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Abstract

We axiomatically characterize a representation of preferences over opportunity sets which
exhibit a preference for flexibility, interpreted as a model of unforeseen contingencics. In
this representation, the agent acts as if she had a coherent prior over a set of possible
future preferences, cach of which is an expected utility preference. We show that the state
space is essentially unique given the restriction that all future preferences are expected
utility preferences and is minimal even without this restriction. Iinally, because the
state space is identified, the additivity across states is meaningful in the sense that all
representations are intrinsically additive.



1 Introduction

We derive a representation of preferences under unforeseen contingencies which extends
that of Kreps (1979, 1992) by enriching the choice set and consequently obtaining much
tighter results. We begin this introduction with an overview which briefly describes our
view of unforeseen contingencies, Kreps” approach and the problems with it which we
address, and our results. In the rest of the mtroduction, we devote a subsection to a
more detailed explanation of cach of these three issues. After that, we address possible

criticisms of this approach and review the relevant literature.

1.1 Overview

It is commonplace to observe that real contracts are not as precisely detailed as the
optimal contracts in standard models. One frequently given reason for this discrepancy
is the presence of unforcscen contingencies. That is, real agents do not have a clear
enough view of the set of possible situations to write such detailed contracts. Our goal
in this paper is to provide a way ol representing the behavior (preferences) of an agent
who knows that she faces unforeseen contingencices.

To derive such a representation, we must first identify some aspect of potentially ob-
servable preferences which would provide useful information about the agent’s perception
of mmforescen contingencies. As noted by Kreps (1992), one behavior that seems linked
to unforeseen contingencies is the desire to retain flexibility by not committing onesell
in advance. Intuitively, if an agent cannot foresee future possibilities precisely enough,
she should wish to retain some flexibility to react to the unexpected. Kreps uses pref-
crences regarding such flexibility to derive a representation of unforescen contingencies
which looks much like the standard expected -utility model. In this sense, the surprising
conclusion is that the standard model (albeit with some modifications) is also a model

of unforescen contingencies.'

To be more precise, Kreps considers preferences over what we refer to as menus.
A menu is simply a subset of the available options and a choice of such an object 1s
interpreted as a commitment to choose “in the future” from this set. Under two nuld
assumptions, Kreps (1979, 1992) derives a representation of preferences over such mennus,

"Thus. as Kreps (1992) notes. the standard model is richer than we might have thought, although.
as we will see shortly, the model is not completely standard since preferences are state dependent.
Nevertheless. 1o arene that the model is not rich enough one needs to point out choice behavior that is
not explained by the model.



where menu - is evaluated by

ZmaxU (b, s). (1)

ber

To understand this representation, imagine that the agent chooses a menu x, knowing
that at some unmodeled second stage, he will learn the state of the world, s, and thus
learn his preferences as represented by (- s). He then chooses the best Ob ject from
the menu & according to his preferences. Fr ante, these preferences are aggregated by
summing the maximum utilities across states. Equivalently, we can think of the states
as equally likely and view this as an expectation over s. One important point 1s that .S
and the U7(-. s) functions are part of the representation, not a primitive of the model. In
other words, even though the model does not assume that the agent foresces all possible
future circumstances, the conclusion is that the agent acts as if he had a coherent view
of the unforescen contingencies. This view is summarized by the set of future preferences
that he considers possible; we refer to this set of future preferences, {U(-. s) s € S}, as
the subjective stale space.

We see two difficulties with using this model. IMirst, the state space is not meaningfully
identified; in particular it is not unique. As we argue in Section 1.3, this causes significant
problems in developing applications of the model. Second, because of this, the additivity
across states in the representation above is artificial in the sense that the additivity in the
model is not a restriction on the preferences. As Kreps (op. c¢il., page 567) points out:
“the ‘additive representation’ . . . has limited signilicance - the representation is basically
ordinal in character.” More precisely, the set of preferences that can be represented m
the form of (1) is the same as the set of preferences that can be represented by

V() = u ((max 0, ,s))_%s) | (2)

bex

some aggrecators arc “intrinsically” non-
e e) o .

for some increasing aggregator u. Moreover,
additive in the sense that they are not monotone transformations of additive functions.
For preferences with such an intrinsically nonadditive representation, we can change the
state space in such a way as to achieve an additive representation in the form of (1) on
the new state space. In this sense, the inability to pin down the state space carries over
to an inability to pin down the functional form of the representation.

We enrich the choice space by allowing menus of lotteries, instead of considering only
memis of deterministic options. We give axioms which are necessary and sufficient for
the existence of what we call an additive BU representation —— a representation which is
additive across states as in (1) above and where U(-. s) 1s an expected -utility function
for everv s. In this class of representations, the state space is identified. In particular,
we show (subject to caveats explained below) that every additive XU representation has
the same state space. If we drop the restriction to additive representations and consider



ordinal representations as in (2), the same result continues to be true. If we drop the
restriction that every U(-. s) be an expectedutility function, there is a natural reason to
focus on this particular state space: it is the smallest possible state space for any repre-
sentation, additive or not. Finally, we also show that additivity s a necessary property
of the representation. That is, given any ordinal representation with EU preferences for

every s, the aggregator must be a monotone transformation of an integral.

The next, three subscetions explain the points above in greater detail, beginning with
the unforescen contingencies interpretation of the model. The introduction concludes
with a discussion of potential criticisms and related literature. Section 2 presents the
representation theorem and the subsequent section discusses the uniqueness and mini-
mality of the state space and the sense in which additivity 1s meaningful. Most of the

proofs arc in the Appendix.

1.2 Modeling Unforeseen Contingencies

Clearly, the first point to clarify is exactly what we mean by “unforesecn contingencies.”
To contrast the idea with the usual Savage (1954) framework, recall that Savage takes as
viven a state space and set of consequences. A state is interpreted as a complelc (in a
sense explained below) specification of all relevant facts about the world. A consequence
is viewed as a sufliciently rich description of an outcome as to completely determine how
“well off” the agent is, independently of the state and the action choice which led to this
consequence.  Both states and consequences are viewed as exogenous and “objective”
in the sense that they could be identified by an outside observer without knowing the
agent’s preferences. This is important in that if states and consequences are not objective
in this sense, we cannot test the theory, even in principle. The actions available to the
agent, are formally represented as acts, which are functions from states to consequences.
This is the sense in which the state space is complete: given any state, the agent knows

precisely the consequences of any action.

We think of unforescen contingencies as meaning that the individual has too vague a
view of the set of possibilities for these assumptions to hold. To clarify, call a situation
as precise a description of a possible state of the world as the agent can come up with.
Roughly, we would think of a situation as corresponding to an event in the state space,
rather than a single state.  LFor example, if a state is described by the values of two
relevant variables, - and y, then we can think of the state space as a set of (2. y) pairs.
If the agent only thinks of » and not g, then a situation would be a possible value of &
only, and hence could be thought of as corresponding to the set of (i, y) pairs In the true
state space with this particular value of x. In the interesting case, the agent recognizes
that 2 is not the only relevant variable, but, of course, does not know what variables
are missing. That is, she knows that the situations are not complete descriptions of the



world. Because of this, the agent is unsure how well off she would be given any particular
action and sitnation. As an implication, even the most precise contract she can write
will necessarily be vague or incomplete in the sense that 1t cannot pin down her payoll
as a function of the state of the world that occurs since she can only write contracts as a
function of the one variable, 2, she has thought of. For simplicity, we assume henceforth
that the agent conceives of only one situation, “something happens,” but knows that
her conceptualization is incomplete. In the example, this means that there 1s only one

possible value of .

Intuitively, the key to modeling such an agent is to find a representation of how she
perceives the payolls from cach action. A natural approach is to think of each possible
specification of a pavoll function as astate and to construct a new state space which would
be complete. Thus, if the set of possible actions is A, we could construct a (subjective)
state space where cach state specifies the consequences for cach and every action in .7
This state space seems Lo be a natural description of how a “fully rational” person should
make choices when she is aware that her knowledge of the true state space is incomplete.
Such an individual does not care about the “real” states per se, caring instead only about
how well she does, how she feels as a consequence of her choice. Therefore, the pavoft
relevant. coutingencies are “how does cach choice make me feel?” W ith this new state
space n hand, one expects that an individual who is rational in the usual sense would
choose in a way that corresponds to forming subjective probabilities over these states
and maximizing expected utility.

On the other hand, directly assuming such a state space scems problematic. As we dis-
cuss in more detail in Section 1.5.2; one cannot simply apply the results of Savage (1954)
or Anscombe and Awmann (1963) to such a state space for several reasons. Morcover,
such an approach wonld formally involve, i a sense we make precise, exactly what we
do herein. Linally, at a more conceptual level, defining states this way would, in cffect,
replace one “complete state—space” assumption with another, perhaps more plausible
but still questionable, “complete state space” assumption.

The kev insight. of Kreps (1992) 1s that, instead of the above, we can use potentially
observable behavior of the agent to uncover her view of how well off she would be as a
function of her action. As mentioned above and discussed in more detail below, Kreps
shows that if preferences regarding flexibility are sufliciently “well behaved,” then the
agent indeed acts as if she had a complete state space describing how her sccond stage
preferences depend on the situation and acted like a standard expected utility maximizer
with respect to this uncertainty. In other words, instead of assuming that the mdividual
constructs a complete state space as described above, we derive the conclusion that the
agent, behaves as if she had such a state space. Naturally, we find the derivation more

2To the best of our knowledge, Fishburn [1970] was the first to discuss this interpret ation of states
of the world.



appealing. Also, it is Instructive as it shows what conditions on preferences or behavior
are required for the conclusion.

1.3 Summary of Kreps

We now turn to a brief review of Kreps (1979), as reinterpreted by Kreps (1992) in
terms of unforescen contingencies. Lor concreteness, the reader might want to consider
an agent who must plan a meal for a given night in the distant future. Naturally, if there
are unforeseen contingencics that would affect the agent’s preferred meal on the night
in question, the agent would prefer choosing a menu of options now, leaving the exact
selection to be determined later. Alternatively, one can think of this as a stylized model
of the allocation of control rights in a contract. Unforescen contingencies then would
influence what kinds of rights the agent wants to have.

Let 3 denote the finite set of (deterministic) options — food items in the first example

and consider the agents preferences,” >, over subsets of 3 menus - - which are
denoted as € X = 28\ {§}. If the agent faces no unforeseen contingencies, then he

must know what his preferences will be over 3. Denoting these preferences by =%, we
could derive preferences over X as follows: If the best (according to >*) element of x is
preferred to the best element of 2/, then @ = 2/, Tt is easy to sce that such preferences
over menus will not value flexibility. That is, no preference over menus which is generated
in this way can have both {b.0'} = {b} and {b.0'} = {b'}. In this sense, it is the desire
for flexibility which reveals the existence of unforeseen contingencices.

Kreps (1979) isolates two key properties of preferences over X:  monofonicily, or

!

= x> .

U

and what we call the union condilion, or
! 1 ! i
r~yrUr = xrJdr ~xUxr Ua.

e shows that these conditions are necessary and suflicient for representing preferences

> by a subjcctive state space S, state-dependent utility functions U2 B xS — R, and a
- . . S‘ -

strictly increasing aggregator u s RS — R, as in (2).

That is, preferences over menus that satisfy the two axioms correspond precisely to
behavior that would arise {rom a person who has a complete state space. Such a person
behaves as if she conceives of future states S, and such that in each state, s, she chooses
the maximal (according to U7(-,s)) clement in the available set and aggregates these

$Throughout the paper preference orders are binary relations that are transitive and complete,



pavolls across states according to u. The only relevant aspect of S is the set of “second
stage” preferences it induced (through the various U(-, ) functions) and so we refer to S
and this collection of preferences interchangeably as the state space.

This representation is hardly pinned down at all.  In contrast, say, to subjective
expected utility preferences as derived by Savage (1954) or Anscombe and Aumann
(1963)  where the probabilities in the representation are unique and the utility functions
delined up to an affine transformation  here the subjective state space is not unique,
very little can be said about the state dependent utility functions themselves, and there
are clearlv no probabilitics. Fven in contrast to state dependent expected utility pref-
crences where, like here, probabilitics are not pinned down -~ the indeterminacy
(2) of the state space is troubling for several reasons.’ Iirst, it clearly causes difficultics
in deriving subjective probabilities. It scems impossible to identify the agent’s proba-
bility distribution on the state space without identifying the latter.” In a related vein,
applications of the model naturally involve more than one agent. But in a multl agent
extension, we would want to formalize the notions of common knowledge and common
priors, which depend on the joint state space. Finally, applications of the model would
scem Lo require some notion of “unforescen contingency aversion” or a measure of the
“extent” of unforescen contingencies (both of which would probably be based on the on
the size of S, and, looscly, on the variance of U(-. s) across states). If we canmot identify
the state space in a meaningful way, then, we have no obvious way to characterize such
notions and hence scem unable to use the model effectively.”

