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Abstract

This article shows that under uncertainty, a firm’s capacity investment decision crucially depends on
the mode of market approach (price-setting vs. quantity-setting) and competition that follows investment.
We model an industry in which firms have to make capacity investment decisions when demand is
uncertain. First each firm must decide on its capacity investment level. Then, industry capacity levels
are observed and firms engage in quantity or price competition. Finally, demand and revenues are
realized.

We begin by considering a monopoly and show that the monopoly price given an uncertain demand
curve can be higher or lower than the reference price when the demand curve is known at the start.
Moreover price and firm value may fall or rise with increasing uncertainty. We compare these results
with a setting where a monopolist sets quantity instead of price. The resulting investment fundamentally
differs from the price-setting investment. Moreover, the investment strategy under quantity-setting is
significantly less sensitive to variability and more profitable than under price-setting.

Under quantity competition, these results extend to a duopoly, oligopoly and perfect competition. In
addition, entry dettering investments are possible yet more difficult as variability increases and credible
only at low investment costs. Under price competition, no pure equilibria exist if there is demand
uncertainty.

Key Words: pricing, quantity, capacity, competition, strategy, game theory, demand uncertainty.

1 Introduction

When firms invest in productive capacity they usually face uncertainty and competition. Not only is the
magnitude of potential demand uncertain, but potential actions of competitors may significantly affect the
profitability of the investment. When making the investment decisions, a variety of questions are naturally
posed. Should the firm invest more or less when uncertainty increases? How does uncertainty affect firm
value? How does competition affect the decision? Sure, we expect firm investment to decrease while industry
investment increases, but does the investment decision depend on how firms later compete in the market?
Is it worthwhile to invest in excess capacity to deter entry by potential competitors?

The purpose of this article is to study how strategic investment in productive capacity depends on demand
uncertainty, the mode of competition (price setting vs. quantity setting) and the number of competing firms.
We analyze an industry in which firms have to make capacity investment decisions when demand is uncertain.
First each firm must decide on its capacity investment level. Then, industry capacity levels are observed and
firms engage in price or quantity competition. Finally, demand and revenues are realized. We will show that,
under uncertainty, a firm’s capacity investment decision crucially depends on the potential and the mode of
competition that follows the investment. We will also show how increasing uncertainty affects the investment
decision and the firm’s value. In contrast, without uncertainty, investment decisions do not depend on the
mode of competition.



In this article competitive investment in capacity is a long-term strategic decision while the pricing
or quantity decision provides control in the short-term. We explicitly examine how the level of risk or
variability in demand affects this decision. We begin by analyzing the joint pricing and capacity decisions of
a monopolist who faces an uncertain demand curve. The monopolist first invests in capacity and then sets
a price before market demand uncertainty is resolved. We analyze the capacity-constrained pricing decision
in detail and show that the monopoly price given an uncertain demand curve can be higher or lower than
the reference price when the demand curve is known at the start. Moreover price and firm value may fall or
rise with increasing uncertainty. Contrary to classical deterministic results, we show that in the presence of
uncertainty, the capacity investment level under this price setting scenario differs from the investment under
a quantity setting scenario. Not only is quantity setting more profitable, but it also yields an investment
policy that is significantly less sensitive to demand variability than the price-setting policy. It is surprising
that the price-capacity decision problem which has two control variables affecting two dimensions (price and
quantity via the capacity constraint) is inferior to the quantity-capacity problem which effectively controls
only one dimension (quantity). The reason is that quantity-setting firms benefit from the market mechanism
that sets a state-dependent market clearing price. Thus, under this mode of competition and up to medium
levels of variability, no sales are ever lost due to capacity constraints nor is there ever any unused excess
capacity. This perfect balance can never be achieved under price-setting: because of demand uncertainty,
there always will be scenarios where the announced price was either too low, leading to excess demand and
lost sales, or too high, resulting in unused excess capacity. (Notice that we show the superiority of quantity
setting without charging penalties for lost sales or excess capacity; clearly, doing so would only strengthen
our case.) Thus, to restore the symmetry, price-setting firms should be allowed ez-post capacity flexibility to
increase (lease or subcontract) or decrease (sell) capacity. Or, they should be allowed to postpone the pricing
decision until after uncertainty is realized. Indeed, we will show that, up to medium levels of variability, the
investment decision under quantity-setting is independent of postponement and the corresponding value of
information is zero. This may suggest why capacity decisions by operating managers (who typically reason
in terms of quantity rather than price) can be made by deterministic reasoning if levels of variability are
moderate.

To investigate the effect of intensity of competition under uncertainty, we analyze the capacity decisions
in a duopoly and oligopoly. The seminal result of Kreps and Scheinkman [11] that price-setting investment
equals quantity-setting investment in a deterministic duopoly, does not hold under uncertainty. We provide
an intuitive explanation of Hviid’s work [9] who showed that no pure strategy equilibria exist when firms
engage in price competition if demand is uncertain. Then, we turn our attention to the quantity-setting
duopoly and show that a pure strategy equilibrium exists which is relatively insensitive to demand variability,
but less so than in a monopoly. Following Dixit [5], we investigate the use of excess capacity investments as a
credible threat to deter entry. These entry-deterrence investments where one firm invests in excess capacity
so that other firms find it not profitable to invest are more difficult as variability increases and credible
only at low investment costs. Finally, we show that our results generalize to an oligopoly of n firms and
perfect competition (n — o). The investment under uncertainty equals the investment with a deterministic
demand curve, even with perfect quantity competition, provided variability is low or investment costs are
high. Moreover, we show that the entry-deterring investment in an oligopoly equals the total industry
investment under perfect quantity competition.

Curiously, competitive joint pricing and capacity decisions under uncertainty have received limited at-
tention. There is a recent literature in operations that studies competitive capacity investment when prices
are exogenous. Lipmann and McCardle [13] and Parlar [15] study competitive inventory decisions, which
in their most simple form directly correspond to capacity decisions, by analyzing a “competitive newsboy”
model. To analyze subcontracting and outsourcing, Van Mieghem [17] studies the competitive capacity and
production decisions of a contractor and subcontractor. In most of these articles prices are exogenous so that
the effect of tactical price or quantity competition on the investment decisions cannot be analyzed. However,
a considerable literature considers the interaction of the pricing, production and inventory decisions in the
context of a monopoly. Whitin’s model [19], which was analyzed by Mills [14], appears to have been the first
to consider the simultaneous choice of inventory and prices; an integrative review is provided by Petruzzi and
Dada [16]. Multi-period stochastic extensions where the monopolist makes dynamic inventory, production
and /or pricing decisions include Amihud and Mendelson [1, 2], Federgruen and Heching [6], Gallego and van
Ryzin [7] and Li [12]. We will compare our monopoly results with these earlier results in section 3.



The outline of this article is as follows. We start with analyzing capacity decisions of a price-setting
monopolist in section 2 and compare these with what a quantity-setting monopolist would do in section 3.
Similarly, section 4 discusses capacity investment under price competition while section 5 focuses on quantity
competition. We conclude in section 6. (All proofs, as well as explicit pricing, quantity and capacity results
as a function of both investment cost and variability when demand is uniformly distributed, can be found
in [18, Appendix]).

2 A Capacity and Pricing Model

Consider a monopolist who faces uncertain market demand D when the market price is p. Uncertainty in the
market demand forecast is modeled by a random variable ¢, also called a “shock.” Specifically, the (inverse)
demand curve is assumed to be linear and we can always scale! units such that

p=¢—D. (1)

¢ has mean 1 and perturbs the deterministic demand curve p = 1 — D by representing uncertainty in the
intercept or market size or willingness-to-pay. (We will discuss uncertainty in the slope, p = 1—¢D, and more
general demand curves p = £1g(D)+e2h(D) in section 3.) Thus, ¢ is non-negative and to avoid technicalities
we will assume that its probability measure P has a distribution F(g) with continuous® density f(g) over
R, and standard deviation ¢. Clearly, if € is unfavorably low (¢ < p), the willingness-to-pay a price p is
zero so that market demand is zero. Before uncertainty is resolved, the monopolist must make a capacity
investment decision K > 0 at a cost C(K) and announce a price p > 0. After uncertainty is resolved, the
monopolist can produce and sell ¢ < D(p,¢) units at the announced price, where the production quantity
q is constrained by the earlier capacity choice: ¢ < K. For simplicity we assume linear investment costs,
C(K) = c¢K, and zero production costs. (All our results directly extend to convex cost functions C(K) .)
The operating profits® for the monopolist are simply

wh(p. K,€) = pg, (2)

and its expected firm value is
Vii(p, K) = Enf; —cK. (3)

We assume that the monopolist is risk-neutral and maximizes expected firm value so that the research
problem is to determine the investment K and price p that maximize V{,.

To explicitly write out operating profits, it is useful to partition the state-space for € as follows: Ry =
Qo U UQy, where

Qo(p) =10.p), U@ K)=[p.p+K) and Qp K) = [p+ K, +00). (4)

The three domains represent three possible outcomes. Domain €2y represents the undesired outcome where
the willingness-to-pay is so low, or equivalently we priced so high, that there is no demand at the announced
price p and thus ¢ = 0 and 7%, (p, K,¢) = 0. In domain ©;, the monopolist has sufficient (actually excess)
capacity to satisfy demand so that ¢ = D(p,¢) and #%,(p, K,€) = pD(p.£). Finally, in domain 2y market
demand at the announced price is so high that it exceeds capacity and some potential sales will be lost:
q= K < D and 7%;(p, K,¢) = pK. The expected operating profits become

P+ K .
Bt = [ pe-pap+ [ pKap= [ pe-p) sl + pEF(p+ E). (5)
0 Qy p

where I denotes the tail distribution: F(e) = 1 — F(e).

L An arbitrary linear demand curve p’ = €' — bD’, where €' has mean go, reduces to (1) after scaling prices p’ = eop and
quantitics ¢’ = £2q.

2Limiting arguments show that all essential results remain valid for measures with bounded support. As an example, [18,
Appendix] gives explicit results for a uniform distribution on an interval [a,b] with 0 <a <1 <b.

2
: . . £5
3For the arbitrary demand curve, the unscaled marginal costs are ¢’ = egc so that unscaled revenues and costs arc -t pg and

Ech, respectively.
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Figure 1: The sample path of 75/(p. K,¢) as a function of p for three representive values of £: low (g1),
medium (e3) and high (e3). On the right, we have Emy/(p. K, ¢) when ¢ is exponentially distributed.

2.1 Capacity-constrained Monopoly Pricing

As an initial step in determining the joint capacity-pricing decisions, it is useful to first consider the opti-
mal pricing decision for a given capacity level K. Because investment cost is sunk, the optimal capacity-
constrained price, denoted by par(K), maximizes the expected revenue function En%,(p, K) which is a
weighted linear superposition of 78, (p, K, ) with weight factor f(e).

