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Abstract

Two long lived players play a repeated coordination game. Players do
not specify a single (and correct) probability to each event. They have a
vague notion about the evolution of the play, called blurry beliefs, which
guide their behavior. General conditions that ensure cooperation are inves-
tigated.
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1. Introduction

Consider a repeated coordination game with two long-lived players and two ac-
tions available to each player at each stage. Assume that there is a single outcome
which yields the highest payoffs for both players. Call the action associated with
this outcome “to cooperate.” Call the alternative action “not to cooperate.” A
fundamental question in game theory is whether cooperation can be derived by
the principle of rational behavior (see Aumann and Sorin (89)). The standard way
of modeling rational behavior is to impose equilibrium behavior. It is assumed
that players’ beliefs are correct and that players take best responses according
to these beliefs. These assumptions are very demanding because players are as-
sumed to know (or behave as if they knew) their opponents’ strategies. However,
equilibrium behavior does not, necessarily ensure cooperation. In fact, the Folk
Theorem shows that there are a large multiplicity of equilibria in repeated games.
In particular, both the cooperative outcome and highly inefficient outcomes re-
main equilibria. For example, players will (not) cooperate, in all periods, if they
believe that the other player will (not) cooperate regardless of past outcomes.

Clearly, the outcome of the game will depend upon players’ beliefs about
the evolution of the game. Hence, it is important to develop a theory of belief
formation. In this paper, I focus on the question of belief representation. I do
not assume that players specify a single probability to each event nor do I assume
that players behave as if they knew their opponents’ strategies; rather, I assume
that players have some “notions” about how play might evolve, know their own
payoffs and take best responsecs according to these vague notions. For example,
consider a player who come to the game with the following notion: “If I cooperate
then my opponent will be more inclined to cooperate.” Is there an optimal action
for this player? How can this player’s belief be explicitly modeled? How would
this belief influence (and be influenced by) the evolution of the game?

The notions which guide players’ behavior are modelled by a “blurry belief.” A
blurry belief is a class of well-specified beliefs. The restrictions defining this class
arc derived from a general principle which, in turn, defines the players’ incomplete
notions about how play might evolve. The core question is whether there exists
an optimal strategy independent of the specification of the belief in the class. If
a strategy is optimal for all beliefs in a class, then this strategy is optimal for
players maintaining the notions that this class represents.

The following example shows the subtlety of this analysis. Assume that each
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player believes that if he cooperates, in the first period, then the opponent will
cooperate thereafter. This class of beliefs seems too restrictive to represent the
notion that “if I cooperate then my opponent will be more inclined to do the
same.” However, does acceptance of such a principle ensure cooperation? Appar-
ently, a sufficiently patient player who holds this view optimally should cooperate,
regardless of what he thinks might happen if he does not cooperate in the first
period, because, if he does cooperate, then any loss he might incur in the first pe-
riod is compensated by the maximum payoffs obtained afterwards. Surprisingly,
there exists a belief in this class such that, for all discount factors, both players
optimally do not cooperate and eventually learn that the other player does not
cooperate. The example that illustrates this point is called the “waiting players.”
In this example, both players believe that cooperation can also be triggered if the
opponent cooperates and optimally they do not cooperate because they wait for
the other player to cooperate first. Eventually, each player realizes that the other
player will not cooperate in the near future with arbitrarily high probability.

The waiting players example shows that even if the class of beliefs seems
restrictive it may not ensure cooperation. Clearly, it is necessary to assume other
kinds of restrictions on players’ beliefs. I assume that a player’s belief about the
probability that his opponent will cooperate depends upon the last outcome and
the probability that he had assigned to his opponent’s cooperating in the previous
period. This restriction imposes a recursive structure on players’ beliefs.

A player believes in positive influence if he believes that if he cooperates in
the current period then it is more probable that the other player will cooperate
in the next period than in this period. This class of beliefs represents the notion
that “if I cooperate then my opponent will be more inclined to cooperate.” As
should be expected from the waiting players example, arbitrarily patient players,
who believe in positive influence, optimally may not cooperate.

A player who believes in negative influence believes that if he does not cooper-
ate in the current period then it is less probable that the opponent will cooperate
in the next period than in this period. This class of beliefs represents the notion
that “if I do not cooperate then my opponent will be less inclined to cooperate.” A
player believes in reciprocity if he believes in both positive and negative influence.’

The main result is that sufficiently patient players who believe in reciprocity
optimally cooperate.? So, cooperation is derived from the principle of reciprocity.

'See Fehr, Gichter, and Kirchsteiger (97) for experimental work on reciprocity.
2Some additional restrictions on players’ beliefs, of a technical nature, are also assumed.



Reciprocity and positive influence are heuristics which a player may use to
guide his behavior. They are represented by a blurry belief which is a class of
well-specified beliefs consistent with each principle. There are well-specified beliefs
consistent with positive influence that leads to cooperation. However, cooperation
does not. necessarily follows from positive influence because, as shown by the wait-
ing players example, there are beliefs which are consistent with positive influence
that do not lead to cooperation. Hence, even if players accept this principle they
may not optimally cooperate because they may make other considerations.

The main result in this paper can be viewed as an anti-folk theorem because
a unique ontcome is obtained in an infinitely repeated game with patient play-
ers. The basic assumption is that players believe in reciprocity. This does not
mean that players believe in reciprocity and no other thought occurs to them.
Players optimally cooperate for all well-specified beliefs in the class represent-
ing reciprocity. Some of these well-specified beliefs may belong to other classes
representing other principles. Hence, sufficiently patient players who believe in
reciprocity optimally cooperate even if they also make other considerations.

Cooperation is a Nash equilibrium play in coordination games. If, as in the case
of this paper, the outcome of interest is a Nash equilibrium play, then blurry beliefs
generate learning schemes that lead to a Nash equilibrium. However, as opposed
to many results in the rational learning literature, no compatibility conditions
between the beliefs and the true play, such as absolute continuity, have been
assumed (see Kalai and Lehrer (93a) and (93b)). Thus, convergence to Nash
equilibrinm occurs solely because of the restrictions imposed on the exogenous

-ariables i.c., beliefs, discount factors, and stage game payoffs.?

Blurry beliefs may be used in any game. For example, what principles lead to
cooperation in the repeated prisoners’ dilemma? This is an open and interesting
question. However, a blurry belief probably should not be interpreted outside a
given context. The interpretation and consequences of a blurry belief depend on
the particular game being played. In particular, there is no reason to assume that
reciprocity, as defined for coordination games, also leads to cooperation in any

3In the fictitious play literature, no compatibility conditions between beliefs and best re-
sponses are assumed. However, players believe that their past actions do not affect the future
actions of the other player. Thus, long-run strategic considerations are ignored. So, these mod-
els are inappropriate when there are few, long-lived players as, for example, in the case of a
firm and a worker who play the same game repeatedly. The same is true in evolutionary models
where equilibrium selection results have also been obtained (see Matsui and Rob (91), Kandori,

Mailath and Rob (93), Young (93)).



other game. However, although different principles may arise in different games,
they may all be described in the framework of the rational learning model.

2. The Repeated Coordination Game

There arc two players [ and I1. Player i € {I, 1} has two possible actions given
by the set > = {c.d}. The payoff function u; : 3. — R is given by the payoff
matrix

(1.11) c d
c (ch,e?)  (w! w?)

d (2%, 2%)  (d,d?)

where ¢! > max {z',w',d'} ,i € {I,II}. A player (docs not) cooperate if he plays
(d) ¢. The outcome (c, c) is called cooperative.
Let 3= be the set of all t-histories, 0 < t < oo. Let H = |J 3F be the set of

t>0
all finite histories. Let &y C .3y C ... C $ be the filtration on Y. > where
is the g-algebra generated by all ¢-histories, and & is the o-algebra generated by

the algebra |J 3.
>0

Let W be the set of all functions g : H — [0,1]. A behavior strategy f; € ¥
describes the probability that player ¢ € {I,II} will cooperate conditional on
cach finite history. Let f = (f;, fi;) be the true behavior strategy profile. A well-
specified belief f . € ¥ describes the probability that player i believes that the
other player will cooperate, conditional on each finite history.? Player i’s blurry
belief is a set of well-specified beliefs A , C .

