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I. INTRODUCTION

It is widely believed that the achievement of a Pareto-optimal allocation
of resources via decentralized methods in the presence of public goods 1is
fundamentally incompatible with individual incentives. Samuelson [ 19 ], in
particular, has argued this point most forcefully in showing the difficulties
of extending the competitive market system to cover the allocation of public
goods. This belief is so firmly embedded in conventional wisdom that the
problem has acquired a name - the Free Rider Problem - and a consiéerable
amount of work has been devoted to attempts at mitigating or ;ircumventing
the difficulties it poses.

This paper presents, to the best of our knowledge, the first decentralized
method for optimally allocating resources in economies with public goods when
consumers are alléwed extensive opportunities to pursue their an self-interest
and be '"free riders" if they so choose. Basically our method comsists of
appending to the traditiomal competitive market mechanism in the private sectors
(as formulated, for example, by Debreu [ 5 ]), an explicit procedure for
determining consumers' demands for public goods and their tax burdens. Even
though consumers are completely free to misrepresent their demands for public
goods, the taxing and allocation rules we specify are structured in such a
way that it is in each consumer's self-interest to reveal his true demand.

Thus. we have not assumed away the Free Rider Problem, but have provided a
1/

possible solution to it.

a guide to the contents of the paper the following summary may be
2/
useful. In Section II we formulate a class of mechanisms for allocating
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public goods by adding a special agent - the govermment - to the standard
Arrow-Debreu model of a private ownership economy. The government (which
could be thought of as a computer similar to a Walrasian auctioneer) chooses
according to fixed rules the level of public goods to be provided and the
taxes to be levied on consumers and producers based on market prices for all
goods and the infommation (''demands") communicated by consumers.

‘ Consumers are assumed to know (or to be able to discover) the government
rules and are free to communicate any information they desire. The govern-
ment has no way of verifying the ''correctness' or "truth" of the information
communicated by consumers since it has no basis on which to compare alterna-
tive information from a consumer. In addition to choosing what information
to send the government, consumers also choose (purchase) private goods bundles
on competitive markets. In making their decisions, consumers are assumed
to maximize their preferences over consumption bundles (containiqg both
private and public goods) subject to their budget constraints (which include
their tax burdens). We assume consumers behave competitively; that is, they
treat as parameters the market prices for goods, their shares of firms' profits,
and the information sent the government by other consumers. A rational consumer
will, however, consider the impact of his decisions on the government's
determination of the quantity of public goods to be provided and the taxes
he must pay.

Producers are also assumed to behave competitively; that is. as profit
maximizers treating prices and the taxes they face as parameters.
A member of the class of mechanisms is thus specified by any set of

government allocation and taxing rules. Several examples of well known rules
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are presented in Section II.7, both to illustrate the broad coverage of our
general model and to emphasize the fact that these particular schemes do not
lead to Pareto-optimal equilibrium allocation.

In Section IV we present our govermment rules. We then prove for these
rules the two Fundamental Welfare Theorems - that an equilibrium under our
rules is Pareto-optimal and that any Pareto-optimal allocation is an equili-
brium following, if necessary, a redistribution of endowments and profit shares.
These two theorems provide a partial substantiation for our claim of a solution
to the Free Rider Problem.

A full substantiation requires that we demonstrate our claim is not
vacuous. In example 2.2 of Section II.7, we present a very simple set of
government rules with the property that an equilibrium under these rules is
Pareto-optimal. But it is easily demonstrated that an equilibrium in this
case rarely exis;s! Therefore, we have devoted a major portion of this paper
(Sections III and IV.2) to proviﬁg that, under assumptions on consumers and
producers not appreciably stronger than those used by Debreu [ 5 ], an
equilibrium relative to our rules exists. In the process we prove an existence
theorem for a wide class of government rules. The existence theorem thus
establishes that our optimality results are not wvacuous.

Finally, in Section IV.5 an illustrative example is presented to provide
additional insight into the reasons why our rules have desireable incentive
properties and others do not.

Iﬁ order to place this paper in proper perspective, several points concern-
ing its relationship to others in the literature on incentives and resource

allocation in economies with public goods should be mentioned.
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Firét of all, while our paper can be viewed as an extension of the
Arrow-Debreu model of a private ownership competitive economy, it is clearly
not the first such general equilibrium extension. Two others, by Arrow [ 2 ]
and Foley [ 8 ], may be noted by way of contrasting our approach from others.
Arrow's paper <contains a purely formal extension of the Arrow-Debreu model to
economies with externalities including public goods. For public goods
economies, the formalization requires that every consumer's consumption of any
public good be treated as a distinct commodity that is traded on a separate
market. ﬁhile this redefinition of thé commodity space allows the standard
welfare theorem that a competititve equilbruim is Pareto-optimal to apply for
an economy with public goods it does not pro&ide a solution to the Free Rider
éroblem for two reasons pointed out by Arrow.é/ First, to interpret an
individual's consumption of a public good as a commodity distinct from another’s
consumption of the same public good, as is done for private goods, is to
assume implicitly that a consumer can be limited in his consumption to the
quantity he '"purchases' in the market for that commodity (even though, in
equilibrium, all consumers will consume the same good). This implicit
assumption is, of course, incompatible with the definition of a public good
and is the crux of the Free Rider Problem. Second, since each public good
market has but one buyer, the assumption of competitive behavior, that the
consuﬁer treats as .given the price he faces for his consumption bf a public
good. 1s untenable.

OQur method of extending the Arrow-Debreu model to ecomomies with public
goods avoids both of these difficulties. It is explicitly incorporated in

our model that a consumer's consumption of a public good depends not only on
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his own decigions, but on other consumers’' decisions as well through the
government's allocation rule that determines the quantity of the public good
to be made available to all consumers. Thus, any consumer hay be a free
rider if he chooses. Also, in our model, while the market for public goods has
but one buyer - the government - the government's demand is determined by a
fixed rule that depends on all consumers' decisions. Thus any one consumer
can expect to have no more influence on the price of a public good than he can
on the price of any private good. Consequently, the competitive behavioral
assumption is essentially no stronger in our model with public goods than it is
in an Arrow-Debreu model with private goods only.

In Foley's extension of the Arrow-Debreu model to public goods economies,
an "equilibrium" is also shown to be Pareto-optimal. However, Foley provides no
explicit mechanism for determining the quantity of public goods and the
consumers' taxes. An "equilibrium' in‘his model is defined (in part) by a
public goods bundle and a comsumer tax distribution such that there exists no
other public goods bundle and tax distribution adequate to pay for it that is
unanimously preferred to the "equilibrium" bundle and tax distribution. To
define an '"equilibrium" in this way is rather like defining a competitive
equilibrium to be an allocation-price pair such that the allocationﬁis Pareto-
optimal! What the mechanism is by which two different goods bundles and tax

distributions might be compared or presented for comparison is not specified.

In the absence of any such mechanism the behavior of consumers is ill-defined

and incompletely specified. How consumers' preferences for public goods get

translated into a public goods bundle and taxes is not explained. Thus the

4l

entire Free Rider Problem is completely ignored in Foley's paper.
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Qur paper, in contrast, by formulating an explicit mechanism for
determining the quantities of public goods and the taxes, directly confronts
the Free Rider Problem. Since every Pareto-optimal allocation is both an
equilibrium allocation relative to our government rules and a Foley ''equili-
brium" allocation, a natural conjecture is that our mechanism is merely
a procedure for reaching a Foley ''equilibrium." Such a conjecture is, however,
false. 2/ We conjecture instead that there are no government rules in the
entire class our model permits such that an equilibrium relative to these
rules 1is a Foley "equilibrium'' for general economies.

Two other papers that formulate a mechanism for selecting public goods

bundles and consumer taxes based on information communicated by consumers are
those of Dreze and Vallee Poussin [ 7 ] and Malinvaud { 17 ]. Furthermore,
under the assumptions of these papers, their mechanism provides incentives for
consumers to correctly reveal their preferences for publie goods énd leads to
Pareto-optimal allocations. However, the behavioral assumptions made in these
papers are more restrictive than those assumed here. In essence what they
assume is that a consumer does not take the other consumers' decisions as
given (the competitive assumption), but rather assumes the other consumers'
decisions will be the least favofable ones for him. In game theoretic language,
a consumer in these models is assumed to choose '"'minimax" decisions, whereas
the competitive assumptions we made lead to Nash equilibrium decisions. As we
show (in example 2.4 of Section II1.7), if consumers behave competitively in
the Dreze-Vallee Poussin and Malinvaud models, then an equilibrium under cheir

rules is not, in gneral, Pareto-optimal.
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Another pair of papers dealing with optimal resource allocation mechaﬁisms
and individual incentives'are those Hurwicz [ 14 ] and Ledyard and Roberts [ 16 ].
Proved in these papers (by Hurwicz for pure exchange economies with private
goods only and by Ledyard and Roberts for economies with public goods) is a
theorem stating it is impossible to find a resource allocation mechanism that
vields '"individually rational' Pareto-optima and which is also "individually
incentive compatible " o/ for all agents. Our results are obviously not a
counter-gxample to this theorem. The reason why the Hurwicz-Ledyard-Roberts theorem
is not applicable ﬁo our model is that they allow consumers a broader range of
strategic possibilities in their models than we do. As discussed above, we
assume consumer behavior is competitive; in the Hurwicz and Ledyard-Roberts
papers, this limitation on behavior is not assumed. Their results, however,
imply that under our rules and an additional mechanism to select or find equili-
brium prices, v a‘very sophisticated consumer could formulate a decision
strategy which would lead to a non-optimal resource allocation by considering
how his decisions affect prices and his profit shares. —

We have chosen to accept the limitations on strategic behavior implied by
assuming competitive behavior not only because they permit us to derive positive
results, but aléo because they are consistant with those of standard competi-
tive models and also with those implicitly assumed in discussion of the Free
Rider Problem.

Finally. the rules or methods we present in this paper for solving the
Free Rider Problem were suggested by those presented in several papers by
Groves [ 12 ] and Groves and Loeb [ 13 ]. The models of these papers, however,
are partial equilibrium models in which payoffs to the different decision

makers could be directly compared and transferred. In the language of game
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theory, these models are n-person noncooperative games with transferable
utility. Not only is our model a genefal equilibrium model (a characteristic
that creates difficulties not present in the papers of Groves and Loeb),

but since utility is not directly transferrable in our model their analysis

does not attack the Free Rider Problem with public (consumption) goods.



FOOTNOTES FOR SECTION I

l/ We do not suggest, however, that it would be practical to institute
directly the mechanism we propose any more than the Walrasian t;tonnement
procedure could be literally instituted as a realistic mechanism for allocating
private resources. Rather the solution we propose is in the nature of an
idealized or theoretical solution. However, with a little imagination and

further work, more practical versions could undoubtedly be developed. For

an example of an attempt in this direction see Green and Laffont{ 11 ].

2/

=’  Those interested only in the optimality of resource allocation under
our rules can read Sections II. 1-6 and Sections IV. 1 and 3, without missing
anything serious. Section IV. 4 should be read by those interested in the
unbiasedness of our rules.
Those interested in existence should read II. 1-6, III. 1-4, and IV. 1 and 2.
Tinally, examples of four govermment rules other than ours are used throughout
to illustrate the model and the results. These can be found in Sections II.
7, III. 5, and 1IV. 5. The examples consist of a Naive Governmment, a Vacuous
Government, a government designed to produce Lindahl equilibria if consumers
reveal their preferences correctly and a government designed to allocate re-

sources as proposed by Dreze and Vallee Poussin [ 7] and Malinvaud [17].

3/ See Arrow [ 2, p.57)

/

p See Kihlstrom [ 15 ] for one possible mechanism which selects Foley
"equilibria."

5/

See Remark 4.8, Section IV.
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&/ These terms are defined in Hurwicz [ 14 ]

7/

By assuming competitive behavior and restricting our analysis to static
equilibria, it is not necessary for us to specify precisely how prices are
determined in our model. -An obvious way to add a price determination
mechanism would be to add a t;tonnement price adjustment mechanism and
show that under suitable assumption (e.g. gross substitutability) the

iterative process would converge to a competititve equilibrium relative to

our rules if consumers behave competitively. We have not done this yet.

8/

=’ One could view the results of this paper as an extension of the classical
welfare theorems proved by Arrow and Debreu to economies with public goods

analogous to the Ledyard - Roberts generalization of Hurwicz's Impossibility

Theorem:
’ Classical Economies Economies
w/ private goods only w/ public goods
Competitive Behavior Arrow and Debreu Groves - Ledyard
Optimality Theorems (this paper)
Full Strategic Behavior Hurwicz Ledyard ~ Roberts
Impossibility Theorem
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II. THE GENERAL EQﬁILIBRIUM MODEL
I1.1 The Economy

The model we consider is an Arrow-Debreu private ownership economy 1
with public goods and a govermment. There are L private goods (indexed
£ =1,...,L) and K public goods (indexed &k = 1,...,K). A bundle of
private goods is denoted by x and is an element of the private goods
commodity space jRL (the L-dimensional Euclidean space). A bundle of
public goods is denoted by y and is an element of the public goods commodity
space RK- Prices for private and public goods are denoted by the vectors

L +
Ppe R and q ¢ RK respectively, and the price vector (p,q) ¢ RL K of

all goods is denoted by s.
The model has two types of ordinary economic agents - consumers and

producers - plus a special agent - the government. There are. I consumers

(indexed i = 1,...,I), each of which is characterized by  a) his consumption
i L+ K < i
set % < R~ » b) his preference relation ~; on Zl, and <¢) his initial
. 2/ i L

endowment of private goods, w ¢ R .

There are J producers (indexed j = 1,...,J), each of which is charac-

‘ . L+ K . .

terized by his production set, A R . Each element z7 = (zi,zg) in

the set zJ is a technologically feasible input-eutput vector whose negative

components denote inputs and whose positivé components denote outputs. Associated
A . . . . i

with each producer j is a profit share distribution (9 d>i such that

1]

- 1] ) . th : .
and .3 Jo 1, where 3 is the 1{— consumer's share of

P

iy
0<s <
producer (firm) j's profits.

Thus far no distinction has been made between private and public goods

except for their labeling. The distinction occurs by specifying that the entire
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3

net production of public goods, szz =z, is consumed by each consumer,
whereas the net production of private goods, Ejzi =z, must be divided

among the consumers. This distinction is formalized by the definition of

an attainable allocation:

Definition 2.1: (i) An allocation is an (I + 1 + J) - tuple (<x1>,y,<zj)),
L+ K

where xle ]RL, Yy € ]RK, and z3 ¢ R

(ii) An attainable allocation is any allocation such that:

a) (x°,y) eXZ' fori=1,...,1I,

5y z3 ¢ 2)  for j=1,...,1, and

%.zd
j

i

c) (zi(xi - mi),y)

A private ownership economy will be denoted by

N i> i, .7 ij
2 8 {(Z )~i)m \1J<Z >J)<e >i,j}'

I1.2 The Government

In the model, private goods may be purchased by consumers in private
markets; public goods will be purchased in private markets and provided to the
~ consumers by the special economic agent - the government. This agent has,
therefore, two basic tasks or functions to perform. First, it must choose
the quantity of each of the K public goods it will purchase and provide
the consumers. Second, it must raise, through taxes, the necessary funds to
finance its purchases of the public goods. 1In order to carry out these tasks
in a socially desirable or non-arbitrary manner, the goverament will have to

communicate with the consumers. To make precise the concept of communication,

we specify an abstract set M to be the language or message space. Each
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consumer, i, selects an element mi ¢ M where mi is interpreted to be the
consumer's message to the government.

In addition to the language, M, the government is characterized by
rules that specify a) what public goods bundle to purchase, the allocation

rule, and b) what taxes to levy on consumers and producers, the taxing rules.

Given the language, the rules define specific quantities of public goods and

1 I .
taxes for every I-tuple of messages m=2 (m ,...,m" ) received from consumers

and every price vector s = (p,q) prevailing in the private markets for
private and public goods.

+
Formally, the allocation rule is a function y: MI X RP K-* RK. Thus

y(m,s) 1s the vector of public goods purchased by the government and supplied

s s , 1 I
to consumers if it receives the messages m = (m ,...,m ) from consumers

and the prices prevailing in the market place are s, The consumers’ tax rules

i +
are formally specified as (real-valued) functions Cl:MI X IJ‘ K - R, i=1,...,I.

i ; . .
Thus, C (m,s) 1is the lump-sum tax levied on consumer i when the government
: 3

receives the messages m and the market prices are s.

The producers'tax rules are formally specified as pairs of (real-valued)

j I L+ K 2
functions, RJ: M x R - R , j=1,...,J. The first function,

R{(' ), of each pair is defined as a percentage tax rate on (before-tax) profits
of firm j and thus is bounded between zero and unity. The second function,
Rg(' ), of each pair is defined as a lump sum tax &/ on the firm.

A government, G, is then completely specified by a language M, an alloca-
tion rule v(* ), consumer tax rules, <Ci( <)), and producer tax rules
/Rj( )Y, and we write G = f%,y,/ci\,<Rj\}. By specifving a government, the

behavior of the special agent of our model is given explicitly.
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II. 3 Producer Behavior
Producers are assumed to behave as price - and tax-taking profit maximizers.
That is, given prices s = (p,q), the tax rate on pre-tax profits, r{,
and the lump-sum tax, rg; producer j chooses an input-output vector in

his production set zJ so as to maximize after-tax profits, (1 - ri)(szJ Yy - r%.

Definition 2.2: (i) The supply correspondence of the th firm,
@j: IRL+KX IRZ" TRL-H(, is defined by:
@j(s,rj) = {zj ¢ 23 \ (l-ri)(szj) - rg is maximal over Zj},
(ii) The after-tax profit function of the & firm 03 :RET¥x ®R%» R

is defined by:
(s, e = (1 - (s 80y - o).
IT1.4 Consumer Behavior

Concerning consumer behavior, each consumer must make two decisions, He

, . i L

must choose a private goods consumption bundle, x ¢ R, and a message.

i

m ¢ M, to send the government. Consumers are assumed to take as given the

prices of all goods, their shares of the firms' profits, and the messages of

all other consumers. Consumers do consider the fact that the message they send

. . . i

may affect the quantity, vy, of public goods provided by and the tax, C,
- . . . i i

levied by the government. Thus they will choose a decision pair (x,m)

i .
to maximize preferences over consumption bundles (x ,¥) subject to a budget

comnstraint.

Definition 2.3: (i) The budget correspondence of the iEE consumer,

; - +
sl MT T x RETR% R o BUx M, “is defined by 2/
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-1 i

)i(,s,wi) = ((®,5) ¢ Rix M \

Bl(m
& ,y(m/@,s)) e X ,p X +C (w/@,s) g wl
where w= = p(nl + Zj9lJHJ is the value of his wealth.

- . . th
(ii) The decision correspondence of the i— consumer,

i - +
Aot ’RETE xR o BY x M is defined by:

al@ils,wty = (@& ,ah e @il s, vty |

G y@ahe) 2, Ghy@at,s) for ain GhaY ¢ i@ (s, wh)

Loosely speaking, the consumer's choice maximizes the indirect utility

of (xl,ml) given (m)l(,s) subject to a budget constraint given (m * ,s,wl).

II1.5 Equilibrium

In defining a competitive equilibrium for a model, it is convenient to

reduce notation by defining new mappings which substitute for @J,HJ,BI, and a':

Definition 2.4: The mappings mJ,WJ,Bl, and 8~ are defined as follows:

j + + : : :
i) @J: MI b4 EJ‘ K-*iRL K where mJ(m,s) = @J(s,RJ(m,s)),
1) =3: MF x RETX 5 R where ~J3(m,s) = 13(s.rI(m,s)).
. : s . ) ) . )
iii) Bl: MT x R; X + R~ x M where Bl(m,s) = Bl(m)l<,s,wl(m.s))
and w (m,s) = puwo + :jajdcvj(m,s), and

i 1 L+K L )i(

iv) 8+ M xR + R x M where sl(m,s) = Al(m ,s,wl(m,s)).
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' aoos i3 i .
The mappings ¢~ ,7 ,B , and $§ are referred to respectively as the supply
correspondence, the (after-tax) profit function, the budget correspondence,

- 6
and the decision correspondence. —

Remark 2.1: The budget corresrondence Bi depends on the message rni

of consumer i through its effect on the taxes levied on producers and thus

on the after tax profit shares of consumer 1i. The competitive assumption

that consumers take their profit shares as given implies, therefore, that

they neglect the impact of their messages on their profit shares or on

their budget set. However, for all govermments such that producer taxes are
zero, i.e. Rj(m,s) s (0,0), profits, profit shares, and hence each consumer's
budget will be independent of not only of his own message, buﬁ of all consumers'
messages. In such cases, the budget correspondence will be identical to that
of the private goods only model, c.f. Debreu [5].

The examples of various governments discussed in Section II.7 all have
zero producer taxes. The specific government we propose in Section IV does
not; however, a minor modification to the consumer tax rules can be made that
permits zero taxation of producers. Thus our optimality results in Section IV
do not depend in any essential way on the implicit assumption that the effect
of a consumer'’s message on his budget set is ignored by the consumer. (See

footnote on page 71).

The definition of equilibrium for our model is that of a Nash or

non-cooperative equilibrium.

Definition 2.5: A competitive equilibrium relative to the government

G = {M,y(- ), (Ci(' )>,(Rj( .))}  in the private ownership economy

5 = (et T, b, 6] is an (T4 T+ 1)-tuple ((xt, oy, 2?5} of
) 1

consumer decisions, producer decisions, and a price system such that:
a) (xl,ml) ¢ sl(m,s) for all i = 1,...,1 (preference maximization)
b) 21 ¢ @J(m,s) for all j = 1,...,J (profit maximizatiom),



c) (zi(xl - ml),y(m,s)) = ijJ (supply equals demand),

and d) s> 0

Remark 2.2: If (a) the allocation rule y(m,s) and.the producers' percentage
tax rate rules Ri(m,s) are all homogeneous of degree zero in prices s, and
(b) the consumers’' tax. rules Ci(m,s) and the producers' lump sum tax rules
Rg(m,s) are homogeneous of degree one in prices, then (iﬁ_the producers’
profit functions nj(m,s) and the consumers' wealth functioms wi(m,s) are
homogeneous of degree one in prices, and (ii) the supply, budget, and

J ql i .
decision correspondences, ¢ ,B", and §, are homogeneous of degree zero in

prices. Thus, if {(xl,ml>,(zJ),s} is an equilibrium under these conditioms,
then {(xi,ml§,(zj>,XS} is also an equilibrium where A 1is any positive
real number. Hence under restrictiom (a) and (b) on the government rules,

the unit simplex S defined by:

S =1{s = (p,9 e'mi-FK \ = 1}

B2 TCTR 5.