Consider the revenue function 7%, (p, K €) for a specific realization of ¢ (that is, a specific sample path).
For any given K, the revenue function as a function of price p has three possible shapes depending on the
value of £ as shown in Figure 1. For small values of € (¢ < K), 74, = p(¢ — p)T with a unique maximum at
p = £/2. For medium values of ¢ (K < e < 2K), 7, = Kp for p < ¢ — K and 7}, = p(e —p)7T elsewhere with
a unique maximum at p = ¢/2. For large values of ¢ (2K < ¢), nf; = Kp for p < e — K and 7%, = p(e —p)*
elsewhere with a unique maximum at p = ¢ — K. Thus, each 7%, (p, K, ¢) is unimodal concave-convex.

First consider the deterministic problem which serves as a good reference case to study the effect of
uncertainty. The optimal capacity-constrained price p‘&‘l}' (K) that a monopolist should charge in the absence
of uncertainty (the traditional case with deterministic demand curve D = 1 — p) directly follows:

P (K) = max {1 _K, %} . (6)

In the presence of uncertainty, we must find the maximum of the expected revenue function Exf, (p, K). As
a weighted linear superposition, the expected revenue function E7%, (p, K) may inherit some structural prop-
erties from 7%, (p, K, €) such as unimodality which is a sufficient condition for the existence and uniqueness
of the capacity-constrained price pas(K). For example, if ¢ is exponentially distributed, we have fle)y=¢€"¢

and
o0

p+K
Erf, = p/ (e —p)e °de + pK/ e de = pe P (1 — e*K) . (7)
P p+K

Figure 1 shows the expected revenue as a function of p and several values of K. Like the sample revenue
functions, the expected revenue function is unimodal and concave-convex. To avoid technicalities, we will
simply assume that the first-order conditions for our optimization problems are sufficient. This amounts to
assuming that the density f(¢) is such that the linear superposition Ex%,(p, K) is also unimodal concave-
convex and that the price-optimized revenue function Exf%,(pas(K), K) is concave. (This holds for the
uniform and exponential distributions and for the deterministic case {18, Appendix].) The optimal capacity-
constrained price sets expected marginal revenues equal to marginal production cost, which was assumed to
be zero. Marginal revenues are zero in domain )y where demand is zero, € — 2p in domain ©; and K in the
capacity-constrained domain §2;. Thus we have (all proofs are relegated to the Appendix):
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Figure 2: The capacity-constrained price par(K) (left) and revenue En%, (pas(K), K) (right) as a function of
capacity K and uncertainty o.

Proposition 1 The optimal capacity-constrained monopoly price par(K) is unigue, strictly positive and
non-increasing in K and satisfies

/ (c — 2par) dP + / KdP =0, (8)
Q1 (pas, K) Q2(par,K)

Corollary 1 The expected revenue at the optimal capacity-constrained monopoly price is
Erhy (par (K). K) = p,(K)P (Qu(par(K). K)) < piy(K). 9)

As an illustration reconsider the example of the exponential distribution. The optimality equation (8)
for pas(K') becomes
(l—pM)e_p“ (17671{) :0<:>p}\1(K) =1, (10)

and the resulting revenue function is concave increasing in K:
/ — -K
Erf (pp(K),K)=e 1 (1—e 7). (11)
By comparison, the deterministic reference case yields

o)) = { G RS 12

Thus, with uncertainty distributed exponentially, the monopolist charges a capacity-constrained price p =1
that is independent of the installed capacity (!} and that is larger than the deterministic monopoly price,
reflecting a risk-premium of up to 100%.

While the elegant explicit solutions for the exponential distribution give us some first insights in the
effects of variability on price and capacity, this distribution has the disadvantage that we cannot change the
level of variability. The exponential distribution has only one parameter, its mean which equals its standard
deviation. Analytic comparative statics on the first order optimality equations as a function of variability
yield very complex equations that cannot be signed in general. Therefore, to investigate the impact of various
levels of variability on the pricing and investment decisions, we explicitly solved the capacity-pricing problem
for the family of uniform distributions with mean ¢y = 1 and standard deviation ¢ and explicit solutions are
given in the Appendix. Specifying the two parameters mean and standard deviation of a uniform random
variable defines its support as the interval [gg — V30,0 + \,/grr] The fact that € is non-negative bounds its
relative amount of variability when distributed uniformly: Z < 3~1/2_ For comparison, the one-parameter
exponential distribution has a fixed amount of relative variability: = = 1.



Figure 2 shows the capacity-constrained monopoly price pas (K) (left) and the associated revenue function
Enf,(par(K), K) (right) as a function of capacity K and the level of uncertainty, measured by the mean-
preserving spread o. The figure shows the results for the deterministic case (¢ = 0), the uniform distribution
(0 < o0 < 37'/2) and the exponential distribution (¢ = 1). Let us first fix a given level of variability and
investigate the role of capacity K. The capacity-constrained monopoly price pa;(K) is decreasing almost
linearly in capacity K up to some point Ky, after which the price remains constant. Initially when capacity
is tight (K very small), the monopolist charges a high price. This effectively results in a form of market
segmentation where the least price-sensitive customers are targeted. When capacity increases (K T Kj), the
monopolist reduces price. This is consistent with the elasticity property of the deterministic linear demand
curve p = g9 — D : if the price p is above £4/2, demand is elastic and reducing price increases revenues. This
argument extends to the case of uncertainty, and when K < Kp, there is a probability of being capacity
constrained (P(2) > 0) and py, is a function of capacity K. As K increases beyond Ky, excess capacity
exists and there is no benefit of price reduction below p(Kjy) (lowering price below p(Kj) = £¢/2 would bring
us in the inelastic zone of the demand curve where reducing prices would reduce revenues). In this zone,
under moderate levels of uncertainty, K is sufficiently large to exclude a risk of being capacity constrained
(P(22) = 0) and pys is independent of K. Clearly, for a given K, the risk of being capacity constrained
increases as uncertainty increases, so that the transition point K increases when uncertainty increases. With
the exponential distribution, uncertainty is so large that Ky = cc.

Now fix a capacity level and notice that the capacity-constrained monopoly price pas(K) is not monotone
in the level of variability o for low levels of K, whereas it is non-decreasing in o for high levels of A
(say K > 1.5). When capacity is sufficiently high increasing variability increases price reflecting a “risk-
premium” to protect against uncertainty. However, no “risk-premium” is charged (price may even decrease
in variability) when capacity is low and there is little variability. We believe this effect for low capacity
levels may be explained as follows. When variability is low and we operate with small capacity, we will
price high to skim the market. Now as variability increases, the probability that not all capacity is used
increases: P({22) |. Since at this high price demand is likely to be elastic, lowering price increases demand
and revenues, mitigating some of the risk of capacity under-utilization. However if price becomes sufficiently
low, there is higher likelihood to be in the inelastic part of the demand curve so that one should increase
price as variability increases in order not to decrease revenues. Finally, notice that for high capacity levels
and low levels of variability, the probability of being capacity constrained or of having priced too high is zero
P(£) = P(Q0) = 0 and the optimal price equals the deterministic price: pas(K) = %

Now consider the price-optimized revenue function (Figure 2 on the right). Up to the transition point Kp,
price is decreasing and revenue increasing (conforming with the inelastic zone argument), after which both
are constant. Finally, notice that uncertainty does not necessarily result in decreased expected capacity-
constrained revenues. Indeed, for high capacity levels, increased variability increases revenues. Effectively,
the demand distribution is truncated and the effective mean demand is thus increasing in variability. Indeed,
domain €y act as censoring demand equal to zero, while in domain {2; the conditional mean demand is
increasing in variability (and K is sufficiently high so that P(§?2) = 0). Thus, the effective mean demand
and associated mean revenues increase in variability.

2.2 Optimal Capacity & Pricing Strategy for a Monopolist

Given our assumptions on the distribution function of ¢, the price-optimized revenue function En%  (ps; (K), K)
is concave non-decreasing in K while costs C(K) = ¢K are convex increasing. Thus, V(K is concave and
the optimal investment strategy follows a critical number ¢ policy. If ¢ > ¢ then capacity is too expensive
to invest so that K = 0. For ¢ < ¢ , optimal investment sets marginal revenue %Eﬂﬁ, (par(K), K) equal to
marginal cost ¢ which yields the familiar critical fractile solution:

Ple 2 par(K) + K) = ¢/par(K). (13)
Concavity directly shows that ¢ = L Ex?, (par(K), K)|k=o.

Proposition 2 The optimal capacity-price monopoly strategy is unique. There exists a threshold ¢(o) > 0
such that K =0 and p is arbitrary if ¢ > (o), otherwise K > 0 and p > 0 satisfy:

p

Q1 (p,K)

(2p —€)dP, (14)



and K is decreasing in c. If in addition the density f of P satisfies P(Q(p, K)) > pf(p+ K), then p is
increasing in c. The optimal firm value V' is decreasing in capacity costs:

ov

5 =

The proposition shows that under the optimal capacity-price strategy there will always be a positive
probability of having insufficient capacity leading to lost sales (0 < P (§22) = £ < 1), and of having excess
capacity (0 < P(Q;) < 1— P(§2) < 1). While this is a familiar result of the newsvendor model, we will
show in the next section that this is not true when the firm is engaged in quantity competition. The fact
that firm value and capacity levels K are decreasing in marginal investment costs, while p is increasing,

is not surprising and conforms with results from the deterministic base-case which has a threshold cost
c= f=nh (par(K), K)lk=0 = (1 - 2K) k=0 =1l and if ¢ < I

~K. (15)

. l—c 44 1+4c (1-¢?® 1

Krl(t _ . det _ and Vdet — < =

y P 2 4 1

More interesting is the effect of uncertainty. As a start, exponential uncertainty has a threshold ¢ =
d;‘;(Enﬁ,(pM(K), K)keog=e 10 g=elandifc<e

(16)

K=—(1+Inc), p=1land V=¢"!+clnc<e™ (17)

Thus, the threshold ¢ depends on the level of variability ¢ and is decreasing: as uncertainty increases, the
firm requires a cost break before it is willing to invest. Figure 3 shows that the capacity investment level
decreases almost linearly in ¢, where the slope is steeper as uncertainty increases. Thus, the threshold cost
is monotone decreasing in o, first linearly and then concavely. Also, for moderate and high capacity costs ¢,
the investment level K decreases as uncertainty increases. Thus, the concavity of the problem induces risk-
aversion onto risk-neutral irm. However, the reverse is true for low capacity costs: capacity is so inexpensive
that one invests in more excess capacity as uncertainty increases. Notice that as capacity costs approach
zero (¢ — 0), capacity investment levels under exponential uncertainty go to infinity. Obviously, there is no
justification to do this in the uniform case because demand is always finite and bounded by maxe = 1++/30.
The optimal price is not monotone in uncertainty: for low variability levels, the optimal price is actually
below the deterministic reference price while for high variability levels it is increasing in variability. With
exponential uncertainty, the monopolist charges a price p = 1 independent of the investment cost. This price
includes a risk premium of 156 compared to the deterministic monopoly price of 1—% Interestingly, this risk
premium is decreasing in cost, perhaps because the total risk exposure has decreased (K is decreasing in
cost). Finally, because K is almost linearly decreasing in ¢, the optimal firm value falls quadratically. While
at moderate and high costs, the firm is worse of as variability increases, more uncertainty is actually better
when investment costs are low.