Given a strategy profile ¢, let i, be the probability measure over play paths
associated with ¢.° Given the strategy profile ¢* = (q. f—;), player s discounted

expected payoft is
Vi(q') = E* {Z{ (B)" }}

where 3;, 0 < 3; < 1, is player i’s discount factor and E"¢' is the expectation
operator associated with .. The behavior strategy f; is a best response to f_; if
for every strategy profile ¢* = (q, f—i), Vi(f") — Vi(¢') > 0. The behavior strategy
fi 1s a best response to A_; if f; is a best response to all f , € A ..

—1

1See Kuhn (53) for the description of players’ beliefs.
°See Kalai and Lehrer (93) for details on the construction of this probability measure.
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3. Reciprocity and Cooperation

Definition 1. Players learn to cooperate if there exists a set ) € § such that
1r(2) =1, and given f_, € A_,, for every s € Q, s = (h,...), h € X', and £ > 0,
there exists a period t such that for allt > ¢, f_.(h) > 1 —¢ and fi(h) 2 1 —«.

Playcrs learn to cooperate if eventually players’ beliefs and the behavior strate-
gies are arbitrarily close to the Nash equilibrium in which players always cooper-
ate.

Let the blurry belief &£, be defined by f; € €., if and only if f_;(h) =1 for
all finite histories h € H such that player 7 cooperated in the first. [ periods.

Definition 2. Player i believes that he can induce the other player to cooperate
by cooperating in the first | periods if player i holds the blurry belief £ ;.

That is, player i believes that he can induce the other player to cooperate by
cooperating in the first [ periods if he thinks that if he cooperates in the first [
periods, then the other player will respond by cooperating, with probability one,
thercafter.

Example 1, below, shows that players who believe that they can induce the
other player to cooperate by cooperating in the first period do not necessarily
learn to cooperate regardless of how patient they are.

Example 1. The waiting players.

The payoffs of stage game are described by the payoff matrix

Let & be a natural number such that (%)k k? ; 5 < 4.9 Player i believes
t=k+1
that the other player will cooperate with probability 0.25 at period 1. If player ¢

cooperates, at period 1, then he believes that the other player will cooperate

o0

X ] vk
5The existence of k follows from (3} 4k — Oand Y &+ — 0.
k—oc t=k+1 k—oc



thereafter. If player ¢ does not cooperate, at period 1, but the other player
cooperates, at any period, then he believes that the other player will cooperate
thereafter. If player ¢ does not cooperate, at period 1, and the other player does
not. cooperate until period #. then he believes that the other player will cooperate
at period ¢ + 1 with probability ~;, where v, = 0.25if t <k, and v, =1 — (%)2
if ¢ > k. By definition, both players believe that they can induce the other player
to cooperate by cooperating in the first period.

If a player cooperates, at period 1, then he gets an expected discounted payoft
which is smaller than or equal to

o0

+ Z (8:)"9.

t=1

= | O

A player who only cooperates after the other player cooperates obtains the
expected discounted payoff

t=1 t=1 r=1
e = (3 N e~ (]
84+ (3)'9-> (3) (Z) - (-) Y (8) (t—2> >
t=1 t=1 t=k+1
> A\ o= 19 X,
8‘{‘2((3,)9—3—(—) k Zﬁ>z+2(ﬂr,)9
t=1 t=k+1 t=1

Hence, both players optimally do not cooperate in the first period. In all other
periods, both players believe that the other player will cooperate with probability
smaller than 8/9 as long as they have not yet observed the other player cooperat-
ing. Therefore, both players optimally do not cooperate before they observe the
other player cooperating. The true play will be (d,d) in every period, and each
player will eventually believe that the other player will cooperate with probability
arbitrarily close to the true probability (zero).

In the waiting players example, if either player had cooperated at period 1
then both players would have cooperated thereafter. Hence, both players correctly
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helieved they could get maximum payoffs after period 1. However, they optimally
chose to wait for the other player to cooperate first. Thus, both players end
up waiting forever and the payoffs obtained ex-post are much lower than the
expected payoffs, although players’ belicfs over short-run events eventually become
accurate.

In a static coordination game, players optimally cooperate if they believe that
the other will cooperate, and players optimally do not cooperate if they belicve
that the other will not cooperate. But, in a repeated coordination game, the
waiting players example shows that players may not cooperate even if they believe
that the cooperative outcome may eventually be played. In fact, arbitrarily patient
players may not optimally cooperate even if they believe that they will induce the
other player to (not) cooperate forever if they (do not) cooperate in the first
periods. For example, assume that each player believes that the other player will
cooperate, with probability one, in the first period. Player ¢ € {I,[I} believes
that if he does not cooperate in the first period then the other player will not
cooperate thereafter, and if he cooperates in the first period then his belief will
be as in the waiting players example. Then, player ¢ believes that if he cooperates
in the first two periods then the other player will cooperate thereafter. However,
it. is straightforward to show that, regardless of their discount factor, the optimal
play will be (c.c¢) at period 1 and (d. d) thereafter.

In the waiting player example, both players believe that if they cooperate in
the first period then they will induce the other player to cooperate, but if they do
not cooperate in the first period then their actions no longer have any influence on
the other player’s future actions. Analogously, in the example given above, players
also believe that their influence over the other player’s actions will disappear if
they play c followed by d. So, I consider a class of “recurrent” beliefs in which
players’ beliefs about their potential influence on the other player’s actions do not
change so abruptly.

Given a well-specified belief f_;, let z} be a 3;_;—measurable function repre-
senting player ¢’s subjective probability, conditional on all information available
at period t — 1, that his opponent will cooperate at period ¢. That is, given a
play path s = (h,....).h € 71, zi(s) = f_;(h). Assume that z} follows the rule
2t = g'(x}_,,a,b) where a € {c,d} and b € {c,d} arc the actions taken, at period
t—1, by player 7 and the opponent, respectively. Hence, player i's belief about the
probability that the opponent will cooperate depends upon the current. outcome
and the probability that player i assigned last period to cooperation on the part



of the opponent.

Player 1’s belief is well-specified given x} and the functions g*. Player i’s blurry
beliefs may now be defined by restrictions on z¢ and g'.

Let ¢' and r* be the functions ¢'(z) = zg'(z.c.c) + (1 — z)g'(z,c,d) and
ri(z) = xg'(z,d,c) + (1 — x)g'(z,d,d). Assume that after observing the outcome
at period t — 1, player i decides to cooperate at period t. Then, he believes that
the opponent will cooperate at period ¢ + 1 with probability e'(x}). Analogously,
if, at period t — 1, player i decides not to cooperate at period t, then he believes
that the opponent will cooperate at period t + 1 with probability r*(z?).

Let V'(z) be the expected discounted payoff of player 7 if he decides always to
cooperate, and if he believes that his opponent will cooperate with probability z
in the current period.

Definition 3. Player i’s belief is regular if V* is a smooth, non-decreasing, and
concave function.

The function V7 is non-decreasing if the expected discounted payoff associated
with the strategy “always cooperate” does not decrease when player i’s probability
that the opponent will cooperate in the current period increases.

The function V' is concave if the expected discounted payoff associated with
the strategy “always cooperate” when player i believes that the opponent will
cooperate with probability AZ + (1 — A)Z in the current period is not smaller than
the lincar combination (using A as weight) of the expected discounted payoffs
associated with the same strategy when player ¢ believes that in the current period
the opponent will cooperate with probabilities T and Z, respectively. Lemma 1.
below, provides sufficient conditions under which player i’s beliefs are regular.