A second issue is that we might want a more structured representation. There are
two components of the representation which one might want to restrict: (/) the state
dependent utility functions, /(. s), and (i) the aggregator u. While the preferences that
we take as a primitive, >, are over menus that are chosen today, the representation spec-
ifics (albeit, as discussed above, indeterminably) the sccond-stage preferences, [ (. s),
which deternine tomorrow’s selection from the memi. We might think that tomorrow’s
preferences satisfy some additional properties, which would restrict the set of represen-
tations. In the framework above, the set 3 has no structure, so there is little one can
ask of these sccond-stage preferences. Ience (i) requires enriching /3 in some fashion.
Concerning (i), as noted carlier, while Kreps (1979) does provide an additive subjective
state dependent representation of the form (1), the additivity is not very meaningful.

i principle. we may not need to achieve uniqueness. By analogy. in modeling risk. utility functions
are only identificd up to positive affine transformations, not uniquely. vet the Arrow Pratt measure of
risk aversion is well defined. In fact. Kreps' (1979) Theorem 2 characterizes the set of transformations
of state spaces which preserve preferences. However. there does not seem to be any simple. direct. uscful
statement of this set of transformations.

"It may be true that probabilities on relevant events are identified. however.

“For example. in Kreps™ framework. we can have preferences represented by a single state intu-
itively. preferences with no unforescen contingencies - which are also represented by a large and quite

“variable” state space.
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1.4 Our Results

Our primary objective in this paper is to obtain a more structured representation of such
preferences, where additivity is meaningful and, most importantly, where the subjective
state space is pinned down. To do so, we extend preferences to a richer choice set, in
particular where 73 includes lotteries, which is of independent iterest.

Ixtending the preferences to sets of lotteries is important for two reasons. Iirst, 1t
is unrealistic and overly restrictive to assume that menus are chosen in a way that the
options arc deterministic.  Second, if one is to apply these prelerences, then allowing
for uncertainty scems necessary, especially in games, where one would want to allow for
mixed strategies and incomplete information. Having enriched the choice environment to
include sets of lotteries, it is natural to look for a more structured representation where
the second stage preferences have an expected utility representation.

To clarify further the extent to which we satisfy our objectives, we state our main re-
sults, albeit a little vaguely because we leave some details for later. Consider preferences
= over subsets of A(/3),” where a menu is a subset of A(B). Denote a generic element
of B by b, a generic clement A(3) by 3 (where J(b) is the probability that & assigns
to b), and a typical subsct of A(B3) by x. We also let b denote the lottery that assigns
probability 1 to the outcome b. The preferences satisfy Kreps’ monotonicity axiom, a
natural independence axiom, and a continuity axiom (formally given in the next section)
if and only if they have an additive EU representation that is, if they can be repre-
sented with a subjective state-space S and state-dependent expected: utility functions

U A(B) < S — R (i.c., satislving U7( 3. 5) = Y 3 3(0)U(b. 5)) as follows:

Vi) = / sup [7(3. s)p(ds). (3)
JS der

Moreover, within the class of such representations, the state space (regarded as the set

of possible sccond -stage preferences) is unicque.”  Furthermore, consider the class of all

ordinal representations, i.c., those that have the form

Vir) = ul(sup U”(3.9))scs0] (1)

Jer

TIn some contexts. e.on. il B s a set of dishes of food. this construction is artificial: we do not usually
expeet that an order of fish will yield chicken with high probability. (Although most readers will probably
have experienced enough errors in orders that they would also not assign such a switch zero probability.)
On the other hand, presumably. the agent is primarily concerned with the “taste attributes” of the
food  the kinds of spices used, the temperature and texture of the food. ete. rather than the dish
itself. It scems quite realistic to suppose that a given dish will correspond to a probability distribution
on this space. Also. the set of lotteries is easy to conceptualize and create. In this interpretation. the
construction here is analogous to that in Anscombe Aumanu {1963), where preferences are assumed 1o
extend to such objects.

*Subject to caveats regarding infinite state spaces: see Section 3 for details.



for some collection of 87, U7 A(B) < S” — R, and v : R — R, where U need not be
a representation of expected—utility preferences and u need not be additive. We define an
ordinal U representation to be an ordinal representation where cach U” is an expected

utility function. Our uniqueness result extends to these representations as well: every
ordinal U representation has the same state space. Because our independence axiom 1s
not necessary for the existence of an ordinal 12U representation, this result does not rely
on independence.  Finally, our state space S is minimal within the class of all ordinal

representations.

Because we can identify the state space, our additivity is also mecaningful.  More
specitically, additivity is uniquely identificd by our axioms in the sense that the aggregator
for an ordinal EU representation of preferences satisfying our axioms Is a monotone
transformation of an integral. In this sense, the ageregator must be essentially additive.
As a result, additivity is a restriction on preferences. Not all preferences with an ordinal
representation and not even all those with an ordinal U representation have an additive
I2U representation. By contrast, as noted above, all preferences that have the ordinal
representation derived by Kreps', (2), do have an additive representation, (1).

These results achieve our main objectives: we identily an appealing representation
with a unique state space which is minimal among all representations and in which
additivity is meaningful. At a more detailed level, there are some other contributions here.
As noted, we {ind assumptions on the preferences over sets that correspond to the derived
state- dependent preferences being expected utility preferences, i.c., cach U(-. s) being
lincar in A(73). As one might expect, continuity and a form of the independence axiom
is needed, but we think the precise form is a little unexpected. Another surprising result
is that the union condition used by Kreps is an implication of these axioms. Moreover,
by pinning down an additive state dependent 12U representation, we open the door to
the next stage of pinning down probabilities, either by enriching the framework further
or by adopting an approach such as that in Karni (1993). Our results also should make
applications of this approach casier since the identification of the state space makes 1t
possible to relate the structure of the state space to intuitive properties of preferences.
For example, Theorem 12 shows that if one preference values flexibility more (and hence
is more “averse” to unforescen contingencies), then it must have a larger state space for
its additive 12U representation.

There is a sense in which our work relates to Kreps (1979) in the same way state
independent, expected tility representations of preferences over acts, as derived by Sav-
age (195:1) and Anscombe and Aumann (1963), relate to state dependent representations.
Naturally, anv state-independent representation could be written i a state-dependent
form; moreover, there is no sense in which the typical usage ol the state-independent
form is “right.” However, it scems like a natural normalization, it gives a useful strue-
ture and a unique meaningful subjective probability, and it is not the case that any



state-dependent representation can be written in a state-independent form. Sinularly,
our additive expected utility representation could be written in an ordinal form (see (1))
and we do not claim that our representation is “right.” However, it scems like a natural
normalization, it gives a potentially useful structure and a unique meaningful subjective
state space, and it is not the case that any preferences that have a representation in the

form of (1) can be written in our additive EU form.

1.5 Discussion of the Approach

I this subscction, we briefly discuss three issues. First, we comment further on the
appropriateness of this approach as a model of unforeseen contingencies. Second, we
discuss in more detail our reasons for preferring to derive a state space from preferences
over flexibility instead of postulating such a state space directly. Finally, we discuss the
relationship between this approach and the incomplete contracts literature.

1.5.1 Criticisins of this Approach

There is something unappealing about viewing the states as second-stage preferences: if
the agent is not aware of the actual factors which determine how she feels from each choice,
how is she to form subjective probabilities over which preferences she is likely to have
the future?’ While this is an important problem, it seems similar to the criticism that
can be raised against the subjective expected-utility models of Savage and Anscombe-
Aumann: where does the prior there come from? The conclusion in those papers is only
that rational choice is equivalent to behavior as f there was a prior. Similarly here, the
point is that rafional choice in the presence of unforeseen contingencies is equivalent to
creating a subjective state space and maximizing in (almost) the usual way. That is, the
standard model applics, although where the prior comes from is at least as unclear as
before.

To develop this analogy further, one of the fascinating contributions of Savage and
Anscombe Aumann was to show that even when there are no objective probabilities
over the state space, the standard von Neumann—Morgenstern objective expected-utility
model is appropriate. That is, the use of the model in an application does not change

we only change the interpretation of the prior to a subjective one. Similarly, this
approach to unforescen contingencies shows that the same model (albeit with state
dependent preferences) is again appropriate, but this time we change the interpretation
of the state space to be subjective.

While there is (as vet) no representation with meaningful probabilities, the criticism remains valid
if we interpret it as asking how the individual is to make comparisons across states.



On the other hand, the Ellsberg paradox makes the point that observed behavior is
sensitive 1o risk as well as uncertainty, and therefore that we should treat the case of
unknown probabilities differently from the case where objective probabilities arc given.
Similarly, if our model is missing anything due to the existence of unforeseen contingen-
cies, one must first find an example of the effect on behavior. The mere fact that this
model doesn’t seem to describe the process of decision making doesn’t imply that it fails

to be an accurate model.

A related eriticism of our approach is that the conclusion suggests that something 1s
wrong: a model of decision making in the presence of unforescen contingencies should be
different, from the usual additive XU model, and if we don’t get that, then we are assuming
too much rationality. Our view is that, to the contrary, one should first explore the
implications of weakening only the assumption of completely forescen contingencices. We
think it is important to understand that imposing very minimal consistency properties on
the decision maker (that she has preference ordering satisfying monotonicity, continuity,
and independence) implies that the decision maker behaves as if she has a subjective
state space and is an additive EU maximizer. Why should these (more or less) standard
axioms be more suspect in the presence of unforeseen contingencies?  Moreover, while
our perspective is obviously normative, the result also makes a descriptive point: any
model of decision making that is inherently different will have to violate at least one of
the axioms, which in turn suggests that it might be difficult to justify why such a model
will have an EU structure, even on foreseen parts of the state space.

1.5.2 Problems with the Direct Approach

As mentioned in Section 1.2, one could proceed quite differently by simply postulating a
state space which is equal to the set of all possible second stage preference relations and
continuing with a more traditional analysis. We believe that this more direct approach
has several philosophical drawbacks and that the only version of this approach which
would avoid these would be equivalent to the approach we take here. Before commenting
on these drawbacks, first note that the analysis would not follow directly from Savage
because of the state dependence of the preferences.

One of the philosophical problems we have with the direct approach, noted carlier,
is that it requires us to directly assume that the agent has a sufliciently precise and
coherent view of the set of future possibilities as to be represented by such a state space,
an assumption which scems at odds with the goal of studying unforeseen contingencies.
One of the appealing aspects of Kreps” approach is that we can derive the subjective state
space using surprisingly weak conditions by examining the agent’s revealed preferences.

A second problem is that this approach runs counter to the traditional view of the

10



state space and consequences as objective. The reason this is a problem is that it means
that we cannot construct the acts over which we would need to observe the agent’s pref-
erences, and hence cannot hope to observe his preferences. That is, the direct approach
is inconsistent with the revealed preference approach to decision theory. To make the
point more concretely, suppose for simplicity that there are two actions, a and b, and no
lotteries. To construct a state space equal to the set of preferences, then, we would need
two states, say s, and sy, where a is strictly preferred to b in s; and where b is strictly
preferred in s,." Suppose we formalize this by supposing that an action has “payofl” 1
in the state where it is preforred and (0 in the state where it is not preferred. To carry out
the traditional Savage analysis, we would need to consider all functions from the set of
states {s). 59} into our consequence space, {0.1}. Such an act can be written as a pair,
(1. uy) € {0.1} x {0.1}, where u; is the payofl in state i. It is casy to imagine {inding
out whether the agent prefers (1.0) to (0. 1) since this corresponds in an obvious way to
whether the agent prefers a to b. Similarly, we could imagine learning whether the agent
strictly prefers (1.1) to (1.0) or (0.1) by asking whether he would strictly prefer getting
his favorite choice in each state to committing himself to either a or b. In principle, we
could implement (1.1) by simply allowing the agent to take his choice between a and b
after the state is realized. Note that this is precisely equivalent to considering the agent’s
preferences over menms: (1.1) corresponds to {a.b}; (1.0) to {a}; and (0.1) to {b}.