T

uzpﬁ
. . L+K .o

may be substituted for the price space R in all the above specifica-

tions and definitions and instead of d) in definition (2.5) the restriction,

d') s ¢ S, may be substituted.

Remark 2.3: It can easily be seen that definition (2.5) is a generalization

of the definition of a competitive equilibrium for a private ownership Arrow-
Debreu economy. 1/ Let x' = X' x {0} for each i and z3 = yd x fol  far

e . .
each j (where 0 ¢ R ). Also, let y(m,s) = O,Cl(m,s) = 0, and RJ(m,s) =0

I L+XK rp i i
for all (m,s) ¢ M X R . Then 1<x1§,<23},p} is a Debreu equilibrium

1 I
if and only if for all I-tuples of messages m = (m ,...,m )

{(xl,ml>,<zj>,(p,0)} is an equilibrium relative to the given government

rules.
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II1.6 Optimality
To discués the optimality properties of competitive equilibria,the

following definition is needed:

Definition 2.6: A competitive allocation relative to the government G 1is

an allocation {<x1>,y,(z3>} such that there exist messages (m’) and a

i i ‘ ) o 1
price system s such that {(x ,m >,<ZJ>,S} 1s a competitive equlllbrium

relative to the government G and vy = y(m,s).

Two fundamental theorems of welfare economics assert for a private

ownership economy (without public goods) that under suitable conditioms

(i) every competitve allocation is Pareto optimal and (ii) every Pareto-
optimal allocation is competitive for some initial distribution of endowm-

ments and profit shares. 8/ Pareto-optimality is defined for our economy &

with public goods by:

o

Definition 2.7: An allocation {(xl>,y,<zj§} in 4 is Pareto-optimal

if a) it is attainable and b) there does not exist another attainable
allocation, {<;i>;;;<;j>] such that (;i,;) ii(xi,y) for all i=1,...,I,
and (209 2, (x19,y) for at least one i
0

Although conventional wisdom on the subject 8/ suggests that it is not
possible to find government rules such that a competitive allocation relative
to these rules in Pareto-optimal, in Section IV we define a specific govern-
ment and then prove (under conditions on the economy 4 that are remarkably
similar to those in Debreu [ 5 ]) not only that every competitive alloca-
tion relative to our government is Pareto-optimal, but also that every

Pareto-optimal allocation is competitive relative to our rules for some

initial distribution of endowments and profits shares.



In order to prove that the Pareto-optimality of a competitive allocatiom
relative to our rules is not a vacuous result, we also establish in Section IV
conditions for the existence of a competitive equilibrium relative to our
government. In Section III a general existence theorem is proved for a wide
class of governments satisfying certain conditioms.

II.7 Some Examples of Governments

Before discussing the existence of competitive equilibria and our specific
government, it may be helpful to provide several examples of government rules that
have been discussed, more or less explicitly, in the literature. The examples

will aid the understanding of the general model detailed above.

Example 2.1 The Naive Government

In this example, public goods are treated just like private goods. Eéch
consumer reports to the govermment how much of each public good he wants to
purchase. The government provides the aggregate amount requested (the
sum of consumer demands). Each consumer pays for the amount he requested
at the current market prices; however he ig able to consume the total amount
provided.

In terms of our model, the 'maive government" GN = {M,y,(Ci),{Rj)] is
specified by:

a) M=1R

K
+ the non-negative orthant of the public goods

commodity space.

b) y(m,s) = Ziml
c) Cl(m,s) =q-. ml, i=1,...,I
c) RJ(m,s) = 0, j=1,...,3.

It is well-known that a competitive equilibrium relative to these rules
is not Pareto-optimal since each consumer will be a "free-rider'" with respect
. ; . . . i
to the public goods. In particular, in selecting his demand, m , a consumer

will evaluate additional units in terms of their full social costs g, but

also only in terms of the marginal private benefit they will confer upon him.
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Thus, generally, too few resources will be devoted to the provision of
public goods and too many to the provision of private goods for an equili-

brium allocation to be Pareto-optimal.

Example 2.2: The Vacuous Government
In this example, a revision of the '"Naive Government' is presented that

attempts to achieve optimality. The revision consists of altering the

consumers' taxing rule to:
i
i Z:;m

(c'y C'(ms) = gq R R

The language, allocation rule, and producers' tax rules are the same as for
the "maive government.” The revised consumer tax rules tax each consumer
the average per capita cost of providing the public goods y(m,s). It is
very easy to establish that if préferences of consumers are locally non-
satiated, then a competitive allocation relative to the government défiped by
M= R.K, (b), (¢') and (d) above is Pareto-optimal 10/ Therefore, this
government apparently has very simple rules that lead to optimal resource
allocation.

However, this result is essentially vacuous since it is only in exceptionally
rare and uninterestiﬁg economies that a competitive equilibrium relative to
these rules exists! This is quite easy to see by observing that, in equili-
brium, each consumer's budget constraint has the same normal vector, (p,q/I),
and thus differ only in tﬂe wealth term. .Also, in equilibrium each consumer
must desire the same level of public goods. Thus, in order for an equilibrium
to exist, there must be at least one bundle of public goods such that each

consumer's marginal rates of substitution are identical at levels of the
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i :
priyate goods adding up to T;w - a0 unlikely occurance. -

In Section III.5, the reasons for lack of existence are discussed with
an illustrative example.. It is also pointed out that if a compact convex
subset of E{K is used for M an equilibrium exists; however, it will not
usually be Pareto-optimal. Thus, either an equilibrium exists or it is
Pareto-optimal but both occur simultaneously only rarely.

The moral of tﬁiﬁ example is that optimality results should be accepted
only if a demonstration of non-vacuousness is made. We go to great lengths

in Sections III and IV to avoid just this difficulty.

Example 2.3: The Lindahl Govermment

In this example, the government rules are designed so that, if consumers

report "truthfully"” ll/ then an equilibrium allocation will be a Lindahl

equilibrium allocation which is, of course, Pareto-optimal. Each consumer

is asked to report his-marginal "willingness to pay" or his marginal rate

of substitution béﬁween each public good and some numerairé private good.

The aﬁounts of the public goods proﬁided are those such that the sum of the
consumers' marginal willingness to pay equals the marginal costs, q, of
providing the public goods. Each consumer is then taxed for the total quantity
of each public good at a (per unit) rate equal to his reported marginal
willingness to pay.

In terms of our model, suppose consumers' preferences are reﬁresentable
by continuously differentiable, strictly quasi-concave utility functions
olxty), i =1,...,1. The langugage, M. of the Lindahl Goverament is
i

i K K
defined to be the space of all functions mlﬁR+ + R_ and m (y) is

interpreted as the K-dimensional vector of consumer i's marginal willingness
12/

to pay, = in terms of some fixed numeraire private good, for an additional

unit of each public good at the level y. To motivate this interpretation
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consider what it means for a consumer to report "truthfully" or to send
the "true'" message. We will say that 8;5 M 1is the true message if
ﬁi(- ) 1is his true vector of marginal rates of substitution; that is, if

* o e

for each y' B RE: (xla,yf) solves Max ul(x,y) “subject to pxl + %l(y“)- y<w
13/(){1)}7)

i
oi .
then m ( ») 1is a true message.
With this language M the Lindahl Government is completely defined by
the rules:
a) y{(m,s) 1is any bundle of public goods such that for every k,
i i
= ¥ J
zimk(yk) 9 unless ‘imk<yk) < 9 for all Y > 0 in
which case Vi = 0

b) Ci(mys) = miEY(m)s)] »y(m,8), 1 =1,...,I,

"
o
-
L
1]

¢) RI(m,s) 1,...,3.

The allocation rule selects that bundle of public goods such that the sum of
all the reported marginal'rates of substitutions for each public good equals
its price (marginal cost). The consumer taxing rule assesses each consumer 1
for the bundle y at the price mi(y) per unit.

This specification of the Lindahl government might appear somewhat strange
at first glance. One might wonder, for example, if it is necessary to use
as the message space the space of all functions instead of, say, simply
mi where each message would be interpreted as a vector of marginal rates of
substitution for a given bundle of public goods. 1In fact, the message space
M'='RE_ could be used to specify the Lindahl Government if we adopted much
more complicated allocation and consumer tax rules based on a continuous

iteration procedure similar to tatonnement. For example, consumers might be

asked at every instant t to report their marginal rates of substitution
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;i(t) between the public goods and some numeraire private commodity
evaluated at that instant's public good vector ;(t) and the private goods
bundle xi(t) that maximizes utility subject to a budget constraint in which
they are charged mi(t)- y(t) for the public goods. The govermment would
then adjust y(t) in accordance with a rule y(t) = 9%551 = f(;(t);s;;(t))
that increases (decreases) the quantities of those public goods for which

the sum of all consumers reported marginal rates of substitution in greater
(less) than the price. Problems éf dynamics (convergence of the procedure)
aside, an equilibrium of this iterative procedure would give the same alloca-
tion and taxes as the Lindahl rules defined above where the message

i K

m & ME {ml \ mlzﬂl - mi} satisfies ml(t) = ml(y(t)); that is, the

+
consumer's message m under the Lindahl Government rules is that function

. . . . A i
which would have given the iterative procedure's messages m (t) at every
instant t when evaluated at y(t). Thus by our specification of the Lindahl
Government's language space M as a space of functions, we have merely short-
circuited a lengthy iterative procedure.

It is easy to see that a competitive allocation relative to the Lindahl
Government is Pareto-optimal if all consumers report truthfully, since a
competitive equilibrium relative to the Lindahl Government is then a Lindahl

s q s . 14/ .1 . , i Of , 6 * *
equilibrium =  where consumer 1i's public goods prices are t~ =m (y ) and vy
is the Lindahl equilibrium level of public goods. And, as is well-known, a
Lindahl equilibrium allocation is Pareto-optimal under the assumptions stated
15/
above on preferences. —

However, as is shown for a simple specific model in Sectiom IV.5, at a

competitive equilibrium relative to the Lindahl Goverment, each consumer will be

understating his true marginal willingness to pay and comsequently too few
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resources will be allocated to public goods for Pareto-optimality to obtain.
Thus, although the rules of the Lindahl Government were designed to produce
Lindahl equilibria if consumers are truthful, they create incentives for
consumers to be untruthful. Hence, while Lindahl equilibrium allocations
are, in general Pareto-optimal, competitive allocations relative to the

Lindahl govermment are not.

Example 2.4 The Dreze-Vallee Poussin-Malinvaud (DVM) Government

In this example we attempt to capture, in terms of our model, the planning
procedures for guiding and financing the production of public goods that have
been proposed by Dreze and Vallee Poussin [ 7 ] and Malinvaud [ 17 ]. While

~

their rules are developed as a tatonnement process, and our model is expressed
. ; . 16/
in terms of a single message from each consumer to the government, —  we
will ‘define allocation and taxing rules that yield the same solution as their
rules do through the iteration procedure. 1In particular, each consumer will
send a message interpreted as the maximum total amount he is willing to pay
for each bundle of public goods. The allocation rule will then choose that
level of public goods which maximizes the reported social surplus. The

) . . 17/ ’
consumer's tax will be computed in two parts: — (1) the amount that be
reports he is willing to pay, and (2) a '"dividend” amounting to a share of
the government budget surplus at the tax rates defimed by (1). Producers
are not taxed.

Formally, the language M of the DVM government is the set of all

g e 1 K 1,
real-valued functions on R, : M= {mlz R¥_~+'R t. The rules of the DVM
government are defined by:
. 18/

a) vy(m,s) 1s the solution to the problem
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Maximize ziml(y) -qy,

K
.y € Eg_

. . o
) C (ms) = mly(m,s)] - 57 [ n (y(m,s) - ay (m,5)]
for i = 1,...,1, where 51 > 0 and Ziél = 1.

¢) Ri(m,s) =0 for j=1,...,J.

We assume, for purposes of this example, that there is only one private good
1
(as is assumed by Dreze-Vallee Poussin [ 7 ]) and that 13/ the aggregate

production set Z has the specific form

1+K

Z={(xy) ¢ R ‘ x< 0, y>0, x+ vy g 0, vy a positive vector}

That this specification of the DVM government is a fair representation
of the tatonnement models of Dreze-Vallee Poussin and Malinvaud can be seen as

follows: An obvious way of solving the problem in (a) for y(m,s) 1is through

an iterative gradient procedure. 1In particular, let

i )
Zimk(}’) - qk if yk >0
Max [0, Zim;<y) -ql if y =0

for kx =1,...,K, where m;(y) = ami(y)/ayk. 'If the functions mi( .) are
concave and (continuously) differentiable, then any solution to (a') has

the property that y(t) converges to y(m,s) which is defined by (a). Having
chosen the iterative method for solving (a), iterative tax'rules are implied

by (a'), (b). and (c). That is:

J
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Because of the special constant returns to scale form of the
Production set Z, in equilibrium the relative prices of public goods equals
the vector vy; or, normalizing the private good's price at 1, q = y. Also,
by (a') it follows that <zhm§<y<t>>- Yy -qy) =y-y. Additionally, if
x = -'y§ , then (x,y) will remain in Z if (x(0),y(0) ¢ Z. Finally, from
the budget constraint (for p = 1), xi = mi - Ci. Combining these facts with

(a') - (c¢') yields:

B EECIODER A TR
CONE
Max [0,2,m (y(8) - v, ] £ y{®=0
(d) x = - Y,S’, and
(&) x = - m;<y>' y sy y

which are identical with equations (1), (3), and (7) of Dreze-Vallee Poussin{7,p.13
when m;(}’(t)) = 77(t) where m (t) =« (x (t),y(t)) and

; 2ul >t .
wk(. ) = —éyk =i ; i.e., when my(y(t)) is the consumer's true

vector of marginal rates of substitution at the consumption bundle (xi(t),y(t)).

Thus, if the message mi(y) (interpreted as the consumer's maximum reported
willingness to pay) has the property that its gradient vector (the reported
marginal willingness to pay) equals his true marginal rates of substitutionm; i.e.
mi(y(t)) = Ti(t), then we consider the message mi(- ) as "truthful." However,
as Dreze and Vallee-Poussin recognize, it is possible that consumer 1 may be
able to benefit by reporting a message mi(' ) such that m;[y(t)] = Yi(t)

i , i .
where ¥ (t) 1is some function of t other than = (t). What Dreze-Vallee Poussin

»
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show is that truthful reporting, i.e. selecting ml( ) such that

m;[y(t)] = Wl(t) = nl(t), is a minimax strategy (of a particular game) and

that, if the process is at an equilibrium (i,e. }k = 0 for all k), then
i i i . s
my[y(t)] =¥ (t) = (t) is a Nash equilibrium strategy.

But, in spite of these results, it is relatively easy to show that a
competitive equilibrium relative to the DVM govermment [(a),(b),(c)] 1is
not, in general, Pareto-optimal. To see this, consider an economy with one
private and one public good where production of one unit of the public good
requires the input of one unit of the'private good. Let consumer preferences

i i . . . .
be representable by utility funetion wu (X,y) with continuous derivatives.
i* i* * % . Lo cq it .
Now suppose ({(x ,m Y, 2 ,8 ) 1is a competitive equilibrium relative to

i* ) * ok 20/
the DVM government such that x > 0 for all i and y(m ,s ) > 0. =—

o
w

. i** i* i . i . e sy
Consider the messages m (y) =m (y) + By, since m is an equilibrium

message, it must be the case that:

1 * 4 1 * { *% * * R *
Sut(p w’ - ctm /ot s ) .y(m /mt s )] 0
i
oB
when evaluated at Bi = 0. That is,
. * . - * . . N *
ul'(i - ugge | omy é1-‘+>’-51(“1'Cl)éz*-zsly*=o
y opi xt y gl y ol ’

or
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Summing over all i yields

i,
i

i * ,
u . ~ . e
[ Lo e } =+ 1 -50)y =o0.

* i
u
In order for optimality to obtain, it must be true that Zi Yy 4 -q =
u’,

x1l

Thus, if the equilibrium is Pareto-optimal, then

i, * *

2.(1 -3 )y = (I-1)y = 0 which implies (for I > 1) thaty = 0

contradicting the condition that y > 0. Thus, a competitive equilibrium

21/

relative to the DVM government is not, in general, Pareto-optimal. —
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FOOTNOTES FOR SECTION II
See Arrow and Debreu [ 3 ], or Debreu [ 5 ].

We assume throughout that neither consumers nor the economy possess any

initial endowments of public goods.

Although it is not explicit in the above formulation, it is possible to
include with this formulation taxing rules that depend on the level of
public goods purchased. If Ei(m,y,s) is such a rule, we simply

let ci(m,s) = Ei(m,y(m,s),s) where y(-) 1is the allocation rule.

Or subsidy, if R%(m,s) is negative.

Throughout this paper we use the notation:

i 1 i-1 i+l I
m) (E (m )-'-:ml !ml yeee,m)
(m/ﬁ;) E'(ml,...,ml-l,ﬁl,ml+l,...,ml).

Although §J,HJ,BI, and a7 could have been defined originally in this
way, we choose not to in order that it be made explicitly clear what
parameters are taken as given by the decision makers - consumers and

producers.

See, for example, Debreu [ 5 ]. Our notation is for Debreu's definitionm.
See, for example, Debreu [ 5 ] Theorems 6.3 and 6.4.

See Section I, Introduction.

The proof that a competitive allocation in a private goods only world is

Pareto-optimal can be mimicked. By the form of the budgets, the rules

(b) and (c¢'), and local non-satiation, a Pareto-superior allocation will have

the property that:
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i i 3
+ S.wo + 3
pZix qy > p @iu _jqz

which is impossible since (Zi(xl - ml),y) - 3.27 = 0.

11/

12/

I

/

|H
~

16/

Ir—'
\

~

J

"Truth is defined in the next paragraph,

An alternative, but equivalent, interpretation is that m;(y) is the

naximum price"” i is willing to pay for an additional unit of k,

given the public goods levels y. Thus, m;(y) is simply the inverse

(partial equilibrium) demand function of i for commodity k.

An alternative definition results from letting xl(tl,y) solve

Max ul(xl,y) subject to pxl < - tly + w', Then 8i( Y is "true" if,
x1i
- K i i %% . _ _ 91 _
for all ¥ e R_, MRSIk (x (@ (P,%,y) = mk(y)/Pk for all ¢,k.

See Foley [ 9 ]

See Fole& [ 9], Theorem , section 6.

See the discussion above under Example 2.3 relating the Lindahl government

rules to an iterative procedure.

Compare, for example, with Dreze-Vallee Poussin [ 7 , p. 139].

One should notice that this rule for y(:) is essentially the same as

that for y(.) wunder the Lindahl Governmment. In particular, if

i . . . . .
m ¢ M (for DVM) 1is concave and has continuous first derivatives

the vector-valued function =% = (aml/éyl,...,aml/ayk). Then

et

¢ M (for the Lindahl Government) and the allocation selected

will be identical.
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More general forms for the aggregate production set could be accommodated
by revising the taxing rules. In particular, all profits would be taxed
and then redistributed to consumers. While this is easy to specify, it
would obscure the comparison between the Dreze-Vallee Poussin and Malin-

vaud rules and the DVM government defined above.

It is clearly possible to find some utility functions u' and initial

endowments wl such that x= > 0 and y(m;,sg) > 0.
In Ledyard and Roberts [ 16 ], further analysis of the DVM procedure

is carried out. In particular, its relationship to the results of

Hurwicz is explored.
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III. THE EXISTENCE OF AN EQUILIBRIUM FOR A CLASS OF GOVERNMENTS

In this section we establish conditions on economic environments and
government rules such that a competitive equilibrium relative to those
governments will exist in such an environment. Although our major purpose
in proving the existence theorem is to establish the existence of an equili-
brium relative to the government rules we propose for solving the Free Rider
Problem, we have attempted to establish minimal conditions under which existence

. . . . 1
can be proved in order to include as wide a class of governments as possible. 1

III.1. Quasi-equilibrium and the Minimum Wealth Condition

In attempting to prove the existence of a competitive equilibrium for
our model of a private ownership economy with public goods relative to any
particular government a basic difficulty arises that also arises in the
standard Arrow-Debreu model. As Debreu [ 6 , p. 257] has stated, '"the basic
mathematical difficulty (is) that the (decision) correspondence of a con-
sumer may not be upper semi-continuous when his wealth equals the minimum
compatible with his consumption set." Although this situation can be avoided
by making suitable assumptions on the economy gnd government rules (see Section
I1IT1.4), we have adopted Debreu's approach of [ 6 ] and altered the decision
correspondences whenever the minimum wealth situation érises.v We then prove
the existence of a quasi-equilibrium and note that if no consumer is in the

minimum wealth condition, the quasi-equilibrium will be a competitive equilibrium.

Definition 3.1: Given an economy < and a goverament G = {M,y(-), { C (- )V.,

(RJ( )>j}, a consumer 1 1is said to be in the minimum wealth condition
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(m.w.c.) at the joint-message price pair (m',s') if
Min [p'- x= + Cl(m'/ml,s')] = w(m',s'").
il
x"eX

mleM

Definition 3.2: The quasi-decision correspondence of consumer i,

.
ehow x RETX 5 Ry M is defined by:

i . . . ..
8§ " (m,s) 1if ‘the consumer is not in the minimum wealth
=1 ’
m,s) =
g (ms) condition at (m,s)

Bl(m,s) otherwise

Definition 3.3: A quasi-competitive equilibrium (quasi-equilibrium) relative

to the government G = {M,y(-),{(C( -))i,<RJ( -)>j} in the econmomy 4 1is an

(I +J+ 1) - tuple ({xl,ml>i,<zj>j,s) such that:

a) (xi,mi) e §i(m,s), i=1,...,1,
b) zj £ @j(m,s), i=1,...,7,

) (2 - wh,y@s) = 3.2, and
d) s > 0.