Lemma 1. Assume that g'(z,c,c) and g'(x,c,d) are smooth functions of x. If
g'(z,c.c) = g'(z,¢,d) and g'(z,c,c). g'(x,c,d) are non-decreasing functions of x
then V' is a smooth and non-decreasing function of .7 If, in addition, ¢' and
g'(z.c,d) are concave functions of x, then V' is also a concave function of =.%

"The assumption that g' (. ¢.¢) > ¢'(r. c.d) means that player i’s belief about the probability
that the other player will cooperate is not smaller when the cooperative outcome is observed
than when player i cooperates, but the other player doesn't.

8The assumption that e’ and g'(xr.c.d) are concave functions of x are of a technical nature
and the main result (proposition 1) is probably true without it, but a formal proof does not
scem to follow from the techniques developed in this paper to solve the optimization problems.



Proof - See Appendix.

Definition 4. Player i believes in positive influence if e'(z) > = whenever x €
[0,1), and €'(1) = 1.

Player 7 believes in positive influence if player 7 expects to make the opponent
more inclined to cooperate by cooperating himself, in the sense that if player @
cooperates then he believes that the opponent will be more likely to cooperate in
the next period than in the current period. That is, at the beginning of period ¢,
before the outcome is realized, player 7 believes that the other player will cooperate
with probability zi. Player ¢ knows that whatever action he takes will not have
any influence over the other player’s decision in the current period, but knows
his action might influence the other player’s action in the next period. If player
i believes in positive influence, then player i believes that by cooperating he will
increase the chances that the other player will cooperate compared to the current
odds.

If players believe in reciprocity and ¢'(z,c,c) > g'(z,c¢,d) then ¢g'(z,c,c) >
z. Hence, after observing the other players’ action, players will become more
confident that the other player will cooperate if they observe the cooperative
outcome. However, if player i cooperates and the opponent doesn’t then player i
may or may not become more confident that the other player will cooperate.

Definition 5. Player i believes in negative influence if r(x) < x whenever x €
(0,1], and r*(0) = 0.

Player ¢ believes in negative influence if player ¢ expects to make the opponent
less inclined to cooperate by not cooperating himself, in the sense that if player i
does not cooperate then he believes it is less likely that the opponent will cooperate
in the next period than in the current period. Negative and positive influence are,
of course, perfectly symmetric restrictions on players’ beliefs.

Definition 6. Player i believes in reciprocity if player i believes in both positive
and negative influence.

Relaxing the concavity assumption would make the results much more attractive because it is
in the spirit of the blurry belief approach to consider classes of beliefs that are as general as
possible and, more importantly, to make restrictions on beliefs that follows from principles that
are easily interpretable. Unfortunately, I do not know how to dispose of this assumption.
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Lemma 2. If player i believes in positive influence, then for every € > 0 there

exists 3 such that if 8; > 3 then V'(0) > f:;

Proof - See Appendix.

Lemma 2 shows that if player ¢ believes in positive influence and player ¢
is sufficiently patient, then player i expects to obtain high expected discounted
payoffs by cooperating in every period even in the extreme case that player ¢ is
sure that the opponent will not cooperate in the current period.

I now show the main result of this paper. Proposition 1, below, shows that
cooperation can be derived from the principle of reciprocity, in the sense that
patient players, whose beliefs are regular, learn to cooperate if they believe in
reciprocity.

Proposition 1. Assume that players’ beliefs are regular. If players believe in
reciprocity and players’ discount factors are sufficiently high, then players learn
to cooperate. Moreover, the play will be cooperative in all periods.?

Proof - See Appendix.

Example 2. Patient players who believe in positive influence, but not in negative
influence, optimally may not cooperate.

Consider the same payoff matrix as in the waiting players’ example. Assume
that ¢'(z.¢,¢) = g'(z,¢.d) = ¢'(z,d,c) = 1, and ¢'(z.d,d) = 2 = 0.25. That is,
cach player believes that the other player will cooperate with probability 0.25 in
the first period, and will continue to cooperate with probability 0.25 if (d,d) is
observed last period. Otherwise, the other player will cooperate with probability
one. If player i cooperates in the first period he obtains a discounted expected
payoft equal to

oC

+3 (8)'9.

t=1

= O

9Proposition 1 also holds if instead of assuming that V1 is concave it is assumed that player
i € {I.II} believes that if he does not cooperate then the probability of cooperation on the part
of the opponent will not increase regardless of the action of the opponent i.e., gi(v.d.c) < x
and ¢gi(x.d.d) < .

11



A player who only cooperates after the other player cooperates obtains an
expected discounted payoff equivalent equal to

¢ oC ¢
543 (5 9-5(0738) > 2+ 3 (8)'0.
; (8) ;( ) > ;( )

Hence, both players do not cooperate in the first period. In the second pe-
riod, players will face the same maximization problem as in the first period. By
induction, it can be shown that the play will be (d,d) in every period.!®

Patient players who believe in negative influence, but not in positive influ-
ence, may not. optimally cooperate. For example, assume that z} = g'(z.c,c) =
g'(xz.c.d) = g'(z,d,¢) = g'(x,d.d) = 0. Then, each player believes that the other
player will not cooperate in every period, and optimally will not cooperate in
every period.

Players who believe in reciprocity may not cooperate if they are not sufficiently
patient. For example, assume that the payoffs are the same as in the waiting
players’ example. Let the beliefs be given by 2 = ¢'(z, ¢, ¢) = ¢'(z,¢,d) = 1 and
2t = g'(x,d,c) = g'(z,d,d) = 0. Let the discount factor of each player be 0.25.
If a player cooperatcs, at period 1, he gets an expected discounted payoff smaller

o
than > (O.25)t 9 < 8. If a player does not cooperate, then he gets a payoff greater
than t8.1 By induction, it is easy to show that both players will not. cooperate in
every period.

It is interesting to consider an example in which the players’ optimization
problem can be solved directly. Let the payoffs be given by the matrix

(1,17) c d
c (e, ¢?) (0,0)
d (1,1) (1,1)

where ¢! > 1 and ¢ > 1.
Players’ beliefs are given by z% = 0; g'(z.c.c) = g'(z,¢,d) = a + (1 — a);
gz, d.c) = g'(z.d,d) = (x; where a > 0 and 0 < ( < 1.

1971 this example, plavers’ predictions are not accurate because players will not cooperate but
thev believe that the other player will cooperate with probability 0.25.
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Let ei(z) be player #’s subjective probability that the other player will cooper-
ate t periods ahead. If player 7 cooperates in all periods, then e}, | (z) = e}(a+(1—
a)x) is the subjective probability that the other players will cooperate t+1 periods
ahead. By definition, eﬁ(m) = e'(z) = a+(1—a)z is a lincar function of z. If €}(z)
is a linear function, then e}, (z) is a linear function. Hence, by induction, if player
i cooperates in all periods then ei(z) is a linear function of T for all t. The ex-

pected payoff of cooperating in all periods, V'(z), is equal to ¢' Z (3.)" ei(x). Thus,

V() is a linear function of z. By definition, Vi(z) = zc' + @Vz(a + (1 — a)z).
With some algebra, it follows that Vi(z) = e ((18191(1 0 T T ﬂf(”f . There-
fore, the expected discounted payoff of playmg d and then ¢ forever is equal to
Hi(z) =1+ '8 (1_37)(1’7_%i(1_a s +c 81T With some more algebra, it can
be checked that V¥(0) > H'(0) holds if 3; > W Moreover, if Vi(0) > H¥(0)
then Vi(z) > H'(z) for every z € [0, 1] because 3;¢ < 1. By the principle of opti-
mality, also called the one-shot principle, cooperation in every period is optimal if
Vi(z) = H'(z) for cevery z € [0.1]. Hence, both players will optimally cooperate
in all periods if m
do not. cooperate if 3; <

< 3; < 1. An open question is whether players optimally
Note that T) approaches 1 if ¢’ approaches 1 or a approaches 0. However,
if a is zero, then players optimally will not cooperate because both players believe
that the other player will not cooperate with probability one in all periods.
Proposition 1 is a sharp result. The example above shows that proposition
1 would not be true if the assumption of positive influence were replaced by the
weaker assumption “e'(z) > x.” The assumption of negative influence could be
replaced by the weaker assumption “r'(z) < z.” The proof would be identical to
the proof given in the appendix. However, a simple variation of example 2 shows
that proposition 1 would not be true if negative influence were replaced by the

«, .1

weaker assumption “r'(z) > x for z <z and r'(z) < z for z > 7, > 0.