But how can we observe the agent’s rauking of (0.0) relative to the other choices?!!
This act corresponds to giving the agent his least favorite option in both states. If  as
n Savage we were (0 observe the state, we could easily construct this act and offer
it, so there would be no problem with observing the agent’s preferences. But the very
nature of the state space makes such observation wildly implausible. Hence there 1s no
obvious procedure by which we can implement this act. Clearly, we cannot induce the
agent to reveal the state to us by promising to give him his least favorite outcome in each
state!

1 other words, it is hard to imagine what such an act could possibly correspond to in
terms of a real, potentially observable option. The acts which do have such an interpreta-
t1on would be those which are incentive compatible, i.e., those that could be implemented

"To make the point most simply. we ignore the possibility of a state in which the agent is indifferent
between the two.

""The agent should weakly prefer (0.1) and (1.0) to (0.0), but distinguishing between indifterence
and strict preference is erucial. Intuitively, if (0.0) is indifferent to (1.0) but (0.1) is strictly preferred
to either. then this tells us that the agent gives s; probability zero. In principle, this preference could
be deduced from other information. For example. if we assume the sure—thing principle. then (1.0) is
strictly preferred to (0.0) if and only if (1.1) is strictly preferred to (0.1). Since we observe the latter.
the sure thing principle enables us to deduce the former. Our point is that a simple application of the
direct approach requires comparisons which we cannot observe even iu principle. In fact. this kind of
deduction is the basis of what we achieve: our independence axiom allows us to extend the preferences
from the sct of incentive compatible acts to the set of all acts. We do not prove the result this way
because our version of this direct approach is more complex than the indirect approach.
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by the agent truthfully revealing her preferences and then being eiven the appropriate
outcome. As noted above, such incentive compatible acts naturally correspond to subsets
of A(B). (Any subsct, say i, of A(B) could be thought of as the act where in any state
s, the agent receives that 3 € o which is optimal according to his preferences in state
5. This act is clearly incentive compatible in the sense defined above. Similarly, any
incentive compatible act corresponds to a set in this fashion simply by taking the range
of the act.) Acts which are not incentive compatible, like (0,0), require the agent to
be committed in some fashion which is difficult to interpret, and do not correspond to
menus. '

Summarizing, then, we believe that the most appealing version of the direct approach
would restrict attention to incentive compatible acts. Not only do these acts naturally
correspond to menus, it is also true that the only way to construct a physical version of
such an act is by offering the agent. her choice from some fixed set - that is, via a menu.
Finally, we strongly believe in the revealed-preference approach to decision making, and
this requires considering memus.  Given all this, and the fact that the menu approach
does not commit us to assuming the existence of a subjective state space, we feel that
this approach is superior to the direct approach.

1.5.3 Incomplete Contracts

We commented carlier that in the presence of unforescen contingencies, the individual
will view all contracts she can write as incomplete because she knows that some relevant
variables arc omitted. Ience, one expects that the agent will prefer contracts which
leave some Hexibility.  Kreps (1992) notes that such preferences for flexible contracts
could come from any source of contractual incompleteness. In this scnse, there may
not be any behavioral differences between unforeseen contingencies and other reasons for

incomplete contracts.

The incomplete contracts approach basically assumes a representation much like this
one, where some kinds of uncertainty are interpreted as non-confractible, an assump-
tion generating a value for flexibility and hence for residual control rights (see Hart
(1995)). As in Kreps (1992), we derive the representation from a preference for flexibil-
ity. This might enable us to state a converse to the claim that incompleteness of contracts
leads to a value for residual control rights, namely that if residual control rights have
value, then the contracting problem can be represented with non-contractible uncer-
tainty. Whether one wants to call such a representation an incomplete-contracts model
or a model with expected-utility preferences where the state space is subjective (and

hence non contractible) depends presumably on one’s upbringing. "

Nehring (1996) makes a similar observation.
BT here are however some important steps unaddressed in developing such a converse: one needs to

12



It is also worth noting that this interpretation of the incomplete contracts model
allows one to address a natural criticism of interpreting that model as one allowing un-
foreseen contingencies. In the absence of the framework offered here and in Kreps (1992),
it would scem very strange to interpret the non ~contractible uncertainty as unforescen
contingencics. The problem is that it is not clear how the agents could foresee these
states in their evaluation of expected utility if they cannot foresce them well enough
to contract on them. The answer is that these states are subjective states and hence
non contractible. Fquivalently, the agents can use these states in their maximization
problem because they correspond, not to the actual situations that determine the utility,
but to the wtility itself. In fact, as the proofs of our results demonstrate, the states are
utility functions. As Maskin and Tirole (1997) point out, the ability to foresee utility
consequences is itself quite strong, leading to conclusions quite distinet from those usu-
allv drawn in the incomplete contracts literature. While we do not intend to take either
side in this debate, we do argue that the framework used in the incomplete contracts lit-
crature is naturally interpretable as one where the states are subjective and correspond

to state dependent preferences.

1.6 Related Literature

The literature on unforeseen contingencies can be divided into epistemic and decision
theoretic approaches.'* The former category consists of papers which take the knowledge
of an agent, who faces unforeseen contingencies as the key to the model rather than action
choices.'™ By contrast, the decision theoretic approach derives a representation of the
agent from preferences, where some aspects of this representation can be interpreted as
statements abont the agent’s knowledge or beliefs.

Aside from the aforementioned work of Kreps, the ouly papers we know of that take
decision theoretic approaches to this subject are Ghirardato (1995), Skiadis (forthcom-
ing), and Nehring (1996). All three share our view that with unforeseen contingencies,
the agent only recognizes situations, not states, and hence does not know her exact pref-
erences conditional on any given situation. Ghirardato models this by assuming that
the agent associates a set of consequences, rather than a single consequence, with each
situation. Thus he gives a generalization ol subjective expected utility to acts which are
correspondences rather thau functions. The representation he derives is a gencralization
of nonadditive probability models. Both of the other two papers, like ours, do not assune
that there is a given set. of consequences, instead deriving what can be interpreted as con-

extend this model to multiple agents and one needs to have some degree of state independence in order
1o obtain meaningful probabilities.

HFor a survey, sce Dekel. Lipman, and Rustichiui (1997).

P See Fagin and Halpern (1988). Geanakoplos (1989). Modica and Rustichini (1993, 1991). and Dekel.
Lipman. and Rustichini (forthcoming).
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sequences. Skiadis studies preflerences over actions conditional on situations and derives
a representation where the agent has a subjective utility for cach action conditional on
cach situation. Intuitively, this represents the agent’s “expectation” of the utility con-
sequences over the unforeseen aspects of a situation. The Kreps approach is similar to
Skiadis” approach in that both use the agent’s preferences to identify the utility conse-
quences of acts as a lunction of the state. Finally, while Nehring, like us, follows Kreps’
approach, he allows for preferences over acts over menus. That is, like Ghirardato, his
acts are [unctions from states to sets, but unlike Ghirardato and like us, his representa-
tion involves an implicit second-stage at which the agent chooses from the appropriate
set. Instead of an expected—utility restriction on the sccond-stage preferences, Nehring
restricts attention to second stage preferences with the unappealing form in which there
arc only two (thick) indifference curves - that is, his sccond-stage preferences are repre-
sented by a utility function that takes only two values. e does give a uniqueness result
given this restriction and, as a consequence, his additivity is meaningful in the same sense
as ours. Ile does not have a minimality result  none is possible with his state space
since 1t 1s typically not nunmimal.

2 The Additive Expected- Utility Representation

Let B3 be a finite set of n “prizes,” let A(B) denote the set of probability distributions
on B3, and let P(A(B)) denote the set of nonempty subsets of A(/3). A typical element
of P(A(B)) will be denoted x (or &, 2/, ete.), while a typical clement of A(B) will be
denoted by 3, 3, or 3. We use A for convex combinations. Suppose we have a prelerence
relation > on P(A(/3)) which is a weak order. We consider an environment where the
individual first chooses a set and at a later stage will choose among the elements of this
set, but we do not explicitly model this sccond-stage choice. (In fact, as we discussed in
the introduction, our representation does have implications for this second stage choice.)
We impose three axioms on the preferences: monotonicity, continuity, and mdependence.
The first 15 the same as Kreps” monotonicity, the second is essentially standard, and the
third 1s our adaptation of the usual independence axiom.

Monotonicity

!

Monotonicity: -+ C 2" = 1’ = 1.

Clontliveurly

We endow P{A(3)) with the Hausdorll topology, 7; see the appendix for precise
definitions. LFor every ., the sirict lowear contour scf with respect to the preference order
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2 CA(B) |z = 2'}, and similarly the strict upper contour

{
CAMBY =)

is defined as usual by L(x

sctis defined by G(ar) = {af
Continuity: The strict upper and lower contour sets are open. That is, for every
r CA(B), G(r) € 7y and L(x) € 7.

Independonee

To formally state the independence axiom, we first need to define convex combi-
nations. We do this by delining the convex combination of two sets to be the set of
pointwise convex combinations. That is, for A € (0, 1], define Az + (1 — A2’ € P(A())
to be the set of 37 € A(B) such that 3" = A3+ (1 — A3 for some 3 € 2 and J' € 2
where, as usual, A3+ (1 — )3’ is the probability distribution over B giving b probability

A3(D) + (1 — X\)F'(b).
Independence: For all A € [0.1]. 2" € P(A(B)).

rmal = A+ (1= N = '+ (1= M)

This is the usual independence axiom, using the definition above for taking convex com-
binations.

We now explain the normative appeal of this condition. It is easiest to understand
this condition by breaking it into two parts. Roughly speaking, our definition of convex
combination i1s a kind of reduction of compound lotteries assumption. Given this, our
mdependence axiom can be thought of as no different from the usual one.

To see this, first suppose we think of Az + (1 — A)z” as a random determination of
a sct, giving the individual 1 with probability A and 2" otherwise. (The justification for
this identification is discussed next.) Then it is clear that this axiom is precisely the
usual mdependence axiom and is interpreted i precisely the usual way: the difference
between A+ (1 — A2 and A’ + (1 — A)a” is only in the “A” event, so the preference
between these should be the same as the preference between 22 and a/.'°

The key, then, 1s understanding why a rational agent should view this kind of lottery
over sets as equivalent to the convex combination of sets we defined. To see this most
. . . S - 1 . . . .
casily, suppose = {7, 3,} and 2" = {J], 3,} and consider how the individual should

"Nehring (1996) cousiders preferences over lotteries over sets and uses preciscly this form of the
independence axiom. However. he does not follow our next step of identifying lotteries over sets with
our definition of convex combinations of sets, an identification which is at the heart of our indepeundence
axionl.



view the gamble giving 2 with probability A and 2" otherwise. The individual knows
that whatever menu the gamble gives her at the first stage, she will choose her preferred
clement from that set at the second stage. Suppose, then, that she is considering the
circumstances in which she would choose 3 from 2 and 3" from =" at the second stage.
I these circumstances, she would find this lottery over sets as equivalent to receiving the
lottery A3+ (1 - A)3" at the second stage. Since, in principle, her situation in the second
stage could lead her to any particular pattern of choices from x and 2", she should be
indiflerent between this lottery over sets and receiving the set {3, + (1 — A3V A3, +
(1= N3 A3, + (1= A3y A3, + (1= A3y} for sure. That is, she should view the gamble

over sets as equivalent to the convex combination of sets as we delined 1t.

It is worth emphasizing that this is a normative argument, but that it does nof
depend on the agent being able to articulate the real circumstances that correspond to
choosing 3 from 2 and 3" from 2”. The argument above can be explained to an agent
who knows that there are circumstances of which she is unaware and that she cannot
describe precisely. All she needs be aware of is that she will eventually choose one of the
clements in the set to which she has restricted herself at the first stage.

Let el(r) denote the closure of 2 (in the Fuclidean topology on A(B)).

Definition 1 An additive 15U representation of = is a sct S.'" a (countably additive)
measure powith full support on S, and stalc ~dependent atility functions U 9% A(B) - R
such that V1 P(A(B)) — R represents prefercnces. where

Vir) = / sup [7(3.5) pu(ds) = | max U(3.s)p(ds)

S dexr J S 3cel(x)

and where cach U+ s) is an capeeted atility function in the sense thal

U(3.s) =Y U(b.s)3(D).

bhe I3

The word “additive” refers to the additivity across S. Later, we consider representations
where the pavolls across states are aggregated in a nonadditive fashion, as discussed n
Section 1. The “I2U” refers to the fact that cach possible second stage preference is an
expected utility preference.

