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THE GENERAL CONCEPT OF
MULTIDEMSIONAL CONSISTENCY:
SOME ALGEBRAIC ASPECTS OF THE AGGREGATION PROBLEM

By
Jean-Marie Blin

I. INTRODUCTION

1.1. Looking back at the historical development of some widely

accepted models of economic theory often reveals some striking
similarities. In Koopman's words: "With the help of more funda-
mental mathematical tools, the common logical structure of re-
ceived economic theories of quite diverse origin can be brought
out." [13]. One such similarity has largely gone unnoticed so far:
the behavior of most economic agents is assumed to be understandable
through the simple maximization hypothesis of a single objective
function. The traditional model of consumer choice describes the
consuming agent solely in terms of a complete preordering relation
over some commodity space where he is to choose an optimal attain-
able commodity bundle. Similarly the producer's fundamental in-
centive is profit maximization, within the framework of the current
technological constraints. In both cases, the rationality of these

agents is, so to speak, one dimensional in nature. Indeed, it

would be z mistake to ignore the fruitfulness of this assumption.
Simple as it may be it still captures some essential features of the
agents it purports to describe. Moreover it often serves as a good
proxy for some other motivations which we may want to assign to those
agents. A producer, for instance, may want to think in terms of
market share besides profit; similarly a consumer's utility function

may be mace multi-dimensional as one way of introducing various



consumption periods over time. And finally, another explanation
for this approach may be found in the simple fact that the mathe-
matical theory of multiple objective optimization is by no means
as advanced as it is for a single objective function.

In this paper we shall consider an important case of the
multiple objective optimization problem which was originally con-
sidered in the context of social choice theory. The model, however,
is by no means restricted to this context of interpretation and,
for the sake of generality, we shall briefly sketch the general
aggregation problem to set the stage for our discussion.

1.2. Let us consider an economic agent having to decide on a
"best" course of action to be chosen from a finite1 set of feasible
alternatives. Let

(1) A = {al,az,...,ai,...,am] denote this alternative set.

The evaluation of the respective worths of the various alternatives
(ai) is carried out via a set of £ individual representation map-
pings:

(2) Py A - Sh where Sh denotes the hth criterion space. The
£ criteria S (h=1,a,...,£) could be various agents or various
viewpoints taken by a single agent. Aggregating these various
objectives involves the following problem: is there a ''best' way
of combining the £-dimensional images of the m objects (ai) into a
set of (m) one~dimensional images. Formally, we want to find some
aggregation mapping ¢ that maps the image set of A, %(A) (where

$(A) < 1 Sh) into a one-dimensional aggregate image set O:

(3) ¢ : 3(A) » 0. Clearly, unless we endow the Sh's spaces

and the QO space with a certain structure - algebraic and/or



topological as the case may be - no unique solution can be offered
for this problem. To choose between various solutions means that

we have to agree on (1) some specified structure for the various
spaces and mappings involved, and (2) some goodness of fit criterion.
There exist as many ""solutions' to the aggregation problem as

there are answers to these two questions.

1.3. In the sequel we shall only consider a version of the
problem with which social choice theorists have mostly concerned
themselves: the individual representation spaces Sh are all iden-
tical viz.

(4) Sy, = {1,2,...,i,...,m} the finite set of the first m
integers; the individual representation mappings @, are the permu-~
tation operators, i.e.

(5) P € ﬁm where &m denotes the group of permutation operators
of order m; and finally the aggregate representation mapping o is
also taken from the group 4 - In other words, the various view-
points (criteria, voters, etc...) define £ total strict orderings
of the m alternatives a; - For reasons that will become clear in
the subsequent discussion, these linear orders will be called
preference patterns and denoted by Lh' In this paper we wish to
study some fundamental algebraic properties of this version of
the aggregation problem (Section II) and then show how they pro-

vide various solutions to this problem (Section III).
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I1. SOME ALGEBRAIC PROPERTIES OF THE SET OF INDIVIDUAL
PREFERENCE PATTERNS.