4. Conclusion

In this paper, it is shown that patient players who believe in reciprocity optimally
cooperate. Reciprocity is represented by a class of well-specified beliefs.

Several important issues remain unresolved for models of this type. The diffi-
culties emerge when we attempt to demonstrate that a certain action is optimal for
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all beliefs in a large class. The techniques used in this paper resolve some of these
difficulties, but unfortunately many questions remain unanswered. For example,
can the main result be proved without some of the regularity assumptions im-
posed on players’ beliefs? Another important extension of the main result would
be a full characterization of the outcomes of the game for all discount factors.
That is, if players believe in reciprocity then what degree of patience is required
to ensure that optimally they will cooperate? Is there a threshold such that if
players’ discount factors are above this level then optimally they will cooperate
and if players’ discount factors are below this level then optimally they will not
cooperate?

5. Appendix

Assume that player i belicves that the opponent will cooperate in the current pe-
riod with probability . Assume that player ¢ decided to cooperate in all periods.
Let ¢i(z) be the subjective probability that the opponent will cooperate ¢ periods
ahead. By definition,

eh(z) = z. el(z) = e'(2), and Vi(z) = (¢ — w') Z (3) el(x) +

t=0

1-5
Morcover, by Bayes’ rule,
ci(z) = zey(g'(z,¢.0) + (1 = 2)ei(g'(w, ¢, d)).

Proof of Lemma 1 - By definition, if the functions ¢'(z, ¢, ¢) and g'(z. ¢, d)
are smooth then the functions ¢! are also smooth. Then, V' is a smooth function.
Assume, by induction, that “=ej(z) > 0. Then, Let, (2) =

a"i'--iij.. _,87.7..—8_1_
'1'6);1:(”‘(9 (”E""))amg (z,c.0)+(1 I)get(g (I’(”d))azg (z,c,d)

el(g'(z.c.c)) —ei(g'(z.c.d) = 0.

Hence, ¢! is a non-decreasing function for all ¢. Moreover, V* is a non-decreasing
function because V' is a linear combination of the functions e;.
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. . . 32 ; 2 ;
Assume, by the induction assumption that Zyej(z) < 0. Then, Lsel (x) =

o, &, 0’ o . ’
IETT() ((] (I ¢, ()>5Fq (‘Lt(‘ﬂ() +I@P (J (fL‘,C, C)) (—(?_Iq (m,C,C)) +
a . . J | 0 a .
2— e g (z.c.e))=—qg'(x.c.c) — 2— d))—q'(z,c.d
(’)a:(‘(‘q (T'C’())B.rg (z.c.c) 25-eilg gz, (,d))ax!] (z,¢,d)+

L) it ay Do o)+ (1 -0 et d) (2ot (oc.d)) <
( —z)a—e,(g (z,c.¢ )@g x,c,d) x (9(E26t’g z.c, FACHS <

T !

& 9 : & 0 i
-L’@(%(Q (z.c,c)) (gﬂ (&C-,C)) +(1 - I)@et(g (z,c.d)) (8— (z.c, d)> T
d i i 0 i 9 (NS YN 0 1 -

.’La@t({] (J’f('a(/))a—l‘gg (.T,C,C) + 2%61(0 (Ivctc))amg (l’,(,,(,)+

a ., . 0 a ; 0%
_9__ o (a(r o ) —? S ? Y —_—
"‘al_et(g (”L’(“(”))OI.(J ($7Cfd)+(1 ‘/L‘)al.et(.] (I C, C))amgg <l7c7d)

& J 9 7 ’ 0° i 0 i 2
.Lw(,(J (L ¢, c)) (0—1(] (.L.(,,(,)> +(1— z)@et(g (z.c,d)) (Eg (z,c,d)) +
a .. . o%
—'/1 ! xr,C,C ! : < i
5ajpt(g(r’c'€))a$26(r) 0

Hence, ¢} is a concave function for all ¢, and V' is a concave function because
V' is a linear combination of the functions e;.

g.e.d.

Proof of Lemma 2 - Let g'(z,c,c) and ¢'(z,¢,d) be functions such that
positive influence is satisfied. Let f_; be the well specified belief associated with
g'(z.c,c) and g'(z.c,d) and arbitrary functions ¢'(z,d,c) and g'(z,d,d) and an
arbitrary number z.



As defined before, let z} be an §;_;—measurable function representing player
i’s subjective probability that his opponent will cooperate in the current period.
That is, given a play path s = (h,...), h € 71, 2i(s) = f_;(h). Let y; be 2} ;.

Let [; be the strategy “always cooperate”. That is, [;(h) = 1 for all A € H.
Let I’ be the strategy profile I' = (I;, f ;). Let u; be the probability measure
associated with [*. That is, p; describes how player ¢ thinks that the play will
evolve if he always cooperates and holds the well specified belief f_;.

By assumption, if player i cooperates in every period then

Er /Sy =€y ) = Yi_i.

Hence, 4! is a bounded positive supermartigale. By the theorem of the convergence
y ISt p o y -
of positive supermartingales, there exists a random variable y* such that

yi =y asopeand Bre{y} — B {y}
Hence,
B {e(y') =y} = lim E*{e'(y) —yp} = lim B {yp, — g} = 0.
But, ¢'(y') —y' > 0if y* < 1. Thus, y' = 1 a.s. w. Therefore,

zi — las. pand B4 {2)} — 1.
t—oc t—oc
Assume that player ¢ believed that the opponent would cooperate with prob-
ability zero in the first period. That is, assume that zi = 0. In this case
ei(0) = E#{zi}. The limit above holds for every initial condition zj. In partic-
ular, it holds for z| = 0. Hence, €;(0) — 1.

t—o0
Fix £ > 0. Let £; be (¢ — w')e. Let  be large enough such that if ¢ > ¢ then
. _ — - < _ _
¢j(0) =142y > . Let 3 be large enough such that if 3; > 3 then (3)" 2>t
t=t+1

By definition,

~
o~

t=0 t=0
and -
ty g t €1 -
S B (e(0)—1+e) = Y (B) 5 >t
t=t+1 t=t-+1



So,

By definition,

7

i i i - i w
VI0) = (¢ —w') Y (8) e}(0) + 5 =
t=0 mt
((ji _ wi) Z (/6’7-)‘ ((’}(0) -1+ 51) + m + ((1 _ wi) Z (»‘37')1 (1 — cl) =
t=0 ' t=0
w' N (¢ —w) (1 —e) B ¢+ (w = ey B c—¢
1— 5 1- 3 N 1— 5 C1-4
q.e.d.

Proof of Proposition 1 - I first show that both players will optimally co-
operate in all periods. By the principle of optimality, it suffices to show that the

expected discounted payoff of cooperating in all periods, V'(z), is greater than
the expected discounted payoff of playing d and then ¢ in all periods which is
given by

H(z)=a' +(1—z)d' + 3 (zV'(g(z.d.c) + (1 - )V (g(z,d, d)) .
By the concavity of V7.
Hi(z) < zzt + (1 —2)d + 3V (x(g(x.d,c) + (1 — z)(g(z,d.d)) .