3 A Capacity and Quantity-Setting Model

Consider the counterpart of the pricing model where a firm now sets quantity. First, the firm invests in
capacity K. Then, it announces the quantity g (constrained by its earlier investment: ¢ < K) that it will
bring to the market. Finally, uncertainty is resolved and the market mechanism determines the market
clearing price p = ¢ — g for the supplied market quantity g. If g exceeds the market size £, the market
clearing price is p = 0. As before, the operating profits for the monopolist are simply 7%, = pg and the
expected firm value is V), = En}, — cK.

To explicitly write out expected revenues, we must distinguish two possible outcomes. Again domain
Qo(q) = [0, q) represents the undesired outcome where the willingness-to-pay is so low that the market clear-
ing price is zero p and thus 7%, (p, K.€) = 0. The other outcome is positive price and revenues, represented
by domain Q;42(q) = [q, +00). The expected operating profits become

Eﬂk(ml¥)=l/

k—@WP:/ (e - q) af(e)de with g < K. (18)
S q

which is a simpler expression than its price-setting counterpart. This fact makes quantity-setting problems
significantly easier to analyze than price-setting problems.
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Figure 3: The optimal monopoly capacity K (top left), price p (top right) and firm value V' (bottom) as a
function of the marginal investment cost ¢ and uncertainty 0. The cost threshold &(c) is in bold.

3.1 Capacity-Constrained Quantity Setting

Let us first consider the optimal capacity-constrained quantity decision. The sample-path revenue functions
are, similar as before, unimodal concave-convex and we will assume as before that f is such that E7%,(q. K)
is also unimodal concave-convex. If there is ample capacity, the optimal capacity-constrained monopoly
quantity gas(K) is the unique unconstrained maximum ¢* of En,(q, K) = fqoo (e — q) ¢f(¢)de. Otherwise, if
K <q*, qu(K) =K.

Proposition 3 The optimal capacity-constrained monopoly quantity is qar(K) = min(q*, K), where q* s
the unique solution to

-

[ e 2t o (19)

If the firm has excess capacity, the optimal quantity is independent of K :

)
VK > q;\[(K) : —qu(I{) =0. (20)
oK
Our deterministic base case is extremely simple. Indeed, when the monopolist sets quantity ¢ < K, the
market price is p = 1 — g, with revenues 7 = ¢(1 — ¢) which are indeed unimodal concave-convex and thus
the optimal capacity-constrained quantity is

.1
gar(K) = min(

5. K). (21)



For example, for exponential uncertainty we have that En§ (¢, K) = fqoo g{e —q)e °de = qe 9, and the
optimal capacity-constrained quantity is gas(K) = min(g*, K), where

/ (e —2¢")e  de = (1 — e T =0 ¢ =1, (22)
q

and associated quantity-optimized expected revenue function

Ke X if K<1,
e (). 00 ={ 5 T (23)

Clearly, the optimal quantity depends on uncertainty, but only if the level of uncertainty is sufficiently high.
Indeed, if € has a distribution with low variability, uncertainty “averages out.” More precisely:

Corollary 2 If ¢ is bounded from below with probability one by £ > -é—, we have that P($0(g)) = 0 for
all quantities g < £ and the capacity-constrained quantity qar(K) and the expected revenue function are
independent of variability and equal to the deterministic solutions: V¢ < min(K, g)

g (K) = min(3, K) <€ and Exf;(q. K) = q(1 — q). (24)

This result will have far-reaching consequences on the investment strategy as will be discussed in the next
section. If £ is uniformly distributed over the interval [1 — V3o, 1+ \/3(7], the corollary with ¢ = 1 — /30
requires

1 1 -
o< ﬁmax(—i,l—lﬁ).

Thus, moderate levels of uncertainty (o < ﬁﬁ) do not impact the optimal quantity-decision. There exists
a dual result for capacity-constrained pricing:

Proposition 4 (Duality) The optimal capacity-constrained monopoly price is par(K) = max(p*. p(K)),
where p* is the unique solution to

/w@—%ﬂﬂd&:O, (25)

and p(K') solves (8).

Corollary 3 Ife is bounded from above with probability one by g, then P(2(p)) = 0 for all prices p such that
p+ K > & and the capacity-constrained price is py; = p*, which is independent of capacity. If, in addition,
€ s bounded from below with probability one by £ > %, then P(Q(p)} = 0 and the capacity-constrained
price par(K) and the expected revenue function are independent of variability and equal to the deterministic

solutions: Vp<eg<e<p+ K:
pr(K) = 5 and E7} (p. K) = p(1 - p). (26)

The dual of g3 (K) = min(¢*, K) is par(K) = max(p*, p(K)), where ¢* = p*. In addition, the actual
capacity-constrained price and quantity are related via the deterministic demand curve (p = 1 — ¢) only if
variability is low and there is sufficient capacity: if ¢ has finite support [¢, Z] with % <eg<e< % + K, then
par(K) = qar(K) = § independent of the level of moderate variability. (This provides a second explanation
for the flat zones of pas(K) in Figure 3.) Because their expected revenue functions differ, price-setting and
quantity-setting in general yield different investment results. From the duality result, one could hope that
in the special case of low variability, both would yield identical investment outcomes, but the next section
will show that this is not true either.

3.2 Optimal Capacity & Quantity Strategy for a Monopolist

For the optimal capacity investment decision under quantity-setting, any excess capacity level K > ga(K)
is suboptimal because it does not satisfy necessary optimality conditions: %V(K) = —c < 0. Therefore,
a quantity-setting monopolist will never invest in excess capacity and always produce up to its capacity.
(While this is obvious for a monopolist, this need not be true under competition. For example, we will show
in section 5 that one may strategically choose capacity larger than production (K > ¢(K)) to deter entry.)



Proposition 5 The optimal monopoly quantity-capacity strategy is unique: If ¢ > 1. qar(K) = F
otherwise qpr(K) = K where K satisfies:

h]
Il
>

/ (e = 2K)f(e)de = ¢, (27)
K
and the optimal investment level and firm value are decreasing in ¢
K
88—<0.%—‘0/27K<0andV:KQP(EZK)géK(I—c). (28)
¢

The optimality equation (27) yields 1 — 2K (1 — F(K)) > ¢ (recall, F' is the distribution of ¢) and
comparing it with (19) shows that ¢* is the optimal investment level if capacity is costless.

Corollary 4 The optimal quantity-capacity level under uncertainty is never lower than under certainty, and

never higher than q" :

1-c
2

K{i(rl _ S K(l('l + %I‘rdr'[F<K(I(’I) S K{Ir'f + %KF(I{) S K S q* _ K|c:0~ (29)
Corollary 5 If € is bounded from below with probability one by € and capacity cost is not too inexpensive
¢ > 1—2¢, the optimal investment level, the expected price and the expected revenue function are independent
of variability and equal to the deterministic solutions:

1-c¢ 1+c¢ (1-c)?

g=K = 5 Ep= 5 and Vi, = 1

(30)
while the optimal firm value has standard deviation oy = Ko..
If ¢ is uniformly distributed over the interval [1 — V30.1+ \/?_xr], the corollary with ¢ = 1 — /3¢ requires

c+122\/§(r.

Thus, moderate levels of uncertainty (o < ﬁ) never impact the optimal monopoly capacity-quantity

decision. Capacity-quantity decisions remain insensitive to high levels of uncertainty (o > 1) provided

capacity is not too expensive. This insensitivity result never holds for optimal capacity-p?ic\[z decisions.
Earlier we showed that capacity-constrained pricing is insensitive to variability if variability is low and
there is sufficient capacity. The latter requires investment costs that are trivially low (¢ = 0). Indeed, if
v (K) = %, expected revenues Enf,(p. K) = p(1 — p) are independent of K > % + &, which can never be
an optimal investment level at positive cost ¢ (because it would not satisfy necessary optimality conditions:
2 V(K) =—c<0).

In addition, with quantity-setting, the cost threshold ¢ = 1 is independent of demand variability. For
exponential uncertainty, for example, the optimal capacity investment under quantity-setting is positive for
¢ < &=1 and solves

(1-K)exp(—K)=c (31)

Not only is a quantity-setting monopolist willing to invest at higher costs (its threshold cost is ¢ =1 which
is larger than a price-setting monopolist with ¢ = e™!), but the investment differs: it is lower at low costs
(never exceeding 1) and higher at high cost. Because the cost threshold with price-setting decreases as
demand becomes more variable, it follows that a quantity-setting monopolist is willing to invest at higher
costs than a price-setting monopolist.

Figure 4 shows the optimal monopoly capacity investment and firm value for the quantity-capacity
problem. In the zone ¢ +1 > 2+/35 of low variability levels or high costs, the capacity investment level
and firm value are independent of variability and equal to their deterministic values. For higher levels of
variability, both the capacity level and firm value increase. Thus, the non-linear model structure under
quantity-setting seems to induce the firm to be risk-seeking. Effectively, demand distribution truncation,
analogous to that discussed in the previous section, occurs and the effective mean demand is increasing in
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Figure 4: The optimal monopoly capacity K9 (left) and firm value V7 (right) as a function of the marginal
investment cost ¢ and uncertainty o. The boundary of the uncertainty-insensitive zone ¢ + 1 > 2v/3¢ is in
bold.

variability. Not only is more uncertainty never less profitable for a quantity-setting monopolist, quantity-
setting is also more profitable than price-setting. The relative difference of the firm value under quantity-
setting V7 and the value under price-setting V? is positive and increasing in both cost ¢ and variability
.

Hence in the presence of uncertainty, price-setting and quantity-setting yield fundamentally different
investment outcomes for a monopolist for any positive level of variability. Only in the deterministic limit
(0 — 0) do price- and quantity-setting give the same outcome. Moreover, the investment strategy under
quantity-setting is more profitable and significantly less sensitive to variability than the price-setting strategy.
(In the next section, we will show price- and quantity-setting under uncertainty are also fundamentally
different for a duopoly so that the reconciliation effected by Kreps and Scheinkman [11] does not hold under
uncertainty. Even stronger, it does not even hold in a monopoly under uncertainty.)