2.1. A natural order relation on the set of individual preference

patterms.
As we know the £ individual preference patterns L, are generated
by £ permutation mappings ¢ : A + A. By definition these mappings

are bijective, and, algebraically they form a group Jh'

A special type of permutation known as a transposition t ¢ 4
is defined as any permutation which interchanges only two elements
in A and leaves the other (m-2) elements unchanged, i.e.:

(k #i, k# j =>t(k) =k

(6)

Lt(j) =1i;t@l)=35 vi+ji i, j, k=1,2,...,m.
Without any loss of generality we can adopt some arbitrary labelling
of the alternatives a;. The natural order L, = {(1,2,...,m}
of the first m intergers provides such a '"reference order'" (pattern).
An inversion is defined as a transposition such that:

(7) 1 <j <=>t(1) > £(3).

In any preference pattern the number of inversions is unique and
can be counted directly.

These notions enable us to define a natural order relation

(R) over the family £ of preference patterns Lh as follows.

Definition 1l: The agreement set V(Lh) associated with any preference

pattern Lh € £ is defined as that subset of A , A such that

(8) (ai aj) € V(Lh) <=> a, Lh aj whenever a; LO aj.

In other words for any individual preference pattern L, the
agreement set V(Lh) singles out in the set of Eﬁ%:l) ordered

pairs (ai,a4), the subset of those whose order in Lh agrees with
J



the reference order LO. Those are the non-inverted pairs.

We can now define a binary relation (R) on £ as follows:

(9 v L, L €£: L, RL <> V(L) 2 V(L) (R can be read
. ""precedes'...).

The proof of the following theorem is immediate.

Theorem 1: The relation R defined by (9) above is a partial order

relation, i.e.

[ (1) Reflexive: VL €£: L RIL

(ii) Antisymmetric: V Lh,Lk € £ : Lh R Lk and Lk R Lh
=y = Iy

(iii) Transitive: V Lh’Lk’Lg € £ : Lh R Lk and Lk R Lg

- => L R L.

Proof: This follows directly from the fact that D defines a partial

R is ¢

order relation on the power set of A, ¢(A). Q.E.D.

Thus, in graph-theoretic terms we can represent the family
£ of preference patterns as a finite graph G(#£,T) where £ denotes
the set of nodes (the strict total orders Lh which we agreed to
call the preference patterns) and T is a multi-valued mapping

from # into itself defined by:

-
Vv Li,L, ,L ,...,
h Lk1 k2 Lks

(10) ¢ r(L) = {Lkl,Lkz,...,Lk }o<=>

S

I, RL  VjEe {1,2,...,35...581.
-

J

An immediate corollary to Theorem 1 can now be stated as

follows:



Corollary 1: The graph G(Jﬁ,r) defined above is finite, reflexive,

transitive and antisymmetric.

Proof: This follows at once from Theorem 1 and equation (10)

above. Q.E.D.

As an illustration if £ = $3, i.e., £ describes the set of

all permutation of a three element set L0 = {a,b,c} and if we

denote:
L0 = (abec) ; L4 = (c b a)
(I1){L, = (bac) ; Lg= (cab)
Ly = (b ca) ; Lg = (a ¢ b)
we have:
rr(LO) = {Lz,...,LGI
r(Ly) = {L3,L4}
(12) ¢ F(L3) = {LA} (as shown on Figure 1 below)
r(Lg) = {L;,Lg]
o(L:) = (L, ]}
 D(Ls) = Ly,




(ab) L

Figure 1: G($3,P)

(Note: For clarity we have omitted the loops at each node)

From a geometric standpoint, as we can see from this figure,
the set $3 can be viewed as a regular hexagon. More generally it

can be stated:

Theorem 2:2 The set $ﬁ forms a convex polyhedron.

Proof: This fact follows, at once, from the well-known Birkhoff-
Von Neumann theorem which states that the set of bistochastic
matrices3 of order m is a convex polyhedron embedded in an m2-
dimensional space, and whose profile is identical with the permuta-

tion matrices o, € ﬁm. Q.E.D.

2.2. The general concept of multidimensional consistency

2.2.1. 1f we now consider the graph G(&B,F) as depicted on Figure 1



above, we notice that, even though the order relation R on & is only
partial, some proper subsets of 4 are totally ordered. Such proper

subsets are normally referred to as '"chains."