By the monotonicity of V*, and the assumption that player 7 believes in negative
influence,

Hi(z) < azz' + (1 - 2)d" + 3V (2).

Let £ be small enough such that zz! + (1 — z)d* < ¢ — . Then, by lemma 2,
if 3" is large enough then,

Hi(z)<c —=+ 3V (z) < V' (z).
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Hence, both players optimally cooperate in every period. By assumption,
g'(z,c.c) >z if r < Land g'(1,¢,¢) = 1. Thus, if the cooperative outcome occurs
in every period then both players’ beliefs about the probability that the opponent
will cooperate will increase every period and eventually both players will believe
that the opponent will cooperate with arbitrarily high probability.

q.e.d.
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1. Introduction

Consider a repeated coordination game with two long-lived players and two ac-
tions available to each player at each stage. Assume that thereisa single outcome
which yields the highest payoffs for both players. Call the action associated with
this outcome “to cooperate.” Call the alternative action “not to cooperate.” A
fundamental question in game theory is whether cooperation can be derived by
the principle of rational behavior (see Aumann and Sorin (89)). The standard way
of modeling rational behavior is to impose equilibrium behavior. It is assumed
that players’ beliefs are correct and that players take best responses according
to these beliefs. These assumptions are very demanding because players are as-
sumed to know (or behave as if they knew) their opponents’ strategies. However,
equilibrium behavior does not necessarily ensure cooperation. In fact, the Folk
Theorem shows that there are a large multiplicity of equilibria in repeated games.
In particular, both the cooperative outcome and highly inefficient outcomes re-
main equilibria. For example, players will (not) cooperate. in all periods, if they
believe that the other player will (not) cooperate regardless of past outcomes.

Clearly, the outcome of the game will depend upon players’ beliefs about
the evolution of the game. Hence, it is important to develop a theory of belief
formation. In this paper, I focus on the question of belief representation. I do
not assume that players specify a single probability to each event nor do I assume
that players behave as if they knew their opponents’ strategies; rather, I assume
that players have some “notions” about how play might evolve, know their own
payoffs and take best responses according to these vague notions. For example,
consider a player who come to the game with the following notion: “If I cooperate
then my opponent will be more inclined to cooperate.” Is there an optimal action
for this player? How can this player’s belief be explicitly modeled? How would
this belief influence (and be influenced by) the evolution of the game?

The notions which guide players’ behavior are modelled by a “blurry belief” A
blurry belief is a class of well-specified beliefs. The restrictions defining this class
are derived from a general principle which, in turn, defines the players’ incomplete
notions about how play might evolve. The core question is whether there exists
an optimal strategy independent of the specification of the belief in the class. If
a strategy is optimal for all beliefs in a class, then this strategy is optimal for
players maintaining the notions that this class represents.

The following example shows the subtlety of this analysis. Assume that each



player believes that if he cooperates, in the first period, then the opponent will
cooperate thereafter. This class of beliefs seems too restrictive to represent the
notion that “if 1 cooperate then my opponent will be more inclined to do the
same.” However, does acceptance of such a principle ensure cooperation? Appar-
ently, a sufficiently patient player who holds this view optimally should cooperate,
regardless of what he thinks might happen if he does not cooperate in the first
period, because, if he does cooperate, then any loss he might incur in the first pe-
riod is compensated by the maximum payoffs obtained afterwards. Surprisingly,
there exists a belief in this class such that, for all discount factors, both players
optimally do not cooperate and eventually learn that the other player does not
cooperate. The example that illustrates this point is called the “waiting players.”
In this example, both players believe that cooperation can also be triggered if the
opponent cooperates and optimally they do not cooperate because they wait for
the other player to cooperate first. Eventually, each player realizes that the other
player will not cooperate in the near future with arbitrarily high probability.

The waiting players example shows that even if the class of beliefs seems
restrictive it may not ensure cooperation. Clearly, it is necessary to assume other
kinds of restrictions on players’ beliefs. I assume that a player’s belief about the
probability that his opponent will cooperate depends upon the last outcome and
the probability that he had assigned to his opponent’s cooperating in the previous
period. This restriction imposes a recursive structure on players’ beliefs.

A player believes in positive influence if he believes that if he cooperates in
the current period then it is more probable that the other player will cooperate
in the next period than in this period. This class of beliefs represents the notion
that “if I cooperate then my opponent will be more inclined to cooperate.” As
should be expected from the waiting players example, arbitrarily patient players,
who believe in positive influence, optimally may not cooperate.

A player who believes in negative influence believes that if he does not cooper-
ate in the current period then it is less probable that the opponent will cooperate
in the next period than in this period. This class of beliefs represents the notion
that “if I do not cooperate then my opponent will be less inclined to cooperate.” A
player believes in reciprocity if he believes in both positive and negative influence.

The main result is that sufficiently patient players who believe in reciprocity
optimally cooperate.? So, cooperation is derived from the principle of reciprocity.

1Gee Fehr, Gachter, and Kirchsteiger (97) for experimental work on reciprocity.
2Some additional restrictions on players’ beliefs, of a technical nature, are also assumed.



Reciprocity and positive influence are heuristics which a player may use to
guide his behavior. They are represented by a blurry belief which is a class of
well-specified beliefs consistent with each principle. There are well-specified beliefs
consistent with positive influence that leads to cooperation. However, cooperation
does not necessarily follows from positive influence because, as shown by the wait-
ing players example, there are beliefs which are consistent with positive influence
that do not lead to cooperation. Hence, even if players accept this principle they
may not optimally cooperate because they may make other considerations.

The main result in this paper can be viewed as an anti-folk theorem because
a unique outcome is obtained in an infinitely repeated game with patient play-
ers. The basic assumption is that players believe in reciprocity. This does not
mean that players believe in reciprocity and no other thought occurs to them.
Players optimally cooperate for all well-specified beliefs in the class represent-
ing reciprocity. Some of these well-specified beliefs may belong to other classes
representing other principles. Hence, sufficiently patient players who believe in
reciprocity optimally cooperate even if they also make other considerations.

Cooperation is a Nash equilibrium play in coordination games. If, as in the case
of this paper, the outcome of interest is a Nash equilibrium play, then blurry beliefs
generate learning schemes that lead to a Nash equilibrium. However, as opposed
to many results in the rational learning literature, no compatibility conditions
between the beliefs and the true play, such as absolute continuity, have been
assumed (see Kalai and Lehrer (93a) and (93b)). Thus, convergence to Nash
equilibrium occurs solely because of the restrictions imposed on the exogenous
variables i.e., beliefs, discount factors, and stage game payoffs.’

Blurry beliefs may be used in any game. For example, what principles lead to
cooperation in the repeated prisoners’ dilemma? This is an open and interesting
question. However, a blurry belief probably should not be interpreted outside a
given context. The interpretation and consequences of a blurry belief depend on
the particular game being played. In particular, there is no reason to assume that
reciprocity, as defined for coordination games, also leads to cooperation in any

3In the fictitious play literature, no compatibility conditions between beliefs and best re-
sponses are assumed. However, players believe that their past actions do not affect the future
actions of the other player. Thus, long-run strategic considerations are ignored. So, these mod-
els are inappropriate when there are few, long-lived players as, for example, in the case of a
firm and a worker who play the same game repeatedly. The same is true in evolutionary models
where equilibrium selection results have also been obtained (see Matsui and Rob (91), Kandori,
Mailath and Rob (93), Young (93)).



other game. However, although different principles may arise in different games,
they may all be described in the framework of the rational learning model.