ITI.2: The Basic Assumptions

The following assumptions are made to establish the existence of a quasi-
equilibrium. Assumptions (a), (b.1l) - (b.4),(c), and (d.1) - (d.4) are
éondicions on the economy that will be assumed to be satisfied for all discussions
concerning the existence of a (quasi-) equilibrium. Assumptions (e),(f.1) - (£.5),

(g.1) - (g.4),(h.1) - (h.3), and (i) are restrictions on the governments for
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which we establish the existence of a quasi-equilibrium.

Assumptions on Consumers: For every consumer i,

) i_ i _ L K
(a) ¥ =X xY = Hg_ X Eg_

i . -1 = i
X~, there exists some (X ,y) € Zl such that

o™

(b.1 ) for every (Xi;y)
(§i,—) >, (xi,y) (Non-satiation)

(b.2) for every (Xi;Y) € Zi, f(§i;§) € xi ‘ (ii;y)\zi (Xi:Y)} and
{(Qi,§) € Zi \ (xi,y) zi(ii,§)} are closed sets (continuity
of preferences)

(b.3) if (xl,y) >i (El,§), then for every X ¢ (0,1),

Ox* o+ (l-A)El,Ky +(1-M)Y) >, (El,§) (convexity of preferences)

. L _ % _ . .

(b.4) for every xl € ]&+, v, ¥ ¢ Eg_ such that y > vy, (xl,y) ii (xl,y)
(monotonicity of preferences in public goods)

i L

(c) w € IR+

2/

Each of these assumptions (with the exception of (b.4) are standard = and
need no discussion. Assumption (b.4), monotonicity of preferences in public
goods, could be relaxed under some additional restrictioms on y( -) such as

linearity. (See lemmas 3.17 and 3.30 for the only uses of (b.4)).

Assumptions on Producers: For every producer j,

(d.1) 0 ¢ 27 (Possibility of inaction)
(d.2) ZJ is closed and convex.

Defining the aggregate production set Z by Z = ijJ,

(d.3) 2z 7 (-Z) = {0} (Irreversibility of productiom),

+
(d.4) (- 2) £ Z (Free disposal) where -0 = Ei K, the non-~positive

+
orthant of RIJ K.
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Again, these assumptions are standard 3/ and need no comment.

The next list of assumptions concerning government rules are not
standard and are, therefore, discussed briefly after the formal statement.
It should be noted that three of the assumptions [(g.3),(h.3), and (i)] involve
an interrelationship between the govermment rules and the economy. In particular,
(g.3) depends on the initial endowments, while (h.3) and (i) depend on the produc-
tion technology through the maximum profit level for that economy. It is
necessary to invoke such assumptions to avoid consumer and/or producer bankruptcy

and to insure that, in "equilibrium', governmment budgets are balanced.

Assumptions on the Government: For all economies satisfying (a) - (d),

the government G = {M,y(-), (Ci( -)}i,(Rj(- )>j} satisfies

(e) The message space M 1s a convex, compact subset of a locally

convex topological vector space. 2/
(f.1) The allocation rule y(-) 1is a continuous function on MI X RiQFK
and homogeneous cf degree zero in s ¢ Bk-+K.
(£.2) for all i and for all (m)i(,s) € MI-1 X Ri+-K,y is concave in
mi on the subset ﬁi(m>i(,s) = closure {mi e M | y(m/mi,s) > 0},
(£.3) for all i and for all (_m)i(,s) e Ml x mf;’LK,Ei(m)i(,s) £ 0,
(£.4) y(m,s) >0 for all (ms) ¢ ¥ x BRETF,

(£.5) y@m/M,s) = {y ¢ Ri ly = y(m/mi,s) for some m® ¢ M} is a convex
set for all i and for all (m)i(,s) g MI—l X Bi-+K.
For every consumer i,
(g.1) the consumer tax rule Ci(- ) is a continuous function on MI X'Ri4-K
L+K

and homogenous of degree one in s ¢ R_
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. _ + . )
(g.2) for all (m)l(,s) € MI 1 X R; K,Cl(- ) 1is convex in o

on M

. . i : . - +
(g.3) Min Cl(m/ml,s) < pw for all (m)l(,s) e MI 1 x Eﬁ_ K,

mleM

(g.4) 1if y(m/mi,s) = y(m/Ei,s) } 0, then Ci(m/mi,s) = Ci(m/ﬁi,s).

For every producer j,

(h.1) the producer tax rule RJ( - )= (Ri( ~),R§( «)) 1is continuous on

+ j :
MI X Ri K; Ri(- ) 1s homogeneous of degree zero and R%(- )
+
is homogeneous of degree one in s ¢ Ri K,
j +
(.2) 0<RI(ms) <1 forall (ms)eM x Ry *,

5.3 RJ(m,s) < (1 - B (@)] s-2i(s) for all (me) ¢ u' x B, ¥

where z°(s) ¢ {ZJ ¢ 27 \ SzJjZ sz  for all 3z ¢ ZJ}.

+K i i, i
(i) for every (m,s) ¢ MI p:d E&: 5 1if Cl(m,s) <p- W+ nl(m,s) for

i . . fa ) 3
all i then 3,07 (ms) + 3, (R](m,s)sz’ (s) + Ry(m,s))

= qy (m,s). (Balanced budget condition).

Assumptions (e),(f£.1),(g.1l), and (h.l) require no discussion beyond

recalling that the homogeneity properties permit us to restrict our attention

+K +
to the unit simplex S in the price space mi where S = {s ¢ mi K I

+ 1.9, = 1} (see Section II, Remark 2.2).

Assumptions (f£.2),(f.3), and (f.5) when combined with assumption (b.4)

207y

will ensure that a consumer's upper contour sets in the decision space,
{(xi,mi) € Xix M { (xi,y(m/mi,s)) Zi (Ei,y(m/ﬁi,si}, are convex 3/ over an
appropriate region. Convexity of the upper contour sets along with (g.4)
and convexity of the budget set will ensure that the decision correspondence

gl(- ) are convex-valued (see Corollary 3.17.1 below) and that the
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compactification of the economy we use does not create any artificial
equilibria (see Lemma 3.30 below). Assumption (f.4) is merely a consistency
requirement that ensures public goods allocations are in consumers' consumption
sets.

Assumption (g.2) 1is the most natural assumption to make to ensure that
a consumer's budget correspondence Bi is convex valued. Assumption (g.3) in part
ensures that the consumer's tax rule will not bankrupt (i.e. lead to an
empty budget set) the consumer. 5.7/ Assumption (g.4) is used to establish
the convexity of the decision correspondences, as indicated above. A p;;ticular
case of interest in which it is automatically satisfied is when tlie consumer's
tax depends on the message mi only through the allocation vy; i.e. when
Ci(m,s) = Ei(m)i(,y(m,s),s) for all (m,s) for some function Ei

Assumption (h.2) 1is required to ensure that the producer tax rules
do not distort producers' decisions. Under tax rules satisfying (h.2),
maximizing pre-tax profits is equivalent to maximizing after-tax profits.
Assumption (h.3), when combined with (d.l), ensures that maximum after-tax
profits are non-negative and thus avoids difficulties of exit (since O ¢ ZJ)
and limited liability. This fact, coupled with assumption (c) and (g.3) ensure
that a consumer's budget set Bi(m,s) is never empty or that a consumer can
always make some decision consistent with his budget constraint and his con-
sumption set.

Assumption (i) guarantees that when consumers satisfy their budget con-
straint, the government's budget is balanced. This property is needed to ensure

that Walras' Law holds at a certain type of fixed point which then enables us

to show the fixed point is a quasi-equilibrium.
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In summary, assumptions (a), (c), and (d.1) - (d.4) ensure that the
set of attainable states of the economy is compact, convex and non-empty.
Assump*ions (a), (¢), (d.1), (£.4), (g.3), (h.2), and (h.3) ensure that
consumers are not bankrupted, Assumptiéns (a), (b.2),(b.4),(d.2),(£.1),
(g.1), and (h.1l) ensure that the decision correspondences possess the
appropriate continuity properties, and assumptions (a), (b.3), (d.2), (f£.2),
(£.3), (£.5), (g.2), and (g.4) ensure that they are convex valued. These
properties, together with assumption (e) 1imply the existence of an
appropriate fixed point and assumptions (b.l) and (i) enable us to demonstrate

that the fixed point is a quasi-equilibrium.

I11.3 The Existence of a Quasi-Equilibrium
We now prove
THEQOREM 1: Under the assumptions of Section III.2, the private ownership
>

i i i ij
economy 4 = [(7 ", ~r W z:KZJ§)<9 J>ij} has a quasi-equilibrium relative to

the government G = {M,y( ’),(Cl(- )\i,(RJ(- )§j}.

Proof: In order to show the use of the various assumptions, the proof is
presented in a series of definitions and lemmata. The proof's structure is

similar to that of Theorem (1) of Section 5.7 in Debreu's Theory of Value [5,

as summarized on page 84). The economy is first compactified. Then the com-
pactified decision correspondences are shown to be non-empty, upper-hemi
continuous, and convex-valued correspondences. These correspondences are
then used to define a correspondence from E x MI x S (where E 1is the

space of excess demands) into itself. A fixed point of this correspondence

then exists by the Tychanoff-Kakutani-Ky Fan Theorem and the remainder of the
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proof converts the fixed point into a quasi-equilibrium.

o

~
3.1 The Compactified Economy #

Definition 3.4: The set of attainable states, A, is defined by:

A= {(<xl3i;y,<zj5j)l (x7,y) ¢ X', for all i, zJ ¢ 23 for all j,

and (Zi(X1 - o),y - ijJ = 0}

Lemma 3.1l: A 1is non-empty and bounded.

Proof: By assumptions (a). (c¢), and (d.1), (<m13,0,<03j) ¢ A, and thus

A is non-empty. To show A is bounded, note that by (a),

IL K L K i j R S j
= .. N .y . - . = v
A [Eg_ x R, xZ x...xZ ] {({x )1,yJ<z 3j) \ (gi(x w ).y “jz }
where the latter set is a linear manifold. Let Xl= Hﬁj x {0} for-all i
I+
and XI L fol x RE. Then let
PPN G 2 kSO NS T3y ) SIFL L i N
A <“i=1A Yx LjZ {({x >i,(2 ) oo ‘i=1(X W ,0)) ,jz 0}

Given assumptions (d.2),(d.3), and (d.4), A is bounded as a divect application

of proposition (2) of Section 5.4 of [ 5 p.77]. Since (<xl§,(zj3) ¢ A if

. N . -
and only if x = (x7,0), for i = 1,...,T, x "' = (0,y) and (‘x1),y,(z])) ¢ A,

it follows that A is also bounded.

®
A A A

Definition 3.5: The sets Xl,Y,ZJ for all 1 and j are the projections

i +
of A on the spaces m; containing Xl, RK containing Y, and E% K
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containing 73 respectively.
Lemma 3.,2: Each set Xl,Y, and 27 is bounded.

Proof: Trivial application of lemma 3.1.

- I
Definition 3.6: Y = y(M ,S)

Lemma 3.3: Y 1is bounded.

Proof: MI x S 1is a compact sat by (e) and the definition of S as a

simplex . y(-) 1s continuous by (f.1). Y 1is therefore compact and hence
bounded.

Definition 3.4: Let K be a closed cube in TRL4-K with center zero containing
in its interior the 2 I+J sets ;i X §, %i X ;,EJ (Such a cube exists by
lemmata 3.2 and 3.3). Define % =2 0k, 2=zl nk R = vl n k" and

K
'? = R, N KK where KL and KK are the projections of K on IRL and IRK

~1i ot ~
respectively. ©Note that, by (a), ¥ =X x Y.

. .ol . i
Lemma 3.4: (i) For each 1i, X is compact, convex, and contains (w ,0),
. . e N . i
(ii) for each i, X is compact, convex, and contains W,

(iii) for each j, Eﬂ

is compact, convex, and contains 0,
. o I >
(iv) Y 1is compact, convex and y(M ,S) € Y.

Proof: (i) and (ii) follow directly from (a) and (c). (iii) follows from

(d.1) and (d.2). (iv) follows from (a) and the construction of K.
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~
Definition 3.8: The compactified economy 4 1is defined by:

$= 08 Zoo0 (@D, ). The mapping B,

PR~
for example, in % 1is

defined in the same manner as pJ in 4 1is defined and similarly for all

8
mappings—/for 3.

3.2 Properties of ‘BJ and 7 °
' +
Lemma 3.5: The compactified supply correspondence, ?;J: MIx S - ]RL K,

is non-empty, convex-valued, and upper hemi-continuous (u.h.c.) on

MI x S.

Proof: ’Sj(m, s) is non-empty by a simple application of the Weierstrass
theorem since, by (h.2),'53(m, s) = {ZJ e‘ZJ 1 sz’ Zis;J for all zJ SKZJ}.

Convexity follows from the <convexity ofrz\J established in lemma 3.4 (iii).

Since 2 is also compact, ?BJ is u.h.c. by proposition (3) of section 3.5

Lemma 3.6: The compactified after-tax profit functionm, T : MI xS R,
is non-negative and continuous on MI x S.
Proof: 7 (m, s) > 0 by assumption (h.3), since 0 ¢ Z2°. By the

.characterization of i;J(m, s) in the proof of lemma 3.5 and assumption

(h.1). T3 is continuous by proposition (3) of Section 3.5 in [ 5, p. 48].
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3. Properties of El

Lemma 3.7: The compactified budget correspondence @l is non-empty for all

(m, s) M™x S.

m

Proof: Since 0 ¢ K. by construction and O ¢ xt by (a), 0 ¢ <. By
(g.3), Cl(m/ﬁl,s) < pml where @ ¢ {ml e M | Cl(m/ml,s) < ct(m/m,s) for
i

all m & M} which is non-empty since M is compact by (e) and Cl(- ) is

continuous by (g.l). By lemma 3.6 ,7;J(m,s) > 0. Thus,

p -0+ C (m/@,s) < W' (ms) and hence (0,@) e B (m,s).
~L . I
Lemma 3.8: B is compact valued for all (m,s) ¢ M'x S.

Proof: Since '@}(m,s) c X" x M which is compact by lemma 3.4(ii) and (e),

it is only necessary to show that El(m,s) is closed. This follows trivially

L. i i i i .
from the continuity of px + C (m/m ,s) on X x M assumed in (g.l).
~ I
Lemma 3.9: 8 is convex valued for all (m,s) ¢ M'x S.

Proof: Let (x ,m’) and (x*,ah) belong to B (m,s). Since T x M is

convex (lemma 3.4 (ii) and (e)), K(xl,m5 + (1 - K)(il,ﬁl) sfil x M for all

e [0,1]. By (g.2),

. . : , —i i i i
et £ (1-0F) + chmiat + (190 ,8) € MpxE O (@/ms)

+ (1o (oxT + cta/Es, 8))

all X [O,l]. Thus }\(Xl’ml) + (]_-X,) (leml) e B (m,S) for all N e [O;l].

[V

rh
(0]
L2}
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Lemma 3.10: Bl is upper hemi-continuous on MIX S.

~ . 7~

Proof: Since Xt x M is compact, it suffices to show the graph of _Bl is
~
closed. This follows directly from (g.l) since wl(m,s) is continuous on

MIx S from lemma 3.6.

~i . “ ., . i I
Lemma 3.11: B~ 1is lower hemji-continuous (l.h.c) on the set B <= M ¥ S

. 1 . . .
where gt = {(m,s) ¢ MI XS & Min pxl + Cl(m/ml ,8) < wl(m,s)}.

] PN o~
1 1 1
(X ;o )€K XM

(B is the set of joint message/price pairs that do not place i in the minimum

wealth condition - see Definition 3.1).

| ~1
Proof: Let (m,s) ¢ Bl. We must show that if @& C X' x M is an open set such
that _@-ﬂ’@l(m,s) # @, then there exists an open neighborhood N of (m,s)

such that, for all (m',s') ¢ N,'@l(m',s') nNe #0.

i

If for some (El,ﬁl) e N @l(m,s),pi + Cl(m/ﬁl,s) < Gi(m,s), then

~L, -
) are

the requisite neighborhood of (m,s) exists since Cl( «) and w (-
continuous.

i,. .. . . o
Since (m,s) ¢ B (i.e. i 1is not in the minimum wealth condition), there
~1d i i i, i i .
exists some (x ,m’) ¢ T x M such that px~ + C (m/m ,s) < W (m,s). Since

6 O‘Ei(m,s) # @, there is some (xi ,mi Y e & D'@i(m,s) and

i 1 1

px * Cl(m/m1 ,8) < al(m,s). By convexity of (Xl x M), (Xl(\))ml(K)) =

o1 i ~ .

\(xl ,m- + (l-\)(xl,ml) : X x M for all [0,1]. By

(D]

. . L . - i
convexity of ¢ (m/m",s) (assumption (g.2)), px () + ¢t (m/mt (W) .8) < Wo(m,s)
for all 0 < » < 1. But for x sufficiently close to 1,

&ah = te,aten o n Bim,s) .
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~1i . i
Lemma 3.12: B is continuous on B .
Proof: Immediate from lemmata 3.10, and 3.11.

3.4 Properties of 151

i .
Lemma 3.13: The compactified quasi-decision correspondence 2 is non-empty

for all (m,s) ¢ MIx S.
Al
5

Proof: If (m,s) % B', then (m,s) = B'(m,s) which is non-empty by lemma 3.7.

If (m,s) ¢ Bl, we apply the Weierstrass Theorem. Assumptions (a) and (b.2)
imply the existence of a continuous utility function ul: 2t 4+ R representing

o> . , I .. ..
~ let v FxMxSaR be defined by vl(xl,m,s) = ul(xl,y(m,s)).

i

i, . ’ , . . .
v is a continuous function by (£f.1) and in particular, given (m,s) ¢ B,

T, , a1 i
v is continuous on X" x M. By lemmas 3.7 and 3.8, B (m,s) is non-empty and

compact. The Weierstrass Theorem now applies.
al . . I
Lemma 3.14: 2 is upper hemi-continuous on M X S.

Proof: If (m,s) # Bl, then 'El(m,s) ='@l(m,s) and is8 wu.h.c.. at (m,s) since

AL . i i
) is by lemma 3.10 . If (m,s) ¢ Bl, then since BT 1is continuous at (m,s)

(lemma 3.12). since v* is continuous (proof of lemma 3.13), and since

/'\‘i Y . . - Pl

% x M is compact, the maximum theorem (4) of Section 1.9 in [ 353 .p.19]
L ~1

establishes the wu.h.c. of £

at (m,s).



-45-

Remark 3.1: Unfortunately, under the assumptions of Section III.Z,ﬂfl is

not necessarily convex valued since the upper contour set

{(xi,mi) € %i x M | (xi,y(m/mi,s) Zi (Ei,y(m/ﬁi,s)} in the decision space may

not be convex when y(m/ﬁi,S) has at least one zero component. 3/ For

example, if K =1, and L = 1, y(m,s) = Max {Zimi,O} where M 1is a compact

subset of R, and fi are representable by the utility function ui(xi,y) = xi+ v,

then preferences in the decision space are representable by the utility function

i, i
v (x7,m)

n

ul(xl,y(m,s)) = x* + max {Ziml,O}. The indifference curves for

h

vl(xl,m/ml), if Zn#im =2 b< 0 are drawn in figure 1:

Figure 3.1

The upper contour sets are obviously not convex. Thus, it is possible for the

. . al
entire segment a b ¢ to be the decision set I (m,s).

A method of circumventing this difficulty is to restrict the decisions
. 1 , .
to a convex subset of '2 (m,s); that is, to define a restricted decision
X . 10/
correspondence that has the desired properties — and such that at a
. , .o i i . .
fixed point, the decisions (x ,m ) are in the unrestricted decision set. This

is done in the next subsection.
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l:\
3.5 Definition and Properties of £

Definition 3.9: For every (m,s) ¢ MI x § and real number ¢ > 0 define:

a) Mi(m)i(,s;s) = {ml e M \ y(m/ml,s) > cu} where u 1is the unit

. K
vector in R ,
b) Ei(m;3§€) = Blm, n T x @550
{(x",m ) e B (m) <,s;e) \ (xi',y(m/mi',s)) zi(;i,y(m/ai,s))

for all (;1)51) € El(m,s;e)} if i 1is not

W

i .
¢c) £ (m,sse) in the minimum wealth condition at (m,s)

'§l(m,s) if i 1is in the m.w.c. at (m,s).

i ,
| there exists a sequence

s e | 1 .
d)ll/ gl (m,s) = {(x ,ml e X x M

(] il

i i . i
{(x”’me}e converging to (x  ,m" ) as ¢ goes to
-3
. i i =i
0 with (xe,me) e £ (m,s,e) for all e < some
positive ¢ }

Note that if i 1is in the minimum wealth condition at (m,s), then

*“(m,s) =B (m,s). Also, note that the set T (m )l( s) 2 closure {mle M | y(m,s)>0}

(Y}

(see assumption (f.2)) may alternatively be defined by:

ﬁi(m)i(,s) = closure | Mi(m)i(,s;e),

>0
and that the relations Ml(m)l(,s;e) c ﬁl(m)l(,s) - Ml(m)l(,s;O)

/

hold for all ¢ > 0 (the equality holds by (£.4)).

(U7
=
»
)

“

Temma 3.13: For every (m,s)
Lemma J.:2

Sy ]

Tils rmt s x ! y@mt L) = yme)) £ 0.
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Proof: If y(m/m ,s) > 0, then m" e M

m1 é ﬁl. Let

and the lemma holds trivially. ‘Suépaée
;i be such that y(m/;i,s) > 0. Such aﬁ ;i exists by (£.3).

Let vy() = y(m,s) + (1-x)y(m/;i,s) for ail X ¢ [0,1] and consider the

correspondence h: [0,1] » M defined by: h(}\) = {mi' e M ‘ y(m/mi',s) = y(n)}

By assumption (£.5), h(}\) # 0

for all

xe [0,1]. Also,
continuous in

since y (- )
~1is an

is
1

al by (£.1), h(+)

u.h.c.
(as {(\,ml

correspondence on {0,1]
) ¢ {0,11 x M | y(m/ml ,8) = y(AN)} is a closed set and [0,1] x M
is compact).

