U and si(h.G) = 1.
s;(h,B)Y =0, for h ¢ Y* N {Y, NY 1 ds M-optimal.

Thus an Af-optimal strategy profile in this case is to vote informatively
after histories not in Y*, and to vole Y alter histories in Y.
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Proof: A stralegy profile as in Lemuas 6 and 7 induces a function d:
Z'U 2" = {0.1} which specifies the outcome — 0 for the status guo, 1 [or
the alternative - after the realization of a signal vector in 2" U 2"

Lot 2 be a vector of r signals in 2’ or Z”, and let f(z) denote the proba-
bility of such a signal (f(2) = D10y 20} f(x)). Note that: (i) for any
vector of signals 2 in 7' U Z" and an arbitrary vector of signals ¢, the vector
(z.¢) canmot be in 2’ U Z", and (i) for any complete realization of signals
(ry,...,1,) there is an i-tuple z in 2" U Z" such that x; = z; for ) < 2. Then,
denoting by G/(z) the number of (s in z, and by B(z) the number of B’s in

=z, the expected value of the clection is

ST d() (e, BE) + Y d(2)f(2)e(G2).n =+ 1),

267! ze 4"

The lemma is proven if the strategy profie specified maximizes this expres-
sion. The specification yields d(z) = 1 if either z € 7/, orif 2 € 7" and
G/(z) > 7, and d(z) = 0 otherwise. In the case under consideration, where
c(ny — Ln = n, + 1) > 0, we know that ¢(np, B(z)) > 0 for all » € 77,
so the first term in the expected value is maximized by setting d(z) = 1
for all z € 7', exactly as the strategy profile specified in the lemma does.
The sccond term has both positive and negative elements in the summation;
o(G(2),n — n, 4 1) is positive exactly when (/(z) > v, which is when the
profile specified yields d(z) = 1. Thus, d(2) 1s optimal. B

Now let N* = {h:Y(h) = n, — 1 and N(h) > 1}

Lemma 9 If e(n,,n — n,) < 0, then the stralegy profile (sy.....s,) where
si(h.G) = s;(h, 3) = 0 forh € N*O{Y. N} ' and s;(h, ) = 1, s;(h. B) = 0.
Jorh ¢ N*OV{Y N} ' is M-optimal. If c{n,,n—mn,) >0 and e(ny, — 1.n —
n, + 1) < 0, then the strategy profile (si, ..., sn) where s;(h,(7) = 1 and
si(h, B) =0 for all h, is M-optimal.

Proof: The proof is exactly like that of the preceding lemma. B

Proof of Theorem 4: For any strategy profile of any T-period voling
game, there is a realization-cquivalent strategy profile of the roll-call game.
Since the strategics in the statement of the theorem are history independent
it. is therefore sufficient to prove the theorem for roll-call games.

Consider the Al-optimal strategy profile in Lemma 77, Let z be the first
n —n, 4y signals in some vector of signals x € X. If the number of G signals
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in z is v or greater, then the alternative passes regardless of future signals;
if the number is less than v then the alternative fails regardless of future
signals. This yiclds exactly the same outcome as the strategy profile given
in the statement of the theorem, so we have proved part 1 of the theorem.
parts 2 and 3 follow similarly by using Lemma 9.

It remains to prove that in the simultancous voting game if the optimal
cquilibrium involves informative strategies then the M-optimal equilibrium
identified by the theorem is generically strict, and when it is strict it is the
unique strict cquilibrium. ‘The basic intuition is that in simultancous vot-
ing Al-optimality and optimality coincide (step 1 below) and generically the
strategies defined are strictly optimal, hence are a strict equilibrium.  For-
mally, the conclusion follows from the steps below. Let ny denote the number
of voters choosing N uninformatively (i.c., regardless of their signal), ny the
number of voters choosing Y uninformatively, n; the number of informative

volers.

L. Clearly a non-monotonic strategy cannot be a strict best reply in the
simultancous voting game. Il it is a strict best reply to vote N when ob-
serving (7, then it must be a strict best reply to vote N when observing
B. Thercfore all informative strategies are monotonic.

2. There is no strict equilibrium in which at least one player, say 7, voles
uninformatively N and at least one other, say j, votes uninformatively
Y. When 7 is pivotal she knows that n, — 1 others voted Y, and
1 — n, voted N. So when she observes (7 and is pivotal she knows that
(including herself) n, —ny players observed (/) and n—ny, —ny observed
B, so strictly preferring N implies that e(n, — ny, 0 —n, — na) < 0.
On the other hand, when j observes 3 and 1s pivotal he knows that,
n, — ny — 1 observed (7 and 1 — ny, — ny + 1 observed 3, so strictly
prelerring Y implies that ¢(n, —ny — 1,0 —n, —ny 4 1) > 0, which
vields a contradiction.

3. Thus, any strict cquilibrinim has the form of some players voting imfor-
malively, and others using the same uninformative strategy. Consider
henceforth the case where e(n, — L.n —n, + 1) > 0; the other cases
arc argucd similarly. Then it cannot be that the uninformative all vote
N. Tor that to be a strict equilibrium at least 7, — 1 must vote m-
formatively. But then, an uninformative voter is pivotal only if n, — 1
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“sood” signals were observed, in which case voting Y is better than N
since by assumption ¢(n, — 1,0) > e(n, — L,n —n, + 1) > 0, for all b
such that 0 < b <n —n,+ 1. So ny = 0.

A pivotal informative voter will strictly prefer voting ¥ when she ob-
serves G il and only if €(n, —ny, n—n,) > 0, while she will strictly prefer
voting N when she observes B if and only if ¢(n, —ny — L, n—n,+1) < 0.
An uninformative voter strictly prefers voting Y when I3 is observed if
e(ny — ny,n— ny + 1) > 0. But these last two inequalitics inply that,

ny, —ny = 7.0
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