3.3 Postponement and the Expected Value of Information

For a monopolist, the sequence of the pricing decision and the capacity decision is actually irrelevant:
provided both have to be made before uncertainty is resolved, it doesn’t matter which one is made first
because essentially no information is gained between the two decisions. (In contrast, the timing of the
decisions will be important in the duopoly game in the next section.) Obviously, postponement of the tactical
price or quantity decision until after uncertainty is resolved, can never hurt. Actually, the corresponding
firm value increment is a measure of the expected wvalue of information and it provides another explanation
for the superiority of quantity-setting investment of its price-setting counterpart.

If the firm can postpone its quantity decision until after observing e, then the optimal capacity-constrained
quantity gas (K, ) solves

maxq(e — g). (32)
so that - , -
. g £ _ ~
aar(K.¢) = min(z, K) and Emy; = /0 (5) f(e)de + /ZK K(e — K)f(e)de. (33)

Optimal investment sets marginal revenues equal to marginal costs, so that the optimal investment level
under quantity-setting postponement solves

| e-mipere=e (34)
2K
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with corresponding firm value

V:/;K (%)2f(e)de+/: K2f(¢)de :/OQK (2

Similarly, if the firm can postpone its pricing decision until after observing ¢, then the optimal capacity-
constrained price par(K, €) solves

)

)2 f(e)de + K2F(2K) < K2. (35)

max pmin(e — p, K), (36)
p20
so that )
€ 2K e 2 o0
par(K.e) = max(5. ~ K) and By = / (5) fye+ [ Kle - K)fe)de (37)
0 2K

which yields the same expected revenues, and thus investment decision, as under quantity-setting!

This yields two interesting observations. First, the optimal investment under postponement exhibits
uncertainty insensitivity similar to, but less pronounced than, before. If ¢ is bounded from below with
probability one by g and capacity cost is not too inexpensive ¢ > 1 — g, the optimal investment level, the
expected price and the expected revenue function under postponement are independent of variability and
equal to the deterministic solutions. More importantly, in this case, postponement does not change our earlier
quantity-setting investment decision, nor does it increase firm value. Thus, the value of information when
setting quantities is zero (when uncertainty levels are moderate ¢ > 1 — g), while it is positive when setting
prices. This provides another explanation why quantity-setting investments are superior to price-setting
ones.

Second, while the value of information under quantity-setting is zero when uncertainty levels are moderate,
it is positive at high levels of uncertainty. Postponement then warrants higher investment levels: K¥osone >
K.

3.4 Relationship to other models

What happens if we relax our model to allow for more general types of uncertainty and general demand
curves:

p=e€19(D) + e2h(D), (38)

where ¢ and h are deterministic downward sloping functions and ¢ is a random (possible correlated) pos-
itive vector? If the inverse demand curve is linear in the random vector €, the results hold and the opti-
mal capacity investment and quantity-setting strategy under uncertainty equals the deterministic strategy
K@= provided variability is moderate in the sense that P(e;g(K{=0) 4 eoh(K(7=9) > 0) = 1. In-
deed, the optimal investment in the deterministic problem equates marginal revenue with marginal costs:
ﬁK (9(K)Eeq + h{K)Eeg) | g-=0 = c. This equals the optimality equations under low levels of uncertainty,
that is, as long as variability levels are not too high such that the market price at the supplied quantity
q = K?=0 is positive with probability one (i.e., P(e19(K°=%) + e2h(K=%) > 0) = 1). In that case the effect
of uncertainty in the quantity-setting model “averages out.” Amihud and Mendelson [1] observed a similar
property in a related monopoly production-inventory model.

It should no longer be surprising that the price-capacity decision problem which has two control variables
affecting two dimensions (price and quantity via the capacity constraint) is inferior to the quantity-capacity
problem which effectively controls only one dimension (quantity). The reason is clear: quantity-setting firms
benefit from the market mechanism that sets a state-dependent market clearing price such that, up to medium
levels of variability, no sales are ever lost due to capacity constraints nor is there ever any unused excess
capacity. This perfect balance can never be achieved under price-setting: because of demand uncertainty,
there are always scenarios where the announced price was either too low, leading to excess demand and lost
sales, or too high, resulting in unused excess capacity.

It is surprising that quantity setting is so robust in that it is insensitive to correlated uncertainty in both
slopes and intercepts of linear, or even non-linear inverse demand curves. All that is needed is linearity of
the inverse demand curve in the random element ¢ and moderate levels of uncertainty. The quantity-setting
model also bears some resemblance to an intuitively attractive max-min strategy in the sense that capacity
is set such that even in the worst outcome (low ¢ if p = ¢ — D), revenue remains positive.

12
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Figure 5: Firm i's expected revenues when it names a price p; assuming firm j names p; (left) and its optimal
price-reaction curve (right).

Obviously one cannot possibly hope for similar robustness of the model in pricing decisions. Pricing
under uncertainty is inherently more complicated than quantity-setting and it is sensitive to the type of
uncertainty and the non-linearity of the inverse demand curve. For example, uncertainty in the slope, that
is p=1—eD, is equivalent to what is known as “multiplicative uncertainty.” It is easy to verify that such
type of uncertainty leads to an optimal capacity-price strategy where the price is always (i.e., for any level
of cost ¢ or variability ¢) above the deterministic benchmark price, in conformance with results of Karlin
and Carr [10]. In our additive model, p = ¢ — D, that is not necessarily true and the monopolist may
price above, equal to, or below the deterministic benchmark depending on the level of variability (Figure
3). This is in contrast with traditional additive models such as Whitin, Mills and follow-up papers which
were incomplete in the sense that they a priori restricted price to be such that there is always a positive
demand at that price, i.e., P(£3g) = 0. That restriction forces the monopoly price under uncertainty to be
lower than the deterministic benchmark. Our results are also consistent with those of Li [12] who shows
that if the monopolist can dynamically produce, price and hold inventory, the price will always exceed the
deterministic benchmark price. In our model the same happens except at low levels of variability, and the
reason may be that we assumed marginal production to be costless. If production is not costless, we expect
the firm to be more cautious in its investment which does also imply a higher price.

4 Capacity Decisions under Price Competition

We now extend our model to capture the effects of competition on the investment decision. First, assume
there are two independent firms. If there is no uncertainty, this is exactly the Kreps-Scheinkman model. They
considered a duopoly in which firms first invest in capacity. Then, both firms observe each other’s capacity
levels and set a price at which they will sell a market-determined quantity constrained by their capacity level.
Kreps and Scheinkman show that in equilibrium the capacity investments of both firms are low enough so
that each firm is able to sell its entire potential output. Since this is identical to the equilibrium when firms
compete by setting quantity, the price-setting (Bertrand) and quantity-setting (Cournot) equilibria coincide.

Unfortunately, the Kreps-Scheinkman result is not robust. Davidson and Deneckere [4] show that the
deterministic model does not have a pure strategy equilibrium with any allocation rule (which specifies how
demand is allocated to each firm when both announce identical prices) other than a fixed, pre-determined
50-50 splitting rule. Hviid [9] showed that after introducing uncertainty (as in our model presented above)
no pure strategy equilibria exist for any allocation rule. Let us provide the following explanation of this
subtle result. Assuming a capacity vector K, both firms must decide on a price in the pricing subgame.
Assuming firm j names price p;, firm ¢ has three options: underprice, match or overprice. (For the expo-
nential distribution, the resulting revenues are as shown in Figure 5.) When underpricing, firm i gets all
market demand up to its capacity, while with price matching, demand is split between the two firms. Thus
underpricing revenues are strictly larger than matching revenues, and firm ¢ will either overprice (for low p;)
or underprice, but never match its rival’s price. Thus, firm i’s price-reaction curve is as shown in Figure 5:
it is always strictly above (it may be tangent, but approaching from above) the diagonal p; = p;. The same
argument shows that firm j’s price-reaction curve is strictly below the diagonal. Because the reaction curves
do not intersect, there is no pure pricing equilibrium. This scenario holds for all levels of positive variability.
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Only for the deterministic case and a fixed 50-50 allocation rule do under-, match and overpricing revenues
coincide for low prices! and an equilibrium on the diagonal p; = p; follows. In conclusion, whereas price
and quantity-setting yield identical monopoly results only in the deterministic case, competition reduces this
possibility even further and requires a very specialized setting with pre-determined market allocations.

Mixed strategy equilibria do exist, but such equilibria do not seem reasonable predictions of an outcome
of firms’ strategic pricing decisions. Prices are not rigid for a sufficiently long period to support the realized
equilibrium prices (a firm always has an incentive to undercut its rival when there is uncertainty). Thus,
Hviid concludes that two-stage models with simultaneous strategy choices and where the pricing subgame
is modeled as a one-shot game are not always a good approximation. One way to deal with this is to
consider alternative formulations of a duopoly game. Hviid [8] proposes to change the timing of the decisions
and he considers a sequential pricing game to study first-mover advantage. Arthur [3] introduces product
differentiation which guarantees a pure strategy equilibrium. We propose to analyze different modes of
competition. We will show next that under uncertainty the (simultaneous) quantity-setting duopoly does
have a pure equilibrium strategy which may suggest that competition with a homogeneous product (e.g., a
commodity) is better modeled by quantity-setting rather than price-setting strategies.

5 Capacity Decisions under Quantity Competition

Consider the multi-firm competitive version of our capacity and quantity-setting model. First, each firm ¢
simultaneously invests in capacity K;. Then, investment levels K are observed by all players and each firm ¢
simultaneously announces the quantity g; (constrained by its earlier investment: ¢; < K;) that it will bring
to the market. Finally, uncertainty is resolved and the market mechanism determines the market clearing
price p = € — g, for the supplied market quantity g4 = >_ ¢;. As before, this market clearing price is zero
with oversupply g4 > €.

Both firms will make their decisions so as to maximize expected profits, taking into account the other
firm’s likely decisions. Thus, we have a two stage non-cooperative game which is solved by working backwards:
first solve the capacity-constrained quantity-setting subgame for a given capacity vector K, and then solve
for the capacity decisions. Unlike under price competition, the revenue functions are now continuous in the
actions (i.e., in the quantities ¢) and a pure strategy equilibrium for the full quantity-investment game exists.
First we will consider a duopoly and then oligopoly and perfect competition.

5.1 The Capacity-Constrained Quantity-Setting Duopoly Subgame

Our question here is: given capacity vector K = (K1, K2), what are the (subgame perfect) quantity-setting
strategies for both competitors? We will show that there exists a pure strategy equilibrium by showing that
the firms’ reaction curves intersect.

Denote firm #’s reaction function by R;(-|K), where ¢; = R;(g;|K) denotes firm i’s optimal quantity
response when firm j chooses quantity g;:

o0
Rilg) 1) =org max [ (e~ a-qarsie)ee (39)
ita;

Notice that the space of interest is the rectangle [0, K1] x [0, K2] and that R;(0|K) = gar(K;), the monopoly
capacity-constrained quantity which equals min(q3,, /;). In the appendix it is shown that ’%—?Ji‘ < 1 for
a large class of probability distributions so that both reaction curves intersect and a pure strategy equi-
librium exists (a representative situation is shown in Figure 6). As in the monopoly case, quasi-concavity
(unimodularity) of the revenue functions is a sufficient condition for the existence of a pure equilibrium.