2. The Repeated Coordination Game

There are two players I and I1. Player ¢ € {I,II} has two possible actions given
by the set S = {c.d}. The payoff function u, : 3 — R is given by the payoff
matrix

(I.11) c d
c (c', ) (w!,w?)
i (.2 (@)

where ¢! > max {z*,w’,d'}, i € {I,II}. A player (does not) cooperate if he plays
(d) c. The outcome (c, c) is called cooperative.
Let S be the set of all t-histories, 0 < ¢ < 0o. Let H = |J S°" be the set of

t20
all finite histories. Let Sy C ...8; C ... C & be the filtration on $S°%° where 3
is the o-algebra generated by all t-histories, and S is the o-algebra generated by
the algebra J S:.

t>0

Let ¥ be the set of all functions g : H — [0,1]. A behavior strategy f; € ¥
describes the probability that player ¢ € {I,II} will cooperate conditional on
each finite history. Let f = (fr, f11) be the true behavior strategy profile. A well-
specified belief f_, € ¥ describes the probability that player 7 believes that the
other player will cooperate, conditional on each finite history.* Player ¢’s blurry
belief is a set of well-specified beliefs A_; C ¥.

Given a strategy profile g, let p, be the probability measure over play paths
associated with ¢.5 Given the strategy profile ¢* = (g, f—:), player ¢’s discounted

expected payoff is
Vi(q') = E* {Z{(ﬁi)’ui}} )

r=0

where 8;, 0 < 3; < 1, is player i's discount factor and E*¢t is the expectation
operator associated with . The behavior strategy f; is a best response to f. it
for every strategy profile ¢* = (g, f—:), Vi(f*) — Vi(¢") = 0. The behavior strategy
f; is a best response to A_; if f; is a best response to all f_,eA_,.

4Gee Kuhn (53) for the description of players’ beliefs.
5See Kalai and Lehrer (93) for details on the construction of this probability measure.
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3. Reciprocity and Cooperation

Definition 1. Players learn to cooperate if there exists a set Q € & such that
ps(Q) =1, and given f_; € A_;, for every s € Q,s=(h,..), he X and e > 0,
there exists a period T such that for all t > €, f_,(h) > 1 —¢ and filh) 2 1—¢.

Players learn to cooperate if eventually players’ beliefs and the behavior strate-
gies are arbitrarily close to the Nash equilibrium in which players always cooper-
ate.

Let the blurry belief -, be defined by f_; € ¢' . if and only if f_s(h) = 1 for
all finite histories h € H such that player i cooperated in the first [ periods.

Definition 2. Player i believes that he can induce the other player to cooperate
by cooperating in the first | periods if player i holds the blurry belief £ ,.

That is, player i believes that he can induce the other player to cooperate by
cooperating in the first { periods if he thinks that if he cooperates in the first [
periods, then the other player will respond by cooperating, with probability one,
thereafter.

Example 1, below, shows that players who believe that they can induce the
other player to cooperate by cooperating in the first period do not necessarily
learn to cooperate regardless of how patient they are.

Example 1. The waiting players.

The payoffs of stage game are described by the payoff matrix

Let k be a natural number such that (%)k k2 t ; 1 L < L5 Player i believes
=k+

that the other player will cooperate with probability 0.25 at period 1. If player 7

cooperates, at period 1, then he believes that the other player will cooperate

o

6The existence of & follows from (3 k2 - 0and ER——)
4 k—oo t=k+1 L SN



thereafter. If player i does not cooperate, at period 1, but the other player
cooperates, at any period, then he believes that the other player will cooperate
thereafter. If player i does not cooperate, at period 1, and the other player does
not cooperate until period ¢, then he believes that the other player will cooperate
at period t + 1 with probability v, where v, = 0.25if t <k, and vz =1 — (’5—:1)2
if ¢ > k. By definition, both players believe that they can induce the other player
to cooperate by cooperating in the first period.

If a player cooperates, at period 1, then he gets an expected discounted payoff
which is smaller than or equal to

o

+3 (8)9.

t=1

> | ©

A player who only cooperates after the other player cooperates obtains the
expected discounted payoff

8 + i (8)f (H(l — )8+ <1 -1Ja - 7,)> 9) —

8*2“” —g(@f (@) - G)kk? _i; (6 (t%) >
8+:Zl(6¢)t9—3— G)kk?t_i;ltlz > g+§:(ﬁi)t9

Hence, both players optimally do not cooperate in the first period. In all other
periods, both players believe that the other player will cooperate with probability
smaller than 8/9 as long as they have not yet observed the other player cooperat-
ing. Therefore, both players optimally do not cooperate before they observe the
other player cooperating. The true play will be (d,d) in every period, and each
player will eventually believe that the other player will cooperate with probability
arbitrarily close to the true probability (zero).

In the waiting players example, if either player had cooperated at period 1
then both players would have cooperated thereafter. Hence, both players correctly

7



believed they could get maximum payoffs after period 1. However, they optimally
chose to wait for the other player to cooperate first. Thus, both players end
up waiting forever and the payoffs obtained ex-post are much lower than the
expected payoffs, although players’ beliefs over short-run events eventually become
accurate.

In a static coordination game, players optimally cooperate if they believe that
the other will cooperate, and players optimally do not cooperate if they believe
that the other will not cooperate. But, in a repeated coordination game, the
waiting players example shows that players may not cooperate even if they believe
that the cooperative outcome may eventually be played. In fact, arbitrarily patient
players may not optimally cooperate even if they believe that they will induce the
other player to (not) cooperate forever if they (do not) cooperate in the first
periods. For example, assume that each player believes that the other player will
cooperate, with probability one, in the first period. Player i € {I,II} believes
that if he does not cooperate in the first period then the other player will not
cooperate thereafter, and if he cooperates in the first period then his belief will
be as in the waiting players example. Then, player ¢ believes that if he cooperates
in the first two periods then the other player will cooperate thereafter. However,
it is straightforward to show that, regardless of their discount factor, the optimal
play will be (c,¢) at period 1 and (d, d) thereafter.

In the waiting player example, both players believe that if they cooperate in
the first period then they will induce the other player to cooperate. but if they do
not cooperate in the first period then their actions no longer have any influence on
the other player’s future actions. Analogously, in the example given above, players
also believe that their influence over the other player’s actions will disappear if
they play c followed by d. So, I consider a class of “recurrent” beliefs in which
players’ beliefs about their potential influence on the other player’s actions do not
change so abruptly.

Given a well-specified belief f_;, let z} be a 3,1 —measurable function repre-
senting player i’s subjective probability, conditional on all information available
at period ¢t — 1, that his opponent will cooperate at period t. That is, given a
play path s = (h,....),h € 7%, zi(s) = f-:(h). Assume that z! follows the rule
7t = g'(zi_,,a,b) where a € {c,d} and b € {c,d} are the actions taken, at period
t—1, by player i and the opponent, respectively. Hence, player 7's belief about the
probability that the opponent will cooperate depends upon the current outcome
and the probability that player ¢ assigned last period to cooperation on the part



of the opponent.

Player ¢’s belief is well-specified given z} and the functions g'. Player ¢’s blurry
beliefs may now be defined by restrictions on z% and g*.

Let ¢ and 7 be the functions e'(z) = zg'(z.c,c) + (1 — z)g*(z,c,d) and
ri(z) = zg'(z,d,¢) + (1 — z)g*(x,d,d). Assume that after observing the outcome
at period t — 1, player ¢ decides to cooperate at period t. Then, he believes that
the opponent will cooperate at period t + 1 with probability e i(z!). Analogously,
if, at period t — 1, player i decides not to cooperate at period ¢, then he believes
that the opponent will cooperate at period t 4+ 1 with probability r Y(zh).

Let V*(z) be the expected discounted payoff of player ¢ if he decides always to
cooperate, and if he believes that his opponent will cooperate with probability z
in the current period.

Definition 3. Player i’s belief is regular if V* is a smooth, non-decreasing, and
concave function.

The function V* is non-decreasing if the expected discounted payoff associated
with the strategy “always cooperate” does not decrease when player s probability
that the opponent will cooperate in the current period increases.

