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2
K. Mount and S. Reiter'—/

The purpose of this note is to explain and provide motivation for
the definition of informational size given in [3]. In that paper we
presented a definition of the informational size of topological spaces which
defined a quasi-ordering of the class of topological spaces. (Def. 9,

p. 174 [3]). In [3] we discussed certain considerations relating to the
usefulness or applicability of that concept, and we also discussed certain
conditions to be met by the concept (e.g., that it should agree with the ordering
of Euclidean spaces by dimension); we now attempt to elucidate the informal
notions that led us to this definition rather than others.

We begin with the notion of a process of observation or measurement,
broadly conceived. We may think of such a process of measurement as applied
to a collection of objects. It is natural to formalize this notion by means of
a set S of objects and a function £: S 4 f(S) whose value at s ¢ S 1is
the measurement represented by f made on thekobject represented by s. Thus,
if S 1is a collection of (names of) persons, and if the measurement process
is to ask a certain question and record the answer, then £f(s) 1is the answer
given by person s to the question asked; or if g: S+ R represents the
measurement of height, then g(s) 1is the height of person s.

Conversely, if we are given a set S and a function £ defined on‘ S,
we may regard that function as an abstract representation of an observational
process on S. That is, one may conceive a procedure, not necessarily unique,

which would "measure'" or classify the elements of S according to the
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equivalence relation £ induces on 8§, (S1 being being equivalent to Sy
if and only if £(sy) = £(s,))-

Thus, our first formal step is to identify observation processes with
functions. We then consider all conceivable observation processes on a given
set S, i.e., all functions on S; it is natural to interprete this as the
totality of information carried by S - everything that can conceivably be
observed about S.

Consider now two sets, S and T, and suppose that there are more
observations that can be applied to T than can be applied to S. Since we
have identified observational proceéses with functions, we must find a formal
concept in terms of which it can satisfactorily be‘said that one set has "more"
finctions on it than another. Since the number of constant functions on a
set is arbitrarily large, but not different for the two sets S and T,‘if
there are "more" functions on T than on S, it would be natural to say
that T carries more information than S, or is capable of carrying more
information than S.

If S and T are finite sets, then the class of functions on each set is
determined by the number of elements in S and T. 'Here unambiguous comparison
is possible, and indeed boils down to comparing the cardinality of the two sets.

However, we want to formalize the concept of the totality of observations
carried by a set so that it applies to infinite as well as to finite sets.

When infinite sets are involved, because observational processes are subject
to error, it is natural to consider the representation of observational processes
in the context of a topological structure on the set of objects, formalizing

the appropriate notion of neighboring objects, and to confine attention to
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observational processes which are continuous. Thus, a definition which
permits us to compare the totality of (continuous) observations possible on
one space with the totality of observations on another must give meaning to
the idea that one topological space has "more' continuous functions on it than
another., The cardinality of the set of continuous functions on a space does
not provide a satisfactory concept in the case of general topological spaces,
The definition we presented in [3] does give meaning to the idea that one
space has "more" functions on it than another in the following way. Suppose
X and Y are topological spaces and that Y is informationally larger than
X in the sense of Definition 9 [3, p. 174]. According to this definition
there is a continuous function ¢: ¥ + X which is onto X and which has at
each point of X a local inverse.

To relate this to the notion that Y has more functions on it than X,
consider a measurement which could be made on X, i.e., a continuous function
f: X+ £(X) = Z. This measurement can be "lifted" to a corresponding measure-

ment £ : Y Z, on Y by £ = £, > as the following diagram shows.

f

FIGURE 1.
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I.e., the measurement f* is determined at a point y ¢ Y by first trans-
lating y into x =¢(y) in X and then applying the measurement £ to X.
The result is a continuous measurement process applicable to all of Y. 1In
this sense Y cannot have "fewer" measurements on it than X does.
[The role of the requirement that ¢ have local inverse has already
been discussed in [3, p. 174]. We repeat here only the comment that this
restriction serves to exclude "dimension increasing' continuous maps.]
Thus our definition does capture a sense in which one space can have
"more" measurements on it than another. Notice that this notion is invariant
under homeomorphisms of the spaces. T.e., if X has more information than Y
and if X1 is homeomorphic to X and Y1 homeomorphic to Y, then Xl has
more information than Y1- Thus, the quasi-ordering '"“has more information
‘than" (which we may write " " ) between topological spaces, is a topological
invariant.
One might be tempted to look at information about the objects being
observed in terms of the observations obtained, i.e., in terms of the range
space of functions. The analysis depicted in Figure 1 shows that if Y 1is
informationally larger than X then every observation process on X can be "translated
into a corresponding observation process on Y and hence that any useful purpose
Wwhich would be served by making an observation en X could also be served by
making the corresponding observation oen Y. However notice that our defini-
tion is prior to amy nAotion of "useful" information. For that concept a
decision rule, or a preference relation, must be introduced in an appropriate
way, so that certain observations would make a difference to the decisions
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taken or to the value of the resulting state of affairs.—

K

Jacob Marschak has discussed "pay~6ff relevant" or."useful" information in

various papers, including [2]. See also [1].
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One might ask about a space Y of "signals',whether it is capable of
carrying the totality of information about a certain space X ,representing
objects. This just amounts to interpreting the inequality Y «> X from the
standpoint of Y. Similarly, to ask, what spaces X are such that measure-
ments having values in Y can carry the totality of information about the
spaces X amounts to asking which spaces X are'below" Y in the quasi-
ordering of topological spaces demoted <> .