Proposition 6 For any capacity vector K and for a large class of probability distributions, there is a unique
pure strategy equilibrium q(K) in the quantities q, which is independent of K; if firm i has excess capacity:

VK > qi(K) (K)=0. (40)

1Both firms are then on the linear capacity-constrained part of their revenue curves, which are similar to those in Figure 1
with € = e3.
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Figure 6: Reaction curves for quantity-setting when the duopolists are constrained by capacity vector K.

This generalizes the capacity-constrained quantity-setting monopoly result that gy = min(gy,, K). De-
note the unconstrained duopoly equilibrium by (¢},,q},), the intersection of the reaction curves if K is
arbitrarily large. If there is sufficient capacity, K > g}, then ¢(K) = gqp. which is independent of the
capacity vector K. Otherwise the equilibrium is on the intersection of a reaction curve with a constraint of
the form ¢; = K;. For the deterministic example, the reaction curves are

¢ = Ri(g;|K) = min(3(1 — q;), Ky). (41)
with a unique solution (either interior at ¢ = (¢5.qp) = (% %) if K > %, or at the boundary ¢; = K; or

¢; = K;.) With exponential uncertainty, the reaction curves are trivial and have a unique intersection:

q; = Rl(q]u() = min(l, Kl) (42)

5.2 Optimal Capacity Investment under Quantity Competition (the full duopoly
game)

From Proposition 6, it follows that, similar to the monopoly case, any excess capacity level K; > ¢;(K) is a
suboptimal investment (%Vi = —c < 0) provided both firms invest in which case each will produce up to
its capacity: ¢ = K. The capacity reaction curves become:

max Vi(K) = /OO(E — KK, f(e)de — ¢K;, (43)

0<K, K,

where K, = 3, K; denotes the total industry investment level. If both firms invest (K > 0), a similar
argument as in the capacity-constrained quantity subgame shows that there is a unique intersection of
the reaction curves and the equilibrium is symmetric: K = %(K+,K+). Clearly if aix,vih(,:o = f;ol (e —
K;)f(e)de — ¢ < 0, firm ¢ will not invest. Thus, as before, there is a maximal cost-threshold ¢ '

c= /00 ef(e)de =1, (44)
0

which is independent of uncertainty and above which no firm will invest. If capacity is not too expensive
(c < €), there exists a unique symmetric duopoly equilibrium investment, in the sense that both firms will
invest.

In addition, two asymmetric equilibria with excess capacity investments are possible. Indeed, if firm j
invests in excess capacity K; > k, where f:o(s —k)f(g)de = ¢, then firm ¢ will not find it profitable to invest.
Thus, any investment of k or higher deters the other firm from entering the market. However, for such entry
deterrent investment strategies K = (0,k) or (k,0) to be equilibria (that is, to be credible), the deterring
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Figure 7: The different optimal duopoly strategies depend on the marginal cost ¢ and the level of variability
o: at high cost (¢ > ¢ = 1) no investment is profitable, at medium cost (¢ > ¢ > c.) only a true duopoly
equilibrium is possible, while at low cost entry can be deterred.

firm must find this strategy at least as profitable as investing less and not deterring entry. If firm j deters
entry, it behaves as a monopolist in the quantity-setting subgame and will choose a lower (the next section
will explain why this is the case) output g; = gas(k) < k resulting in positive firm value of Va(qar(k), k).
Thus, for this entry deterrence strategy to be credible, its resulting firm value Vs (gas (k). k) cannot be lower
than the firm value that would obtain in the symmetric duopoly equilibrium V;(q = K, K'), where K is the
unique symmetric duopoly investment.

Proposition 7 The optimal capacity-quantity duopoly strategy is unique and trivial if c > 1:q¢= K = 0. If
¢ < eg, there erists a unique interior pure strategy equilibrium such that ¢ = K and K; = K; = %K+,~ and
industry investment K, and value Vi satisfy:

/ (e — %K+)f(5)d5 =cand Vy = %KiP(E >K,)< %K’+(1 - c). (45)
K4

In addition, there exists a cost threshold c.(7), such that if ¢ < c.(7), there are two additional asymmetric
entry-deterring equilibria K = (k,0) and K = (0, k) where k satisfies:

o0
/ (e —k)fle)de = c. (46)
k
For example, the capacity investment reaction curves for our deterministic base case scenario are
Ki(K;)=5(1-Ki—c), (47)

with unique interior “true duopoly” equilibrium (for all ¢ < 1) ¢; = K; = % (1—c¢) with V; = %(1 — )2 In
addition, deterministic entry-deterrent equilibria require an investment level k such that:

Kik)=4(1—-k—-c)=0sk=1-c (48)

Using (21), the corresponding entry-deterring firm value Var(gar(k) k) = 1-cl—c)ifec< % and zero
otherwise. Thus, for the entry-deterring investment to be credible, we must have that Vis(qar(k). k) > Vi,
or ¢ < ¢ = % However, the existence of entry-deterrent equilibria not only depends on the investment cost
¢, but also on the level of uncertainty. Figure 7 shows that entry deterrence is progressively more difficult as
uncertainty increases. (As before, we give explicit solutions for the uniform distribution in [18, Appendix].)
With exponential uncertainty, deterring entry is impossible and ¢, = 0. Indeed, for exponential uncertainty,

the quantity-optimized revenue is

Emi(q:(K), K) = min(1, K;) exp (— min(1, K;) — min(1, K})), (49)
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with capacity reaction curves
(1 - K;)exp(—K; —min(1,K;)) = cand K; < 1. (50)

For entry-deterrent equilibria to exist, firm i’s response to an investment of K; = k must be K; = 0, which
vields k = —Inc,where 0 < k < 1life ! < ¢ < 1. The entry-deterring firm then acts as a monopolist and
we know from (23) that the optimal output ga; = k < 1 and the firm value Vi (k. k) = kexp(—k) — ke = 0.
Thus, the entry-deterrent strategy is not credible because the firm can make money by investing according
to the symmetric duopoly equilibrium K = %—(K+, K, ) where K solvesforc<e=1:

(1- %K+) exp(-Ki)=c (1)

The qualitative results from the quantity-setting monopoly section extend to a quantity-setting duopoly
under uncertainty: the functional dependence on cost and uncertainty is similar to Figure 4. Also, quantity-
setting investment is insensitive to demand variability but less so than in a monopoly: for low variability
levels (%(1 ~c¢) <g or, for the uniform distribution, Z < ﬁi) the capacity investment level K = % (€0 — )
is independent of variability and equal to the deterministic capacity investment level. Kreps and Scheinkman
showed that in a deterministic duopoly setting quantity-setting yields the same investment decision as price-
setting. However, like in the monopoly case, this is not true if demand is uncertain. Only in the deterministic
limit (¢ — 0) and pre-determined 50-50 market allocation do price- and quantity-setting give the same
outcome. This structural difference in the policy structure demonstrates that a reconciliation between price-
setting and quantity-setting competition cannot be achieved when there is uncertainty in demand.

5.3 Extension to Oligopoly and Perfect Quantity Competition

Our results directly generalize to an oligopoly of n firms and to perfect quantity competition (the case when
n — o0). Indeed there is a quantity-capacity strategy where all n firms invest: if ¢ > ¢y, ¢ = K = 0, and if
¢ < €9, an interior pure strategy equilibrium is such that all firms produce up to capacity (¢ = K), and all
firms invest in the same capacity level K1 = ... = K; =... = K,, = %Ki” firms) where the industry capacity
level Ki" frms) and firm value Vin ) satisfies:

b n n firms n firms - -
/K(” - (5 — —;lﬂKi )> fle)de = ¢ and ij ) = %I\iP(E > K.} < ﬁlﬂL(l —c). (52)
+

As above, n entry-deterring equilibria K; = k and Kj4; = 0 are possible if costs are sufficiently low. (In
addition, coalitions of subsets of firms may form and lead to additional equilibria, but we will not investigate
this complication in this article.)

The oligopoly extension yields two interesting insights. First, comparing (52) with (46), shows that the

. . n firms) . . . . . . . . .
industry investment Ki ™) is increasing in the industry size n while industry firm values are decreasing:

ngl”(lp()l"') < K_(+_n firms) < [\,S-n+l firms) < K$)<~1-f'(‘(:T competition) _ k,

(duopoly) (n firms) (n+1 firms) (perfect competition)
‘/1\1 > V+ > V+ 2 V+ > V+ =0< ‘/ll(‘,fi‘l‘l'(‘ll('("

%
IN

Not only is this in line with economic intuition, it also provides a nice interpretation of the entry-deterring
investment k, which is independent of the industry size n and is given by (46). This investment level equals
the industry investment that would obtain with perfect quantity competition. Thus, a monopolist investing
in k has a credible threat to produce ¢ = k at which point no incoming firm could make any money. It
also shows that under entry-deterrence gas(k) < k, because a monopolist will bring a lower output to the
market than the total industry output under perfect competition. This allows a positive value Vi emrence,
while perfect competition erodes any producer surplus and has Vf’mm competition) _ o)

Second, our result that quantity-setting firms under low uncertainty invest exactly like deterministic
{(quantity- or price-setting) firms remains valid, but is more subdued, in an oligopoly with n firms. Indeed,
the optimal industry investment equals the deterministic investment

n firms n -
Kg_ ):m(l—c), (03)
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if 725(1 —c¢) <g or, for the uniform distribution, ¢ > %(\/grr(n + 1) — 1). Oligopoly firms at low levels

of relative uncertainty (o < m) invest exactly like deterministic firms regardless of the capacity cost
¢. However, as competition intensity n rises, uncertainty becomes more important because the insensitivity
zone shrinks, but never disappears: insensitivity to uncertainty remains at higher levels of uncertainty and
in perfect quantity-competition, provided capacity costs are high (1 > ¢ > v/30).

6 Conclusion

In this article we developed a framework for understanding how capacity decisions are made in an industry
that faces uncertain demand. Under uncertainty, these decisions depend crucially on the mode of competition.
Even in the case of a monopoly, the investment differs when the firm sets quantities instead of prices. We
show that the appropriate response to increased demand variability need not always be an increase in price.
Nor is it always true that increased variability will lead to lower expected profitability. More importantly,
optimal firm value of a quantity setting monopoly is never lower than its price-setting counterpart. We also
find that for a monopoly that sets prices when uncertainty is modeled as “additive,” the well known result
of Mills [14] that the optimal price is below the corresponding deterministic price need not hold. Indeed, the
optimal price can be higher than the deterministic benchmark because, if the optimal price is sufficiently
high, there is a positive probability that there is zero demand (¢ # #). In contrast, a quantity-setting
monopolist is rather insensitive to uncertainty.