Consider an arbitrary sequence {x?} + 1 with A <1 for all =

(e.g.
=1-=,1>1, T3 and a sequence o such that m ¢ h(:X ) for all
- - : :

r
i . . . .
{mT} is contained in the compact set M and thus contains a convergent
subsequence.

i
Let o,

be the limit point of that subsequence.

Since h 1is
. i . i —i
u.h.c., m_ ¢ h(l); i.e. y(m/mo,s) = y(m,s). Also, since m e M for all
(since y(A_)> 0 for all n, < 1), and M- is closed, m_ ¢ w1y,
Lemma 2.1%5: For every (m,s) e MI X S, there exists some e& = ek(rn,§ > 0
such that £ (m.s;s) # @ for all e < ¢ .

[

Proof: If i 1is in the m.w.c. at (m,s), then gl(m,s;a) = El(m,s) # d
for all ¢ by lemma 3.7.

If i 1is not in the m.w.c. at

(m,s), then the lemma follows by

i
the same argument used in the proof of lemma 3.13 if 8 (m,s5¢)

o
and non-empty for all g < some =

is compact
: (m,s) > 0.

Siace §i is compact valued (lemma 3.3) and X x M (m.s;z) 1s closed

-1 .
c. B (m,s;¢) 1s compact.
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Since i 1is not in the m.w.c. at (m,s), there exists some

s 1 il

. + 1
(xl ,m" ) ¢ B (m,s) such that px"

+ Ch(m/m" ,s) < T (m,s). By lemma 3.15,
‘ “i =i )i( ~i it

there exists some m ¢ M (m""',s) such that y(m/m"s) = y(m/m~ ,s) and

' i et

;8) = C (m/m”,s). By (f,3), there is some

)i(

therefore, by (g.4) ¢t (m/m”

e > 0 such that Ml(m)l(,S;e) # @ for all e < €. Since Mi(m
i )i

- Ml(m

)5;5)

,8;8) for all e < &, let o' ¢ Ml(m)l(,s;e) for all e < e.
i

- ~ -* —-
Define ml(K) = Am” + (l~>\)m1 . Since y(-) 1is concave on Ml by (£f.2)

and y(m/mlﬂ,s) > 0, y(m/ml(x),s) > 0 for all x e [0,1). Since ¢t s
’ 1

continuous in m- by (g.1), px" + Cl(m/m"(N),s) < w' (m,s) for some X < 1.

~

. " .
But y(m/ml(k),s) >¢e¢u for some ¢ > 0. Let ¢ = Min {e,¥]. Then

. . . iy . . , "
pxl + Cl(m/ml(X),s) < wl(m,s) and ml(X) € Ml(m)l(,s;e)for'all e < e . Hence.

. s w
(o,ml(x)) € Bl(m,s;e) for all ¢ < ¢ and the lemma is proved.

Corollary 3.16.1: For every (m,s) e MI x S, gl"(m,s) # 0.

- ' . i i
Proof: Bv lemma 3.16, there exists at least one sequence { (x ,me)}c such

=i * . ~1 ,
£ (m,s;e) for all e < some ¢ > 0. Since X x M is

(U

i i
that (X: )m:)
compact, there exists at least one limit point of this sequence as ¢ =2 0

1 * i %
and hence, by the definition of £~ , the limit point is in £ (m,s).

Lemma 3.17: For every e¢ > O,'fl( +3e) 1is convex-valued on MI x S.

- . . ) i =1 - ,
Proof: Since wv(-+) 1is concave in m on M by (£.2) and
=i_ 1, )il i, i( . - o =i .
MO T M(m £S52) .M /m .83;z) is comvex for all = > 0. Since 3 (m,s) is convex,

by lemma 3.9, El(m,S;E) is convex for all ¢ > 0. Therefore, it suffices
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i 1 i
to show when i is not in the m.w.c. that B = {(x7,m") ¢ X x M

. . g : . L] ’ > _- -.
mt e M- (m)l(,s;e),(xl,y(m/ml,s) ~3 (xl,y(m/ml,s)} is a convex set when
(;l;r_ﬁl> £ g_l(mzs;e)- Let (xl;ml) and (xl,ml) ¢ B. Define

xFoo, et o) ahaH1-0 (xhaty . clearly nloy e wb@ (s e) (since by
(£.2) vy(-) 1s convex in mi on ﬁiZD Mi(m>i<,s;e)) for all » ¢ [0,1].
Thus, by (£.2), (b.2)-(b.&), (x"(\),y(m/mi(r),s)) 7 O Ay (@/mt,s) +
(1-x)y(m/;i,s)) ii (;i,y(m/;i,s)). Hence, B 1is Eonvex.

If i is in the m.w.c., gi(m,s;e) = Ei(m,s) is convex by lemma 3.9.

P
Corollary 3.17.1: §l is convex valued on MI x S.

i' ity Sifd i* .
Proof:; let (x ,m ),(x ,m") ¢ £  (m,s). Then, there exist sequences
i' i
(X: ;m€

S

] PN} =7 A A A A ] P}

Y+ (x* ,m" ) and (x:,m:) + (x',m") such that (x; ,m: Y,

I

—_— . *
(x:,m:) §l(m,s;s) for all ¢ < some ¢ (m,s) > 0. By lemma 3.17,

(U]

~

1 . 2 *
mf) g fl(m,s;s) for all ¢ < ¢ ,A e [0,17.

0y, 09) = Al el ¢ A&

[N

M .

Also. (k. C0La ()~ xT(W.at (D)) as e 0. Thus, (xM(V.@ () & 2T (m.s)

o

for all X ¢ [0,1] and §l‘ is convex valued.

1

Lemma 3.18: For every (m)l<,s) € MI.1 X S, Ml(- ;e):MI- XS+ M is a
continuous correspondence at (m)l(,s) for all 0 < ¢ € some positive ¢.
Proof: (upper hemi-continuity): Let (m*,st) <+ (m,s) as t-=* = with

i ioyig 3 .
m 2 M (] ,st;s) for every t. Then y(mt,st) > zu  for all t. Since vy

) (

. . i i
is continuous, y(m,s) > cu and thus m ¢ M (m

)i

,8;¢) and since M and

S are compact, M (. 3e) is u.h.c. at (m’~,s) for all e.
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(lower hemi-continuity): To show: For every open set & in M such

)i(

that M (m” " %,s;¢e) NG # @, there exists an open neighborhood

. - . ] : .
V(m)l(,s) = !t x5 such that (m)l( »s') e V(m)l(,s) implies

v @i sy ne £ 0.
Let mi e M (m) (,s;e) N &. Then y(m/mi,s) >¢u >0 and if

"1 . i, )i

y(m/m ,s) > ¢u the requisite neighborhood V' (m ,8) clearly exists

since y 1is continuous.

Suppose y(m/ml,S) =c¢u. By (£.3) if ¢ < some sufficiently small

¢, there exists some @ such that y(m/m,s) > c¢u. Define m'(A) = m’

—i A . -i -. Y -
+ (l-A\)m . Since m- and @™ e Ml(m)l(,s) and y 1is concave on Mt by (£.2),
y(m/m (A),s) > Ay(m/m",s) + (1-\)y(m/@ ,s) > eu for all A ¢ [0,1) and

ml(K) € Ml(m)l(,s;e). But for X sufficiently close to "1, mi(x) e Q.

Corollary 3.18.1: For all 0 < g, BY( +3e) is am upper hemi-continuous

I
correspondence on M X S.
. . . L —i )
If i 1is not in the minimum wealth condition at (m,s), B (- ;e) 1is

lower hemi-continuous at (m,s) for all 0 < ¢ < some =z(m,s) > O.

Proof: Since El(m,s;a) B (m,s) N X x M (m) (, 5€), 3} is wu.h.c.(lemma 3.10)
and ml(' ;€) is u.c.h. for all e><3(1emm33.l8),El( +3e)is u.h.e. for all ¢ > 0.

Let (m,s) be such that i 1is not in the m.w.® We must show that if

~1

0c X xM is an open set such that 0 Bl(m,s5e) # @, therd there exists an

open neighborhood N of (m,s) such that, for all (m',s') N, El(m',s’;e) no+ 9.

m

We mimic the proofs of lemmas 3.11 and 3.18.

, AR Nt
Since i is not in the m.w.c., there is (x ,m") ¢ X~ x M such that

pxl + Cl(m/ml,s) < wl(m,s), Since 0 N El(m,s{e) # ¢. there exists some
P 21 . P .
(x1 ,ml ) £ 0N El(m,s;e) such that px1 + Cl(m/m ,s) < (m,s) and
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u. By convexity of Rt x M,(xl(x),ml(\) = X(xl ,ml )y +

y(m/mi »8) >

(U]

(l-k)(xl;ml) B % x M for all . € [0,1]. By convexity of Cl(m/mi:S);

px () + C[m/m (V) .s] < W'(m,s) for all 0< A< 1. If y(m/m ,s) > eu,
then for 1 sufficiently close to 1, by the concavity of y(m/ml,s),
y(m/ml(X),s) > eu. Hence, for X sufficiently close to 1,

I 0),mt ) e Br(m,sse).

Then, by the above proof, B (- ,¢)

}\)[(’)

If y(m/m',s) = eu, let ¢ =

is 1.h.c. on MI xS if i 1is not in the m.w.c. and if 0 < ¢

»
IN

m

Lemma 3.19: 51( +3e) 1s upper hemi-continuous on MI x S for all 0< e <

~

some ¢ > O.

Proof: If i 1is in the m.w.c. at (m,s), then gl(m,s;e) = @l(m,s) and
is wu.h.c. at {(m,s) by lemma 3.10.

=i , ,
If i 1is not in the m.w.c. at (m,s), B ( -;e) 1is continuous at

i

(/\]I

(m,s) by corollary 3.18.1 and the wu.h.c. of (-3;e) at (m,s) follows

by the same argument as used in the proof of lemma 3.14.

s

Corollary 3.19.1: §1A is upper hemi-continuous on MI x S.

12/ it it : it i
Proof:— -Let {(x, ,m] )}t be a sequence converging to (xO sm ) as t - o,
il il- i*
such that (xg »m ) ¢ € (mt,st) for all t where (mt’st) converges to
S .1 s e
i i i
; . To s : s8 ).
(mg»s,)- To show: (xo ,m> ) ¢ £ (m,s)
For each t the exists a sequence fxl' mi' 1 o (xi' mi') as
o , re exists sequ (KXo M, ¢ ome
S e . "
i i =i ) %
¢ + 0 where <Xte’mts) ¢ £ (mt,st,e) for all ¢ < ¢ (mt,st) But, by lemma 3.19,

is wu.h.c. at (mo’so) for all 0 < g < some ¢ > 0. Thus, for each

(ALl
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it i i

e m 1 contains a subsequence that converges to X .m £ (m ,s
g, {(Xte; te)’t q g ( oc” O€) € 3 ( o’
s 1 + 1 | 2 1

Letting ¢ =+ 0 f(x1 m’ )} contains a subsequence converging to (xl ,ml ).

= 2 L\ %0g? o’ g o) o)

T : ! 2,

i i

Thus (x_ :m ) e 2 (m_,s )

LN

Lemma 3.20: For every (m,s) ¢ MI X S, ilxﬁms) o §l(m,s).

Proof: If i 1is in the m.w.c. at (m,s), then £ “(m,s) =/Bl(m,s) =’€1(m,s).

—i ~1i . .
By assumption (£.4), £ (m,s;0) —‘Z (m,s). Therefore it suffices to show that
~i . . . . .
£ (m,s;¢) 1is u.h.c. in ¢ when i 1is not in the m.w.c. to establish the
result

By lemma 3.16, there is some ¢ > 0 such that for all ¢ < e,

P <1 P .t

gl(m,s;e) # 0. Llet {(xi ,m: )]€ - (xl ,ml ) as ¢ =+ 0 be a sequence such that
it it =i ) * it it =i
(x€ »m ) ¢ € (m,s;¢) for all ¢ < ¢ . We must show that (x° ,m” ) ¢ £ (m,s;0).

) v s .
Since ’El(m,s) is closed and constant in a,(xl ,ml ) eﬁ?l(m,s), Also,
1 1 - 1 . .
f and m' e Ml(m)l(,s)

™ P

since y(m/m_ ,8) 2 eu > 0 for all 0 < ¢ < e, m

~— wl(m)i(,s;O) =M for all 0 < ¢ < e

it i’ Ti . . .
Suppose (x ,m ) & £ (m,s;0). Then, since i 1is not in the m.w.c.,
~ici =i i
there exists some (x ,m ) ¢ B (m,s;0) =B (m,s) such that
P

A~ . ~ . .1 ~ s = . A .
(xl,y(m/ml,s)) >i (xl ,y(m/ml ,8)). If mt é Ml(m)l(,s), then y(m/ml,s) } 0
and by lemma 3.15, there exists some e ﬁl(m)l(,s) such that

y(m/aiys) = y(m/mi,S) and by (g.4), Ci(m/ﬁi,s) = Ci(m/;i,s). Thus

1 t

Ly (m/nt ,s)).

~

(xl,ﬁl) € El(m,s;O) also, and (xl,y(m/ﬁl,s))>i (xl

’*

Let f(xi ,miw)}: be the sequence defined by:
i* i*, o _e i ' ! e i i 3
(x, »m_ )% TF (x, m )+ (1- %) ,A) forall 0<¢c<e
) [ €/\ €4\ € —_—

i% i% ~3 i . i’ i =i
Clearly, (x_, ,m ) = (x,@) as ¢ 0. Also, since m and T

~

|
@
=
o
g

< =~
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(f.2) y(m/mf“;s) Z —:7': Y(m/mi*; S) + (1 - ‘%}? )y(m/ﬁl,s) 2 il s u = zsu

~
=4

m

m

e
Iay

for every 0 < ¢ < Furthermore, since ct is convex in m" (by(g.2)),

M

i* i i* { * 1 3% 1 % -1
px_ T C (m/me ,8) gf@l(m,s) for all 0 < & < ¢ . Thus (x; ,mf e Bl(m,s;e)

for all 0 < e < e
PR P ~ . o 1 PR -1 PN}

] ix 1% i -1 i i i i
Now, since (x  ,mj ) ?* (x7,m") and (x€ sm ) * (x° ,m
<

) and

~1d it 4!

(x ,m ) 71 (x ,ml ), by continuity of preferences (assumption (b.2)), for ¢'

L. i* 4% >, i' i X L. .
sufficiently close to zero, (Xe"me') i (X”"me')' But since i 1is not in

ot *

iﬂ l:’r _i 3 i
the m.w.c. and (x_,,m_,) ¢ B (m,s;¢'), this contradicts the fact that
e .
11y .=t ot it i =i —1i
(x:,,mé|) ¢ & (m,s587). Thus (x” ,m" ) ¢ £ (m,s;0) proving that £ is
. _17"‘ _i
u.h.c. in ¢ at ¢ = 0 and thus, that £ (m.s) gfg (m,s).

In summary of subsection 3.5, we have modified the compactified quasi-

. ~1 A - ey
decision correspondence g by defining a new decision correspondence &

(definition3.9) and showing that on MI x S

i) £ is non-empty (corollary 3.16.1)
ii) glx is convex valued (corollary 3.17.1)
iii) glﬁ is upper hemi-continuous (corollary 3.19.1)
i —~1i
and iv) % Z &7 (lemma 3.20).

3.6 The Fixed Point

Definition 3.10: The set E of possible values of excess demand in the

o

compactified economy 2 is defined by:

L+x . o ) . .
E={ec¢ R L e = (?i(xl— o5 .y) - T.zd,xt ¢ ¥,y 2 9, and zJ ¢ 797,

(L}

+
Lemma 3.21: E 1is a non-empty, compact, and convex subset of EP K

Proof: Obvious.
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Definition 3,11: The mapping ™:E + S 1is defined by:

M(e) = {s =S | se>s’'e for all s' ¢ SI.

Lemma 3.22: T 1s upper hemi-continuous on E and for all e ¢ E, T(e) 1is

non-empty and convex.
Proof: See Debreu [ 5 ,p. 82, last paragraph].

T .
Lemma 3.23: E x M x S§ is a non-empty, compact, and convex subset of a
locally coavex topological space.

Proof: Immediate from lemma 3.20, assumption (e), and definition of S.

Definition 3.12: The correspondence ¢:E x MI xS-+ExM xS is defined by:

.y st

p(ems) = f(elimsh) s Ex M xS | el = (L - wl),ym,e) - 57

where (xi',mi') € %i*(m;s);zj| €’§j(mv5))s' e M(e)}

. . . I
Lemma 3.24: o 1is an upper hemi-continuous correspondence on E x M x S.

Proof: The result follows easily from lemma 3.5, corollary 3.19.1, lemma 3.22,

and assumption (f.1).

Lemma 3.25: For every (e,m,s) = E x MI x S, p(e,m,s) is non-empty and convex.
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Proof: By lemma 3.5, corollary 3.16.1, and lemma 3.21, @J(m,s),glx(m,s),

1 CO | )

3! ~—~1 1 i %
and 7T (e) are non-empty. Let 23 g QJ(mys):(Xl Lm ) & t (m.s), and

(VA1)

jl ’ZJ 1

i ~i .
s' ¢ N(e). By definition =z ) and x ¢ X*. By construction of

- .
the cube K (definition 3.7), y(m,s) g;?: Therefore e' = (?i(xl - ml),y(m,s)) -

it
Asz ) ¢ E, establishing the non-emptiness of p(e,m,s).

1

13
Convexity £follows 13/ from lemma 3.5, corollary 3.17.1, and lemma 3.22.

Lemma 3.26: There exists a fixed point of the mapping p; i.e. a triple

1. )

(ex,mx,s*) ¢ E x MI x S such that (ex,mx,sw) € D(ex,m“,s“).
Proof: A direct application of the Tychonoff, Kakutani, Ky Fan Fixed Point
Theorem (see Berge [ 4 ,p. 251]). The assumptions of the theorem are satisfied

by lemmata 3.23, 3.24, and 3.25.

3.7 Quasi-Equilibrium

Remark 3.2: Lemma 3.26 establishes the existence of an (I + J + 2) - tuple

e 1.

{(xln,mlﬁ>i,y", (ZJABj,sR7 such that

¥ i%* i * 1%
i) e = (L,x ~w),y) - Ejzj
i% i* - i%* e *
ii) (x° ,m ) € £ (m ,s )
iii) 23 e’BJ(m .8 )
iv) y =y(m,s )
* % * ki *
v) s e T(e), i.e. s e > s'e for all s' ¢ S.

For typographic simplicity the superscript will be dropped hereafter from the

notation of the fixed point.
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Lemma 3.27: ZiCl(m,s) + Ej[ﬁi(m,s)s- zd + ﬁg(m,s)] =q-vy, that is, the
government's budget is balanced at the fixed point.

Proof: This follows directly from Remark 3.2 (ii) above and assumption (i)

of the Basic Assumptions of Section III.Z.

IA
o

Lemma 3.28: Excess demands at the fixed point are non-positive, i.e. e

Proof: Summing over all consumers’ budgets gives:
i 1 . i o ~]
B + . T +
p;ix. MiC (m,s) < p. T Tjw (mis).
But T, m(m,s) = T.(1 - Ri(m,$))s27 - zj’R‘QJ(m,s). Thus, by lemma 3.27.
s[(?i(xl- wl),y)- ijJ] = se < 0. But by Remark 3.2 (v), 0> se > s'e

for all s'e S . The desired result follows as in the proof of statement (1)

of Section 5.6 in Debreu [ 5; note especially the paragraph following

statement (2) on p. 83].

Remark 3.3: Let ~ =3 = 7. Since zJ c 73 < zJ it follows that =z ¢

"
o~

Therefore, since assumptions (d.1l), (d.2) and (d.4) imply (2 - Q) < Z,

(see statement (2) of section 3.3 in { 5 , p. 42]),it follows from lemma 3.28

L 3 2 wlente
that z + e ¢ Z. Therefore, there exist z7 ¢ 2?7 such that szJ =z + e.

2 ente

We will show that f{xl,ml>i,<zjnﬂ

{ >j,s} is a quasi-equilibrium for 3.
Lemma 3.29: i) 27 2 pi(m,s)
ii) sz = sz

i1ii) nJ(m,«S) = (m,s)

Proof: By lemma 3.27 and assumptions (b.l) and (b.3), it follows as a corollary
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to lemma 3.28 that se¢= 0 since each consumer's budget constraint will

hold with equality. Then, since 2 =2z + e, sz = sz + se = sz. The

lemma then follows as in the proof of statement (1) of Section 5.7 of

NS P

Debreu [ 5 ,p. 83, see especially part 8, p. 87] since zJ“K € 6U(m,s)ag zJ“Aelaj,

and since ﬁj(m,s) = RJ(m,s) because max sZ- = max s Z7 for all 3.
Lemma 3.30: (x ,m") & £ (m,s).
i i i
Proof: Suppose (x .m ) ¢ £ (m,s). Then, since
i i ~1i i . . .
(x ,m) ¢ B (m,s) < B " (m,s) 1 1is not in the m.w.c. at (m,s). Thus,
v . o . ., .
there exists some (xl ,ml ) ¢ X' x M such that pxl + Cl(m/ml ,8) < wl(m,s)
st . : i! —1 Yi(
and (xl ,y(m/ml ,8)) >i (xl,y(m,s)). By lemma 3.15, if mt # M- (m »8)
~ . —~ .1
there is an m ¢ M such that y(m/ml,s) = y(m/ml ,s) and
i7i i, , . . .
¢ (m/m",s) = C (m/m” ,s) by (g.4). Thus, without loss in generality we
Ly s . . » .
can aszume m- s Ml(m)l(,s). Similarly, if m- é Ml(m)l(,s) there exists an

nt ¢ M° such that y(m/al,s) = y(m,s) and Cl(m/ml,s) = Cl(m,s) so that
(xl,ml) e §l(m,s), if and only if (xl,ml) € §l(m,s). Thus, without loss

. . i =i
in generality we may assume m < M.