The function V? is concave if the expected discounted payoff associated with
the strategy “always cooperate” when player i believes that the opponent will
cooperate with probability AZ + (1 — A)Z in the current period is not smaller than
the linear combination (using A as weight) of the expected discounted payoffs
associated with the same strategy when player i believes that in the current period
the opponent will cooperate with probabilities  and Z, respectively. Lemma 1,
below, provides sufficient conditions under which player ¢’s beliefs are regular.

Lemma 1. Assume that ¢'(z,c,c) and g'(z,c,d) are smooth functions of z. If
gi(z,c,c) = g'(z,c,d) and ¢'(z.c.c), g'(z,c,d) are non-decreasing functions of
then V' is a smooth and non-decreasing function of z.” If, in addition, e’ and
¢'(z, ¢, d) are concave functions of z, then V* is also a concave function of z.8

"The assumption that ¢*(z, ¢, c) > ¢*(z. ¢, d) means that player i’s belief about the probability
that the other player will cooperate is not smaller when the cooperative outcome is observed
than when player ¢ cooperates, but the other player doesn't.

8The assumption that e* and g¢*(z.c.d) are concave functions of = are of a technical nature
and the main result (proposition 1) is probably true without it, but a formal proof does not
seem to follow from the techniques developed in this paper to solve the optimization problems.



Proof - See Appendix.

Definition 4. Player i believes in positive influence if ¢'(zr) >  whenever T €
[0,1), and €'(1) = 1.

Player i believes in positive influence if player  expects to make the opponent
more inclined to cooperate by cooperating himself, in the sense that if player 2
cooperates then he believes that the opponent will be more likely to cooperate in
the next period than in the current period. That is, at the beginning of period ¢,
before the outcome is realized, player i believes that the other player will cooperate
with probability zi. Player i knows that whatever action he takes will not have
any influence over the other player’s decision in the current period, but knows
his action might influence the other player’s action in the next period. If player
i believes in positive influence, then player ¢ believes that by cooperating he will
increase the chances that the other player will cooperate compared to the current
odds.

If players believe in reciprocity and g*(z,c,c) > ¢'(z,c.d) then ¢*(z,c,c) >
z. Hence, after observing the other players’ action, players will become more
confident that the other player will cooperate if they observe the cooperative
outcome. However, if player 7 cooperates and the opponent doesn’t then player ¢
may or may not become more confident that the other player will cooperate.

Definition 5. Player i believes in negative influence if r*(z) < z whenever z €
(0,1], and r*(0) = 0.

Player i believes in negative influence if player 7 expects to make the opponent
less inclined to cooperate by not cooperating himself, in the sense that if player ¢
does not cooperate then he believes it is less likely that the opponent will cooperate
in the next period than in the current period. Negative and positive influence are,
of course, perfectly symmetric restrictions on players’ beliefs.

Definition 6. Player i believes in reciprocity if player i believes in both positive
and negative influence.

Relaxing the concavity assumption would make the results much more attractive because it is
in the spirit of the blurry belief approach to consider classes of beliefs that are as general as
possible and, more importantly, to make restrictions on beliefs that follows from principles that
are easily interpretable. Unfortunately, I do not know how to dispose of this assumption.
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Lemma 2. If player i believes in positive influence, then for every € > 0 there

exists B such that if 3; > 8 then V*(0) > f_“;

Proof - See Appendix.

Lemma 2 shows that if player i believes in positive influence and player ¢
is sufficiently patient, then player ¢ expects to obtain high expected discounted
payoffs by cooperating in every period even in the extreme case that player z is
sure that the opponent will not cooperate in the current period.

1 now show the main result of this paper. Proposition 1, below, shows that
cooperation can be derived from the principle of reciprocity, in the sense that
patient players, whose beliefs are regular, learn to cooperate if they believe in
reciprocity.

Proposition 1. Assume that players’ beliefs are regular. If players believe in
reciprocity and players’ discount factors are sufficiently high, then players learn
to cooperate. Moreover, the play will be cooperative in all periods.®

Proof - See Appendix.

Example 2. Patient players who believe in positive influence, but not in negative
influence, optimally may not cooperate.

Consider the same payoff matrix as in the waiting players’ example. Assume
that ¢'(z,c, c) = ¢'(z,c.d) = g'(z,d,c) = 1, and ¢*(z,d,d) = z{ = 0.25. That is,
each player believes that the other player will cooperate with probability 0.25 in
the first period, and will continue to cooperate with probability 0.25 if (d,d) is
observed last period. Otherwise, the other player will cooperate with probability
one. If player i cooperates in the first period he obtains a discounted expected

payoff equal to
+) (89

t=1

= | ©

9Proposition 1 also holds if instead of assuming that V' i is concave it is assumed that player
i € {I,1I} believes that if he does not cooperate then the probability of cooperation on the part
of the opponent will not increase regardless of the action of the opponent ie., g z,d,c) Lz
and ¢'(z,d.d) < z.
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A player who only cooperates after the other player cooperates obtains an
expected discounted payoff equivalent equal to

8+ (8 ((0.75)'8 + (1 - (0.75)) 9) =

SN

t = 4 9 = t
8+ (8)9-) (0.738) > i ; (8,)"9.

t=1 t=1

1l

Hence, both players do not cooperate in the first period. In the second pe-
riod, players will face the same maximization problem as in the first period. By
induction, it can be shown that the play will be (d,d) in every period.*®

Patient players who believe in negative influence, but not in positive influ-
ence, may not optimally cooperate. For example, assume that Tt = g'(z,c,c) =
gi(z,c,d) = g'(z,d,c) = g'(z.d.d) = 0. Then, each player believes that the other
player will not cooperate in every period, and optimally will not cooperate in
every period.

Players who believe in reciprocity may not cooperate if they are not sufficiently
patient. For example, assume that the payoffs are the same as in the waiting
players’ example. Let the beliefs be given by tt = g'(z,c,c) = ¢*(z,¢,d) = 1 and
i = g'(z,d,c) = g'(z,d,d) = 0. Let the discount factor of each player be 0.25.
If a player cooperates, at period 1, he gets an expected discounted payoff smaller
than > (0.25)"9 < 8. If a player does not cooperate, then he gets a payoff greater
than t8.1 By induction, it is easy to show that both players will not cooperate in
every period.

It is interesting to consider an example in which the players’ optimization
problem can be solved directly. Let the payoffs be given by the matrix

(I,11) c d

where ¢! > 1 and ¢? > 1.
Players’ beliefs are given by zi = 0; g'(z,c,¢c) = g'(z,¢,d) = a+ (1 — a);
g'(z,d,c) = g'(z,d.d) = (z; wherea >0 and 0 < ( < L.

107y this example, players’ predictions are not accurate because players will not cooperate but
they believe that the other player will cooperate with probability 0.25.
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Let €i(x) be player i’s subjective probability that the other player will cooper-
ate t periods ahead. If player 7 cooperates in all periods, then €] L) =e(a+(1-
a)x) is the subjective probablhty that the other players will cooperate t+1 periods
ahead. By definition, €} (z) = €'(z) = a+(1—a)z is a linear function of z. If el(z)
is a linear function, then €:_,(z) is a linear function. Hence, by induction, if player
i cooperates in all periods then e}(x) is a linear function of T for all t. The ex-

pected payoff of cooperating in all periods, V*(z), is equal to ' Z (3)" ei(z). Thus,

Vi(z) is a linear function of z. By definition, V*(z) = zc' + ﬁ Vz(a + (1 — a)z).
With some algebra, it follows that V() = = 613‘61 o T BT(T . There-
fore, the expected discounted payoff of playing d and (hen ¢ forever is equal to
Hi(z) = 1+ 5 AT 15‘;,(1 —n cﬁﬁ—ggu— With some more algebra, it can
be checked that V’(O) H*(0) holds if B; > sor(r=ay- Moreover, if Vi(0) = H*(0)
then Vi(z) > H'(z) for every z € [0,1] because 3;( < 1. By the principle of opti-
mality, also called the one-shot principle, cooperation in every period is optimal if
Vi(z) > H'(z) for every z € [0,1]. Hence, both players will optimally cooperate
in all periods if < B; < 1. An open question is whether players optimally

do not cooperate if 3; < ;ﬂ;ﬁ

Note that ad——) approaches 1 if ¢* approaches 1 or a approaches 0. However,
if a is zero, then players optimally will not cooperate because both players believe
that the other player will not cooperate with probability one in all periods.