Investment followed by capacity-constrained price-setting or quantity-setting provides the firm not only
with an additional lever to affect profitability, but also with a strategic weapon to deter entry. We show
that deliberate excess-capacity investments can credibly deter entry when investment costs are low, yet
they are more difficult as variability increases. Incorporating competitive interactions complements existing
capacity models in operations management, which typically assume single decisions makers (monopolists).
We show that our quantity-setting results extend to oligopolies of arbitrary size, including the limiting case
of perfect competition. Insensitivity to uncertainty remains (in moderated form) which suggests that when
firms compete by setting output, uncertainty need not influence the investment decision. Therefore, quantity
competition provides a more robust and profitable investment policy. Analogous results when firms compete
by setting prices cannot be obtained under uncertainty because a pricing equilibrium in pure strategies
does not exist. This may suggest that competition with a homogeneous product (e.g., a commodity) is
better modeled by quantity-setting than price-setting. Thus, in order to have realistic models of capacity
investment under price-competition, some product or decision timing differentiation must exist and our
model may be extended by introducing a substitution parameter in the demand curves. Another possibly
fruitful opportunity for future investigation is the extension to dynamic competitive models.

Finally, the article proposes a few hypotheses that are empirically testable: prices may fall when un-
certainty increases in non-volatile markets (which have low levels of uncertainty). Quantity-setting firms
are willing to invest at higher costs than their price-setting counterparts. And, if investment costs are low,
quantity-setting monopolists operate with excess capacity to deter entry.

Acknowledgments: We benefitted from the comments and suggestions of Jim Dana, Mort Kamien, Roger Myerson,
Kathy Spier and the other MEDS seminar participants.
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Here we first summarize the explicit solutions to our pricing-capacity and quantity-capacity models for
both the monopoly and duopoly when uncertainty is uniformly distributed. Then follow the proofs.

1 Explicit Solutions for the Uniform Distribution

1.1 Monopoly Price-Capacity Decisions

Lemma 1 If ¢ is uniformly distributed with mean ey and standard deviation o, then the optimal capacity-
constrained monopoly price pr(K) for a monopolist depends on the coefficient of variation % as follows:

1. Ifo< £ < 3%/5 (low variability), then

- €0

10 _ _ / 12v/30 K : 1
par () = 3(50 \/3(7 K) <2 + /1 + (EU~\/§0—K)‘ ) if K < 3€0 + \/50',
%50 otherwise.
2. If 3—1—\/5 <z < 5\1/—5 (medium variability)
leg+ Lo - 1K if K <2(3v30 — <o),
par(K) =S 3(e0— V30— K) <2+ \/1 + %) if 2(3v30 —e0) < K < §eo + V30,
%Eo otherwise.
3. ff2+/5 <& < % (high variability):
leo+ Lo — 1K if K <3 (c0+V30),
pa(K) =4 1 NG :
€0+ 50 otherwise.

Lemma 2 If ¢ is uniformly distributed with mean ¢ and standard deviation o, then the optimal price-

capacity strategy for a monopolist depends on the coefficient of variation El[) and the investment cost c as

follows:

1. If0 < 2 < L. (low variability): if c < T = €9 — V3a, then

— &n 33
p = the unique root of 4p> — 2 (e + ) P+ 2v/3cc? with %2 <p<egp— V3o, (1)
2
K = Eo—p+\/§(f(1——£>. (2)
P



Ifc>eg — V30, then K =0 and p is arbitrary.

2 2
2. If 3;\/5 <Z<L ﬁ (medium variability): if ¢ < cp = M, then K and p are determined by

€0 ) V3o
(Eu+\/§<7)-

WP then

(1)-(2) IfCQ <ec< 6y =

p = é (50 + V3o + \/(60 + \/5(7)2 + 24\/§0c> . (3)

K

2 (so + V30 - 2p) . (4)
If ¢ > g, then K =0 and p is arbitrary.
3. Ifﬁ <Z< % (high variability): if ¢ < &, then K and p are determined by (3)-(4). If ¢ > &, then

o —

K =0 and p is arbitrary.

1.2 Monopoly Quantity-Capacity Decisions

Lemma 3 If ¢ is uniformly distributed with mean ¢¢ and standard deviation o, then the optimal capacity-
constrained monopoly quantity gas (K) for a monopolist depends on the coefficient of variation Z as follows:

1L Ifo<Z < ﬁ (low & medium variability), then

gar(K) = min (%,K) ,

2. If 515 < & < iz (high variability)
gy (K) = min (@, A> .

Lemma 4 If ¢ is uniformly distributed with mean €y and standard deviation o, then the optimal quantity-

capacity strategy for a monopolist depends on the coefficient of variation Ei“ and the investment cost ¢ as

follows: if ¢ > €g, then K = 0, otherwise:

1. If£ < QIW (low & medium variability), then

€n

K:%(EO—C)A (5)

2. If—2—1—3 < E% < % (high variability): if ¢ < 230 —eg, then

K= % (2 (20 + Vo) - \/(50 + \/50)2 + 12\/§m> , (6)
otherwise K = (g9 — ¢).

1.3 Duopoly Quantity-Capacity Decisions

Lemma 5 Ife is uniformly distributed with mean o and and standard deviation o, then the optimal quantity-
capacity strategy for a duopolist depends on the coefficient of variation % and the investment cost ¢ as follows:
If c > =gy, then ¢ = K =0, otherwise ¢ = K where

1. If0< & < 3%/? (low variability):

- €0 1
KI‘ = I(j = E(Eo — C).



2. If —3—1—3 <o < % (medium & high variability): if c < ¢ = ﬂ’—%a—‘@ﬂ, then

K=K, =

(50 + \/_(r> - —\/(50 + \/3(7)2 + 32¢V/30. (7)

OOIOJ

Otherwise, K; = K; = %(50 —c)..

In addition, if ¢ < ¢, < %, two entry-deterring equilibria K = (k,0) and K = (0,k) exists, with

q = (qrr(k),0) and (0,qar(k)) respectively, where
1L If0< &

()_

\1/5 (low & medium variability):

k= £0 + V30 — 2o /3 if ¢ < V30, (8)
€g—C if V3a <c<e,.
where ¢, = —Q if g) < 4\/_ and ¢, < 54‘1 elsewhere.
2. If #g << % (high variability):
k= eo+V30—2vVcoV3 if O<e<e. < Eo+\/_(f < 2. 9)
2 Proofs
2.1 Proof of Proposition 1
En?, (p, K) is twice differentiable in p and
v, Pk o0
Mo / (¢ - 2p) f(e)de +/ K f(e)de, (10)
op p p+K
9*Viy
ol pf(p) +2F(p) —pf(p+ K) —2F(p + K). (11)

We have assumed that the measure P is such that Ema,(p, K) is unimodal so that the first order condition
is sufficient.

If K >0, B—VM > 0if p = 0 so that p(K) must be strictly positive and the first order condition is sufficient
for the mterlor maxunum Implicit differentiation yields

O*Vardpar B Vg
a2 dK  OKop

= —(1— F(pas + K) — par f(par + K)). (12)

The following sample path argument shows that %% < 0. Assume that pas(K) is unique and consider the
three representative sample paths of 75/ (p, K,¢) (refer to Figure 1 in the paper). If K increases to K +dK,
the revenue maximizing price for each sample path either remains the same (for low and medium values of
£ : € < 2K) or decreases (for high values of ¢ > 2K). Therefore, the unique maximum ps(K) of Emas(p, K)
(which is a convex superposition of the sample paths 7;(p, K.€)) cannot increase when K increases to
K+dik. 1

2.2 Proof of Proposition 2

The objective function

p+ K oo
V= [ pe-pfe s [ RS- ek (13)
P p+K
is differentiable with, in addition to (10), the necessary first order condition:
oV, ot
M= pfle)de —c=pP(e >p+K)—c (14)
aK p+K



For a boundary solution p = 0, K > 0 to be optimal we would need ¢ = 0. Boundary solutions p > 0, K =0
yield Va; = 0. Thus, any non-trivial solution is an interior solution of the first-order conditions which were
assumed to be sufficient.

Implicit differentiation of 8—;/# =0 and %L = 0 yields

8%V 8%V
8_1£ - op and @ — _ DpoK (15)
8C 82V 82V 82V, 2 ac Qz_‘fi\_{_
5K ap‘-" - (3p8}(> op?
Because there is an interior maximum, V is concave at that point (p, K') and thus %—KC— < 0. Also, if 375% > 0,
)
then 5% >0.1
2.3 Proof of Proposition 3
Proof. We have that -
grr(K) = arg max Emp(q, K) = (e — q)qf(e)de. (16)
0<g<K <K

Given our assumption that f is such that Em,/(g, K') is unimodal concave-convex, the first order equations
are sufficient. The unconstrained maximum g¢* must satisfy fqo_o(s —2¢*)f(e)de = 0. If ¢* < K, then

qrr(K) = q*, otherwise Ems(g, K) is increasing over [0, K| so that gar(K) = K. [ |

2.4 Proof of Proposition 4 (duality)

Proof. First note that for arbitrary large capacity K, clearly p* = p(K). Now, invoking Proposition 1
yields that p(K) increases as K decreases, so that in general p(K) > p*.

2.5 Proof of Proposition 5

Proof. Any choice K > g¢*, implies that %Eﬂ';\](q*,K) = 0 and thus ﬁVM(q*,K) = —¢, which
cannot be optimal at positive cost. Thus, it must be that K = ¢* and necessary optimality equation
is f;o(s — 2K)f(e)de = ¢, which has only has a solution if ¢ < &, where ¢ = %EWM(K, K)|k=o =
f;o(é' - 2K)f(€)d€|}(:0 = Ee = €0 [ |

2.6 Proof of Proposition 6

Proof. First assume that K is large such that

s / e a g ()
has an interior optimum ¢;(g;) which satisfies
[ e 2ala) — ) Slee = 0 afias) ~ 2F(an) <0 (18)
qilg,)+4q;

where 1 — F(z) = F(z) > 0. It follows directly that the unconstrained intersection of the reaction curves, if
it exists, is symmetric:

o

/ (6 —qu)f()de = ¢ "7 [ (e 3gp)f(e)de =

q+ 2q7,

Clearly, from Proposition 3 we know that g;(g; = 0) = qas (K;) = g, if K; is large (K; > ¢3;). The implicit

function theorem yields ~
9qi(q;) _ F_(Q+) —aif(a+) (19)
0q; 2F(q+) —aif(g4)




so that if f(q4)/F(q+) < ¢!, we have that —1 < aq'(q’ < 0 with ¢;(0) = ¢},;. If K is also large with
interior optimum, it’s reaction curve is decreasing w 1th slope < —1 and it intersects the ¢; = 0 axis at q},.
Thus, the two reaction curves have exactly one intersection and that equilibrium is symmetric and is denoted
by (ap,ap) where g7, < gj;

If K; is small (K; < gj,), the response function ¢;(q;) is constant at ¢; = K; for small ¢;. After a certain
value of g;, the optimum of (17) becomes the interior point ¢;(g;) from before. Thus, if K < (¢},,qp), the
unique equilibrium is ¢ = K and if K > (¢}, ¢},), the unique equilibrium remains (q},,q}). Thus, the only
remaining case is that K; < ¢}, while K; > ¢}, (or its symmetric counterpart). Let g. denote the unique
intersection of firm j’s (unrestricted) reaction curve g;(g;) with ¢; = Ki: g = ¢;(K;). It directly follows that
a5 < g < g3 Now: if K; € (¢, qc), the unique equilibrium is ¢ = K; otherwise if K; > g, the unique
equilibrium is g = (Kl, qc). This also shows that if a firm has excess capacity (VK; > the unique equilibrium
q:(K)) we have that =% aK g(K)=0.