'

Define (xC).mi())= n(xt ,mb ) + (-0 (x5,ml). By (b.3), (b.4) and

(£.2) (xi(\);y(m/mi(K),S) 75 (xi,y(m,s)) for all » ¢ (0,1). By (g.2)

px () + Ch(m/m"(0),s) < w'(m,s) for all * e (0,1). Since, by lemma 3.29 (iii),
wl(m,s) ='Ql(m,s). Finally, since (xl,y(m,s) ¢ interior K, for X

sufficiently close to zero, (xl(\);Y(m/ml(k),s)) ¢ interior K. But this

i i L1 —~
contradicts the fact that (x ,m ) ¢ gl (m,s) < §l(m,s) by lemma 3.20.

Remark 3.4: It has been established that:

1y (x,m) & £ (m,s) (lemma 3.30)
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(ii) 27 ¢ 67 (m,s) (lemma 3.29)

i i j:'::‘:

(i) (I (x0T sy (m,s))- sz = 0 (Remark 3.3)
(iv) s > 0 since s ¢ S.

2 alenls
W

Thus {{_xl,ml>i,<zJ >j,s} is a quasi-equilibrium relative to the
i .
government G = {M,y(-).{(C ( -)}i,<RJ( -)\j} in the economy &. This

completes the proof of Theorem 1.

1I1.4 The Existence of an Equilibrium
If no consumer is in the minimum wealth condition at (m.s), then the
quasi-equilibrium, whose existence was proved in Section III.3, is a

. e . . i -1
competitive equilibrium relative to the government G since & (m,s) = E (m,s).

Corollary 1.1: The quasi-equilibrium {(xl,ml>i,<zj>j,s} of .Theorem 1 1is
a competitive equilibrium relative to the government G for 4 if

Min Cl(m/ml ,8) < wl(m,s) for all i
21

i
m M

Proof: Trivial from the definition.

Remark 3.5: There are many assumptions which have been utilized to avoid the
minimum wealth condition in the Arrow-Debreu model with only private goods.

(See [ 6 ] for a list of these.) However, these assumptions are not sufficient
within the context of our model. For example, one cannot simply assume that

mi >>0 for all i since an equilibrium value of p* = 0 1is possible even

e

though s ¢ S. Furthermore, even if px £0 and w'>>0 for all i,

P

i = i * o .
it is possible under our assumptions that C (m /m",s ) > p w for all i and
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]

all ml ¢ M and that sz 3 = 0 for all j (if there are constant returns

D

) \ 1 e o,

to scale). 1In this case, if TiCi(mszw) = qu(m“;sﬁ) everyone would be in
the minimum wealth condition.

In our model there are assumptions on the government rules and on the
economy such that in quasi-equilibrium, no consumer will be in the minimum

wealth condition. We consider three of these.

Assumptions to avoid m.w.c.

One can use any one of the following.

M

wm

(j.1) For every (m,s) ¢ MI x S and for every i there is an @
such that cl(m/ﬁl,s) = 0. Also, there is a private good 4' such that, for

. i > . C i
every 1, wy: > 0 and ~; are strictly monotonic in x,,.

)/

I

(j.2) For every (m,s) ¢ M x S, zicl(m,s) - qy(m,s) > 0. Also, 87 >0

o™

for all i and j.

(j.3) For every (m,s) MI x S, jiCl(m,s) - qy(m.s) > 0, sz = max sZ > 0,

[

and Sij > 0 for all 1i,j.

The second sentence of (j.l) ensures that in quasi-equilibrium p{ui > 0
for all 1i. The first sentence then Implies that no i is in the m.w.c.

The first sentence of (j.2) 1implies that in quasi-equilibrium, producers
are subsidized since the government budget must be balanced. Therefore, after-
tax profits must be positive since O ¢ Zj for all j. The second sentence of

(j.2) then implies that p&ul< wl(m,s) for all i. That in turn implies that

no consumer is in the m.w.c. by assumption (g.3).
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(j.3) implies that the after tax profit shares of each consumer are

positive. Thus, by (g.3) no one is in the m.w.c.

Using the above arguments it is easy to establish

Corollary 1.2: 1If either (j.1) or (j.2) or (j.3) hold, the quasi-equilibrium

of Theorem 1 is a competitive equilibrium relative to the government G for

the economy 4.

II1.5 Examples Revisited
To illustrate the generality of assumptions (e) to (i) we turn again to

examples 2.1 to 2.4 of Section IIL.7.

Example 2.1: The Naive Government

It is easy to see that these rules satisfy (f) to (i). Thus, if we let
— K . L .
M be a compact convex Subset of R, such that O ¢ M, a quasi-equilibrium
exists for that compact message space. 1In general, if M 1is big enough. the

quasi-equilibrium for M will also be one for BE

. 3 K 3
In this example, Ml(m)l(;s) = Hg_ for all (m)l<,5) e M x S so.that
(£.2) and (£.3) hold trivially. Also since RJ =0 and “C" =qy for

any environment (h) and (i) are easily satisfied.

Example 2.2: The Vacuous Government

It is relatively easy to show that, if M = IRK , then (f) to (i) are
satisfied. If, on the other hand, M = IRE it is conceivable that (g.3) is
violated. Thus, if we wish to avoid bankrupting consumers, we must use RK;
however, if we do so, an equilibrium will not, in general, exist. A simple

example illustrates this fact. Consider an economy with two consumers, two
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: 1
commodities, and constant returns to scale in production. Let x +tafny

2 2 o>
and u =x + B In y represent il and -, respectively. If M =iRK+= R, ,

[
1]

1
then the message component of £ (m,s) 1is max {0, (2a/q) - mz} and of

2

£7(m,s) is max {0,(2B/q) - ml} if consumers are not bankrupted and p = 1.
Note that min Cl(m/ml,s) = qng /1 which easily could be larger than wl
thus creating bankruptcy (Bi(m,s) = 0).
If M = R, instead, then (ml,mz) is an equilibrium if and only if
ml =.(2a/q) - m2 and m2 = (2B /q) - . This is true if and only if a = B.

Thus., unless preferences are identical these government rules are usually

vacuous.

Example 2.3: The Lindahl Government

It should be obvious that if M = {m ErnﬁRi_* ]RE} then the Lindahl
rules satisfy (£.3)(f.4)(£.5)(g-3)(g.4)(h) and (i). The other assumptions
need not be satisfied. However, if we replace M with the subset of linear
functions, M* = {me M| m(y) = Ay + b}, then one can establish that (f.1)
(£.2)(g.1) and (g.2) are satisfied at all m such that (.:»iAi)’1 exists. Thus,

on a compact subset of those m, a quasi-equilibirum exists.

It may appear that by using Mx instead of M we have immediately ruled

out many possible equilibria. This is not true since for any equilibrium

. . cr . o . i
using M there is an equilibrium using M in the following sense. Let m
i %
be the equilibirum message of i wusing M. Choose m ¢ M such that
*q % i % kS i Dl i . 3
m (y ) =m(y ) where vy is the equilibrium allocation. Then if i were

i i 1. ) .
to use m in place of m the equilibirum situation would not change. Thus,

restricting attention to M neither adds nor subtracts potential equilibirum

allocations.
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Example 2.4: The DVM Government
Much of the discussion in the previous example applies to this one since

in order to apply our existence theorem one needs to restrict the message

space for the DVM rules. In particular, let M = {me M | m(y) =3y'Ay + by}.
One can immediately verify that, given Al,bl, for each i the Lindahl rules
and the DVM rules are the same except for the term 51(' ) in the DVM

taxing rule. It is relatively easy to show that if the Lindahl rules satisfy

(£f) - (i) on M" then the DVM rules satisfy (f) - (i) on M . Also, the
remarks justifying the restriction to Mﬁ for the Lindahl rules apply to Mxx
in this example. Thus a competitive equilibrium relative tc the DVM rules

will exist whenever a competitive equilibrium relative to the Lindahl rules

exists.
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FOOTNOTES FOR SECTION TIII

In section III.5, we show that each of examples 2.1.2.3, and 2.4 (in
section 1I1.7) satisfy the sufficient conditions for some message space.

We also indicate why example 2.2 is not covered.

See, for example, Debreu [ 5 ,pp. 83-84],

See Debreu [ 5 ,p.84].

We could have assumed instead that M 1is a compact, convex subset of
K . : . .
R ; however, we wish to include governments fo: which M is a set of

functions (as in examples 2.3 and 2.4).

We might have assumed that vy( -) was concave in m- on all of M

(which implies (f£.3) and obviates (f£.4)); however, we wish to consider
rules of the form y(m,s) = max {O,f(m,s)} where f 1is concave in m.

Examples 2.3, 2.4, ard our rules are of this type

; . . i i
We could have assumed instead that min C (m,s) < wl(m,s); however, (g.3)
is more convenient. Also, while (g.3) requires government monitoring of,
at most, initial endowments, this alternative might also require the

government to collect information on the profits received by consumers.

For many government rules (g.3)(h) and (i) are trivially satisfied for
any economy. See-example 2.1 of Section II.7 for instance. However, in
some cases it may be necessary to have Ci(- ) and Rj(- ) depend specifically
on the economy. In particular one might want Ci = Ci(m,s,wi) and
i ]

RJ = RJ(m,s,max s ZJ). If C and R are of this form then (g.3), (h),

and (i) are assumed to hold for any (wl),(ZJ) satisfying (¢) and (d).
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J-
In particular if R — RJ(m s,Max Z ) then ﬁj = RJ(m s,max s ZJ)

9/ i

Non-convexity of the (compactified quasi-) decision correspondence E
prevents the application of the fixed point theorem we use to establish

existence.

10/

Application of the fixed point theorem requires that the decisicn correspondence
be non-empty, convex valued, and upper hemi-continuous. From the example
illustrated in figure 1,an apparent solution might be to restrict the

decisions to the segment bc by defining the restricted decision corres-

)1( )l(

s) where M (m s) 1is defined in

pondence by @ (m,s) N M (m
assumpticn (f.2). However, one can construct examples to show that such
a restricted decision correspondence, although non-empty and convex

valued, is not upper hemi-continuous.

11/ Cr e .
Alternatively, let O0O(m,s) E{(Xl ,ml s€) € X' xMx R i ¢>0 and

Let G(m,s) be the closure of &(m,s). Then

TR . f P —_ ) P
gl (m,s) = f(xl mt ) e X ox M \ (x* .m ,0 ¢ G(m,s)} if i is

not in the minimum wealth condition.

12/ L, )i

i . .
If M {(m »S,€) . were continuous in ¢ at ¢ = 0, the result would follow

)i

easily. However, M (m ,S,6) 1s not necessarily lower hemi-continuous
at ¢ = 0.

13/
~ If, in the definition of o (definition 3.12), y(m',s') or y(m',s)

were used instead of y(m,s), p(e,m,s,) would not necessarily be convex

unless y were linear in m and s.
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IV. AN OPTIMAL INCENTIVE COMPATIBLE GOVERNMENT
IV. 1 The Groves-Ledyard Government

In this section we define a specific govermment G - that is, a
language M, an allocation rule vy(- ), consumer tax rules (Ci( -)>i, and
producer tax rules (Rj(- )>j - which we refer to as the Groves-Ledyard (G-L)
government. Following the specification of the G-L government, the results
of Section III are used to establish the existence of a competitive (quasi-)
equilibrium relative to the G-L government. Next the two Fundamental Welfare
Thecrems are proved - 1) that a compe-itive allocation relative to the G-L
government is Pareto Optimal, and 2) that any Pareto Optimum allocation is
competitive following, if necessary, a redistribution of endowments and
profit shares. Finally, we present a few simple examples to illustrate these
results and contrast them with conventional wisdom on the Free Rider Problem.

To begin, the language M of the G-L government is the Euclidean

space RK of the same dimensionality as the number of public goods:

(4.1) G-L langugage space M = RK

The allocation rule vy(-), which specifies the bundle of public goods

1/

to be provided given the messages of the consumers (and the prevailing prices) =

is defined by:

- i
L D N

(4.2) G-L allocation rules y(m) = Max {ﬁimi,o}

i .
With this allocation rule, a consumer's message m may be interpreted as
communicating to the government how much more (or less) of each public good the

consumer would like the govermment to provide, given the amounts requested by
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the other consumers. Given the other's messages, a rational consumer will
i .
communicate the increment (or decrement) m such that the resulting bundle
. 2/ : . .
is the most desired one. — Since every rational consumer can insure that
the resulting allocation of public goods is his most desired bundle, given
the messages of the other consumers, in an equilibrium all consumers' most
. 3/ ) )

desired bundles must be equal. — It is the role of the taxing rules to
esnure that this is possible. 0f course, even though in an equilibrium all
consumers will desire the same bundle, their messages and taxes need not, and

generally will not, all be identical.

Although the allocation rule y(- ) 1is very simple, the consumer tax

i

rules (C (- )>i of the G-L government are quite complicated. They are

defined by:

(4.32) G-L consumer tax rule
ctms) = ph@ Py mes),s) - Max Tal@ () Bt @ )
where

h 1 I-1

’ - (@ sl num -7y F T dslyey

.30 pim il y s

4.30) yi(m,s) = Max [y(m),ym/al@ )
NPT GO S S SR
(4.3d) m (m ,8) E Max {I—l (‘h#im ETg\q), 2™ ]
$03i( o i i( i, i pu i, i 4/
(4.3e) A"(m" " ‘,s) = Min (D" (m" ",y (m/m ,s),s) - ow 377 (m/m~,s)} —
i
@.36) B @iCs) = min 0P Oy m/mt,s) )} - |sip- ol
ml

The complexity of these tax rules is necessitated by assumptions (g.l) - (g.4)
of Section III.2 to ensure the existence of a quasi-equilibrium. Major

i
complications arise at boundary points that the terms y (m,s) and
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ml(m)l(,s) circumvent. These difficulties will be explained in the next

section when assumptions (g.l) - (g.4) are verified.

In order to interpret the consumer tax rules we will develop a simpler
and economically more meaningful expression that is equivalent to the

formulation of (4.3a-f) at interior points.

Proposition 4.1: Suppose preferences are strictly monotonic increasing in

P3N | .1 .
each public good k. Given (s,m) ¢ S x MI, let (xl ,ml ) ¢ §l(m,s) -

the quasi-decision set for i - and suppose that y(m/mi') > 0,
q -yi(m/ai,s) < p-w, and that the consumer is not in Fhe minimum worth condition
at (m,s), where El minimizes [Di(m)i(,yi(m,s) - %ﬁ;_q. yi(m/mi)], Then,
consumer 1i's tax is given by:

i i :

@6y ctamtle) = B qoy@mty + [ oi@ Gy@mt e - B g y@/mt))

. ) . i .
-t Py @my sy - B g ym/an)].

Proof: See Appendix IV.A. il

Although the consumer's tax Ci(m,s) in the form (4.4) 1is simpler than
the form (4.3a-f), it is difficult to interpret directly. To derive an
equivalent but more transparent formulation, given any price vector s ¢ S,
define for every message mh ¢ M the function fh(y:mh,q) of public goods

bundles y by:

N

h h h 1
(4.5) f£(ysm,q) = (Im +74a) -y -5y-7.

h
The function f (. ;m ,q) may be called consumer h's reported willingness

e

to pay function since, if m is the best message for consumer h (i.e.
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h* hs* h *
(x ,m ) = £ (m,s), the gradient of fh(y;mh ,q) with respect to vy

K

h* .
evaluated at y(m/m ) equals the vector of the maximum amounts consumer h

would be willing to pay for marginal increases in public goods (i.e. the max-

imum amounts consumer h could pay and remain as well off as he is at

W

(th,y(m/mh ))). The following proposition formally states this result:

Proposition 4.2: Suppose the preferences of consumer i are representable by

a neo-classical 5/ utility function ul(xl,y). Given (m,s) ¢ MI x S, suppose

y(m/ml) >0 and g -yl(m/ﬁl,s) < pw where m" is defined in Proposition 4.1.

Define zl(y) oy :

(4.6) zl(y) maximizes 2z subject to

o

wrat ),y s ut ey (i)

where ;i(Z) maximizes Ui(xi;Y) subject to Pxi < wi(m,S) - z. Then, for every
k=1,...,K,
(4.7) azi(v(m/mii)L 5fi(y\(m/mi*>;mi*,q)

ka OYk

¢ i .

Proof: See Appendix IV.B. !l

A remarkable implication of Proposition 4.2 is that when the consumer
i* C . .
sends his best message m , he is in effect communicating to the government
the gradient of his true willingness to pay function or his true marginal rates

of substitution at the level of tize public goods provided by the government.

This result is the basis of our claim that an equilibrium relative to the
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G-L government yields a Pareto Optimal allocation. The formal proof of
this theorem is in Section IV.3.
h . i1

Now, since each message m defines a reported willingness to pay
function fh; given public goods prices q, the allocation rule
y(m) = Max {thh,O} is easily seen to be the solution to the problem:

- ch h
(4.8) Max i Gsm, ) -y
y=0

Thus, y(m) maximizes the net social reported willingness to pay (gross less

the social cost gq°*y) or total reported consumer surplus.

. .
The tax Cl(m/ml ,8) given by (4.4) may be equivalently expressed in

terms of the reported willingness to pay functions. It is straightforward
to verify that:
i h

.9 ctam s = B2 g y@mt)) + o 1y @a e - 2 gy /D)

e (P mty; el - 22 /mt
“hii (y(m/m~ ); m ,q) - " q-y{m/m )].

p!
(i
Calling the term ’;—D— q+y consumer 1i's proportional cost share of vy
W
h
h h (
and the term f (y;m ,q) - gﬁ?— q-+y consumer h's reported consumer surplus

. .
i i . . .
or net reported willingness to pav, the tax C (m/m~ ,s) 1is easily interpreted.

The consumer is assessed his proportional cost share plus the total deviation

in the aggregate consumer surplus of the other consumers caused by 1i's message

. —1 . A - PR
being m instead of m". Since, by definition, m  minimizes
. . . i . .
i, Yi( 1 pw i -1 ..
D (m" ",y (m,s),s8) - w477 (m,s), m  maximizes

. h .
Ehéi[fh(yl(m,s);mh,q) - %ﬁ?— q -yl(m,s)] .  Thus,under the conditions of
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Proposition &4.1. yl(m/ﬁl,s) = y(m/ﬁl) maximizes
h h P h
:h#.[f (y;m ,q) - L q-yl or the aggregate net reported consumer surplus
1 ’ Pw

.t . . < 1
of all the other consumers. Thus, by sending m* instead of El, y(m/ml )

-1 . . s .
i1s chosen instead of y(m/m ) and consumer i 1is assessed, in addition to his
proportional cost share, the total loss in aggregate net reported consumer surplus
of the other consumers. This is most clearly seen by writing

- -t . <1
cl(m/ml ,8) as (where m = m )

1 ”i * ho. B p " - h, * h
4.1 S TUN . SR E MR B *ahq) -
( 0) C (m,s) Pw q-Yy Uh?éi[f (y;m ,q) b q-y] “h;éi[f (y .m,q)
EU.)h W
bw 177 ]
where
yh = y(m) maximizes reported consumer surplus of all consumers:
h
D h . h - = v h . h EUJ
P m,) - qey =l (yim,q) - e 47 vl
and

~ -
—1i .
y = y(m/m’) maximizes reported consumer surplus of all consumers except

consumer 1i:

h
h  h
T lE (sm,) - gﬁ%—q -y1.

To complete the specification of the G-L government the producer tax

rules (RJ(- ))j need to be given. There are many possibilities for these

rules, however for simplicity we set the tax rate on profits at zero and use

only lump-sum producer taxes or subsidies:



(4.11) G-L producer tax rule
R = ® @9,8) = 0,:d@,)

where (Rg(m,s) >j is any continuous selection such that

i) Rg(m,s) < Max st for all j
and ii) R(m,s) = szg(m,s) = Min {q'-y(m) - ZiCi(m,s);MaX sz}
The first restriction i1s imposed to prevent bankrupting producers. The second
restriction is imposed to avoid running a government surplus. A government deficit,
however, is not ruled out by the G-L government rules: Since consumers'
minimal tax collections are limited by the values of their initial endowment
of private goods (as is shown in the next section) and producer tax collections

by their profits, if consumers demand sufficiently large quantitites of public

goods a deficit may result; i.e.

ZiCi(m,s) + R(m,s) < Zipcui + Max sZ < q- y(m,s).
We will show, however, in the next section (proposition 4.7 ) that this
cannot happen if all consumers obey their budget constraints.
The existence of continuous producer tax rules satisfying (4.11) (i) and
(ii) is easily assured under assumption (d.2) on the production sets Zj.
I J

Consider the correspondence r7:Mx S+ R

r (m,s) = {r g R; \ rj < Max sZJ, erj = min {q «y(m) -

i
2,C7(m,s), Max sZ}}.
It is easy to see that ¢ is a continuous correspondence on MI x §. Hence,
. . , = 1,
there exists a continuous function R(m,s) = (R (m,s),...,RJ(m,s)) such that

R(m,s) ¢ -(m.,s) for all (m.s) by the Continuous Selection Theorem of Michael [18].

ke

~"Added in proof: We have recently discovered that by making a minor modification
in the consumer tax rules the government's budget can be balanced by taxes omn
consumers only. In other words, by adding a term to the functioms Ci(m,s) that
in independent of m! (thus preserving the incentive properties) we may set
RI(m,s) = (0,00 for all producers. In particular, this change will make the
consumer's budget correspondence 8i(m,s) independent of m. The modification
is similar to that of Groves and Loeb [13,Section 2.6,equation (21)] (See Remark 2.1



-72-

IV.2 The Existence of a Quasi-Equilibrium relative to the G-L Government
Having specified the G-L government, we next will prove the existence

of a quasi-equilibrium relative to this government. However, since the

message space M E Egi is not compact the assumption of the existence theorem

of Section IIT cannot be directly verified. Our approach will be to

compactify M, verify the existence assivmption relative to the compactification,

and prove directly that a quasi-equilibrium relative to the compact M 1is

a quasi-equilibrium relative to the G-L government (when M = Igi). Through-

out this section we assume assumptions (a) - (d.1 - d.5) are satisfied by

consumers and producers.

;6) be any pair of

To define the compactified message space, let 8§ = (§

K .
of strictly positive vectors in R with equal components such that

5 > I8 . For every such 5 = (§,8), define the message space M6 by: &/

(4.12) M_ = {mi < ]RKl -5 < rni < g where 5.3 ¢ ]RK &, =38 5 =7 for
5 R T R T L

all k,k'"}

The 5-government 1is identical to the G-L government except that all messages

i . ; - . -
m are restricted to be from M@‘ "he following propositions verify that the

§-government satisfies assumptions(e) - (i) of the existence theorem.