Remark 1 When the state space is finite or countable, the measure pis stmply a nor-
malization. That is, in cither case, we can replace U(-, s)p(s) with a new utility function

I To be more precise. we require a measure space where 7 is measurable with respect to this space.
Since we make no nse of measurability considerations. we avoid the details.
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[7(-.5) and climinate the measure. In the uncountable case, the measure can be impor-
tant since we must define integration with respect to some measure. It is easy to see that
il 41 is absolutely continuous with respect to Lebesgue measure, then we can replace it in
a similar manner with Lebesgue measure. However, no obvious replacement is possible

if 7 15 continuous but singular.

Theorem 1 Proforences on P(A(B)) satisfy monotonicity. independence and conlinuily
if and only they have an additive FT vepresentation.'™

The necessity of the axioms for the representation is casily shown. The remainder of
this section 1s devoted to the proof of sulliciency. Since this material is not necessary for
an understanding of our subsequent results, a reader who is not interested in the proof
can salely omit the remainder of this section. All proofs omitted below are contamed m
the appendix. We begin by establishing the existence of a representation of preferences
that is linear on P(A(R)), Proposition 3 below. We then describe how we transform this
into the desired representation.

Let conv(r) denote the convex hull of .

Lemma 2 If prcforences satisfy monotonicity and continuity, then for cvery x € P{A(S)).
cl(r) ~ . If prefercnces also satisfy indcpendencee. then conv(x) ~ .

In light of this lemina, we henceforth restrict ourselves to the set of closed, convex,

nonempty subsets of A(3), denoted by X."

Proposition 3 Thore is a lincar V1 X — R that represents preforenees. ioc..

o=t it Vi) > V()

MBecause Kreps' union condition (i~ Ux’ = xr U ~ Uz’ Ur”) is necessary for an additive
12U representation. the theorem implies that it must be an implication of our axioms. A direct proof of
this fact 1s not difficult. First, note that
1 1

1
5 rus’uz’| C=zuz]+ 3 [z Uz,

X+
2

B

50 monotonicity implies that the right-hand side is weakly preferred. Suppose. then. that o~ U’
By independence, then, we must have x Uz’ = »Ux’ Uz”. By mouotonicity, we get the oppposite
weak preference. so this must be indifference. implying the union coudition. We thank Klaus Nehiring
for showing us a critical step in this arguimment.

Y The Hausdorfl topology on X is metrizable and is equivalent to the HausdorfT topology on P{A())
restricted to X
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where

V(e +(1—N)a") = AV (x) + (1 - AV (z').

Vs unique up to affine transformations and continuous (with respeet to the Hausdor[f
topology ;.

The proof of this proposition is straightforward. We verify that the usual mixture
space axioms hold given our definition of convex combinations and then apply the Her-
stein and Milnor theorem (see, e.g., Fishburn (1970), Theorem 8.4, page 113, or Kreps
(1988), page H1). The continuity statement is an immediate consequence of the unique-
ness result and the existence of a continuous representation (sce Lemma 15 in the ap-
pendix.) This is the function V' we are going to explore in the rest of this section.

The rest of the proof is a little indirect, so we provide a rough sketch. We first identify
cach clement » in X with a convex function ¢, defined on a subset of R", denoted
S™ = (This set is formally defined below and the function is the support function  see
Rockafellar (1972), page 28). These functions have the form of 0,(s) = maxy , U(3.5)
for s € 5", where U is lincar in 3, te., U{(3.s) = > ,c5U(b.s)3(b). These will turn
out to be the state dependent utility functions, and a subset of S" will be the state
space. Let (" be the set of functions on S™ obtained from X; we show that the mapping
from X to (" is one to one. We then use V' to define a monotonic, continuous, hnmear
function, denoted T, on €. Since W i1s monotonic, continuous and linear, and due to
the stricture of (' (details are provided below and in the appendix), W can be extended
1o a monotonic, continuous lincar function on the set of all continuous functions on S™.
The Riesz representation theorem then implies that 117 hence V', can be represented as
integrating the value of the function against a measure. Thus there exists g such that
W) = fen au()lds), o Vo) = fon 0u()p(ds) = fin maxse, U (4. s)p(ds), yiclding

the desired representation.

Lor convenience, we write 13 = {by..... byt Tet S" ={s e R" | X5 =0.2|s;) = 1},
and let. ('(5") denote the set of continuous functions on S™. We order these functions
pointwise as usual - that is, 0 > 0’ means a(s) > o'(s) for all s € S™. We now map X
into C'(S"), denoting the image of @ by o, where for any s = (sy.. ... sp) € S",

Jer Jor

n
0.(s) = max (7. s) = max Z 3(b;) s
o1
Let (" denote the subset of C'(S™) which @ maps X onto. That is, (' = {0, € C'(S") |

€ X} Finally we define the inverse that maps elements of ' into X by

re = (V{3 € AB) D 3(bi)s; < a(s)}.

seSM 3

“IRecall that 7 is the number of elements of 13.
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The following lemma implies that the mapping of X to €' preserves the mixture space
structure, i.c., preserves convex combinations; that monotonicity in terms of set inclusion
corresponds to the natural monotonicity for functions; that x, and @, are inverses of one
another; and that the Hausdorll topology on convex sets corresponds to the sup norm
topology on the support functions of the sets .

Lemma 4 [or all x.a’ € X,

Lo Oxei(r e = AT, 4 (L= Ao,

B X(g,y = Land gy = 0.

B

dllmx.\‘(lnrfl"(il')v ,'I,',) - dsupnurm(ﬁ.)“ (T.r/)<
Proof. These are standard results that follow immediately from the definitions; see, e.g.,
Clark (1983), Castaing and Valadier (1977), and Rockafellar (1972). |

The next lemma states some basie properties of €.
Lemma 5

1. C" s conver.

2. The zero function is in C'. in particular aqim.amy(s) = 0 for all s.

3. Thore caists ¢ > 0 such that the constant function cqual to ¢ is i C'. That is.
a’ e . where 0"(s) = ¢ for all s.

L. The supremum of any two clements inCisin (' : 0 € C ando' € ¢ = oVo' € (.
where (a VvV a')(s) = max{a(s).c'(s)}.

Proof.

I. Given o, and o, in (', using Lemma 4, part (1), and the convexity of X, any
convex combination of o, and ¢, 1s i C.

2. For any s € S", we have 3, 5, = 0 so by definition o¢(/n...1/m)3(8) = 225 711.51- = 0.
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3.

First note that a53)(s) = max,{s;} > 1/(2n). The cquality follows from the
definition of the support functions. The inequality follows from the definition ol
S7(IF maxg{s;} < 1/(2n), then Y 52005 < 1/2. Then, since 325 = 0, also
S i oy [s:l < 1/20 But then, 375 s;] < 1, which contradicts the definition of S™.)
Now consider x = {3 | 32, 3(b,)s; < ¢ forall s € S™}, where 0 < ¢ < 1/(2n). Clearly

1 is a closed, convex, and nonempty subset of R, It is easy to sce that we could

have defined our mapping from X into C'(S") to have as its domain all convex,
closed nonempty subsets of R without allecting Lemma <. With this delinition,
clearly, o, is the constant function ¢. It remains to show that 2 € X. By part (2)
of Lemma -1, since 0, < 0a¢3) we know that @ C A(B),sor ¢ X.

1. Given o, and o, in (', it is easy 1o see that Oz +1) = Tp A 0 15 11 (G |

Recall that ¥ is unicue up to afline transformations, so we can normalize V' by setting

V(e 11) =0 and V(r,) = . Now let W : (" — R be defined by W(o) = V(x,).

Lemma 6

CWous lincar on C.ico, Wio4+ o'y = W(o) + AW (o). if 0. 0" and o + Ao’ arc all

m ("

. W is continuous on C with respect fo the sup norm topology.

W is monotonic with respeet to the natural order on functions, i.c.. if a(s) > d'(s)
for all s. then Wo) > W(o').

Proof.

1.

2.

That 1 satisfies “convexity,” i.c., W(Aa + (1 — A)o') = AW (o) + (1 — M)W (o)
follows immediately from Lemma -1, part (1). Our choice of normalization implies
that T is linear: W (Aa) = W(Ao + (1 — A)0) = AW (o) + (1 — )W (0) = AW (o).
Finally, then,
- / 1 1 / - vy
Wio+0) =2 (5(7 + 50 ) = W)+ W(a).

(Usually we would not think of V' as linear, since » € X = Ar ¢ X. But if we
“defline” {1/n..... I/n} as 0 and so define Az to be Ar + (1 — A){1/n..... 1/n},

then Vois linecar as \\'(‘,H.)

This follows from continuity of V and Lemma 4, part (-1).
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3. This follows from monotonicity of V' with respect to set inclusion and Lemma -,
part (2).1

In this part of the proof, we extend W to C'(S™). It turns out to be convenient to do
this in a series of steps. irst, we restrict W to Cp = {0 € C'| o(s) > 0 for all s}. Note
that all the properties of €' deseribed m Lemma 5 hold for 'y . Next, define (' to be
the set of [unctions equal to r times some function i €' and let /1 = U»orC' . Finally,
let

I =11 ={ceC(S)|o=0c"—0o? for some a'. 0% c I1}.

Now extend 17 to //* by lincarity. Specifically, for any ¢ € H | there is an 7 such that
Lo e ('), s0 define (o) = rW (o). Similarly, for any @ € /1%, there are o' and 0? such
that @' € I, for i = 1.2, 50 let W (o) = W(a") = W(c?). That these definitions do not
depend on the precise 7 and o® chosen follows from the lincarity of 1 (see Lemma 6).
To extend W to C'(5") we show that //* is dense in C'(S™), and then show that we can
extend 117 by continuity since all points in C'(S™) that are not in H* are Iimits of points

m /.
Lemuna 7 /1" is densc in C(S™).

Lemma 8 The funcltional Woon H* has a unique cxtension Lo a continuwous and monolonic
limcar functional on C'(S™).

Now [rom the Riesz representation theorem (sce, e.g., Royden (1968)), every linecar
functional can be represented as integration against a measure.  Ilence Vocan be so
represented.

Proposition 9 There is a probability measurc poon the Borel subsets of S™ such thal for

all [ & C(Sm). |
W)= /S F(s)ulds).

Thus. lctting S be the support of pon S™. we have for all x € X,

V() = /S To(snlds) = /S max U (3. 5)p(ds).

Jer

This proposition only characterizes V{(x) for closed and convex » C A(). The fol-
lowing lemma extends the characterization to all nonempty subsets of A(B), completing
the proof of Theorem 1.
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Lemma 10 For cocry x € P(A(B)).

Vir) = / sup U7 (3, s) u(ds).

JS S

3 Uniqueness Properties

3.1 Identifying the State Space

It 1s casy to sce that certain aspects of the representation cannot possibly be unique. Lor
example, the second stage utility functions U (-, s) are unique only up to affine transfor-
mations that may depend on s. So, while 1t 1s casy to show that g is unique holding
evervthing else fixed, it will change if we make different affine transformations to the

utility functions. Thus, the probabilities are not meaningful.

However, the state space, viewed as the set of possible second stage preferences, is
meaningful, as will be apparent from two results. Iirst, if we restrict attention to additive
XU representations, there 1s an essentially unique state space. This result continues to
hold if we drop the assumption of additivity across S but rctain the requirement that
all sccond stage preferences are KU, Second, if we drop the 15U requirement and the
additivity across S, there is still a natural reason to focus on 1 state spaces: such state
spaces arc always minimal.

To state our results more precisely requires some definitions. The most general kind

of representation we consider is the following.

Definition 2 An ordinal representation of > is a sct S.*' state dependent ulility func-
tions U 2 S < A(B) — R. and an aggregator v : R® — R such that V : P(A(B)) - R

represents preferences. where

V() = ul(sup U(3.5))ss]

Jor

and where w is strictly imercasing on UX(X) = {(sup,. (3. 5))yes | 0 € X}

“1 As with our definition of additive 21U representations (see footnote 17). to be precise. we need a
measure space where {7 1s measurable with respect to the space.