In conclusion: there is a unique pure strategy equilibrium which cannot be larger than (q3,.q%,), and
thus, because in that case ¢;(¢;) and g;(¢:) < qi;, a sufficient condition is that
flz+y)

Ve.y €(0.q3]: =

1
F(z+y) S; (20)

(The argument can be relaxed by requiring f(g+)/F(g+) < 2¢; ' so that —1 < 9%%1—) <1) N

2.7 Proof of Proposition 7
Proof. Any choice K; > ¢;(K'), implies that dK Emi(g(K), I ) = 0 and thus dK Vi(q(K), K) = —¢, which

cannot be optimal at positive cost. Thus, it must be that K g(K) and the capacity reaction curves
become:
oG
max V;(K) = / (¢ — K4)K;f(e)de — cK;. (21)
0< K K.

Clearly if 5}97‘/1'|K,=0 = [ (e — K;)f(e)de — ¢ < 0, firm ¢ will not invest. Thus, if fooo ef(e)de = g9 < ¢,
i J
no firm will invest and a unique trivial equilibrium follows: ¢ = K = 0. If ¢ < ¢q, firm ¢’'s reaction curves

becomes:
o o]

K.F(K,)= / (¢ — Ky)f(e)de — cand K;f(K,) - 2F(K;) <0. (22)
K,

A similar argument as in the preceeding proof shows that there is a unique intersection of the reaction

curves if Vo,y € [0,¢*] : fry) % Moreover, this intersection is symmetric: K; = K; = %K+ and

F(z+y) —
because %g(z—i% < —;— < 2% the sufficient optimality condition is satisfied. I

2.8 Lemma 1: Capacity-constrained monopoly pricing under uniform uncer-
tainty

Depending on the location of (p, K) relative to the domain [a, b] of ¢ we distinguish the six possible cases for
Emar (K, p). For ease of notation let a = ¢g — V3r.b=¢eg+V3rand p=(b—a)"tifb>a.
Case 1: a < p < p+ K < b: We have

Ema(p, K) = p <§> Kp+pK(b—p—K)p. (23)
Ery(p K) = -;—pl\'p (—2p— K +2b). (24)
Capacity constrained monopoly pricing has sufficient interior optimality condition:
6;;" = %Kﬂ (—K —4p+2b) =0 and a;;/;, — —2Kpu<0. (25)
Thus the capacity-constrained monopoly price is
pu) = 225 (26)



with corresponding revenue function

L
Erar(par(K), K) = 1’—61( (2b— K)?. (27)
This case is optimal for any K such that a <p <p+ K < b or:

b K 3K 2
a < § — Z and ? <bse K< min(2(b - 2(1), gb) (28)
This requires b > 2a (medium and high variability). Note that 2(b—2a) < 2biff b < 3a (medium variability).
Case 2: p<a<p+ K <b: We have

+ K —a
Emry = p(avp+l—)27)(p+K—a);L+pK(b—p—K)u, (29)
1 2 - 2 2
Ema(p, K) = —Epp(p —2ap + 2pK —2Kb+a*+ K ) (30)

The sufficient conditions for an optimal (p, K) interior in {(p, K) : 0 <p<a <p+ K < b} are

E; 1
9 8;‘" = —5n (3p% — dap + 4pK — 2Kb+ a® + K?) =0,
82E’/TJ\,[
sz'— = —u(3p—2a+2K)<0
Capacity constrained monopoly pricing has necessary interior optimality condition a_g/;,_ =0 or
2 | 2
par(K) = (e~ K) + 3/ ((a = E)? +6K (b - a), (31)
(the other root is not a maximum) with corresponding revenue function
3
_H 2 2 ,
Emar(par(K), K) = 5 (a—K)(18(b—a)K — (a— K)?) + (\/(a— K) +6A(b—a)> jl X (32)

This case is optimal for any level K such that p <a <p+ K <bor:

2 1
g(a—K)+§\/a2—8aK+K2+6Kb < a (33)
& Va2 - 8aK + K2+ 6Kb < (a+2K) (34)
a2 —8aK +K2+6Kb—(a+2K)° < 0 (35)
&a? —8aK + K2+ 6Kb—(a+2K)° < 0 (36)
&20b-2) < K (37)
and
1 1 2 .
o < 5(2a+K)+§\ﬂfK) +6K(b—a) < b (38)
o (a-K)< (e~ K?+6K(b—a) <3b—(2a+K) (39)
o o 8aK + K? +6Kb< (3b— (2a+ K))* and 0 < 3b— (2a + K) (40)
& 4K < 3b—aand K < 3b—2a. (41)
Thus we have
. 3b—a
2(b —2a) < K < min { 3b — 2a, 1 , (42)



3b—a
4

3b—a

and because 3b — 2a > and we must have 2(b — 2a) < =% <> b < 3a. This, this case requires

b < 3a (low & medium variability) and 2(b — 2a) < K < 3b; ¢

Case 3: p+ K < a: We have Erp; = pK. Thus the capacity-constrained monopoly price is
pa(Ky=a— K. (43)
with corresponding revenue function
Emar(pa(K),K) = (a — K)K.
This case is suboptimal as it is a boundary solution. (p+ K =a—(a—¢)/2<a & c<a)

Case 4: p < a < b < p+ K : In this case (??) becomes Em3; = pla—p+ booy = p(%52 — p) with optimal
response:

a+b
Par (K) = 4 ) (44)
with corresponding revenue function
a+b\?
Emar(par(K), K) = < 1 > :
This case is optimal for any level K such that p<a <b<p+ K or
3b—
b < 3a and ¢ < k. (45)
Case 5: a<p<b<p+ K : We have Eryr = §p(b — p)?, with optimal response:
b
pu(K) = 3. (46)
and corresponding revenue function
2
Emar(par(K). K) = ﬁ#bs-
This case is optimal for any level K such that a <p<b<p+ K or
2b
3a < band 3 < K. (47)

Case 6: a < b < p < p+ K : We have Enp; = 0, so that any price p > b cannot be optimal for a positive
K.l

2.9 Lemma 2: Monopoly capacity investment with price-setting (uniform un-
certainty)

We build on the results of lemma 1. There are three scenarios, depending on the level of variability. In all
scenarios, Emar (K, par(K)) is strictly concave increasing in K up to a (scenario-dependent) level after which
it becomes constant. Let ¢ = ﬁEﬂ;\[(K, par (K| k—o. Thus, for any positive cost ¢ < , there is a unique
optimal capacity level K. Now, depending upton the scenario, we may have to break up the interval (0, ¢)
to derive the optimal K. For the low variability scenario we have that only case 2 (from lemma 1) is needed
and

d
EEWM(KfPM(K))

— % [K2 —12Kb + 10aK — 5a° + 6ab — /(a2 — 8aK + K2 + 6Kb) (4a — K — 3b)} :

=1



It is easily verified that éyiow = ﬁ{—EﬂM(K, par(K))| k=0 = a and %E’H’A[(K, par(K))| goso-a = 0.

1

For the medium variability scenario we have that for K < 2(b — 2a) case 1 is valid:

%EW‘U(K, par (K)) = %u (2b— K)(2b— 3K).
so that &\ wedium = %pbz. At K = 2(b — 2a) case 2 becomes valid, at that point the derivative of
Enar (K, par(K))is pa(3a —b). Thus, for the medium variability scenario, we have that there is a unique
optimal capacity level K, which is determined by case 2 if 0 < ¢ < pa (3a — b), and by case 1 if pa (3a — b) <
¢ < Cymedinm = %,U'b2~

Finally, for the high variability scenario we have that only case 1 applies so that we have c\ppign =
C\l.edium = ;lgllbiz

Thus, to get the explicit expressions for the optimal K, we only need to consider cases 1 and 2:

Case 1: a < p<p+ K < b: We have that

Var (K. par (K)) = 1%]\’ (26— K)? - cK. (48)
The optimal capacity level satisfies
0
8—KVM(K~PM(K)):O@H(Qb—K) (2b - 3K) = 16¢ (49)

with unique positive solution K = 2 (2b + /0% + 120/;1,) and thus p = } (b+ Vb2 + 12c/u> and corre-
sponding objective value:

Vi*(e) = up(b—2p)(—2p—2b+4p+ 2b) — c2(b— 2p), (50)

= 2(p*u—c)(b—2p). (51)

Conditions a < p,p+ K = 2b—3p < b and K = 2(b — 2p) > 0 require max(a, %) <p< % Thus: either
2>a> % (medium variability) and

1 .
< Co = ap (3(l - b) <c S Cedium = —sz-,

a< é (b+ b2 + 120/u> < ;

| o

or £ > a (high variability) and
b 1 b 1
3 < — (,ub+ V(2b% + 120u)> < 3 <0< ¢ < iy = ZubQ.

6u

Case 2: p < a < p+ K < b : The optimality equation for this case %Eﬂ"\[(K,p‘”(K)) = cis a
third-order polynomial with a unique solution satisfying p < a < p+ K < b and

4K3 + (2c + a — 116) K% + 2 (2a® + 36% + 10ca — 12¢cb — ab) K + (a — ¢) (a® — 9ca — 3ab + 9cb) = 0.