Proposition 4.3: For every &, M satisfies assumption (e)

b

Proof: Obvious.

Proposition 4.4: For every 5 = (5,3) such that % > I§, the allocation

rule y(.) defined by (4.2) satisfies assumptions (f.1) - (£.5).
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Proof: (f.1) y(m) is clearly continuous on Mg x S, and since it is independent

of s, 1is homogeneous of degree zero in prices.

(f.2) Since ﬁg(m)l()s) = closure {ml g M5 i y(m/ml) > 0}, y(m) 1is
linear and hence concave in ml on ﬁ;.
—i . . "1 h —
(£.3) M, # 0 since if m =Max - “@ = - (I-1) Min m = (I-1) §< 3
m €M5 h#i m'e M

then ml € M5 and m' ¢ ﬁ;.

(£.4) vy(m) > 0 by definition.

(£.5) To show Y(m/MS) is a convex set, let y' and y" ¢ y(m/M5);

1 < 1 21t

) and y'" = y(m/ml ) where m' and m" e M. Then. we

1

i
then y' = y(m/m

. . i
must show for every * ¢ [0,1] there exists some m M such that

[D]

8
y(m/m) = Ay + (1-0)y".
Define m = [ ’m + (1 -Vm_  if y/ and y!' >0
i' i” > 1 — 1" -
m_ or m if Yy =¥y = 0
L i h '
m© + (K—l)?h%im if Yy > 0 and yﬂ = 0.

Now, for every k
ATl mE (L) (T, m m )= 4 (1-0)y) if yland v > 0
A T Mk ALK Mk K kY k

= = - ' 4 -3 n 1 ' = =

]
Max {Th%imi + amt o+ (\-l)Th#imh,O}= yto= oyt + (L-A)y"

if yi > 0 and yﬁ = 0.

Thus y(m/ml) = \y' + (lfk)y”. Furthermore, since - ikg Kmi + (l—K)ming 5#,
2 1 LA ]

1 1 ! h — —
-8, < and < 8 > 1)~ - -
b < m mo < B m o+ (A 1)Qh%im.k§ N+ (1-A)(I-1)8, < 6, and



. - h . . . i’ h
1 " = B IN R N -
if Vi > 0 and yk 0, “h#imk < B1c which implies that >m~ +(Xx 1)°h#imk

A - h i' © h T -
2 Cpggme T ome ) - Spyg® 20 S 28, m e M. ]

Proposition 4.5: For every § = (g,é) with & > I§ and § > u = (1,...,1),

the consumer tax rules (C (- )) satisfy assumptions (g.l) - (g.4).

i
Proof: (g.l) C (m,s) 1is clearly continuous on M;

forward to show Cl(m,s) is homogeneous of degree 1 in prices.

)i( )i(

x § and it is straight-

.3 c(ms) <d @ ytms),s - 3t s

-0t @ Oyt ms),e) - Min Y@ Py me) 8] + put
mleM
i e i, )i( i .
By lemma A.4.1, m minimizes D (m ,y (m,s),s). Thus, 1if
i . i i i ,
m € M, Min C (m,s) < pw . To show m ¢ M_ consider that
m 3 i = = A
mlecM o
8
i h 1 h 1 h -
= . L (s - L. si -3 - 5
m Max { Thti™ 0 ToT O™ T O}, Since g™ < (I-DB < I8 <8
- h 1 - 1 - i - _ h
and 1 “h#im - Eq) <5 - 79 < &, we have m < 5. If “h#im < 0, then
i . h B, h i 1 i .
m > Tngy™ > 0<.- 5. If hE™ > 0, thenm m" > (I-l)Iq > - 5 for
§ >1 since q< 1. Hence, -8 <m <35, or m ¢ M.

. . . -
), then vy (m/m",s) = yl(m/ml ,8) and

since Cl depends on m" only through yl(m,s),Cl(m/ml,s) = Cl(m/ml ,8).

1

(g.4) If y(m/m)) = y(m/m®

i

(g.2) To show Cl(m,s) is convex in m on M, we use the following

5

lemma:

K

Lemma: Let g: R <+ IR be a convex function of 2z and montonic increasing
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- K - = .. K
on Z=19{z¢ R |z>2z where z minimizes g(z)}. Let 2%:M6_* R~ be a

i i - i
convex function of m € M_ such that 2%(m ) > z for every ot e M&'

2

Then g[g,(ml)] is convex in mi on MS'

Proof: Straightforward.

i, : . .
Now, D is a strictly convex function of y and since

aDl_ ~ h 1 i . ' ‘
5}7 c T (I'y‘l—#im - _I_q) + (I-l)y, D 1s monotonic increasing on
S K 1 - h 1 _

Y={yeR |yzgg [Ihym-7a =7}

i i h i 1 h 1 —
3 —_— - — = Th
Also, vy (m,s) > y(m/m") > Lh%im + m > 1 [I?h%im I q] y. us,

y (m,s) >y for every m' ¢ M_. Finally

8

ot (1-K)mi',s) = Max{Max[ 7 .mh+ ,\mi+(1-\)mi ,01, y(m/gi)}

i b
y (m/m h#i

Max{y @),y (m/m)} + (I-W)Max{y(m/m> ),y (@/nD)]

IN

. . L . .
kyl(m,s) + (1->\)yl(m/ml ,8). Thus, yl(m,s) is convex in m® on M, .

)
)i(

Applying the lemma establishes that Dl(m ,yl(m,s),s) and thus

cl(m,s) = Dl(m)l(,yl(m,s),s) - Max {Al,Bl} is convex in m  on M@'

This completes the proof of Proposition 4.5. ||

/

Remarks 4.2 (1) The properties (g.l) - (g.4) of Cl(m,s) are independent

of the definition of Al(m)l(,s) except that it must be continuous in (m)l(,s)

i
and homogeneous of degree one in s. Thus, if A (m

V1C gy

were defined to

be zero identically (or any other constant times the norm of s), these

properties would hold. However, the interpretation of the tax rules following
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Proposition 4.1 relied on the particular definition of Al(- ) given in

(4.3 ). 1In general, for any definition of Al(- ), if Al(m)l(,s) < Bl(m)l(,s)

and yl(m,s) yv(m), the consumer 1i's tax Cl(m,s) may be expressed as:
wi i, )i( h h wh
. + |- _— . -~ .
S ey F AT s - gy @im ) - S gy @)

ctm,s)

=y < 5 r@in e - at@ s,

The first expression may be interpreted as assessing consumer i his proportional

cost share plus the deviation of the net consumer surplus of other consumers

from a quantity (- Al(m)l<,s)) that is independent of 1i's message. The

second (and equivalent) expression may be interpreted as assessing 1 for

the full cost of the public goods less the aggregate willingness to pay of

7 . .
all other consumers plus 1/ an amount (- Al(m)l(,s)) that is indep=ndent of

i's message.

Another equivalent expression is:

)1

ctms) = alay@m - L, [ @inte - aleym] - at@ )

- i

where e s 1. 1In this form, the tax rule assesses each consumer an arbitrary

proportion of the total cost less the '"net' willingness to pay of all other
consumers plus the amount - Al(m)l(;s)-
(2) Only properties (g.l) (continuity and homogeneity) and (g.3)

depend on the definition of B (m

)l(,s). Property (g.3) is required by
the existence theorem to ensure that no consumer is bankrupted by his tax.

It guarantees that no consumer is forced to pay more than the value of his

initial endowment for public goods.
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(3) The convexity property (g.2) 1is chiefly responsible for the

complexity of the tax rules Cl(m,s) as defined by (4.3 a-f). The difficulty

arises since the allocation rule vy(* ) 1is bounded below by 0 (i.e. negative

allocations of public goods are not allowed). Figure 2b below illustrates

i h
this problem. TFor all m > - :h#im ,y(m) > 0, but y(m) = 0 for all
mi <=7 mh. In the case illustrated, since - 3 mh < mi' the function
= “h#i ’ "h#i ’
Dl(m)l(,y(m),s) is not convex in m-. The alternative illustrated in
figure 2a would violate assumption (g.4) since all w < - Eh%im lead to

0 and hence must (by (g.4)) yield the same tax Cl(m,s). Thus,

y(m) =
we have chosen to convexify c'(m,s) by defining D (- .y (m,s),- ) as

illustrated in figure 2c.

» ;
, i -~ _h p
\\ D ('J&hm st ) / ¢ /
\ / . /o
? 1 / j i i
D (*,y(m),") , DMLyt (m,s),e) s
— y ‘ e
. . \\\\\\v-////// 7
D" | —_—
L} } [ ’
! 5 i_ ! [ i
1 i i
it m hl Jin I'ﬂl — ml
- 1
m “h#i™ " =
Figure 4.1b Figure 4.1c

Figure 4,1la
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To,.m - %q), gl = Max {ml , = ,mh1

Note: m" = (-

(@ ,ym/mDI.

oy

yl(m,s) = Max

Proposition 4.6: For every §, the producer tax rules /RJ(- )) satisfy

assumptions (h.1)-(h.3).

Proof: Immediate from the definition.

Proposition 4.7: For every &, the rules of the &-government satisfy

aszumption (i).

. i .
Proof: By Lemma A.4.4, for every (m,s),Cl(m,s) > Min {ﬁﬁ% q-y(m),pcnl} for all
Either (a) q:-y(m) < pw or (b) pw < q-y(m).

Case (a): q.y(m) < pw .

. i i
pu)m < pw', which implies that C'(m.s)> Eﬁ% q y(m).

; i

In this case puw

Summing over 1 yields iiCI(m,s) > q-y(m). Thus q-y(m) - ?icl(m,s) < 0.
Since R(m,s) = Min {q-y(m) - TiCl(m,s); Max sz} and Max sZ > 0,

R(m,s) = q-y(m) - ?iCi(m,s).

Case (b): q:y(m) > pw

In this case, by Lemma A.4.5, Cl(m,s) > p(ul unless m' < El(m)l(,s)

i i
in which case C (m;s) = pw .

Suppose Cl(m,s) = pnnl for every- i, i.e. m' < ml for all 1i.

Claim: qkyk(m) =0 for all k.
proof: Suppocse not; i.e. suppose SUR > 0 for some k. Since

i i . i . h 1. h_ 1
m, < m for all i and m = Max { ST I-l(”h#imk - qk)}



-79-

if, for any i, 9; = - :h#imi’ then m; < - Sh#imi and yk(m) = 0 which
is a contradiction.

- 1

] ) 1, 1 s 1 _ - 1 _1
Thus, for every i, m < ETT(“h%imk 19, - Hemce T.m < M T To1 %

1

and thus 0 < -1 % < 0 which implies that q = 0 which is a contradiction
thus completing the proof of the claim.
But if ml < ml for every i, q-y(m) = 0 contradicting the premise of

Case (b) that q.y(m) > pw > 0.
. i i, )i
Hence, for at least one 1 and one k. o> Qk(m .s) and hence
c'(m,s) > pw’ by Lemma B.4.4.
Thus, :icl(m,s) > pw . But since . Cl(m,s) < pcul + Zj SIJHJ(m;s) for
all i,
0 < zicl(m,s) - pw < TJ(m,s) = Max sZ - R(m,s).

Hence R(m,s) # Max sZ which implies that R(m,s) = q-y(m) - Zicl(m)s).

This completes the proof of Proposition 4.7. H

Propositions (4.3) - (4.7) wverify all the assumptions of the existence

proof for the 5-government. Thus,

Theorem 4.1: For every § = (g,g) such that I 8§ <5 and 5 > u, there

exists a quasi-equilibrium relative to the G-L rules for the message space

M5 (i.e. the 5-government).

The next step is to show that for some 5 satisfying the assumptions
of Theorem 4.1 a quasi-equilibrium relative to the §-government is a

quasi-equilbrium relative to the G-L government; that is, that the restriction
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on the message space can be dispensed with. This is done in the next two

propositions.

i i j
Proposition 4.8: Let a = {/x ,m >,/ZJ>,s? be a quasi-equilibrium relative

i - .
to the %-government such that m < 4§ for all i. Then, a 1is a quasi-

equilibrium relative to the G-L government.

Proof: Suppose the contrary; i.e. « 1is not a quasi-equilibrium for M
(i.e. relative to the G-L government). Then, for some i, (xl,ml) ¢ gl(m,s)

. .. . i i i
(the quasi-decision correspondence for M). Since (xl,m ) §;(m,s)

(U]

(the quasi-decision correspondence for Mé), p}g' + Cl(m,s) g.wl(m,s) and
hence (xl,ml) g Bl(m,s) (the budget correspondence for M). Thus, consumer i
. . . . i i i
is not in the m.w.c. for M, i.e. Min pX + C (m/M,s) # w (m,s).
] i i, i . )
Since (x ,m") ¢ £ (m,s) and i 1is not in the m.w.c., there exists

o . L
(x' sm" ) e X x M with m ¢ M, such that

s 1 . .t . .1 .y .
px  +Cl(m/m" ,s) <w (ms) and (x .y(m/m’ ) Ti (x .y(@).

By Lemma 3,15 we may assume without 1loss 1in generality

1

: 1 2 P
that m e M (m> (, ) = closure fm’ ¢ M | y(m/m” ) > 0t. Also, by Lemma 3.15

1

if m ¢ ﬁl(m)l(,s) closure {ml £ M5 { y(m/ml ) > 0}, then there exists
some mlﬂ e M (m )l( s) such that y(m/ml%) = y(m) and hence (xl,mlw) £ §g(m,s).

Thus,

(xi ,y(m/mi')) ”i (Xi,y(m))= (xi,y(m/ml”)). Also, since

i i* =i )i(
b

m@ s cH @ s, born nt' and o' s W@ (s,

:

i —
Claim 1: Since m < §, ml < &,

Proof: Suppose the contrary, i.e. for some Kk, m o= 5. Then m1; > m;
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Since y(m/ml&) = y(m) and yk(m) = Max {“hmE,O} yk(m/mlA)= 0. But

e e 1. h < . h
this implies that “hei Mk + 5 < 0. But since mo> - 4 for all h and

5 > Ié;?h#img + E > 5 - (I-1)8 > 0 contradiction, thus proving Claim 1.

. C ) . i, )i( .
Since i is not in m.w.c. in M at (m,s), m (m ,8) minimizes

cHm/m* ,s) by lemma A.4.1 and gl € M@' Thus, by proof of (g.3)

(Proposition 4.5) i is not in the m.w.c. in M6 at (m,s).

Thus, by lemma A.4.2, m; > m~ for all k such that ¥, (m) > 0
and since y(m/ml") = y(m), m;“ > _l for all k such that yk(m) = yk(m/ml‘

1 s 1
Now, since m g M@’ for some k either (a) m; < -5 < m; or

+ e
W

o

7%

(b) m > 5 > m

Consider any k such that yk(m/mlx) = 0.
. . . Ly .
Since ml € Ml(m)l(,s), yk(m/ml + e¢u) > 0 for all ¢ > 0. Thus
_ h i’
Th#i™ T te>0.
e il

i * - h i% i %
Since yk(m/ml ) = O;h¢imk+mk < 0. Hence mk - mi + c¢u > 0 for all ¢

o) o-

i i*
and thus m > m > - 5.

Thus, for all k such that y (m/m" ) = 0, - 5, and by the

above, for all k such that yk(m/ml‘) >0, 5>

Vv
T o A
(Y

il

Define m (M) = *m™ + (1-M)m°  and x"(%) = Ax- + (L-20)x .

Claim 2: For X sufficiently close to zero, ml(K) 3 MB'

Proof: For any k such that yk(m/ml&) = 0, since m > m; > - 5§, and

m;“ < ¥ by Claim 1, for A sufficiently small - & < m (1) < 3.
For any k such that yk(m/mlx) > 0, since mikz g; > - & by proof of

(g.3) (Proposition 4.5), - § < m;J < 5. Thus for X\ sufficiently small

"> 0.
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-5 < m;(K) < 8 also, thus proving Claim 2.

) . .‘ _
)l(,s) and m- and m' ¢ ﬁl,

ill i —l
Since y(m/m ) 1is concave on M (m

y(@/m 00 > Am/ml ) + (1-0y@/nt ).

By convexity of preferences

: i i% i i
(x-C) LAy (@/mt ) + (1-0)y @/t ) Ti (x5,y(m/m ) for all > 0.
By monotonicity of preferences in y and concavity of y(m/ml ) in

mi“ on Hi(m)i(,s), ‘
Oy m/mt gy 21 (F AT @/DE A0y /e ).

Thus

xTOY,y@/mt )7L (b ym/mt)) = by for all s 0,

. . i i . i i i
Finally, by convexity of C (m/m” ,s) in m . C (m/m (N\),s) <

. P} . e . . . .
e (m/mt ,s) + (1—K)Cl(m/mi,s) for all *, so that px (A) + C'(m/m (*),s) < w (m,s)

= 1 il

since (x* ,m ) and (x',m") ¢ Bi(m,s).

Since mi(k) g M6 for X sufficiently small, for such a X,
(xT00,mt () e B; (m,s). But, for all %> 0, (x2(\),m (D)) 7i (x5, y(m/m>)).
However this is a contradiction since (xi,mi*) ) §g(m,s) and i 1is not in
the m.w.c. at (m,s) in Mg‘
Thus, for every i, (xi,mi) £ gi(m,s) and o 1is a quasi-equilibrium for

M as well as for M5, thus completing the proof of Proposition 4.8. [

Thus, to prove the existence of a quasi-equilibrium for M (i.e. relative
to the G-L government) we need only show that there exists some § = (Q,E) with

5 > I8 and & > 1 such that if « 1is a quasi-equilibrium relative to the

8§ -government, then m < 5 for all i.
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Proposition 4.9: Under the assumptions of the existence theorem, there is

some § = (Q,E) with 35 > I and § > 1 such that if « 1is a quasi-

i = .
equilibrium relative to the $§-government, then m < & for all 1.

Proof: Recall that under the assumptions on production, the attainable set

of public goods bundles Y is bounded. Thus, there exists a vector

~ ~

y € DKi such that y <y for every y = Y. Let

- - - _ K
o1 -Mix {ypr-ooved and 5 =(p,....5) ¢ R .
Let ék be any number greater than 1 and § = (gk,...,gk) € IRK.

Also, let & > Max {§,p} + (I-1)§. Clearly & > 1§.
Let a be a quasi-equilibrium for M@‘ Such an 2« exists by Theorem 4.1.
i h

Since y(m) 1is attainable and y(m) = Max {?h#imh+ ml,O}, m < p - Th#im for

h )
every 1. Also, since m > 5 for every h, m" < o + (I-1)% for every i.
Thus, m < Max {5,0} + (I-1)6 < 35 for all i.

Thus, we have established the existence theorem.

Theorem 4.2: If consumer characteristics satisfy assumptions (a) - (c¢) and
producers' characteristics satisfy (d.1) - (d.4), then there exists a quasi-

equilibrium relative to the G-L government defined by (4.1),(4.2),(4.3a-£),

K
and (4.11) where M= R .



-84 -
IV.3 Pareto Optimality of a Competitive Equilibrium Relative to the G-L

Government

In this section we prove the First Fundamental Welfare Theorem for the
competitive economy with public goods under the Groves-Ledyard Government.

i i R x*
Theorem 4.3: Let {{xl ,m >i,<zJ >j,s } be a competitve equilibrium relative
to the G-L government. If assumptions (b.l) (non-satiation), (b.2) (continuity

of preferences), (b.3) (convexity of preferences) are satisfied, and if, in

addition.

(4.13) (b.4') for every y' >y, y' #y, (xl,y') 73 (xl,y) for all x

for all i (strict monotone preferences in public goods)

(4.14) yx = y(mﬁ) > 0; i.e. all public goods are provided in equilibirum at
positive levels; and

(4.15) Min p“X1 + Cl(m"/M,s“) < wi(mw,s"), i.e. no consumer is in his m.w.c.

o
w

at (m PR );

then {(xlx,y(m“)>i,<zj&>j} is a Pareto Optimal allocation.

Remark 4.3: It is interesting to note that slightly stronger assumtpions on
preferences are needed for our theorem than are required to show the analogous
theorem for competitive economies with only private goods. Although Debreu

also assumes convexity of preferences [ 5 ,p. 94], all that is required is local
non-satiation at an equilibrium. OQur proof requires convexity of preferences

to ensure the existence of a hyperplane separating a consumer's budget set

from his upper contour set. In the Arrow-Debreu model, the upper boundary of the
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set is itself the needed separating hyperplane. In our model, since
Dl(m)l(,y,s) is not linear in 1y, the boundary of the budget set is

8
not a hyperplane. —

Remark &4.4: Assumption (4.14) that positive quantities of every public

good are teing provided is a crucial one and not merely a technical assumption
to avoid consideration of boundary points. Heuristically the reason why it is
reeded is the following: Suppose for every possible Pareto Optimal allocation
for a given economy that positive quantities of all public goods are required.
Su.pose further that whenever all consumers truthfully reveal their preferences,
the government mechanism will select an optimal quantity of public goods (as is
the case for our mechanism and many others). Finally, suppose (as is the

case for our mechanism, but not for any others of which we are aware) that a
consumer never has an incentive to understate his preference for public goods.
For our mechanism, however, since the cost to a consumer of the public goods
derends on his message only through the quantity being provided and since

the quantity provided is bounded below at zero, if some other consumers are
sufficiently understating their preferences for public goods, even if consumer i
truthfully reveals his preferences, zero quantitcites may be provided. Thus,

if consumer i likewise understates his preferences he will be as well off

as if he correctly reveals his preferences. Hence, the situation in which all
consumers simultaneously understate the preferences can be an equilibirur but
not Pareto Optimal. However, if positive quantities of every public good would
be provided when consumer i truthfully reveals his preferences, understating

his preferences will (strictly) reduce the quantity provided and lead to a less
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desireable outcome for consumer 1 wunder our mechanism. Thus, if all
public goods would be provided at positive levels if consumer 1 revealed
his preferences truthfully. then henot only has no incentive to understate
his preferences but he has a strictly positive incentive to truthfully
report his preferences.