Definition 2: A proper subset £ C o forms a maximal chain if and

only if (1) the patterns L € £ can be linearly ordered e.g.,
L; R L2 ... R Lh .- R L and (2) t = E&%:ll .

Put another way a maximal chain (1) forms a Hamiltonian path
on the partial subgraph generated by £ and (2) the length of this
path is equal to t = Ci. We will now show how these concepts
naturally lead to the notion of multidimensional consistency.

Ever since Arrow's theorem was presented a number of authors,
starting with Arrow himself, and Black, mentioned the possibility
of reaching an aggregate transtive order from individual orders
whenever these individual preference patterns present a certain
"similarity." Black's single-peaked preference patterns are the
most well-known example of such a restricted set of individual
orders that allow transitive preference aggregation through majority

voting. But this is a very restrictive and special case of a much

more general phenomenon which we shall call "multidimensional con-

sistency." The following illustration will help motivate the
introduction of this concept.

2.2.2. 1Illustration: Consider a family £ of 5 preference patterms

(i.e., total strict orders) over a four-element alternative set

A= {a,b,c,d}. Let £ = {LO,L1,L2,L3,L4}, e.g.



[LO = (abcd) ; L3 =(b d a ¢)
(13) Ly = (b acd) ; L4 =b dc a)
L, = (b adc)

It is readily seen that this family £ displays a linear order
for the ordering relation R defined previously. Or, equivalently,
in terms of the associated partial subgraph of G(&,,T) this sub-

graph is linear since we have

(14) Ly RL; RL, RL; RL,
i.e. <>
T(Ly) = {Ll,...,L4]
r(Ly) = {Lz,...,L4}
(15)
-P(L4) = {¢)

In this case we say that the family of preference patterns
£ = {Lh1h=1,...,4} displays the property of multidimensional con-

sistency.

Definition 3: A family 2 = {thh € H} - where H denotes some index

set - is said to possess the property of multidimensional consistency

if and only if there exists some permutation mapping £ on H such that
(16) f(h) < f(h'’) whenever L, R L, 7 h, h’ € H

In other words the family £ is said to be multidimensionally

consistent whenever we can relabel the individual patterns 1, that
they form a chain for the order relation R defined previously

(see equation 9). When this chain is maximal we say that the



family £ in question displays maximal multidimensional consistency.

2.2.3. Example: Coombs orderings: the notion of multidimensional

consistency we have just defined derives its name from a very special
case first pointed out by Coombs [9]. 1In attitude measurement theory
Coombs noticed that often enough when a group of individuals rank a
set of stimuli many of the potential orderings are conspicuously
absent. It seems as if there exists some underlying structure -
linear or otherwise - on the set of stimuli A (alternatives), and this
structure is implicitly respected by the various individuals (view-
points, criteria, etc.). This experimental evidence confirms what
seems quite logical at first viz. the fact that in any problem of
multiple criteria decision-making the altermative set most often

displays some generic characteristic, some homogeneity which is not

explicitly recorded in the mere labeling of the alternatives
{al,...,am}. In short, some information loss often occurs when we
start indexing the alternatives without considering their very
nature. For instance, in Coombs experiment let us suppose that

the family £ consist of only seven orderings, viz.

LO = (abcd) ; L4 = (¢ b d a)

L, = (b acd) ; L5 = (¢ db a)
(17)§ ~©

Ly = (b cad) ; Lg = (d ¢ b a)

;F3 = (¢ b ad)

A possible rationalization of this clustering phenomenon
is that the alternative set displays'an underlying unidimensional

continuunl sometimes known as a joint gquantitative scale. It is

easily shown that if the underlying order is LO (the reference

order) and the distance from a to b is less than the distance from
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¢ to d, varying the location of the most preferred point along
this linear scale generate this family of "Coombs patterns.'" This
family is but one very special example of the general property of

maximal multidimensional consistency. Whenever a finite family

of preference patterns Lh € £ (h=1,2,...,4) possesses the property

of multidimensional consistency it is clear that the solution of

the aggregation problem is greatly simplified as we shall show

in Section 3 below. It is also clear that the class of all families

of total orders which are multidimensionally consistent, is very large.
In graph-theoretic terms, the notion of a Hamiltonian path

affords a very simple characterization theorem for the members of

this class.