St might appear that the representation in Theorem 1 does not satisfy this last requirement
when the state space is uncountable and the measure is nonatomic. The requirement implies that
if we compare two sets. 2z and 2’. such that 2 has a higher maximal expected utility at one
state s (supg, , U(30s) > supy, o (3, 8)) and equal maximal expected utility at all other states
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Definition 3 An ordinal U representation is an ordinal representation where cach
U(-.s) is an capected -utility function in the scnsc that

U(F.5) = > U(b.5)3(b).

be I3

Of course, our additive U representation is an ordinal U representation where the

ageregator 1s additive.

Finally, we must define what we mean by the set of sccond-stage preferences in a
representation.  Given a representation of any of the above forms and a state in that
representation, we define =* to be the preference relation over A(B) represented by the
utility function UV7(-.s). That 1s, > 1s defined by

F=rd = U(d.s)>U(ds).
It should be clear that, the only important aspect of the state space 1s the set of preferences
it corresponds to. In light of this, we henceforth refer to the set {>7] s € S} as the state

space.

We say that a representation (of any of the above forms) is nonrcdundant if there is

. - - . - s oo

no state with complete indifference that is, there is no state s such that 3 ~2 3" for
. 0% e . - .

all Jand 3.7 To understand this, note that the preference relation over menus cannot

identify whether or not there is a state s with complete indifference as the presence of

such a state simply adds a constant to the value of any .

Our results are strongest and clearest when there is an additive 15U representation
with a f{inite state space. In this case, given the restriction to XU representations, the
state space 1s uniquely identified. That is, every nonredundant ordinal or additive U
representation has the same state space. Once we move outside the class of EU represen-
tations to general ordinal representations, this uniqueness no longer holds. However, any

(supy, , U(3.8) = supy-, U3 &) for all & £ ). then x 15 better: wl(supy., U(3.58))e 5] >
ul(supy,  7(3.8) e 5. But changing the value of the function being integrated at one point will
not change the integral if pis absolutely continuous. To understand this requirement. note that if we
Lhave a continuous measure and if £7(-. $) is continuous in s. then if sup 4, (3. 5) increases at one s. it
mmust increase on a neighborhood, so this difficulty cannot arise. Put differently. if a point is included
in the state space. then it must matter in the sense that an increase in the payofl at that state always
“counts.” either because ;o has an atom at that point or because the state is part of a group of “nearby™
states which behave similarly. Thus, while we did not state this property of “increasing on [77(2)" as
part of the definition for additive EU representations, the representation we constructed in the proof of
Theorem 1 satisfies this property.
'.’-'i'l‘ ;e this ¢ liti cr it rule > trivial preference where r 2+ for all N 1 2’
o use this condition. we must rule out the trivial preference where a2~ x' for all menus 22 and 2.
It is not hard 1o show that the only state space for such preferences consists of one state with complete
indifference over all of A(B). Hence, when we speak of a nonredundant representation, we are implicitly
ruling out such trivial preferences,
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ordinal representation whose state space differs from the unique nonredundant additive
12U state space has a strictly larger number of states.

Outside the finite case, our results are a little more complex. The general version

ol our uniqueness result focuses on the closure of the state space, rather than the state
space itsell. To understand why, suppose B = { L. M. R} and suppose we have an additive
U representation with S = {1.2....}, a measure g with full support on .5, and state
dependent utilities given by

U(L.m) =1

U(Mom) =1/m
U(R.m) =0

There 1s an obvious sense in which the “limit” of this sequence of preferences is the
preference represented by von Neumann-Morganstern utility function {7 with U(L) = 1
and U(A) = U(R) = 0. Is this preference in the support? The answer would seem to
be no: there 15 no s in the support of g such that =% is this preference. On the other
hand, suppose we rewrote the representation to replace S above with the imduced set
of von Neumann Morganstern utility functions. That i1s, we could replace state 1 above
with (1.1.0), state 2 with (1.1/2.0), etc. Since the support of a measure must be closed
and since this sequence of vecetors converges to (1.0.0), we would now conclude that this
preference must be in the state space.

In other words, we cannot meaningfully distinguish between an U state space and
is closure any difference between them for an additive EU representation is only a
matter of how we choose to write the measure. A sunilar 1ssue arses for ordinal 12U
representations: we cannot identily the presence or absence of limit points. To see the
point, supposc we have an additive XU representation with a state space given by the
onc m the example above together with the “limit state” | say oo, where

U(L.>x)=1
U(M.oc) = U(R.~c) = 0

Suppose the measure puts probability (1/2)"™!'" on state m and probability 1/2 on state
o>c. Then we could rewrite this as an ordinal EU representation without the “limit state”
as follows. Let the ageregator, u, be defined by

e 1 Tt 1 1
II(U.‘]. Wwy. .. ) = Z <§) Wy + 5 "%HH( Wiy -
. :

m-

(It 15 casy to see that the limit must exist for “relevant” w vectors - that is, for any w
vector in [77(X).) Letting

1 mf-1 7 1 )
Vi) = Z <§) sup (3, s) + 2 Sup U(3.0c).

Jer Jer
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it 15 casy Lo see that for any r,

Vi(z) = ul(supye, U(3. rri,)),,,&{l_lm}].

In other words, the aggregator can take the limit itself and act as if the limit state were
included. Hence, again, it is impossible to identify the presence or absence of such limit
points in the state space.”™

We define the closure of a set of EU preferences by defining convergence of a sequence
of EU preferences. This topology was also used by Dhillon and Mertens (1996). It is
also not hard to show that it justifies the intuitive statements above about limits of

preferences.

Definition 4 Given a scquence {7} of capeeted - utility preferences™ over A(B). we say
that =7 is a limil of the scquence if it is a nontriviaP® cxpceted utility preference such
that

3 >* 3 implies 3K such that 3>} 3", Vk > K.

The closurc of a sct of copected--utility preforences adds to the scball such limit points.

Theorem 11 If 1y and Ry arc nonrcdundant ordinal EU representations of the same

] 1T 2 .
proforence = where = satisfics continuity and monotonicity, then the closurc of the stale
spaces for Ry and [y arc the same.

This result is proved in the appendix but we provide a proof sketch for a simple special
case to give the intuition. Consider the case where B = {L. M. R} and where there arc
two nonredundant ordinal U representations with {inite state spaces. With finmite spaces,
the closure is just the state space itsell, so our result says that these state spaces must
be the same. Calling these representations 1 and 2 for brevity, suppose, contrary to our
claim, that representation 2 has a second-stage preference, say >", which is not in the
state space for representation 1. PFix any (interior) indifference curve, say [7, for this
preference and let @ be the (weak) lower contour set for [* (see igure 1) that 1s, the
set of lotteries “below” (in utility) or on the indifference curve.

Suppose that for ecach second: stage preference, say >, in the state space of represen-
tation 1, we lind the highest possible indiflerence curve subject to the constraint that the

ST his % not to say that there is no way to bring in additional information about the agent which
would enable 1s 1o make this distinetion. only that preferences over menus cannot be used to identify
the state space more precisely than up to closure.

“"That is, preferences satisfving the von Neumann Morganstern axioms.

T hat is. 3 = 3 for some 3.3 € A(B).



indifference curve have a nonempty intersection with x. It 1s easy to sce that there are
three possibilities. IMirst, the best possible point for the preference >, may lie in the set
2, 50 that, the constraint is not binding. In this case, the lower contour set associated with
this preference and this constraint would be the entire simplex. Second, it can happen
that the best point for the preference >, lies at the point labelled o in Figure 1. The
dotted line from o would be a typical indifference curve giving this optimum. It should
be viewed as the indiflerence curve with the slope closest to that of I* among all the
indifference curves from the preferences in representation 1 which have « as the optimal
choice. Because representation 1 has a finite state space, there is a closest such indiffer-
ence curve. Because that state space consists entirely of expected—utility preferences and
does not. contain the preference =+, this closest indifference curve cannot coincide with
17, If the indifference curves did coincide, the expected—utility property would say that
the preference generating this steepest indiflerence curve 1s exactly =*, contradicting, our
premise. The third possibility is the analogous case where the best point 1s 3. Again,
the dotted line from 3 should be interpretted as the closest such indifference curve to 1*.
Again, this indifference curve cannot coincide with [*.

The key implication of this is that if we take the intersection of these various lower
contour sets, we get r Uy as shown in Figure 1. Because neither dashed indifference
curve can coincide with 1) the set y mmust be nonempty.

To see the significance of this, fix any preference in representation 1 and compare the
level of utility achicvable when the feasible set 1s a0 to the level feasible when it is 0 U y.
It is easy to sce that in any of the three cases above, adding y to the feasible set does not
cnable the agent to ncrcase her payoll. Hence for every s in representation 1, we must
have

max /(3. s) = max [7(7.s).
Jor Jear. oy

Hence 2 ~ Uy, On the other hand, clearly, if the preferences are =" the agent would
be strictly better off choosing from 2 U 7 than choosing from @ alone. Since the agent
cannot be made worse off from the expansion ol the feasible sct, we see that for every
state s i representation 2,

max {7(3, s) < max U(3,s).

Jeax Jderoy
with a strict inequality for the state where the agent’s preference is =*. Hence represen-
tation 2 has .- Uy = 1, a contradiction. |

Remark 2 It is worth noting that this result does not require the independence axiom.
While Theorem 1 showed that an additive EU representation exists only if the prefer-
ences satisfy independence, a prelerence can have an ordinal XU representation without

satisfving this axiom.
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As we noted in the introduction, one reason the lack of identification of the state
space in Kreps” framework is problematic is that it makes it quite difficult to relate the
structure of the state space to intuitive properties of the underlying preferences. lor
example, a natural intuition is that larger state spaces correspond to a greater “concern”
about unforeseen contingencies. In the Kreps framework, this not true: alternative rep-
resentations of the same preference can have nested state spaces. Since we pin down the
state space (given the 12U restriction), a natural conjecture is that larger state spaces do
correspond to more “concern” about unforeseen contingencies. In fact, our proof of The-
orem 11 shows that this conjecture is correct. Specifically, say that >, valucs flexibility
more than > if

U3} = o implies U {3} >4 .

In other words, whenever > values the greater flexibility of o U {4} over &, > docs
as well, so the latter values llexibility at least as much as the former. Intuitively, in
this approach, the value of flexibility is attributed to unforeseen contingencies. Hence an
agent who values flexibility more than another does so because she 1s more concerned with
unforeseen contingencies. The following theorem says that if one agent values flexibility
more, then, as we’d expect, the closure of her state space must be larger.

Theorem 12 Lot R denote a nonrcdundant ordinal BU representation of preference ;.
i = 1.2, whore both proforence rations satisfy monotonicity and continuity. Supposc >,
values flexibility morc than =, Then the closurc of the state space for Ry is a subsct of
the closure of the state space for Ry,

It is casy to see that Theorem 11 is a corollary to this result. In short, our identification
of the state space cnables us to relate its structure to intuitive, economic propertics of
the underlyving preferences.

Thus given the restriction to expected utility preferences in the second stage, we ob-
tain the strong result that the set of second stage preferences is essentially unique. If
we drop the restriction to second- stage expected—utility preferences, we still have a nat-
ural reason lor focusing attention on expected- utility preferences: such state spaces are
minimal. As noted above, 1n the finite case, our result i1s that any ordinal representation
whose state space is not, the same as the unique EU state space must have a strictly larger
state space. In the infinite case, the result is more complex and requires us to define a
kind of representation in between additive and ordinal representations. This representa-
tion, which we call a finitcly additive FU representation, is identical to an additive 15U
represcentation, except we only require p to be a finitely additive measure rather than a
standard (countably additive) measure.

We view finitely additive EU representations as slightly less appealing than addi-
tive EU representations.  Finitely additive measures are undeniably less convenient for
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characterization purposes than countably additive ones and can lead to odd properties,
as discussed by Stinchcombe (1997). In our case, the kinds of paradoxes explained by
Stinchcombe cannot, arise,”” however, so we do not see this representation as significantly
less desirable than the simpler additive EU case.

In the infinite state case, our result is that there is always an ordinal U representa-
tion, cither additive or finitely additive, whose state space has the smallest cardinality
among all state spaces of all ordinal representations. More precisely,

Theorem 13 Cliven our arioms:

L. If there is a nonrcdundant ordinal ETT representation with a finite state space. then
any ordinal reprosentation. BU or otherwise, with a different state space has a
strictly larger one.