However, an easier (but equivalent) expression is obtained by swiching the order of optimization (which is
allowed, given the uniqueness of the optimum in the zone p < a < p 4 K < b). We have that

1
Var = =5 (v — 2ap + 2pK — 2Kb+ a® + K?) — cK. (52)

The necessary conditions for an optimal (p, K) interior in {(p, K) : 0 <p < a < p+ K < b} are

1% 1
aa‘” = f§;L(3p2—4ap+4pK—2Kb+a2+K2):O,
P
OVt
= - —b+K)—c=0.
Ve pu(p—b+K)—c=0

The optimal capacity level is most easily solved for algebraically by first solving for K as a function of p
using g—x = 0 such that K = :&z%fyb—_c. Then substitute into %—‘; = 0 and solve for p. The solution p is the
unique root of f(z) = —4pux’ +pu(a+b+ 2c)z? — c? in the interval [0, a]. [Necessary and sufficient condition
for f (z) to have a single root in [0,a] is that ¢ — 2ua®c+ 4pa® — p(a +b)a® = (¢ — ay)(c — az) < 0. Because
a7 4 as < 0, we have a positive root « iff ajas = 4pa® — p(a+ b)a® > 0 ¢ 3a > b. One can verify that this
single positive root is & = ¢ so that there is a valid price for this case if 3a > b and ¢ < ¢p. Because ¢o > a
when b < 2a, the condition ¢ < a when b < 2a guarantees the uniqueness of the root.] W



2.10 Lemma 3: Capacity-constrained monopoly quantity setting

We have two cases:
Case 1: K < a: Because ¢ < K, the revenue function becomes

Ema = E(e - g)g = (c0 — 9)g.
so that the capacity-constrained monopoly quantity is g;;(K) = min (12‘l K) . {(Note that if b > 3a (high
variability) we have that % > a, so that gy (K) = K.)
Case 2: K > a:Ifg=% < a<® b < 3a(low & medium variability), the solution above holds. Otherwise
a < q < b, (clearly, one will never set ¢ > b), and the revenue function becomes

b
1
Eny = Blle - a)ala S g <0 Pla <)~ [(e = gaude = gaulb - . (59)
q
with a unique maximum at ¢ = £ so that ga;(K) = min (§, K).
Conclusion:
1. If b < 3a (low & medium variability):
gar (K) = min (50 K) , (54)
2. If b > 3a {high variability):
b
gar(K) = min <§ K> . (55)

2.11 Lemma 4: Monopoly capacity investment with quantity-setting (uniform
uncertainty)

We have two cases:
Case 1: b < 3a (low & medium variability). The value function becomes

Keg—K)—cK if K<&,
V(K) = -2 56
(K) {(%)ZACK it K > (56)
Clearly, K > % is suboptimal. Thus, K < <, and the optimal capacity investment is
1 co—c\’
K= 3 (eg—~c)=V = ( 0 ) for low & medium variability, (57)
with conditions: ¢ < g¢ and % (g0 — ¢) < % (which is clearly satisfied with low&medium variability).
Case 2: b > 3a (high variability). The value function becomes
K(eg— K)—cK if K <a,
V(K)={ i1Ku(b—K)?~-cK if a<K<}, (58)
b3 —cK if K>2.

Clearly, K > % is suboptimal. Depending on the cost ¢, V can have a maximum in the zone [0, ] or in [a. b/3].

A maximum in [0, a] is as in case 1 with conditions ¢ < ¢p and K = % (0 —¢) <a< %b —2a=123 <

Ife< b‘;’“, then the optimal K is in between a and b/3 and maximizes

1
V=gkub- K)? - ¢K, (59)
with unique maximum:
1
K =3 (2b _ /T 6c/u) , (60)

with conditions 0 < a < 1 <2b — /0% + GC/N) <be 3a—2b < —/b? + 6¢/p < b and because we must have
high variability this reduces to ¢ < % (b—3a) =230 — 0. B



2.12 Lemma 5: Optimal duopoly capacity investment under quantity-setting
with uniform uncertainty

2.12.1 The quantity-setting subgame

We now consider the case of two firms; initially each firm ¢ and j sets capacity at K; and K for a total
industry capacity of K, = K;+ K. Given the capacity choices in stage 1, each firm sets production quantity
¢; < K; and ¢; < K; for a total industry production of g4 = ¢; +g;. Hence, the expected profit for firmiis:

Er;, = /OO (e —q4)qi f(e)de.

+

Case 1: ¢, < a. The revenue function becomes Em; = E(¢ —q1)q: = (€0 — ¢4)g: so that firm 7's
quantity reaction curve is

€0 — qj a+ b+ 2g;

4

gi(g; 1K) :min< ,Ki> if g4 <a¢>min< ,Ki+Qj> < a.

An interior solution “5% requires $ = ¢ < a & b < 3a (low & medium variability).

Case 2: ¢, > a. Clearly, one will never set g; > b, so that the revenue function becomes

b
1
Em; = /(f—qiqu)ql-udsz§qz‘u(b—qz--qj)2,
+q

qi+q;

with a unique maximum at g; = % (b — gj) so that

1 1
qi(g;|Ki) = min <§ (b—q5), K1-> if ¢4 > a & min <§ (b+2q;), K; + qj> > a. (61)

Thus, firm i’s reaction curve g;(g;|K) is piecewise linear. If capacity K; is sufficiently large, the reaction
curve is strictly decreasing in q; whenever g; > 0 with decreasing slopes > —1 as shown in Figure 8. If
capacity is low, the reaction curve is the same, but restricted to the rectangle [0, K] x [0, Kj]. In any case,
as discussed in the proof of Proposition 5, there is a unique equilibrium at the intersection of both firm’s
reaction curves.

Assuming capacity is sufficiently large, the equilibrium is ¢ = (q},. ¢},) depends on the level of variability:

.ot if $(b—a) < $(3a — b) ¢ b < 2a (low variability), (62)
v = % otherwise (medium & high variability).
In general, denoting the unrestricted reaction curves by g% (), the equilibrium is
(Ki,Kj) if OSKiqu<q*Dv
oK) = (min (K;.¢¢ (K;)) . K;) if 0<K; <qp <K, (63)
(K;, min (Kj.q;“ (Ky)) if 0<K; <qp <Kj.
(4h,9p) if gp < KiK.

2.12.2 The Capacity Stage (Full Game)

First focus on the interior equlibrium. We know from Proposition 6 that in equilibrium ¢ = K and K =

1(K4, K.) where
i 3
/ (E - -—K+> fle)de = ¢ (64)
Ky 2
for c < gg, and ¢ = K = 0 for ¢ > €g.

Case 1:0 < K, < a: 50-%K+:c®

g (c — 50)2 , (65)

K+: 9

Wl

(o—c)and V, =E(e — K, )K; —cKy =

10



(a+by4

b/3 el

(h-a)2

0 (3u-b)2  a (at+h)?2 b g
Figure 8: Quantity-reaction curve for firm ¢ for uniform uncertainty (assuming K; > %(a + b)).

with condition:

2 3
5(60—c)§a<:>6250f§a. (66)
With low variability (b < 2a), g — %a < 0, so that this holds for all ¢ < £g. For medium and high variability
this case requires ¢ > €g — %a = 9_72‘1—.
Case 2:a < K:
b
‘/1' = / (E—Ki —Kj)Kyi/LdE—CKI', (67)
K.
8 b
—87(—1‘/1 = A!+KJ (E*2K1‘—KJ‘)[L(16—C:O, (68)
32
in = u(3K;+ 2K, —2b) <. (69)
Thus, with K; = K; = %K+ :
b 3 1 5
/ <54—K+> pde = —;L(b4K+)(b2K+):candu(—K+—2b> <0and Ky >a, (70)
K. 2 2 2
1 4
== — 2 —
& a<Ki= (3bi b2 + 16c/u> <zb, (71)

so that only the negative root remains and

b

1

Vel = [ (e Ke) Koude el = G onlb— K, ) ek (72)
+

- Y T (o § (0 IR e (8- ET).

-CZ

Té_s (3b . \/m) {N (b + B+ 16c/u>2 - 32c] : (74)

with conditions:

4
a < i (3b— N 16c/u> < b (75)
1
da —3b < —/b2+16c/p < 3b' (76)

11



Thus, we must have b > %a and
1
b2+ 16¢/p < (3b—4a)’ & ¢ < 5 (b—2a). (77)
This requires b > 2a (medium & high variability). Bl

2.12.3 Entry-deterring capacity investment

Let us now investigate the deterrent equilibria K = (k.0) and K = (0, k) where

/ (e —k)f(e)de = c. (78)
k
Case 1: k < a: Then (g9 — k) =¢, or
b—a b
O<k:€0—c<a©——q<c< ra (79)
2 2
Case 2: k > a: Clearly, k < b so that
b
/ (¢ —k)ude = candk >a, (80)
k

sk = b—+/2c/p>a, (81)
b— v/2¢/pp and ¢ < bga. (82)

To calculate the corresponding firm value, we must calculate the capacity-constrained monopoly quantity
which is most easily done by differentiating between levels of variability:
1. Low & Medium variability (a < b < 3a):

&k

. /€
gar(K) = min (70, K> , (83)
so that bt
2 if 0<ex 224
_J) 2
q”(k)“{k if e <e< e (84)

with corresponding firm value

E(e— )% —ck=2—c(b- /2£) it 0<c<iz
Vierwing =4 E(e — 2)&% —ck= D —c(eo—c) I 5% <e< e, (85)
E(e —k)k —ck=(eg —k — )k = if b—'ﬁ—“<c<%ﬂ.
2. High variability (3a < b):
gar(K) = min (g K) , (86)

and k=b—+/2¢/pu> %t & 2b—2;L > ¢ (notice that 252 > E;L with high variability), so that
K>3 9 2 9 g

b 26
2 f 0<e< 5p,
k)= 3 2 I 87
(IM( ) {k if 28 /L<C<bi2a, ( )

with corresponding firm value

b b 2 c 2
f}_;(f'ﬁ)%ﬂdf_Ck*ﬁ#bsﬁc(b— 2;) if O0<c« %u
2 2
Vierrring = § [*(e = k)kpde — ck = (b - QC/N) l:%,u (b— (b— m)) - c] —0 if Lpu<e<tze,
E(e —k)k—ck=(co—k—-c)k=0 if b—T“<c<b+T“,

12
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uh32 L L Capacity cost ¢
0 (h-2a)2 ¢, (a+ byd (@+ b2 >
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Figure 9: The entry-deterring capacity investment k, output g and firm valueV compared with the duopoly
firm value.

Thus, the solutions are shown for medium variability in Figure 9. Finally, for the entry-deterring strategy
to be an equilibrium and be credible, it’s firm value must not be less than the firm value that would obtain
if the duopolist invests in the “true” duopoly interior equilibrium investment.

Clearly, for very low variability

2
1
Vieror > V0 & ?42 —cleo—c)> g le- e’ (88)
8
=4 (E() — 40) <E() — gC) > 0, (89)
1
& c<e = e (90)

which requires b—g“— < iEo S b« %a. For low & medium variability (%a < b < 2a), Vierer > Vi o e < %Eo
and
2

E’—c(b— 23)—%(6—50)2>0 if ¢> 22

Kl w

doc(b-\/22) - ok (3 VI 16e/n)

Finally, for high variability we know that c, < %%Lb < % so that Viee, >0 & ¢ < % (b — 2a) and

25— (b _ /25) - Q_ég (3b /. 16c/;¢) [u (b + /b + 16c/u>2 - 32c} > 0.

2
/J(b+ b2+160/u> —320]>0 if c< 252

Py

27
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