Theorem 3: Let C denote the class of all families of preference
patterns that possess the property of multidimensional consistency.
An arbitrary family Z, of preference patterns belongs to C if and
only if we can find a hamiltonian path u on G (ﬁm,F) or G’ some
partial subgraph of G such that u = (Ll’LZ""’Lj""’Ln) with

¥ j=1,...,n.
Lj € £u j=1, ,N

Proof: By definition a hamiltonian path ¢ in a graph G goes through
each node Lj once and only once.

(i) Let £a possess the property of multidimensional consistency.

6] 1 = 1 3
Then ¥ f a permutation operator on J {1,2,...,35-..,0} 3 Lf(l) R Lf(2)
R... R Lf(j) R... R Lf(n) which is a hamiltonian path of length n

on the partial subgraoh G’'(&%, ,T, ).
£d £u



(ii) Let u = (Ll’LZ"'°’Lj"°°’Ln) be a hamiltonian path on

some graph G(jz T, ). Then from the definition of the mapping
o o

r, we can use the identity permutation i on the index set
o

J=1{1,2,...,j,...,n) to obtain

as required. Q.E.D.

The problem of devising an efficient enumerative algorithm
for all such multidimensionally consistent families £a € Cwill
be discussed elsewhere. Here, it suffices to note that for a three
element alternative set this class C has 21 members and, more
generally, this number is an increasing function of (m!). Thus
from the mere size of this class is seems most likely that the
property of multidimensional consistency will be verified for a
large number of families of total orderings.

Moreoever it can also be shown that any family £ of total
orders on a finite set A, can always be represented as the finite
union of multidimensionally consistent subfamilies of total

orderings.

Theorem 4: Let £ = {thh € H} be a finite family of total orders
on a finite set A. Then there always exists a class » of sub-

families o = {£1’£2""’£j""’£ﬁ] such that

(i) v j=1,2,...,n iﬁ is multidimensionally consistent



Proof: Several cases are to be considered.

(i) If # is itself multidimensionally consistent, the theorem
holds.

(i1) If £ is not multidimensionally consistent take an arbitrary

L €< and search for Lh’ € £ = {Lh) such that Lh R Lh" (Note:
to simplify this search procedure it is advisable to determine the
size of the agreement sets V(Lh) for all patterns Lh and start
with the patterns for which ]V(Lh)] is maximum.) Since R is a partial

order on éh > £ two cases are possible:

Case 1: # L., €<£D3 L, R L.
In this case set L = £1 and repeat the above procedure on the

h
reduced set £ - {ill.

Case 2: d Lh’ Lh” cee €2£2 3 Lh R Lh’ R Lhn

Then set £, = {Lh, L, s Ly ....,) and repeat the above procedure
by choosing some Lk SEE A {iﬁ} and comparing Lk to Z.

After a finite number of steps this algorithm will terminate
having exhausted the finite family #£. And also, it will always
be the case that this finite union of subfamilies £y £2,...,£n
will necessarily cover £ as required by (2).

(Note: This finite covering of £ does not need to be a partition
since we may, for instance, have two chains with the reference order
as their common intersection.) Q.E.D.

From Theorem 4 above it follows that the concept of multi-
dimensionally consistent preference patterns is always applicable
aither directly or via this decomposition mechanism. In the limit,
we could conceivably encounter a family £ which, upon

however,

decomposition, yields a union of one-element subfamilies of the form



(18) =2 = {Lh] v h €H

In this extreme case when the consistency check fails for all patterns
in £, it is only natural to ask: what alternative course of action
should we follow?

Several answers to this question are possible: (i) on the one
hand we can try to see whether or not the set of all total orderings
&ﬁ partially ordered by R has any other algebraic structure, this
route will not be followed here but it suffices to note that we
have been able to show that this set forms a symmetric (finite)
lattice ([ 7 ]); this result and the various aggregation methods
that it leads to will be discussed elsewhere. (ii) On the other
hand we may wish to strengthen the partial order relation R on G(Jﬁ,r)
by finding one or several total orders T that are compatible with R.