2. If there is a nonrcdundant ordinal U representation with an infinite state space.,
then cvery ordinal representation has an infinitc state space. Henee if there is a
nonrcdundant ordinal 12U representation with a countably infinite statc space. the
statc spacce for cvery ordinal representation must have weakly larger cardimalily.

3. There is always a [initcly additive EU representation with a countable stale space.

Again, the proof is contained in the appendix but the basic intuition is not difficult.
For simplicity, we describe this intuition only for the case where there is a nonredundant
ordinal I"TT representation, say representation 1, with a finite state space. I'ix any pref-
crence, say =%, in the state space of representation 1 and any (interior) lower contour
set, say o, for that preference. ix any set of lotteries y which is disjoint from . If
the agent’s preferences are given by =", then clearly she is strictly better off choosing
from . Uy than from 2 alone. After all, 7 is the sct of lotteries yvielding utility less than
some amount according to =", so everything in 7 must yield higher utility. Since the
agent cannot be worse ofl choosing from 2 U y than from x in any other state, this tells
us that Uy = . Ience if we have another representation of these preferences, say
representation 2, this property must be preserved.

How can it be preserved? Clearly, one way to do so is to ensure that representation 2
contains a preference for which 2 1s a lower contour set. It turns out that if representation

2 also has a finite state space, this is the only way to ensure this property. (If 2 has an

[ R . PR . .

=" The reason finite additivity causes no problems for us is that it only allows us to construct a smaller
state space, not to represent otherwise unrepresentable preferences. Hence the preferences must be just
as well behaved under a finitely additive EU representation as under the regular additive EU.
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infinite state space, then our minimality property clearly holds, so we need not consider
this case further.)

In light of this, fix any interior 3 and consider the collection of lower contour sets
for the different preferences in the state space for representation 1. Since these are
all expected ntility preferences, each different state must be associated with a different
lower contour set. But each of these lower contour sets must be associated with a different
second stage preference in representation 2. Hence representation 2 must have at least as
many possible second stage preferences as representation 1. In fact, the proof of Theorem
13 shows that this comparison must be strict unless the state spaces are the same. |

In short, we see that our axioms imply that there is an additive (or finitely additive)
I2U representation whose state space has the minimum possible cardinality. In this sense,
such representations have the “simplest” possible state space.

3.2 Meaningful Additivity

As discussed in the introduction, the additivity of Kreps’ representation is not meaningful
in the sense that it does not imply any restriction on the preferences. That is, in his
framework, preferences have an additive representation whenever they have an ordinal
one. It is true that some ordinal representations are intrinsically nonadditive in the sense
that the ageregator is not a monotone transformation of a summation. Still, preferences
with such ordinal representations do have an additive representation but on a different
state speu:o.:&

As seen above, we can pin down the state space in our framework, suggesting that ad-
ditivity is more meaningful here. In this subsection, we demonstrate that this is correct:
additivity is an implication of our axioms. More specifically, the aggregator for any ordi-
nal U representation of preferences satisfying our axioms is a monotone transformation
of an iutegral and so is intrinsically additive. Hence any preference with an ordinal EU
representation which is intrinsically nonadditive is excluded by our axioms. Since our ax-
ioms are necessary and suflicient for the existence of an additive 12U representation, this
implies that for such preferences, we caunot simply change the state space and find an
additive EU representation. In this sense, additivity of the representation is meaningful
here in a way it is not in Kreps (1979).

This intuition suggests that a distinction between ordinal and additive might be ob-
tained in Kreps” model by means of a restriction on the second stage preferences, analo-
gous to the way we require expected-utility in the second stage. While it is conceivable

2¥Sce Kreps (1979). page 573.
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that there is some restriction on the set of prelerences over menus such that this could
be done, it cannot be done within the class of preferences Kreps studies. In Section
C of the appendix, we show by example that there i1s no restriction on second - stage
preferences possible in Kreps’ framework which (a) allows an additive representation of
cvery preference he considers and (b) does not allow any intrinsically nonadditive ordinal

representation.

On the other hand, we do satisfy these two criteria for the set of preferences we
consider. Theorem 1 showed that every preference satisfying our axioms has an additive
U representation. The following result shows that none of them has an intrinsically

nonadditive ordinal EU representation.

Theorem 14 Lot (S U u) be an ordinal IsU representation of any prefercnce satisfying
monotonicity, continuity. and independence. Then there exists a finitcly additive measure
(oon S such that for any x C A(13).

u((sup (3. 8))scs) = / sup (3. $)pu(ds)

3o S Jor

wp Lo a monotone transformation.

It is important to note that this result does not just say that given any ordinal U
representation, there is some (finitely) additive EU representation that is a monotone
transformation of it. Since any two functions representing the same preferences must be
monotone transformations of one another, this would be trivially true. Instead, the result
says that the agegregator function v must be a monotone transformation of an integral
(at least restricted to the relevant set of points in R®). In this sense, all ordinal U
representations are intrinsically additive.

The mtuition of the proof, contammed m the Appendix, is very simple. =From Propo-
sition 3, we know that, up to a monotone transformation, we must be able to write

u{(sup U (3. 5))es) = V().

Joer
for some function V' which is linear in the sense that
V(Az 4+ (1 = XN)a') = AV (x) + (1 = V().

Also, 1t 1s not hard to use the fact that UU(-. s) is an expected—utility function to show
that for all s € 5,

sup U(3.s) = AsupU(d.5) + (1 = A)sup U(3. ).

JeAr (- X! Jex dex!
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Hence up to a monotone transformation,

(s, () (1= A) s U5 o)
= Au((supye, U(3.8))ses) + (1 = MNu((supge, U(3.5)) s s)-

Therefore, v must be (extendable to) a lincar functional and hence can be written as an

integral with respect to a finitely additive measure.

4 Conclusion

To summarize, we have extended Kreps (1979) in four important ways. irst, we have
shown how additional structure can be put on the second-stage preferences. Because the
second-stage preferences are only indirectly identified through preferences for flexability,
this 1s not a standard exercise. Second, using this additional structure, we showed that
the state space 1s (essentially) unique within the class of representations we primarily
focus on. That is, there is an essentially unique state space which must be used i every
nonredundant U representation, additive or not. Third, even in a much broader class
ol representations, our additional structure implies that the EU state space is minimal
and thus a natural focus of study. Finally, because we are able to restrict the state space
this way, the additivity of the representation is meaningful. As illustrated i Theorem
12, pinning down the state space opens up the possibility of giving concrete economic
meaning to the properties of the objects i the representation. Our hope is that this

paves the way to applications of this model.



A A review of the Hausdorft topology

Let d denote any distance on A(3). LFor any pair z, 2" € P(A(3)), we deline as usual

d(a.x') = inf d{a. ) (5)
dea!
and
c(rv.x') =supd(a.a’), (6)

the caeess of x over ', As is well known, one can define two hemimetrics over P(A(5))
with this function. In particular the ball around x of radius ¢ in the upper hemimetric

topologv is the set:

B'(x.¢) = {a' € P(A(B)) | e(x.2") < ¢} (7)

while the ball in the lower hemimetric topology 1s the set:
Bl(r )= {1 € P(A(B)) | elz' . x) < ¢} (8)
and f{inally the ball in the hemimetric topology 1s the set:

B(a.) = {r' € P(A(B)) | max{ec(z' . x). e(z.2")} < .} (9)

Clearly B(x.¢) = B*(x. )N B!(xr. ). The topology whose basis is the balls as defined
in (9) is the Hausdorfl hemimetrie topology.

B Proofs

Proof of Lemma 2. By monotonicity, cl(z) = . So we ouly have to show that cl(x) > o
1s impossible. To sce this, suppose that it does hold. By continuity, then, for some ¢ > 0

cl(x) = &', for every 2’ € B(x.¢). (10)

Now define:

=13 CAB) | d(d.0) < ={3e A(B)|d(3.3) < for sume ' € x}.

Clearly, cl(x) C x', so ' > cl(x) by monotonicity.

But by definition of =, sup, ,.d(7.2) < ¢. Also, though, x* is the sct of 3 such
that d(3..9) < ¢ for some 3" € x, so sup,, ,d(3.2) < ¢. Hence x* € B(a. ), implying

cl(@) > 1", a contradiction.

32



We now show that conv(z) ~ z. First we show the result for any finite x. This step
only uses monotonicity and independence.

So suppose conv(x) Aur. By monotonicity, we must have conv(r) > 1. By indepen-
denee, for every A € (0. 1),
Aconv () + (1 = Aeconv(x) = Ax + (1 — A)conv(x).

It’s casv to sce that the set on the left-hand side must be conv(z). To see this, note
that " € A2’ + (1 — M)z’ for any set &’ and any A € [0, 1]. Lor the converse, simply
observe that if 3 = A3, + (1 — )3, where 3.3, € conv(x), then 3 must also be a convex
combination of clements of » and h(n(( must dlso be in conv(z). Hence we have

conv(xr) = Ar+ (1 — A)conv(x)
forall A€ (0.1). Let = {J,...... 3, } (recall that z is finite). We now show that for all
A€ (0.1/n], Ae + (1 — )\)Con\r (r) = cun\( ), vielding a contradiction.

To sce this, note lirst that Az + (1 — A)conv(z) C conv(x) for any A. Lor the converse,
fix any A € (0 1/n] and any 3 € conv(x). By delinition, there arc nonnegative numbers

Ligi=1..... 1, such that 3.1, = 1 and Y, (;3, = 3. Clearly, there must be some j such
that 1; > l‘/n. Define £; fori=1... .. n by

. ti— A

f]‘ —

: 1—A
and for 7 # |

, (;

['i - .

1—A

Obviously, {; > 0 for all i # j. Also, {; > 1/n > X implics {; > 0. Finally,

. 1

Let 3=5,1,3,. Clearly, 3 € conv(r). Hence
A3 4 (L= A3 € X+ (1= A) conv().

Clearly, we can write A3, 4 (1 — A)3 = 37, ({3, for some coellicients ti. It is casy to sce

that 1= (1= A); = {; for i # j and 1) = X+ (1 = M1, = {;. Hence A3; + (1 — A= 3.
Hence A+ (1 — ANeonv(z) = conv(x).

So we get conv(ir) = conv(x), a contradiction. Ience for every finite x, . ~ conv(r).
So fix any set x such that conv(z) has finitely many extreme points. Let 2 be the set of
extreme points. Then we must have

" Ca Cconv(r),
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so monotonicity implies #* < & < conv(x). By the above, though, 2* ~ conv(r), so
1~ conv(x) . This completes the proof for finite .

Next we use continuity to extend this to any closed r which 1s sufficient for the result
by the fact established above that x ~ cl{(x). FIirst, we prove that for cvery closed
1 € A(B), there is a countable set £/(r) such that conv(E(x)) = conv(x).

It is well known that the support function for a closed , ¢ : R” — R, is continuous
and satisfics
conv(x) = [ H(p). (11)
pc . RE
where

Hip)={yeR” | (p.y) <o}

where (p.y) is the inmer product. Ience, letting 1) be the set of clements in R? with
rational coordinates,

conv(z) = () 1(p). (12)

pe D

To sce this, note that ) € R” implies Myers H(p) € My pl(p). Tosee that the inclusion
cannot. be strict, consider any 3 ¢ M, gull(p). Then there is some p € R?” such that
(p. ) > o(p). By continuity of ¢ and density of D, the same inequality obtains for a
p € D implying 3 ¢ My, pl(p). Hence Ny, ge H(p) = NyepH(p) = conv(x).

Lor cach p € D, choose any £(p) € argmax,, ,(p. ). (This is well defined becanse r
is compact.) Let F(x) = {&(p) | p € D}. Obviously, () is countable. Then

conv(zx) = conv(l(x)).

To see this, note that the inclusion conv({&(p)}, n) C conv(x) i1s immediate from the
defimtion of &; that this inclusion cannot be strict is casily shown by arguing by contra-
diction and using the separation theorem.

To conclude the prool we combine these two results, namely that for any fimite
conv(x) ~ x for {inite ., and that for any closed x, conv(z) = conv(/(x)) for a countable
set F(x). So for x C A(B), take a sequence ¢ of finite subsets of [2(x), such that
¢" C " for every n, and U, 5 (") = F(x); then define x,, = conv(¢,). Clearly 2" C
for every n, so:

x ="~ conv(z").

from monotonicity and the result for finite 2. Also, conv(2™) — conv(x), so 1 > conv(.r)
from the continuity axiom. |

Proof of Proposition 3: We make use of the following lemima.
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Lemma 15 If preferences satisfy continuity and monotonicity. then there is a conlimuous
Vi) 1 X — R that represents preferences, ., such that x> 2 iff V(e) > V(2').