An obvious corollary to Theorem 4.3 1is that if it is not Pareto Optimal
to provide any public goods at all, then in equilibrium none will be provided.
Furthermore, it can be shown that in this case an equilibrium will yield a
Pareto Optimal distribution of private goods. However, this equilibrium may
not be the same equilibrium that would result if the possibility of producing
public goods were not present - i,e. the Arrow-Debreu equilibirum for the
private goods only subset of one economy. This is because some redistribution
of initial endowment may take place. But if no public goods would be provided
for any (I-1) - subgroup of consumers, then the resulting equilibrium alloca-
tion of private goods will coincide with the Arrow-Debreu competititve equilibrium.

These considerations suggest that for a dynamic formulation of our governmental
communication and allocation rules, if at the initial point strictly positive
quantities of all public goods are proposed and if the dynamic process converges
to an equilibrium, then every equilibrium allocation of the process will be
Pareto (Qptimal since it will converge to zero quantities of public goods only
if it is optimal. This remark, however. is still a conjecture since we have
not yet formulated a dynamic representation of our governmental communication

and allocation rules.
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Remark 4.5: Assumption (4.15) that no consume€r is in his minimum worth
condition is required for a reason fundamentally similar to the reason why
this condition must be ruled out in proving the existence of a competitive
equilibrium in the private goods only economy. In an Arrow-Debreu economy,
suppose the only possible relative price for commodity =x that will not lead
to excess demand for some other commodity is zero. Suppose additionally
that consumer i holds as initial endowment only commodity x and that his
preferences are strictly monotonic increasing in =x. Then at the relative
price for x of zero, consumer i will be in his minimum worth condition and
furthermore will demand unlimited quantities of x. Hence no equilibrium will
exist. 8/ A quasi-equilibrium does exist, however, since at the zero relative
price for =x consumer i's demand set is taken to be his entire budget set
which is this case includes his initial endowment point.

In proving the First Fundamental Theorem for the Arrow-Debreu economy,
since a true equilibrium is postulated, this circumstance is ruled out. The
budget hyperplane separates the budget set from all strictly preferred points
so that any preferred point lies strictly above the budget hyperplane.

In our public goods economy, an equilibrium can exist in which the only
hyperplane separating the budget set from the preferred points contains strictly
preferred points. Thus, although in equilibrium any strictly preferred point
must be outside the budget set, since the budget set is strictly convex along
the boundary the separating hyperplane may contain strictly preferred points.
This, however, will be ruled out when the consumer is not in his minimum worth

condition (see lemma 4.5 below).

Proof of Theorem 4.3: In»proving this theorem, we proceed by proving several

lemmata.
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To begin, suppose the equilibrium allocation is not Pareto Optimal.

. . i ~ s .
Then, there exists another feasible allocation {(x ,y>(zJ>} that is at
least as desireable for every consumer as the equilibrium allocation and is

strictly preferred by at least one consumer:

(4.16) (Ei(xl- ml),y) = Isz € Z, and

L L

(4.17) (xl,y) Zi (xl",yﬂ) for every i with strict preference for at least

.0
one 1 .

By Corollary A.4.3, since preferences are strictly monotonic in vy (4.13),

)

y(mw) > 0 (4.14), and no consumer is in the m.w.c. at (m*,sx) (4.15),

yl(mw,sk) = y(mx) for all i. Thus

OB N
v

¢ty s™ = bt @y, s - Max (al@ TSy i) TS

P

Lemma &.1: pnxlh + Cl(m

J, Ja

x % i kS * 3
8 ) =w (m ,s ) for every 1i.

Proof: Suppose not; i.e. for some i, pwxlw + Cl(mw,sx) < wl(m*,sx). By

+ ! ! L) )
. . 1 >. 1+ % .
non-satiation (b.l) there exists some (x .,y ) 1 (x v ) and by convexity

of preferences (b.3),(xl(K),y(K))>i (xl&,yk) for all

1

s o(1-nxt

i . . . * *
N> 0,x (M) = Ax and y(») =>y' + (1-\)y . Since y > 0 and

<

%1 . . — i(* % v it i %
v(m /m”) is linear on Ml(m)l( ;8 ),y(N) = y(m /Xml + (1-‘A.)rnl ) where

LI LN i L . .
y(m /m" ) =y' and m v hti™h Thus, for * sufficiently close to

i

zero (x (DLy(m /mt(0) Ti Py, and pxIey + clam by, s) < v, s

i, 3 i .
since C is convex in m", thus contradicting the fact that

i% i* . i Je . . . . S e
(x  ,m ) e Z (m,s ) since i 1is not in the m.w.c. at (m ,s ).

* 7 Yo%
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—_ K —1q
Lemma 4.2: (a) For every vy ¢ Ig_ there exists some m- ¢ M such that

y.

y(m*/ai)

3 e la Ja : : . : oL s e ale
~

—_1 - > 7 Hmm - & % %
(b)Y If (x ,y) ~i (x1 .y ), then »p X'+ Cl(m /ml,s ) > wl(m 8 ),

—1 - >, i%x & F_i i * i * i I
(¢) 1f (x,¥) i (x,y), then px +C'(m/m,s)>w (m,s)

—i % i
for every m~ such that y(m /m")

K

—1 _ - * —1i
Proof: (a) Let m =y ThiiMy - Clearly m™ ¢ M R

(b) If not, then p“ﬁl + Cl(mﬂ/ﬁl,s&) < wl(mx,sw) and by the same

argument as in the proof of lemma 4.1 there is a preferred point (xl(\),ml(X))

1 1 ~ . 1 " o~
in the budget set contradicting the fact that (x° ,m ) ¢ & (m ,s ).

i% * i, * % 3 3 R A
(¢) If not, then (x ¥ ) é £€°(m ,s ) since i 1is not in the m.w.c.

Lemma &.3: Dl( S Y (y m>1<",sd);sw) is differentiable in y at every
)i(‘k *

y > 0 where yl(y,m ,8 ) = Max {y,y(mw/gl)}.

Proof: Since D' is additively separable in Yy for all k, it suffices to

prove the lemma for K = l.
@ Py I
cy

S %S )

If y < y(mﬂ/ml))

clearly exists and equals zero.

If y> vy /m), vy (v,m )1 sS ) =y and since D (m> e Y58 ) is
differentiable for every vy, Ay (m L 5y (y;m) ¢ ,s ) s ) also exists.
i, )i ~o% - . .
Thus, we only have to show D (mﬂy :¥:8 ) exists at y = y(m /gl) if
y > 0.
ADi i ~
Since iy =0 for all y < y(m /m ) =y, the derivative from the left,

%%_ =0 aty =y /o) =y.



Thus,

~ * i ~ h+* i h;’: 1
. - = = + = - -
Since vy y(m /m™) > 0,y “h#i® m 1- 1[1 h#L™ Eq]-
S I |~ 1 .
oD 1i =D 1 %
the derivative from the right —ng- y = y+l$ > = yi§+ - (I?h#imh
b DECE T Yi(E ko
Thus, D (m zygg.m 25 );s ) exists for all y > 0. /!

D,y (¥, ), e )

1 .
- -I-Q)+(I-l)y =0.

Remark 4.6: In general Sy does not exist at y =
A5 TN i* *
Lemma 4.4: If (x7,y) ~i (x ,y ) then
LA i Yi(%F x ok ~ ¥oi% i i(% % %
p » +Dy(m (;y ;S )y 2P X +Dy(m)(;y,8)-y
where D; is the gradient vector of Dl(m)l(ﬁ,y,sK) with respect to
evaluated at yn.
Proof: By convexity of preferences,
i L K i >, ix = .
f(x7,y) ¢ R x R, ] (x,y) ~i (x* ,y )} is a
convex set and (X &,yw) is on the boundary of this set by non-satiation (b.1l).
i )i(:‘r E3 _ h 1 * l .
Now D (m 258 ) (I“h#l 79 )y + 5 (I-1)y-y 1is a convex

function of y and monotonic increasing on

h*x 1 =%
= Iq ))-

v =y e K] y >y} where y minimizes Di(m)i(*,y,gx,(y I I(I‘h#l

Furthermore, vy (y, ) (¢ ~“) = Max {y,y(m*/mi)} is clearly convex in
y and ;i(y,m).(*,s*) >y for all y. Thus, by the lemma in the proof of
(g.2) in Propoéition 4.5,

Di( Vic* ;‘(y, )i(*,s*),s*) is a convex function of y. Thus,

5 (oly) s Box B | pled + 0t Sh,a HF 6% 5%

- Max {AT,B"} < Wi(m ,s)))

is a convex set.
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)i )i

~3 * B3 +* i i(* e
e Ty 8Ty = ph) L

Furthermore, since D (m ;Y 48 )

i* i ik %

since DS mﬁ/ml) as m >m'), by lemma 4.1, (x1 ,vy ) 1s on the
( y > y(m /m > m y
boundary of B.

By lemma 4.2, (relative interior A) N (relative interior B) = @. Thus,

e s

there exists a hyperplane through (xlh,y") bounding A from below and B

from above.

Yi(* 71

i i(x * * . . . *
I (YJm) (

Since Dl(m S ),s ) is differentiable at y > 0,

3 e ~la
W ~

by lemma 4.2, the unique hyperplane bounding B at (xl , vy ) 1s defined by

the gradient vector (px,D;(m) - y ,s )) since yx = yl(yw,m>i<w,sx) and
Byl/By =1 at y =y
Thus,
~qi >, i* * . . * % *
(x,y) =i (x7 ,y ) 1implies (p D (m)l( v oas e [ X
. y A
. - - i
l o~ Ay x
¢ oL@y ,s>>-<* Co
y
S5 SR i* %
Lemma &4.5: If (x",y) "i (x7 ,y ) then
g i E Yeoi% i i(x % % 3
p x + Dy(m) L0 Jy ;8 )y > P X + Dy(m) ( ;Y 58 )y
Remark 4.7: This lemma requires that consumer i not be in the m.w.c. at

(m“,s"). See Remark 4.5 above.

Proof of Lemma 4.5: Suppose the contrary, i.e.

LA ES kI

g i i(* ¥+ %7 e i i(*x % % %
prat 0oty T Ny = o 4 T sy

(Lemma 4.4 implies the equality).
)i(:‘: *

. . . i
Since i 1is not in the m.w.c. and m (m »S )

h+* 1 N h* L. i % i
Max {—— - 1 )‘h#l - fq)’ " Thay® 1 minimizes C (m /m ,s) (by lemma A.4.1),
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(Xl,El) = (O,gl) is such that l

Thus. (zl,y) = (§l,y(mw/ml)) ¢ interior B

ta

i i { (% * % K %
o+ Ty sy < o

.

oA
~ 1

P

Now define

~ s
1

Ax© o+ (l-&)gl %

1

xi(K) = and mi(k)

Claim: y(m /m"(A))

Proof: Straightforward

Thus,

p"Xl(\,\) + D;(m)l(a’yu/’sn).y(x) < PAX

GEOYy e # (yT) for any A

Hence

But since

C 0,y | 00,y ) ZE (Y

(), v Lot oy,ye) Sy

union is the line

P‘“‘z{- + Cl (m“‘

+ D;(m)l(:c)yn‘)s,c)'y

X + D (m) ( "

o+ (1-)m"

wy(m /al) + (1-W)y(m /mb) =

1+
+
y(

By

{(xi(N);y(K)) o< <1}

i % E i * % i *
/E;S)<PX +C ' (m,s )=W (m,

(see lemma 4.4) and hence

Al
w~

Y s8 )y,

. ”~
where m

y(N).

Yi(x * *

YJS)Y 1.

for all 1\ <

~ A

since  (x'(1),y (1)) = (xT.y).

N

are non-empty compact sets whose

their intersection is non-empty.

Let ; be such that (xi(;),y(;)) s in their intersection. Thus,
(xi(:);Y(z)) ~5 (xi*,y*) where 0 < ; < 1.

But p*§i(z> + Di(m)i(*,y*,s*)'y(1> < p x4 Dy(m>i(*,y+,s*)-y* Also, the

hyperplane defined by the vector (p+,D$) through (xi*,y*) bounds

{(xi;y) 1 (Xiyy) 7i (Xi*,y*)} from below. Thus,

S

Y1 *

oty + D @157 sy s p

which is a contradiction.

i ki
+D (-)-
y( D4

s)
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JA .

Hence, p <+ D;'Y > P“Xl +

Returning to the direct proof of Theorem 4.3,

i %
D~
y y

completing the proof of lemma 4.8.

to ((xl,y)>i of (4.17), we have
prixl + D (m) L ,y“,s') Yy > P E.xl‘ + ziD;(m)l('c,yK,sx>-yw
By the definition of D
i )l("‘ B3 - h+* 1 = * i
Dy( Y ,s ) (I;h#im 74 ) + (I-D)y for all .
Thus
- )l( . = i* % % k3
Dy/m .s ) - I(I-l):im +q + I(I-1)y = ¢
since yw > 0 implies yw = Timlw Thus
* T e % i+% %ok
P Zix +qy>0p Zix +qv and
* ~q i o * * * i* i EES bS Y
p2,(x -~w)t+tqy-Rm,s)>p T (x -w)+qgy -Rm.s) or, by
(p72a) (22 - R s > (p7.a) (527 - R(m L)
contradicting the fact that 23" maximizes (px,qw)zJ - R(mw,s“) over all

zJ € ZJ.

This completes the proof of Theorem 4.3.

applying lemmata 4.4 and 4.5

(4.16)
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IV.4: A Pareto Optimum is an Equilibrium Relative to the Groves-Ledyard
Government
In this section we prove the Second Fundamental Welfare Theorem for

the competitive economy under the Groves-Ledyard Government.

Theorem 4.4 Let {(xl"),yﬁ,(zjﬂ)} be a Pareto Optimal allocation for the

economy #£. If assumptions (t.1) - (b.4),(d.1),(d.2) and (d.3) are satisfied,
and if, in addition

(4.18) T >0, v > 0, and

7

e s Je

Yy

for ezch 1, (xi,y) > (xi*,y“) implies (xi,y) >i (xl ,y*), then there
exists an (I+l)-tuple of messages and prices (/mi*>i,s*) € MIX S such
that ((xi*,mi*>,(zj*),s*) is a competitive equilibrium relative to the
Groves-Ledyard government following, if necessary, a redistribution of initial

endowments and profit shares.

Proof: By a slight revision of Foley's Theorem [ 9 ,p. 68], it is easy to

~ . +
show that there exists an (I+1l)-tuple of "prices" (s,(tl>i) € S x (Ri K)I

LN

such that ((xl“>,/zjﬂ>,y",s,/tl>) is a Lindahl equilibrium following, if

necessary, a redistribution of initial endowments and profit shares. That is,

(4.19a) sz3” = max sz?  for all j

(4.19b) (x* ,y ) is ~i - maximal on
. + ~ . ~ ~ o~ ~ . g~ PN
{(Xl’y) . IRL K\ pxl + ¢i y < pf1)1+ ZJ,%IJSZJ 1
(4.19¢) q = ~.t"
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b.190) ¢7) =3 = tly/qy and w" = x -9z

. . . S i .
By strict monotonicity and non-satiation, s >> 0, t~ >> 0 and since

. ~ .

"4 0, 9% is well-defined.

vy

Let mlx = [yﬁ+ £ (q/I)]/1 and let s = s. We note first that
(4.20) y = Tm
since Eiml = yﬁ + (Eitl -qQ)/I =y

Secondly, it is obvious that for every 1}
(4.21) s z37 = max s 73 - R%(mx,sw).

Therefore, (b),(c), and (d) of Definition 2.5 are satisfied. It remains to

s ufe
<

i {3% L
show that there are endowments and shares 8§ J such that Definition

2.5(a) is satisfied.

Define the real-valued function 91: R;J‘4 R by

.

h

¢.22) ot (tw®) = ¢l s b /e s

s e
iy v

. >, . . - ¢
Since ~i are strictly monotonic, s = s >> 0. Therefore, p @ > 0 and

FUR A K

qy >0. Let ¢ =min {pw.qy}. By Lemma A.4.4, ihch<mfsﬁ;wh> > e

Therefore, 91(/ml>) is a continuous, well-defined function. (Continuity in

' follows from the obvious continuity of Ch in wh for all h).

W
) ' i% _ijw . .
Claim: There exist ¢ 9 for all i and j such that
R I R R (TR DO

Proof: Since 0 < Sl(h)l)) < 1 for all (') e JRL'I, it follows that
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i* * 1% i i W% i
x - \zli < %X -3 (Ul >)z1 < x o+ |z

i % *
AR
i

1! for all /(y'). Let k be the

radius of a cube centered at zero that contains in its interior the set

of attainable states. (Such a cube exists since the attainable states is a
i i i kS L
compact set.) Then - 2ku < x - 57y >)Z1 < 2ku (where u = (1,...,1) ¢ R™)
- . . i A
for all (y). Let W= {/p) ¢ R} - 2k < w, < 2k for all i,1, and
Ziwl =@w}. W 1is compact, convex, and non-empty. Let fl((wl>) = x - 61((wl>)21
1
for all i. £ = (£ ,.,.,fI) is a continuous function from W to W since
° fi&u) = rx - gle 9i(w) =z Xi* -2l = w. Hence, by Brower's Fixed Point
-1 i 17i i 1 : > oY
Theorem, there exists a /ml“> such that /mlx> = f((mlﬁ>) and the claim 1is
established.

We next show that, for each 1,

o

(4.23) pw

PP U
w

o 19%_1 * e 1% i % &
+ o @5, s =p x v ¢t s e ).

This follows since

s DU

» 3 M S st L PN N
LS 1 w % 1% W w

> 3 + Sjel‘]x’n‘](mx;sh) = p'x s 5 zl + 9 [p zl + q*,:zz _Rz\‘]
_ % i i Yoo % % * _ J % *
=p X +5° (@ y -~ R ) where R = E.Rz(m ;8 ).
J
But, by (4.11ii), RK < quw - Zicl(mx,sx). Therefore,
xo{% 139% 3 * * * {% 1% h * kS * R ] % * 1 %

po 4287 W mNs) mp ik 49T (g s wh D)) =p x4 C(m s el ).
But by Proposition 4.7 it follows that R + 7 Ch(mw,sx;whx) = quw. Therefore

h
(4.23) holds for all i,

It remains to establish that (xlx,y(mx)) 7i (Xl,y(mx/ml)) for all

i i _ i i L * 3 1 Y 5 E3 i % Yoo 1%k i b kS %
(x ,m) e B= {(x,m) e R"x M ‘ P xt + ¢t (m /ml,s ;ml ) < p x5+ Cl(m s gt )} .

i . i . i%* i
By the convexity of C in m", B 1is a convex set and (x~ ,m" ) ¢ Boundary B.
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i L+K
Let B = {(x',y) ¢ R \

(xi,y) = (xi,y(m*/mi)) for some (xi,mi) ¢ B}.

" tly“} which will

% L i * i i * g
We will show that B < B~ = {(x,y) | p x +t>'£pxl

2 e KN P

imply by (4.19b), that (xl";ml“) g 51(m“,sﬂ) given the endowments ot

and profit shares elJN and thus complete the proof of Theorem &4.4.

To establish that B - BL, it suffices to show that if (xl,y) s B,

a.

~ ~ e

7’:]'_ i v o1 i *
then px +ty<px + ¢ty
)i(*

Now (xl,y) € Bh if and only 1if

Yi(* i

* i i x % *
,y (m ,s ),s ). But, as

* i kS i * ¥ S
Y (m /m »S ),s <p X

o x5 + D (m "+t (m
{ s % E * i % % 1 i
defined in (4.3¢) yl(m »$ ) = Max {Y(m ),y (m /El) = Max {y »max {Y = —ITl- tlJO}]’ .

But, since t*' > 0 and y“ > 0, it follows that yl(m“,sw) = yﬁ > y(mx/ml).

+ 1 i (% T4 1 (* * kS
Now, consider O Dl(m)l( ,yl(y,m)l( ,S J,s )/dy as defined in Lemma 4.3
* 1/ . ~ h* * i*
evaluated at y =y . —  Since hE™ T Y -mo, it is easy to see that
+ i h* 1 b % ~i
x* = - 5 . - = + - =
3D /By‘ =y (IZ44m 40+ (I-Dy t

- . i, .
But B is a convex set since D is convex in y (see proof of Lemma 4.4) and

-+

therefore, (p“,a Dl/By y*) is the.ncrmal to a supporting hyperplane to

v S s 7 b3 Y1 -+ i~
B through (xl ,v ). Therefore, if (xl,y) ¢ B, then »p <t + (c Dl/oy).y =

T ~i %% ~iok %o i% + g
p X +ty<px +ty =px + (3D/3

oy)-yw. This establishes the theorem,

Remark 4,8 A corollary to Theorem 4.4 1is that any Pareto Optimal allocation

that can be supported by positive Lindahl prices such that ziwi and y* are
non-negative and positive, is a competitive equilibrium relative to the
Groves-Ledyard government following, if necessary, a redistribution of initial
endowments and profit shares. Theorems 4.3 and 4.4 together imply that any Lindahl
equilibrium (with y # 0) can be a competitive equilibrium relative to the
Groves-Ledyard government and conversely - however, in general, a redistribution

of resources must occur. That is, given the same initial endowments, the Lindahl

allocation will be different than the Groves-Ledyard equilibrium allocation.
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IV.5 A Simple Illustrative Example

In this section a particularly elementary example of the general
equilibrium model with public goods and the Groves-Ledyard government is
examined. In this specific example, many of the complicating features of the
general model are avoided, thereby allowing attention to be directed to the

central issue of the incentive properties of the G-L government or why the

.

G-L rules solve the Free Rider prcblem.

We consider an environment with one private and one public commodity.
Production is characterized by constant returns to scale with the (aggregate)

production set Z given by:

7 = {(21,22) € R?\ zl+ z, <0, z, <0, z, > 0}.

2 1 2

(Thus, one unit of private good is required to produce each unit of the public

good.) There is assumed to be a single firm.
The I consumers are each characterized by an initial endowment

i 2 , i 2
(w”,0) ¢ R , the consumption set %~ = R, > and the specific utility function
i
u

ul(xl,y) = x" +at Iny.