This route will now be very briefly outlined.4

2.3. Linear extension and dimension of the partial order R.

2.3.1. Definitions

Definition 4: A total order T is said to be a linear extension of

the partial ordering R if and only if
Vs Ty €y Ly Rips =L Tl
The following lemma can readily be established.
Lemma 1: Let 7 = {T 1
] n
on any set & Let R= N

Proof: Trivial.
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Definition 5: A collection 7 = {Tj[j=1,...,n} of total orders is

said to realize (span) a partial order R if and only if

n
n T. =R
=1 J

J

Definition 6: The dimension d(R) of a partial order R is the smallest

cardinal number f total orders Tj that realize R.

Definition 7: A basis 7 of R is any collection of total orders

such that

n
(i) n T. =R (i.e. J is a spanning set)
j=1

(ii) 7] = d(R) (and 7 is minimal)

We can now proceed to determine the class 7 of total orders
that are compatible with the partial order R defined on S - First

of all we should prove the existence of such a non-empty class J.
Lemma 2: The class 7 compatiblewith R is non-empty.

Proof: This corollary follows directly from Szpilrajn theorem.5 Q.E.D.

2.3.2. An _example
The problems of (1) enumerating all the total orders Tj € J

and (2) finding one (or several) basis for R will not be discussed
here in all its generality. We shall restrict our discussion to

the simple case where A is a three-element set. Then R is defined
on 33 as shown on Figure 1 above. It can be proven that the class

7 has six elements viz:



r.Tl = LO > L6 > L5 > L2 > L3 > L4

T2 = LO > L6 > L2 > L5 > L4 > L4

(19) T3 =Ly >1L, > L6 > L5 > L3 > L4
T4 =Ly > L2 > Lg > L3 > L5 > L,

T5 =Ly >L, >Ly> L6 > L5 > L,

k Tg = Ly > Lg > L, > L3 > L5 > 1,

One can easily verify that the subclass {Tl TS] forms a basis
for R. Thus in this case R is of dimension 2.6 Thus, we can
see that even if the family #£ is not multidimensionally consistent
we can always extend R to find a linear ordering on Jh ancd hence on
Z C &m, as in the case of multidimensional consistency. The follow-

ing section will now use these results to provide some reasonable

aggregation mappings on £.
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ITI. SOME AGGREGATION PROCEDURES

3.1. Case #1: The family £ is multidimensionally consistent

As we said earlier, the advantage afforded by the property of
multidimensional consistency is that it provides a natural total
order on the preference patterns in #£. The simplest way to aggre-
gate such patterns is then to expolit this complete ordering.

The median pattern can be defined as that pattern which leaves

50% of the elements in 2 behind; and, as we know, it minimize®¢ the
sum of the distances between itself and all the patterns in £,

when the distance is measured by the absolute value. This median
solution possesses an interesting property viz. it is also the
majority voting solution in the social chcice context. This result

can be established quite simply.

Lemma 3: Let £ be a finite family of multidimensionally consistent

patterns. Let L be the median pattern in #£. Then L is also
med med

the simple majority voting solution when all pairs of alternatives in

A , A are voted upon sequentially.

Procofilet V(Imed) denote the agreement set of all patterns L, such

that Lh R Lmed v Lh € £.

By definition of L we have:
med % for £ even

(ai,aj) € V(L . q) <> ‘Lmedl 2 {.&%l for £ odd

i.e. for all such pairs a; has a simple majority over aj
Symmetrically for all other pairs in A , A, aj has a simple
majority over a; - 0.E.D,

Goodman pointed out a similar result [11].



Clearly, other solutions could be obtained for a "best" aggre-
gate pattern if we were to use other distance functions over 2.

On the other hand if a given family £ does not meet the multidimen-
sional consistency criterion, we must devise alternative aggre-
gation procedures as explained below.

3.2. Case #2: 1In cases where we can no longer rely on the
existence of a single total ordering over ¥, the following methods
can be used.

3.2.1. Using the totals orderings in the basis of R provides one

f easible option. However, several preliminary questions must first
be settled: 1is the basis unique and, even if it is unique, how

do we go about choosing a single total ordering in the basis?