Proof. Note that A(3) is connected, compact, and metric. Hence (X.7), where 7y 15
the Hausdorfl topology, 1s:

1. separable (see Theorem 4.5.5, page 51, of Klein and Thompson (1984));

2. connected (see Theorem 2.1.6, page 20, of Klein and Thompson (1981)).

Now all the conditions of Debreu’s theorem (see for instance Fishburn (1970), Lemma
5.1, page 62) are satislied, giving the desired representation. |

Next, we verify that the mixture space axioms (sce Kreps (1988), page 52) hold for
X. The only mixture space condition which is not trivial to verify is the Herstein
Milnor continuity condition. We now show that our continuity condition implies that
it 0" € X and o > o' = 2, then there is a A € (0.1) and Ay € (0.1) such that
A4 (L= A)a" > o' = A 4 (1= Agp)a”. To see this, let Aa+ (1 = X)a” = 2(A). Then
for any Ay € 10,1,

(11[:\llS(IA)I‘fr(;’t(A:) . I(/l)) = dsupnorm((TJ‘(A) - (T.'I‘(lt))
— ! A— H ‘, dsupnm‘m(“.]‘ - (T.r”)

where the first equality is part (1) of Lemma 4, and the second follows from part (1) of
Lemma L Ilence the function from [0.1] to X with the Hausdor{l topology defined by
(A is contimons. Now the result follows from the continuity of Vp, (sce Lemma 15).

Remark 3 The restriction to X is needed for the mixture space axioms because AN+
/ , . .
(L — X)) 4 (1 —= A’ might not equal A'x + (1 — AN’ if 2 and 2" are not convex.

Hence by the Herstein Milnor theorem, there is a linear Vo which represents the
preferences and is unique up to an affine transformation. By this uniqueness and Lemma
15, V" must be continmous in the Hausdorfl topology. |

Proof of Lemma 7: By the Stone Weierstrass theorem (see, c.g., Meyer Nicberg

(1991), Theorem 2.1.1, page H1), we only need to show that

1. 11" is a vector sublattice of C'(S™);



2. ™" separates the points of S™;

3. H* contains the constant function 1gn.

Step (1). First note that H is a convex cone (i.c., a convex set that is closed under
positive scalar multiplication), since it equals U,.oC'; and ('} 1s convex and contains
the zero lunction.” Lemma 5 implies that H contains the supremum of any two of its
clements. Next, note that C'(S") 1s a vector lattice, 1.c., an ordered vector space that is
a lattice (that is, contains the supremum and infimum for any two elements of C'(5™)).*"

Now we show that since H* = H — H, where H 1s a convex cone that imcludes the
supremum of its elements, and H* 1s a subset of a vector lattice, we can conclude that /1*
15 a vector sublattice. That /17 is an ordered vector space is trivial. That it includes the
supremunt of any two of its clements follows from the fact that H does. To see this, first
note that (o —ay) V (0) —al) = [(01 + )V (0] +09)|— (09 + 7)), because (7, —a9) V@
= (o Vao+aay)— ay for any 0 € H*. Using this we prove that (o, —a,)V (o) —al) € [1*.
The clements oy + oy, 0} + 0y and 04 + 7, are all in H; therefore (o) + 0},)V (0} +7,) €
/1 since it is closed under taking supremums. Therclore (0, — 0y)V (o) — a}y) € 1™ {from
the preceding argument and the definition of /7%, Finally we prove that it includes the
infimum of two of its elements. While H 1s not closed under taking infimums, this follows
for 11* = 11 — Il by taking negatives. Specifically, (o) — ay) A (0] — 0y) = —|(0y — o)V
(0, =) = — (o1 +03) V(a) +03)) = (02 + 03)] = (02 + 0) — [(01 + 3 V (o) 4 02)).
Now repeat the preceding argument. |

Step (2). Let s.s' € S".s 4 s Note first that for any r € X which contains

(L/n..... 1/n), one has o, € (';. Now it 1s casy to construct a set with this property
such that o,(s) > 0,(s'). Iind an clement o € R” such that (s, a) > max{0.(s".a)}
(where (s.) is the Inmer product this can be done, for instance, by appeal to the

separation theorem), and 37, o’ = 1. For A small enough, Aa+ (1—=A)(1/n..... 1/n) =
a(A) € A(B), and if we let 2 = {0a(A)+(1—=0)(1/n.....1/n) | 0 € [0.1]} then we have:
a.(s) = As.a) > g,(s") as claimed. |}

Step (3). Lollows [rom Lemma 5 and the defiition of 77. ]

“The details are as follows, If f € . and ¢ € R_ then clearly £f € H. I fi € H.i = 1.2, then
fi=rigiogi € Ot =120say ry <. Soif A e [001] then Ay + (1 = A)fo = Mg + (1 — ,\)ﬁl'lgz
= g+ (1 — ,\)%“(/2]. But the function in square brackets is in (. because %gz € ("_. This last
statement follows in turn because ﬁ € (0,1). and ("~ is a convex set which contains the zero.

"We defined the supremum, 0 Vo', in part (1) of Lemma 5; the infinimum, denoted 0 A g, is defined
similarly. For 0.0’ € (C(S7). and for r € R, addition, 0 + ¢, and scalar multiplication, ro. are both
defined in the usual way. under which ('(S™} is obviously a vector space. It is ordered in the usual way
and for that order it is an ordered vector space. Moreover. it also obviously contains the sup and inf of
any two of its clements.
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Proof of Lemma 8: We have seen that /1% is a subspace of C'(5"), and that W is a real
linear functional on /1%, Forany f € 1™, — || f || 1s» < f < || [ || Lsn, where || f | is the
supremum norm in C'(S™) and 1g» is the indicator function of S™. Since W is monotonic
on ) =W (le) || S| SW() < W (lgn) || £, that 1s [W(f)] < W(ls) || f |- Hence
by the Hahn Banach theorem (sce Theorem A, page 187 of Royden (1968)), W has an
extension (o a continious linear functional on C'(S™). That this extension is unique
follows from the fact that /7™ is dense in the supremum norm in C'(S"), as shown in
Lemma 7. |

Proof of Lemma 10: By Lemma 2 and Proposition 9, for any x € P(A(1)),

Vi) = / max /(7. s) p(ds).

S e convicl(x))
Iix any closed € P(A(B)) and any s € S. Clearly, x C conv(z) implies

max [7(J.s) > maxU(7.s).

Jt conv(r) Joar

The lincarity of U7(-.s) implies that this inequality can never be strict. Hence for every

1 € P(A(])),

Vir) = " max (3. s) p(ds) = / sup /(3. s) p(ds).

Js Jcel(r) S Jea

Proofs of Theorems 11 and 12: These proofs and the proof of Theorem 13 make use of
a proposition which is an adaptation and generalization of Kreps’ (1979) Theorem 2. This
proposition, in turn, makes use of the following lemma. Given an ordinal representation,
R = (S.U.u), let Pp denote the set of prelerences in the representation  that is,
_ * . N
Py= {}J 5 € S}
For any preference >* over A and any 1 € A let

L.o(F)={FeA|d=" 3}

That is, £.-(7) i1s the (weak) lower contour set for =" at 3. Let £, - denote the collection
of these lower contour scts for =" and let

Lemna 16 or any ordinal representation B oof = and any v € Ly,
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Lo <aoU{3} for any 3 ¢ x.

2. ws closcd if = satisfics monotonicity and continuity and is conver if = also satisfics
mndependonec.

Proof of Lemnma.

Part (7): Supposc = L. (') for »:€ Py. By the delinition of a lower contour set,
for all 4 ¢ r,
max {7(3.5) = [7(3". s) < U(J.s) = max U(ﬁ.s).
Jer Jero{d}
Since enlarging a set cannot make the agent worse off in any state, the fact that the
aggregator is strictly increasing on the relevant set implies that = U {3} > .

Part (i7): Suppose r € Ly is not closed. Let 3 be a point in its closure such that
3 ¢ . By part (z), we must have o U {3} > 2, contradicting Lemma 2. Suppose z € Ly
15 not couvex. Then there exists = A3, + (1 — A)J3,, where J, and 3, are in @, but 7 is
not. Since J &, (7) implies = U {7} > 2. But @ ~ conv(xz) = conv(w U {3}) ~ r U {5}
by Lemma 2, a contradiction. |

Proposition 17 Lot R, = (S5, T, u;). i = 1.2, denole ordinal representations of prefor-
cnces =, whore both preforcnce rlations satisfy monotonicity and continuilty. Supposc
o valucs flexibility more than =, in the sense that

2 UL} =) ¢ implies x U {3} =y 2.

Then for cvery preference in the state space of Ry and cvery lower contour sch a for
that prefercncc, o cquals the interseetion of some colleetion of lower contour scls in [,
Morc preciscly, for all =*€ Py, for allx € L, -, there (s an index sl K, a nonrepcealing
scquence of states i representation j, {sibrcrw € Sy, and a sequence of lower conbour
scts {ep b such that xy. € E*% and

Proof of Proposition. Let a denote any element of Ly,. For each s € Sy, let

g = {3 € A(B) | Uy(H.5) < max Uy(3.9)}.

By part (i7) of Lemma 16, 2 must be closed so this is well defined. Clearly, cach x, € Ly, .
Tet
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Clearly, » C xg for all 5 € Sy, so x C 2. We now show that x = 2.

The proof that r = .+ is by contradiction, so suppose that x is a strict subset of 2. Let
3 e 2\ r. Clearly, » € xU{3'} C 27, so by monotonicity, Va(x) < Va(xU{3'}) < Va(a').
[Mowever, by the construction of ', for every s € 5y,

sup Uz(fﬁﬂ s) < sup (»’2(173..5').

Jer’ Jor

so we must, have V(') < Vy(r). Ience & ~y 2 U {3}, However, by Lemma 16, part (i),
the fact that » € Ly, implies 2 U {3"} > i, so the assumption that >, values flexibility
more than =, mmplies U {3’} =, &, a contradiction. Hence » = 1. ]

We next prove Theorem 12. Theorem 11 1s a corollary.

So fix any s, € S;. We show by contradiction that >3 € cl({>}] s € S3}). So suppose
not. Iix any interior J and let 2 = £>;1 (). Note that the lower contour sets in an ordinal
15U representation are half spaces intersected with A(3); this follows immediately from
the fact that indifference carves with U preferences are straight lines. We therefore call
them half spaces. So i is a hall space. By Proposition 17, » must be the intersection
of some collection of lower contour sets in Ly = Lg,. By supposition, =7 is not in the
closure of representation 2’s state space. Since all the preferences are expected- utility,
this means that r € £,. Since all the lower contour sets in £, are half spaces also, r must
be the intersection of an infinite sequence of distinet lower contour sets in £y. That is,
because 1 1s a half space, no finite intersection of convex sets (hall spaces or otherwise)
not, including » could equal x. Hence there is a nonrepeating sequence of states i Sy,

{52}, and a nonrepeating sequence {a } with ; € L, -, such that
“k

>
€= m L.
kel

Without loss of generality, we can choose this sequence to be of nested sets, so for every
N, Oy Ly is itsell an element of £,. Hence 22 must be the limit of the sequence {ay}.
Because all these preferences are expected-utility preferences, it 1s casy to see that every
lower contour set for the >} preferences can be generated as a sequence of lower contour
sets {rom the same sequence of states {s3}. This implies that > is the limit of {>2.}. To
: 52
sce this, simply note that >* is not trivial by nonredundancy. Furthermore, if 3 -7, g
- v . . . ! - ~
then there is a lower contour set, say x, for =7 which includes 3 but not 3. For k
- - . - U
sufliciently large, the lower contour set for =, which converges to . must also mclude 4
52
and not. 3. Henee for & sufliciently large, 3 >*, 3. By definition, then, =7 is the limit

& S
of {>:i b Ience Py, C cl(Pg,), so cl(Pr,) C cl(Pg,). |1
Proof of Theoremn 13.
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Part (i): Iix a nonredundant ordinal EU representation and let P denote its state space
where P is finite. Let (S°.1U7”.u”) be any nonredundant ordinal representation and let
P” be its state space. Clearly, the result holds if P? is infinite, so assume it is also finite.