It is instructive to consider the relationship between a space X and
a subspace Y < X, where Y has the relative topology. On the basis of
our definition, it does not follow that X has as much information as Y. While
at first sight this may appear counter to intuition, closer examination reveals
that it is not an undesirable property of the definition. In terms of the
informal ideas relating to observation processes sketched out above, we may
notice that a subspace may be able to carry more information than the space in
which it is embedded; there are measurement processes which can be carried
out on the subspace, but cannot be carried out continuously on the containing
space. To see this we notice first that every continuous function on the
(larger) space X can be lifted to a function on the subspace Y by restric-

tion to Y. However, there can be continuous functions on Y which cannot
be extended to continuous functions on X. TI.e., there are measurement
processes which can be carried out continuously on a subspace of X but
not on the whole of X. A simple example is provided by Y = (0,1) and

X = [0,1], with the usual topology. The restriction of any continuous function

in [0,1] to (0,1) is, of course, a continuous function on Y. But the function
y = 1/x 1is continuous on (0,1), and has no extension to (0,1]. In this
sense a subspace can carry more information than the space in which it is

embedded. This is reflected in the ordering <> . Because the continuous image
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of a compact set is compact, there is no function from X onto Y, thus
X-% Y. On the other hand one may map (0,1) onto [0,1] continuously by a
map ¢ carrying (0,%] to the point O, [%,g] to [0,1] and [%,1) to 1.
We may use as a map from [%,2] to [0,1] a homeomorphism, from which it
follows easily that ¢ has a local inverse. |

There is reason,suggested in part by this example,to think that a

local concept of informational size involving only local comparison of spaces

would be useful. (See also [3] Theorem 35, p. 190.)

To express this idea we use the following definition.

Definition 1:

A topological space X is locally informationally as large at a point = c¢:X

topological space ¥-is at a poinby ¢ Y 1if there exist open neighberheods

N(x) ¢ X and M(y) €Y, with x ¢ N(x), and y e M(y), such that N(x) "= M(y).

Now, it is clearly possible (indeed otherwise there would be no point to
this definition) to have two spaces such that one has locally more information
than the other, but not globally. The local concept captures the idea that
locally one space carries more continuous measurements than the other, but
without requiring that ¢ach measurement be extendable to a continuous
measurement on the whole space. The flavor of this concept may be suggested
by the example of the real line and the unit circle, which are globally of

different informational size, but locally the same. [See [3] Example p. 189].
Inter#retation of the concepts of local and global informatfohal size may shed
furthéfriightion these concepts. It has been implicit in our discussion of

observational  processes that two aspects of them are captured in their
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representation by functions. The first is that aspect represeunted by the—value of th
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function in question at a point. The second is the extension of the observa-
tion, represented by the domain of the function. 1In the continuous case, the
idea of arbitrarily accurate identification of objects is involved in their

representation as points of a topological space, as in the familiar case of objects

represented by points of the real line, and the idea of arbitrarily accurate
observation of them is involved in the continuity of the functions which
represent observations. 1In this setting, the local concepr of informational
size may be interpreted as considering the totality of observations which
are capable of being made with arbitrary accuracy on an object capable of being
identified with arbitrary precision, and on all objects which closely approximate it.
The global concept of informational size involves the extension of
observational processes. As we have pointed out above, the structure of
rlationships among the objects, as represented by the topological structure
of the set of objects, can limit the extension of observational processes when
we require arbitrary accuracy. Thus, the quasi-ordering of topologicalsggces
by informational size may be interpreted as restricting attention to those
observational processes which permit continuous comparison of all objects in
the spaces involved.
Definition 1 can be made the basis for a concept of one space X being
locally informationally as large as another space Y by requiring that for
each point y ¢ Y there exist a point x ¢ X such that X is locally

ots
W

informationally as large at x as Y is at y.—

%/

One might think alternatively of defining local comparison of X and Y by
applying Definition 1 to arbitrary points x ¢ X and y ¢ Y. With this definition
it would not in general follow that if X 1is (globally) informationally as large

as Y then X 1is locally informationally as large as Y, which would be anamolous.
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It is clear that local comparison of spaces X and Y does not imply
global comparison. However, there are conditions, which we shall not go into
here, under which it is true that if X 1is locally informationally as large

as Y, then X 1is informationally as large as Y.

In this brief note we have attempted to discuss some of the informal
and intuitive ideas underlying our concept of informational size, ideas which
we hope justify our use of the word "informational" in naming our concept. The
interest and usefulness of this concept will depend on the mathematical structure

it induces and on the theorems it leads to.
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