On purely bayesian grounds one may adopt a completely randomized
strategy to pick such a total order T*. If this is done we are then
confronted with a situation analogous to that of multidimensional
consistency since the patterns in £ can be uniquely located along
the linear scale T*, - a linear extension of K. In effect this

amounts to introducing some kind of shadow consistency on £ - such

consistency having been reconstructed ab initio on strictly logical
grounds. If we follow this route we are thus led back to the
previous setting where 2 was linearly ordered; all the solutions

to this case now become applicable (e.g. the median or the mean
solution, etc....). If it appears that a randomized choice of some
basic linear extension T* of R is unwarranted in a given situation -
for instance when a sensitivity analysis has shown that the final
solution was highly dependent upon the initial choice of some basic

T* - we can still aggregate the patterns in Z.
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3.2.2. Another possible solution would consist in directly defining
a reasonable metric on the set Jm of all total orders of the set A.
One such metric will now be discussed.

A natural metric d(Lh’Lk) on Jh can be defined as the minimal

number of transpositions necessary to transform Lh into Lk’

Definition 4: The integer valued function d(Lh,Lk) is defined as:

(20) d(L,,L) = |T]

where !T! denotes the cardinal number of the set of operators:

(21) T = {tl,tz,...,tg} (all t's are transposition mappings)
and

(22) tg{tg_1 [...tl(Lh)]} = L

To show that this function d(Lh’Lk) does define a metric on
4 we should first note that there exists an equivalent representa-
tion of d in terms of boolean variables. Specifically if we repre-
sent each preference pattern Lh by an Eﬁ%:ll dimensional boolean vec-
tor (i.e. a boolean variable for each pair [ai,aj]), equation (20)
becomes:

(207 d(L,,L) = L L |
i.e. the absolute value of the difference between the two boolean

vectors 1, and Lk' For instance, if

Ly = (a,b,c) = (1,1,1)
and L2 = (b,a,c) = (0,1,1)
d(LO’L2) =1

which reflects the fact that the transposition (a b) -+ (b a) transforms

T -
'_;C ~nto Ll.



Lemma 3: The function d(Lk’Lh) defined by (20) is a metric on % .

Proof: This follows from the fact that (20) and (20’) are equivalent
and (20 ‘) is the definition of the well known Hamming metric over

boolean vectors. Q.E.D.

We can now use this metric to aggregate an arbitrary family

£ of patterns by choosing a '"generalized median'' pattern Loed such

that the linear form

(23) z: d(Lh’Lmed) is minimized
Lh6£

This solution possesses a number of interesting properties:
first, it will always lead to a transitive aggregate pattern in the
set Jh; second, it can be given another theoretically attractive
interpretation viz. the generalized median can be viewed as the
center of gravity of the cluster £ in éﬁ7; and last, if £ happens to
be multidimensionally consistent it leads to the same result as the
median solution (see 3.1.).

3.3. Concluding comments

The foregoing analysis has suggested that there often exists
a certain underlying cohesion among multiple criteria rankings of
a set of alternatives. Such cohesive aspects can best be expressed
algebraically as we have just illustrated. A general discussion of
some related algebraic notions would extend far beyond the confines
of this paper (see L 7]). At any rate, it is now clear that this

way of approaching the aggregation problem provides valuable insights

into various aggregation methods.
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Footnotes

The assumption of finiteness is not as restrictive as it may
seem since we can interpret the alternative set as a finite

set of neighborhoods over a compact continuum.

This result has been obtained independently and in various

contexts by several authors ([121,[142,07)).

Bistochastic matrices arise from the definition of a probability

measure on the set of permutation matrices in $h'

The problem we are about to discuss is actually quite involved
and a comprehensive discussion will be provided separately.

(see [8-a]).

Theorem (Szpilrajn, [15]): Every partial order R possesses a

linear extension T. Moreover, if L1 and L2 are any two non~
comparable elements of R, there exists an extension T1 with

L1 < L2 and an extension T2 with L2 < Ll'

For a general study of the dimension of R in 4 (for m # 3) and

its interpretation, see [8-al.

For a cluster-theoretic analysis of the aggregation problem

see 8-b],
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