We first construct a function [ @ P x int(A) — P? (where int(A) is the interior of
A). To construct it, fix any =*€ P and any 7 € int(A). Because P is a nonredun-
dant collection of EU preferences and because 3 is interior, £,-(3) £L, () whenever

=1 F .

For any =*€ P, the same argument as in the proof of Theorem 11 shows that £, - ()
must either be a lower contour set for some preference %€ P? or else be the intersection
of a family of lower contour sets for preferences i1 P?. Suppose the former case does not
hold. Then there exists an index set K, a nonrepeating sequence of states s, € S for
ke I, and lower contour sets a1y for preference =7 for kb € K such that

ﬂ rp =L (7).

ke IV

Without loss of generality, we can assume that if s and ' are distinet states in this
sequence, then =% # =% since effectively only the smaller lower contour set appears n
the intersection. Hence K must be smaller than the cardinality of P?. Recall from part
(i7) of Lemma 16 that each 2y must be convex. Hence, just as in the proof of Theorem 11,
the fact that ry # £,-(3) for all k implies that K must be infinite. But this contradicts
the assumption that P? is finite. Hence it must be true that there is some >’¢ P? such
that £..(4) € L... Let f(>".3) be any such >

We claim that for every 3, f(-.3) is one—to-onc. To see this, recall that for any
3 € int(A), none of the £,-(3) sets is contained in any other. IHence there could not
be a preference relation, expected-utility or otherwise, which has more than one of these
sets as a lower contour set. Also, by construction, for every =*€ P, £,.(3) is a lower
contour set for f(>*.9). Hence f(>7.9) = f(>5.9) Ul =] = >3, s0 /( J) 1s one to one.
Hence [P} > [P).

We now show that by contradiction that P2 = P or else |[P?| > |[P|. So suppose
P? # P but that |P?] = |P|. Note that if f(>* ) f(=*) for every 3, then > has the
same lower contour sets as f(>*), implying =" f(=*). Hence P? # P implies that
there is some >7¢ P and some 3!, 3 in the illt(‘l‘l()l‘ ()i A such that f(=%,3") # f(=7. 5.
Letting == f(>1.3"), the f: i
such that >=*= f(>3. 3. 1‘111'Lh@1111010, [01 every Lhue must be some >*€ P such
that £.-(.7") € £... We now show that this cannot occur.

re must be some >5# >

To see this, note first that the ordinal EU representation has parallel indifference

curves so the indifference curve for preference > through A has a different slope than
. < qegr 2 . . a1

the same preference’s indifference curve through 3%, Consider the line between 3 and
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2. Tor cach point 3 along this line, the indifference curve through 3 for preference >
must be the indifference curve through 4 for some preference =*€ P. Since P is finite,
this means that the indifference curve must have one of finitely many slopes. For any
such 3, then, there is a =5 > 0 such that for every 3 which is a distance less than = ; away
from .9, the slope of the =* indifference curve through 3 is the same as the slope of the
>* indifference curve through 3. Otherwise, we would have two points arbitrarily close
together with indifference curves through them whose slopes are bounded away from one

another. Ilence the indifference curves would intersect, a contradiction. Let d be the

*
[

infimum of the distance from 3" along this line to a point 3 where the slope of the >
indifference curve through 3 differs from the slope at 3 ' Since 3% is such a point, we
know d must be weakly less than the distance to 32, By the argument above, we sce
that d > 0. Let 7' be the point a distance d along the line from 3! Suppose the slope of
the =7

[

. e . . IS .
indifference curve through 3 differs from the slope through 3°. Then moving an
. . . i A1 i B s 1
arbitrarily small distance back toward 3' must reach a point 3" where the slope of the
© rerr - o .
indifference curve throngh 47 differs from the slope through 3', a contradiction. So the
slope at 3" must be the same as that through A'. But then moving an arbitrarily small
. Y 2 . - . . .
distance from 3 toward 5% must reach a point 3" where the slope of the indifference
ol ey el - . -
curve through 3”7 differs from that through 3, again a contradiction. Ience the slope
a1 2 . .
through 3" must equal the slope through 37, a contradiction.

Part (7/): It is casy to see that the first part of the proof of Part (i) above shows that if
there is an ordinal representation with a finite state space, then the state space for any
ordinal EU representation must be of smaller cardinality. Hence if there is no ordinal U
representation with a finite state space, there cannot be any ordinal representation with

a fimte state space.
Part (ii7): In Theorem 1, we showed that the order > has a representation where x 1s
evaluated by [, a,.(s)p(ds) for a function o, which is continuous in s. Fix any countable

dense subset {5,177, of S", and define the operator 7' from C(S™) to £ (the Banach
space of the bounded real valued secquences, with the supremum norm), as

T(f) = (f(s)70). (13)

It is casy to sce that 7' is lincar, continuous, of norm 1, and injective. Hence T Falso
exists, and is lincar, continuous, and of norm 1.

We now define a correspondence 1), from regular measures on S™ to (£7)*, the dual
of £ in two steps. First, given the measure 2 on 8™, we define for every » € T(C'(S")):

(r.T,) = /S<[ Hr))(s)p(ds)

where (. T,pt) denotes the inner product. To see that T,p is uniquely defined, note
that 7 ' is well defined because 17 is injective. Also, it is casy to show that 77! is a
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lincar functional, making the right hand side a continuous linear functional on T(C(S™)).
Clearly,

)] < e (14)
for anv € T(C(S™), which is a linear subspace of £. Hence by the Hahn Banach
theorem, there is an extension of 7,1 to a continuous linear functional on £ which we
denote 1,. Then we see that the order > has a representation where x 1s evaluated by
the function (1(0,), i1,). Because the linear functionals on £ are (up to an isometric
isomorphism) integration with respect to a finitely additive measure (see, for example,
Dunford and Schwartz (1958), Theorem IV.8.16), x, is a [initely additive measure. |

Proof of Theorem 14. Fix an ordinal U representation (S.07.u) of preferences
satisfving monotonicity, continuity, and independence. For cach x, define a function
[U7*(x) : S — R by U*(x)(s) = sup,,, U(3.s) and let U*(X) be the set of U*(x) func-
tions. Letting V' be the function from Proposition 3 (where we continue to use the nor-
malization that V({1/n..... 1/n}) = 0), we must have, up to a monotone transformation,
V() = u(U7* () for all . Since the theorem allows for such monotone transformations,
we assume o satisfies this equality. Also, since u is only relevant on U*(X), we view it
as a [unction from [7*(X) to the reals and will extend it (indirectly) to a larger space

below.

Without loss of generality, we assume that ming, ;3 U7 (b. s) # maxy. ;3 U7 (b.s5) for all

5.1 Define functions v : S — Ry and p: S — R by

~(s) max [7(b.s) + n(s) = 1

he I3

and

“(s)% D Ub.s) +n(s) =0.

b B
It is easv to sce that v and 7 are well defined and that v(s) # 0 for all 5. Let

U(3.s) = v(s)U(A.8) +1(s).
Similarly, for cach r, define a function (7*(;17) :S—=Rby

U(a)(s) = sup [7(3.5)

Jear
and let [7*(X) denote the set. of such functions. Finally, define @ : 7*(X) — R by

_ ’ [—f — 1

~

/

3U[f this is violated for some s. such states can be trivially “added back in™ at the end of the argument.
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It is casy to show that @ is incar on U*(X) in the sense that for all U7, U, and X such
that U7, U7, and U + AU are all elements of U*(X),

To see this, first note that for all r, 2/, and A € [0.1],
u(U7 (x4 (1 — A’y = du(U () + (1= Nu(U"(2))

from the fact that V() satisfies this and that V{(x) = u(U* (). But the fact that /(3. s)
is an expected utility function implies

U (Ar 4+ (1= X)a')(s) = supgoae g-ne U5
- )‘Sllpdhz U (‘ S) + (1 B /\) SUP 3y (T(’ S)

= M) (s) 4 (1= N (@)(s).
Hence for all U0 € UF(X) and A € [0. 1],
WAL 4 (1= M) = Au(U7) + (1= Nu(l7).

It is then easy to sce that the same is true for @ and U. Note also that, by construction,

(the zero function), so the fact that V({1/n.....1/n}) = 0 implies @(0) = 0. =lrom
here, the proof that @ is lincar is exactly the same as the proof that 17 is lincar in Lemma
6, part 1.

Let A1(S) denote the vector space of the set of bounded measurable functions I
S — R. Equipping A(S) with the supremum norm, denoted || - ||, makes it a Banach
space. Also define I to be the vector subspace of finite linear combinations of functions
in the set T7*(X). Tt is casy to see that L is a subspace of M (5).** Extend @ to the space
L lincarly (just as W was extended to /{1 in the proof of Theorem 1 as there, the
lincarity of @ ensures that this can be done consistently). Clearly, # is a lincar functional
ou L.

Now we claim that for some constant (',

Al (r)) < ¢

() || (15)

To see this, note that the fact that v and hence @ must be increasing implies

a(U7 () < a(lf 7 () | 1s).

5 he measurability follows from our assumption that {7 is measurable. as explained in footnote 21.
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where 1q is a function on S which is identically one.*” By linearity of i, then

A () < a(n) | U*() ).

implying (15) with C' = u(/). Given this, the lincar functional @ on L can be extended
o a linear functional on A/(S) by the Ilahn-Banach thecorem.

Because the linear functionals on a Banach space are (up to an isometric isomorphism)
integration with respect to a finitely additive measure (see, for example, Dunford and
Schwartz (1958), Theorem TV.8.16), this implies that there is a finitely additive measure
ji such that for all .r,

(0 /z'* V) i(ds).

Hence

y (j*(,zf / 07 () (s)ja(ds).

or
w(U" (e /(Y*' y(s)i(ds) +/ ds).
Ience letting 1 = vz, we see that up to a monotone transformation,
w(U* (1)) = / sup {7(3, $)p(ds),
JS

S dear

as was to be shown. ||

C Example

In this scection, we show that restricting the set of second stage preferences in Kreps’
original framework cannot generate meaningful additivity without some restriction on the
set. of preferences over menus he considers. We show this by example. Let B = {a.b.c}.
Since preferences in Kreps are over subsets of 3, not of A(f3), the set. of menus consists
of the seven nonempty subsets of . Suppose the preferences over menus are

{a b e} = {a. by ~{a.c} ~{b.c} = {b} ~ {c} > {a}.

3Note that [7H(f3) = 1. so the function || I77(z) || 15 is an clement of L. Hence u is defined at this
point.
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This preference has an ordinal representation with state space S = {s). 8. 53} with utility
functions given by

5152 53
a 1 0 O
b 0 1 O
e 0 0 1

To sce that there must be an aggregator making this an ordinal representation, note that
we only need to find an increasing function u such that

a(1.1.1) > u(1.1.0) = u(1,0.1) = u(0.1.1) > (0.1.0) = u(0.0.1) > u(1.0.0).

and such functions clearly exist. However, any such aggregator must be intrinsicially
nonadditive.  To see the point, suppose there is a function u : {0. 1}* — R which
satisfics the above and which can be written as u(vy, vy, 1) = uy (1) + up(vg) + ug(rs).
Then ©(0.1.0) > u«(1.0.0) implies u;(0) + (1) > 1y (1) 4+ u,(0). Adding uz(1) to both
sides, we then have ©(0.1.1) > u(1.0.1), which contradicts {b.¢} ~ {a.c}. Hence this
representation is intrinsically nonadditive.

We claim that there is no restriction on the class of second stage preferences in
Kreps that could avoid this problem. To avoid the example above, such a restriction
would have to exclude at least one of the above preferences. Since the argument is
completely symmetric, suppose the excluded preference is the one the agent has in state
sy, where a is strictly best and he is indifferent between b and ¢. Now consider a diflerent
preference over menus, namely the preference > such that x> 2’ if and only if a € 1 and
a ¢ o', Tt is casy to sce that this is the preference over memus gencrated by the Kreps
representation (ordinal or additive) when there is only one second stage preference given
by the preference we are excluding. In fact, it is not hard to show that this is the
only such representation possible, so we cannot represent this prelerence over menus
il we exclude the second-—stage preference above. In short, any restriction on sccond
stage preferences in Kreps’ framework which allows an additive representation of every
preference he considers must also allow intrinsically nonadditive ordinal representations
of some of the preferences he considers.

Y 4s casy Lo see that writing @ as a monotone transformation of an additive function would not
change the argument.
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