Proposition 1 is a sharp result. The example above shows that proposition
1 would not be true if the assumption of positive influence were replaced by the
weaker assumption “e*(z) > z.” The assumption of negative influence could be
replaced by the weaker assumption “r*(z) < z.” The proof would be identical to
the proof given in the appendix. However, a simple variation of example 2 shows
that proposition 1 would not be true if negative influence were replaced by the
weaker assumption “r‘(z) > z for £ < Z and r(z)y <z forz >z, >0.

4. Conclusion

In this paper, it is shown that patient players who believe in reciprocity optimally
cooperate. Reciprocity is represented by a class of well-specified beliefs.

Several important issues remain unresolved for models of this type. The diffi-
culties emerge when we attempt to demonstrate that a certain action is optimal for
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all beliefs in a large class. The techniques used in this paper resolve some of these
difficulties, but unfortunately many questions remain unanswered. For example,
can the main result be proved without some of the regularity assumptions im-
posed on players’ beliefs? Another important extension of the main result would
be a full characterization of the outcomes of the game for all discount factors.
That is, if players believe in reciprocity then what degree of patience is required
to ensure that optimally they will cooperate? Is there a threshold such that if
players’ discount factors are above this level then optimally they will cooperate
and if players’ discount factors are below this level then optimally they will not
cooperate?

5. Appendix

Assume that player i believes that the opponent will cooperate in the current pe-
riod with probability z. Assume that player i decided to cooperate in all periods.
Let ei(z) be the subjective probability that the opponent will cooperate t periods
ahead. By definition,

,wi

1-5;

eh(z) = z, € (z) = €'(z), and Vi(z) = (¢ —w') ) _(8) ei(z) +

t=0

Moreover, by Bayes’ rule,

€i,1(z) = z€l(g'(z,¢,0)) + (1 — 2)ei(g'(z, c. ).

Proof of Lemma 1 - By definition, if the functions ¢*(z, ¢, c) and g*(z,c,d)
are smooth then the functions € are also smooth. Then, V* is a smooth function.
Assume, by induction, that Ze}(z) > 0. Then, Let,(z)=

0 i J . _8_i i 21‘
22 (g (s.0.0) 5o (@0 0) + (1= )il (@0, d)) oo (@)

e(g'(z.c,c)) —ei(g'(z,c.d) = 0.

Hence, €! is a non-decreasing function for all . Moreover, V' is a non-decreasing
function because V* is a linear combination of the functions ;.
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Assume, by the induction assumption that a‘%e;(z) < 0. Then, 5‘%6§+1(x) =

o 9% . L o . 2
x—iet(g (m,c,c))wg (z,c.c)+ T 36 ei(g*(z. ¢, ) (a—g (z,c, c)> +

a ,, 8 . o . . o .
1 ¥ 1 _ A’) 1 1 1
2—8xet(g (I,c,c))—axg (z,¢,¢) -—axet(g (z,c, d))———amg (z,c,d)+

2 2

(=)L cig' (., ) g (5. 0.) + (1= 2) el (.. ) ((%gi(x,c,d)) <

s 2 eilgec.o) (550 lone c>)2 (1= 2) el (o) (a'(ane d>)2+

2 g (0.0 g (@) + (1~ ) el(g' (2, 0.0)) g0 (52, ) =

2 2
o . o 5
m—e;(gl(a:, C, C)) <—a—gl($ C, C)> + (1 - x)@e;(g%x ¢, d)) (-a_a:gl(m ¢, d)) +
o 8% .
5.0 (7., 0)) 55€'(z) < 0.
Hence, e! is a concave function for all ¢, and V' is a concave function because
V' is a linear combination of the functions é.

g.ed.

Proof of Lemma 2 - Let g*(z,c,c) and ¢'(z,c,d) be functions such that
positive influence is satisfied. Let f_; be the well specified belief associated with
g'(z.c.c) and ¢*(z,c,d) and arbitrary functions ¢*(z,d.c) and ¢'(z,d,d) and an
arbitrary number z}.
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As defined before, let 2% be an &;_;—measurable function representing player
i’s subjective probability that his opponent will cooperate in the current penod
That is, given a play path s = (h,...), h € 7%, zi(s) = f_i(h). Let y; be z},;.

Let I, be the strategy “always cooperate’. That is, l;(h) = 1 for all h € H.
Let I! be the strategy profile I* = (;, f—;). Let p;: be the probability measure
associated with . That is, y describes how player ¢ thinks that the play will
evolve if he always cooperates and holds the well specified belief f_;.

By assumption, if player ¢ cooperates in every period then

E*i{y/Se} = € (4i1) 2 Ui
Hence, ! is a bounded positive supermartigale. By the theorem of the convergence
of positive supermartingales, there exists a random variable ¥ such that

yi — ' as s and B {y} — B {y')

t—o0

Hence,
Ere{e'(y) —y'} = lim E*{e'(y}) — i} = lim E*{yi., —yi} =0.
But, €'(y') — y* > 0 if y* < 1. Thus, ¢* = 1 a.s. p:. Therefore,

T = las e and E“!‘{a:} - 1

Assume that player i believed that the opponent would Cooperate with prob-
ability zero in the first period. That is, assume that zj = 0. In this case
€i(0) = E*e{zt}. The limit above holds for every initial condltlon z%. In partic-
ular, it holds for z¢ = 0. Hence, €}(0) o L.

Fix ¢ > 0. Let 1 be (¢ — w')e. Let  be large enough such that if ¢ > # then
ei(0)—1+e; > Z. Let § be large enough such that if 5; > Bthen 3 (B)'2 >t

t=t+1

By definition,

and



So,

By definition,

— 1 -5
(¢ = w) 2 (8" (e(0) =1+ 1) + i—_a +(c = w') 2 (B) (1—=1) 2
—wi (¢ —w)(1—e) + (W —c)ea _ ¢ —¢
1—05; 1- 5 1-4 1-5
g.ed.

Proof of Proposition 1 - I first show that both players will optimally co-
operate in all periods. By the principle of optimality, it suffices to show that the
expected discounted payoff of cooperating in all periods, Vi(z), is greater than
the expected discounted payoff of playing d and then c in all periods which is
given by

Hi(z) = zz' + (1 - z)d' + 8 (V' (g(z.d,c) + (1 - z)Vi(g(z.d,d)) .
By the concavity of V?,
Hi(z) L z2' + (1 — 2)d* + BV (z(g(z.d,c) + (1 — z)(g(z.d, d)) .

By the monotonicity of V*, and the assumption that player ¢ believes in negative
influence, ‘ ‘
Hi(z) Lzt + (1 - 2)d' + 3V (z).

Let ¢ be small enough such that zz! + (1 — z)d' < ¢ — <. Then, by lemma 2,
if 3* is large enough then,

Hi(z) <cd —e+BVi(z) <V (z).

17



Hence, both players optimally cooperate in every period. By assumption,
gi(z.c.c) > zif r < 1and ¢g'(1,¢,c) = 1. Thus, if the cooperative outcome occurs
in every period then both players’ beliefs about the probability that the opponent
will cooperate will increase every period and eventually both players will believe
that the opponent will cooperate with arbitrarily high probability.

g.ed.
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