We assume throughout that

i i
Z,m > 2,4
i i

so that (as is easily verified) there is a unique interior Pareto-optimal level

e
w

of public good consumption y  where
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In order to emphasize those aspects of the G-L government rules
that lead to the selection in equilibrium of optimal allocations, we ignore
those features introduced to avoid boundary problems (e.g. consumer/producer
bankruptcy and zero levels of public goods). Also, with the given pro-

duction technology specified, equilibrium prices must be such that p = q.

12
Thus, we will assume throughout that p = q = l——/ We may thus restate the
G-L rules defined by (4.1) - (4.3a-f) as:
(4.24a) M=T1R
(4.24%) y(m) = T.iml
i - (T h 1. h  I-1 _ h?2 i, )i(
(4.24¢) C~ (m) (I“h#im I),Jhm + T (uhm Yo+ T (m )

i i . .
where T (m)l() is a number depending only on the messages of consumers
h # 1.

‘o . . i .
Under these rules a competitive consumer i will choose m to maximize

ul = wl - Cl(m/ml) +at in y(m)
i - h .. h I-1 ,_ h.2 i i i . _h
=4 *+ (Izh#im - Y)Lhm -5 (Gym Yo - T (m) ()+ a ln(Lhm ).
Given m)l(, m" will thus be chosen to satisfy the first order condition
a
h 1 h i
. - =) - - + = 0.
(4.25) (IZh%im I) (1 l)(th ) E;;H 0
At a competitive equilibrium, (m,...,m" ) = m, equation (4.25) holds for all
Thus, summing over all 1 implies that
IR A |
(4.26) ;im = /_i(l .
Therefore, since y(m) = .ot o= T.ab = ya, the competitive equilibrium is

i.
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Pareto-optimal as was proved in Theorem 4.3.
Since each utility function is described by one parameter ai, a
natural question is whether or not the message mi might be interpreted as.

communicating the value of ml. For the rules given by (4.24 a-c¢), the

i i L
answer is no, since in equilibrium m does not equal < although the optimal

quantity of public good yk is chosen and Ziml = iul = yx. Further-

~ 2

more, since (from equation (4.23)) ml depends not only on o’ but also on

m)l( there is no obvious way to traansform m independently of m)l( so
i .
that its transformed value equals « . However, by altering the consumers'

taxing rules, it is possible,for the environments of our special example, to

preserve the Pareto-optimality of an equilibrium while simultaneously adding

)i( i

. . i
the property that, for any m , the best message 1 can send is m = a.

Suppose, specifically, that

(4.27a) M= R
(4.27b) y(m) = gimi
(4.27¢) Ei(m) = (thh) (Zh¢imh)ln(ihmh) + Ti(m)i(),

Under these rules, the first order condition for the optimal message m' is:

2y 4. .
1 h#i i

. . .t i . . . .
which easily reduces to m a”! Thus, in these quite special environments

i .
and under the rules (4.27), the messages m may be interpreted as the
A i, .
reported utility parameter and the true parameter a is always the optimal

response, independent of the messages of the other consumers.
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It is interesting to examine why under one set of taxing rules (4.24), the
optimal messages (best replay responses) are not independent of other
consumers' messages while under another set of rules (4.27) the optimal

messages are independent.

To explain this result we note that both (4.24) and (4.27) are
members of a very general class of government rules (allocation and consumer
tax rules) that yield Pareto-optimal competitive allocations. Consider the

following rules:

(4.28a) M ='m? where T 1is some integer > 1;
(4.28b) y(m,s) 1is the solution to the problem:

.. S R | i

Maximize w.r.t. v, ;if (m~,y,s) - q-y where £~ is some
+
given function from M x H{K X B; K to R
: _ h . .

(4.28¢c) ct(m,s) = q-y(m,s) - Lh#ifh(m y(m,s),s) + T @m0

i, )i(

i . . i
where T (m ,8) 1s a number independent of m™.

If the functions fi are chosen with sufficient continuity and convexity
and preferences are representable by sufficiently smooth and convex utility
functions it is easy to show that a competitive consumer i will choose his
message ;i, given the messages m)i( of other consumers, so that his
true marginal rate of substitution of y for xi equals afi/éy at the
point (;i,y(m/;i,s),s) and that, therefore, an equilibrium will be Pareto-
optimal. Thus, there is a broad class of government rules that yield Pareto-
optimal competitive equilibria.

However, in order to prove the existence of a competititve equilibrium
relative to such government rules for the general model of Section II, we

i, i i 1 1 .
were aided considerably by letting £ (ml;Y;S) = (Iml + Eq)-y -5 yy. Itis

i
straightforward to verify that this choice of £ ( -) yields the rules of
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of equation (4.24) from the rules of equations (4.28) when M =iRK.

The rules of equations (4.27) result from (4.28) if fl(ml,y,s) = n'ln y
where M = R. The reason why ml, in this case, may be identified with
al is that fl(a},y,s) is the integral of the true marginal rate of
substitution of y independently of xl, and, therefore, of m)l(. This

leads us to conjecture that if the class of consumers' utility functions is

parametrizable by a finite dimensional vector and if each utility function of

., A ) 25 91
the class is additively separable (i.e. ul(xl,y) = ull(xl,911)+ u l(y,@ l)
. 21 .
then the rules of (4.28) when fl(- ) =u l(y,ml) will lead to competitive
i - i 21 . . i .21
equilibrium messages m such that m =3 for all i. Additionally, m'= 8
' )i(

will be consumer 1i's ©best replay message to any m
Contrarywise, if the utility functions of consumers are not additively

separable in public goods consumtpion, then consumer 1i's best replay message

will, in general, depend on the messages of the other consumers, m)i( with
the '"true' parameter ei even though, in equilibrium, a Pareto-optimal
allocation of resources will occur.

An explanation of the importance of additive separability is that, under
the rules of the form (4.28), the message mi simultaneously conveys informa-
tion about both the consumer's -‘esired level of public goods output and his
marginal rate of substitution at that output level. For example, consider

. i i i
figure 4.2 based on the environments with u” = x~ + o ln y and the rules

(4.27).



h#i

Figure 4.2
If consumer 1 sends the message m~  then
h e =1 . .
rule y(m,s) = th . Also, if m is 1i's
. —i
he is acting as if his MRS curve is /y =

his MRS at vy, which is 2

~

is a

the value of

his "true"” MRS at y

and recognizing from

vy 1s selected by the allocation

reported utility parameter, then

i

MRS That is, he is conveying

in this example. Noting that

(4.27¢) that his marginal

. . . . i i= - .
(tax) cost of an increase in y by an increase in m is (m"/y) = a which

~

is less than his marginal benefit, a,

message.

o=, MRS

it follows that m-

is not his best

Figure 4.3 illustrates the configuration appropriate to an optimal message.
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~ ~ .

~i i i~ i” , i, . .
At m =a, m/y=a /)y, and by sending m~ i is reporting, in effect,
~ /N
his desired vy, vy, and his "true'" marginal rate of substitution, MRS, with

~ .

the single number m .
If we consider, instead of the rules (4.27), the G-L rules (4.24), we

have Figure 4.4:

ml,MfRSl .
‘ \\\\§El+ % -y
\E \\ / h
' Sy = Im
\\ / h
\\ v."/
‘\ /
—i N S /
m L e — — S e — — e o 7/
i
/ |
— NN
~ /\ 2

a ; —_— — —_— 1\2.; .
e e
/ -y
- h =
“h#i" 7

Given a message 51, the level of public goods will be y. The "reported"
—1 1 - —_—
marginal rate of substitution is (Iml+ f) - y = MRS which may be located

by intersecting the line with slope -1 and interecept (Iﬁl+ %) and the

~

vertical line at y. As in figure 4.1, here MRS < a - the "true" MRS at v.

Also, as in figure 4.1, the marginal cost to i of increasing y at y by

h 1. i
- I) = (Im

~

increasing ml is (I-1)y - (IZh%im + %) -y = MRS which

again is less than the marginal gain a. Therefore, m is not 1i's best

response in this situation.
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' )i(

In Figure 4.5, the configuration for 1i's best response to m is depicted.

i i
m ,MRS™ | . i1
] ) + L.
\ . (Im I) y o
\\ y = Lhm
~ ™ \
ot — — —_ e ~—:\ —
b \ /
AN /
/o
S
[X 0
~ FAEN !
M2S = a ————~——-————,—§—\>~§.\\\\ P
!/ . T “MRS = /y
/ i
[ ; .
h ~
5
Phg ™ 4
Figure 4.5
" )i (

In general, there will be a unique m for each m since the vertical

A .

" 1
coordinates m  and (Im" + f) cannot be chosen independently. At the

~ . - /\ : A
i ' i
best replay message, m , the true MRS, MRS = a'/y. However, one cannot

i

~

i A
infer i's MRS at any other level of y from the message m", unless it is
.. i i i i )
known a_priori that u = x" + a In y for some a . Also, as noted earlier,
~ .
i i
m#CS.
In Figure 4.6, the general situation is depicted for a best replay message

for the G-L rules (4.24) when the utility function is not additively separable.
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ml)MRS?
% . MRS I=(mnls - /
| T y /
' h
AN //y = Im
‘\\\ .
\ \
~ i ‘\'
m|— - — = — — — T — 7
A ~ - A \\\ I
\ . / l
™~ /.
N / A . {

Zh#im

Figure 4.6

In this case, since the utility function is not additively separable. the
f i i( 12 mh) will generally depend on = mh since it will
unction MRS y’bh#i g y p “h#i

depend on x- and therefore on o' - Cl(m). It is also not generally hyperbolic.

) i ) . . )i(
However, in this case as for Figure 4.5, m conveys information given m 5

~ o~
about the desired y, 1y, and the '"true' MRS, MRSl, and also the "reported"

~

i,
marginal rate of substitution, MRS , is equal to the 'true" MRS at y

~i. . . i
when m is the optimal response given m) (.

~ ~ I\I

1
Thus, if m = (m™,...,m")
is an equilibrium (i.e. each is a best response given the others), the sum
of the true marginal rates of substitutions equals the sum of the reported
/\h A ~

MRS's, IZym + 1 - Iy = 1 (=q,here), which equals the true marginal rate of
transformation. Hence, an equilibrium is Pareto-optimal.

Finally, as promised in Section II, Examrle 2.3, we show that for the
class of environments described in this section the Lindahl governmment produces

equilibria at which each consumer is understating his true preferences and less

than optimal quantities of the public good is provided.
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To simplify the example, let M be the space of all functions from
R, to R, of the form ml(y) = al/y. The true message (described on p. 22)

is ml(y) = al/y, and, therefore, belongs to this set. The allocation rule,

i
Example 2.3, a, reduces to y = z;a and the consumer tax rule becomes

cl = al/y(m)- y(m) = a’. Thus, each consumer chooses Z°  to maximize
wl— at + qllnzhah. Thus, he selects a = a' - Zh#iah and sends El(y) = El/y.

—i i —i . .y
Note that a <« and therefore m~ represents an underreporting of 1i's true
MRS.
—1i - i —h
ilibri z = 7 - Z.% 4. =z - -z a . b
In equilibrium “ia Re? Zs h#la ia (I-1) h Thus,
; = z;a" = %(Zial) which is less than the optimal level yﬁ = jial, when

I > 2. Hence, a competitive equilibrium relative to the Lindahl government is

not Pareto-optimal..
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APPENDIX IV
A. Proof of Proposition 4.1.

We prove this proposition through a series of lemmata:

MI—I 1

m)i(,s) € x S and (mi \m;) e ]RK_ 5

=

Lemma A4.1: Given (

i, 0)i( . _ 1 1 . h
o, (m ’s)'_'MaX{I-l(Zh#imk 90 7 Thoag™ )

Di(m)i<

=

2) minimizes ,yl(m/{ml/mi),s),s) over all mi

o
=

b) minimizes Di(m)i(,y(m/(mi/m;),s),s) over all

¢) minimizes Cl(m/(ml/mi),s) over all mi ¢ R

Proof: Since ct depends on m; only through Dl(m)l<,yl(m,s),s), a) implies «c¢).
To show a) and b), fix Vit for all k' # k and consider Dl(m)l<,y/yk,s)

as a function of y,. Since s ¢ 5, s} = 1 and thus:

i, )i L
D = - z -7 5
(m )Y 58) (I~h¢im 1 Dy * 2 y-.y, which is a strictly

convex (quadratic) function of Yy with a (global) unique minimum at

Tk T 11 Yrtrei™ T T %

~]

Thus, to show a) it suffices to show that

(8 yims) = yi(n/(/nl),6)> F, for all

(b") yk(m/(mi/gi)) = Max {yk,01.

Now

yi(m,s) = Max {yk(m),yk(m/gi)} = Max {yk(m),yk(m/(mi/gi))} since y, depends

on m only through mi. Thus,
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. . . h . H .
ylt(m’s) > yk(m/ (ml/Ell()) = Max {:h#imk + E;;O 1 o= zh#imk + Elt;

i 1 s h and
since m > “h#imk’ n

i, 1 AT RS SRR R =L (1= h 1 -3
@ /M) 2 Sy F T Cupg™ T T W T T ™ T T W T Ve

Thus, (a') 1is shown.

To show (b'),

ioi. . oh, i . h, 1, a1
Y/ @7 /m)) = Max {7 pym + m, 08 = Max {7 g+ 50 m - T 9,),0

= Max {?k,o}, thus verifying (b'). ]

)i I-1 i i, - _K-1

Corollary A.4.1: Given (m ,8) ¢ M xS and (m \mk) e R s

Ci(m/(mi/mi),s) = Min Ci(m/(mi/mi'),s)
it
e

if and only if m; < Q;-

Proof: If m, < m, then y (m;s) = Max {y, (), (m/(m /m))]

i, yk(m/(mi/gi)) - yi(m/gi,s) and Cl(m,s) = Min Ci(m/(mi/mi'),s).
i !

P01 1 4y .- ob . h 1
Suppose m > m . (@ - " mo2 7™ T T Yo

then yk(m) = Shmi > yk(m/(mi/gi)) > ;k, and, since Thmz > 0,
yi(m,s) = yk(m) > yk(m/(mi/gi)) = yk(m/mi) = yi(m/gi,s) > §k' Hence

ctm,s) > cH/ (' /m),s).
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1 .. h 1 . h
£ B 770 4™ - T %) > 7 Tppixe theR

Yy (m) = Max ffh¢imi +m,0) = jh#imi oy > Eh#imz +m =y > 0.

Thus, y;(m,s) = yk(m) > y;(m/(m/g;),s) = §£ > 0 and hence

ctm,s) > i et/ (m'/ml )0y
K

Corollary A.4.2: Bl(m)l<;s) = Dl(m>l(,yl(m/gl,s);s) - pwl

Di(m>i(,y(m/mi),s) - pu_)i .

Proof: Immediate from the definition of Bl and Lemma A.4.1. !

Lemma A.4.2: Suppose preferences of consumer 1 are strictly monotonic increasing

‘ I Sy e ¥
in every public good Vi Given (m,s) ¢ M~ x S, let (xl ,ml ) e gl(m,s) and

. 1
suppose that yk(m/ml ) > 0. Then, if i 1is not in the minimum wealth

i t

condition at (m,s), m, = mﬁ(m,s).

r e .
Proof: Suppose the contrary; i.e. let (xl ,ml ) € §l(m,s) but suppose
<mb. Since v (m/ml ) > 0, v (m/m’ ) <y (m/(m} /ml)). But by Coroll
my o Y Y Y lm/(m/my )) . u y Corollary
. 1 . 3 P
AL, 1, cl(m/(ml /9;),5) = C*(m/ml ,8). Since preferences are strictly
. it il >, it ,
monotonic in yk,(x ,yk(m/(m /mk))) i (x7 ,y(m/m~ )). But then, since the con-
, . . L i i i', i
sumer is not in the minimum wealth condition and px + C (m/(m /gk),s) =
. . . .
pxl + Cl(m/ml ,8) < wl(m,s), we have contradicted the fact that
1] O |

i i i
(x .m ) € g (m}5>- I
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. . .
Corollary A.4.3: Under the assumptions of Lemma A.4.2, yllc(m/m1 ,8) = yk(m/m1 ).

Proof: y;(m/ml ,8) = Max {yk(m/ml ),yk(m/gl)}. By the lemma mi > gi ;

Since yk(m) is non-decreasing in m; and does not depend on m;, for
1

all k' # k, yk(m/mi‘) > yk(m/gi). Thus yi(m/mi',s) = yk(m/mi y 8

Lemma A.4.3: Given (m)i(,s) € MI"l x S, let ﬁi(m)i(,s) minimize
. . . . ’i . . . s
[Dl(m>l<,yl(m/ml,s)s) - Py q- yl(m/ml,s)]. If q- yl(m/ml,s) < pw, then
o
Ai(m)i(,s) > Bi(m)i(,s) and
i BYs i i i( i ot i 1, )i
ct(m,s) = P———pw q-y (m,s) + (D @ Y,y (m,s),s) - ﬁT—q-y (m,s)]- AT(m’* Y, s).
ioi( _\ _ i, )i( i, i pw’ i, i
Proof: By definition A (m" " ‘,s) = D' (m ,y (m/m”,s),s) - o q-y (m/m,s).
Thus
Al(m)i(}s) _ Bi(m)l(,s) - Di(m)i(,yi(m/ai,s),S) - Min Di(m)i(,yi(m,s),s)
i

m

. i . .
+ puw’ - gﬁ% q -y (m/m,s).

X . ) . i . 3
gence At sy - Bt sy > 2 (pw - qyi@/@ls)] 20§

Proposition 4.1 follows from Corollary A.4.3 and Lemma A.4.3. QED

B. Proof of Proposition 4.2

zl(y) satisfies ul(xl(z),y) = ul(xlﬁ,y(m/mln)) for all y. Thus

i % i

1
sul e —2dzt + Zub -dy = 0.
2 X, gpt k Yy k
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. ~ i . . i k3 . I3 3
Since x (z) maximizes u (xl,y) subject to px < w - z7,

u; (xl(zl),y) \(zl)pz for all feasible z' and all £ and - o) dxl(zl) =

A Lo g £°4 L

. di A d%‘ T uﬁfx(z)”) .
Thus fzul . —2 dz' = K(ZI)IEPE——T dzt=- n(zh)dzt = = dz

) dz dz?t )

i
= - T u . dy .
k Yy k
Setting dy = 0 for all k' # k, we have
k

. u; (" (21 (¥)) )
cz_(y) _ P 'k — for all ¢ and vy.
cy 2 .1 i, i
K ut o xt et o), y)
*

s e 3wl

1
~

ix i -1 i* i . i, i i .
,m ) e & (m,s8),(x  ,m ) maximizes u (x ,y(m/m” )) subject to

Since (x

, ) .y .
pxl + Cl(m/m1 ,8) < wl(m,s). Thus

. ol

ui (X17: y(m/mi“))
2 - . . - ‘7’:
P Y - 3¢t (m/m* . s) _ ADl(m)l(.v(m/ml ),s)
L 1, iw i i 3
3 oy
uxz(x ,y(m/m™ ) Smy k

But, by the definition of D' and fl(y;ml“,q)

i L% ] %% s e
g% = (FDy @) - (T gml- e = Cm g -y @/m)
k i ¥
y(m/m" )
Oty @i o)
Vi
Finally, since x (zl(y(m/mi™)) = =%,

Szl (y(m/m’ ) _ 3 (y(m/m ) imq)
N .
oyk uyk

QED
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C. Two Lemmata for Proposition 4.7,
In this appendix two lemmas used to verify assumption (i) (Proposition 4.7)

are proved.

. i .
Lemma A.4.4: For every (m,s), ¢ (m,s) > Min {J;;—f’) q-y(m),pw" }

, i . . ) ] i .
Proof: C (m,s) = Min {;L“Uj ¢yt )+ @yt m, ), 8)- ‘;g q-y (m,s)]
P yi( i .
- Min [DT (@ ",y (m,s),8) - 22 quyT(m,s)];
mE Pw
i i, Hyi( i . i, Hyi( i
pw +D (m ",y (m,s),s) - Min D" (m’ "',y (m,s),s)}
ml

i . . i .
> Min {%— qy (mys),pw ) > Min {;% g y(m),pw}

since yl(m,s) > y(m). ]

Lemma A.4.5: Given (m,s), if q-y(m) > pw , then Cl(m,s) > pwl unless

m < gl(m)l(,s) in which case Cl(m,s) = pwl .

Proof: If p(Dl = 0, then Cl(m,s) = Dl(m>l(,yl(m,s),s) - Min Dl(m)l(,yl(m,s),O)
i

>0 = pwl and by Corollary 4.1, Cl(m,s) =0 = pcul only if
i

m S_El(m>l()s)'

If pwl > 0, then q-yl(m,s) > qey(m) > puw > pwl > 0. Let

. i .
* (g_}'_g_,_)-pwms - 1) pw’ > 0. Then

Q]

. . i . i . . i .
Cl(m,s) = Min f_pu)l + et + [Dl - R2 q-yl(m,s)] - Min [Dl - R q-yl(m,s)];
pw i P

pw" + D' - Min D}.
ml
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t by Corollary 4.1. Hence

If m" <4 Max { - .mh,mll, then D # Min D
- h#i - - ol

7’>pu)l.

)

c'(m,s) > Min {pw> + ¢ ,pw + D' - Min D'
ml

1if ml < _nll(m)l(,s), then D' = Min D' and Cl(m,s) = pwl. I
mi
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FOOTNOTES FOR SECTION IV

The G-L allocation rule depends only on the messages and not the

prices. Thus we write y(m) instead of y(m,s).

Since the most desired bundle for consumer i may contain less of some
public good than the aggregate amounts requested by the other consumers, we
must permit negative messages. Hence, M was defined to be the entire

K . .
space R and not just the positive orthant.

Jwo

Compare with the wvacuous government, Section II.7, example

1]

Al(m>l(,s) is, of course, not defined if and only if |p] z p,= 0.

272
However, for any (m>1(,q), if p 1is sufficiently close to zero,
Al(m>l(,s) < Bl(m)l(,s) and thus Cl(m,s) = D"- B" is defined for s

such that \p\ = 0. See proof of continuity of Cl(m,s), Proposition 4.5

below in Section IV.2.

. i, . . . . .
That is, u is strictly quasi-concave, continuously differentiable,
. . i
strictly monotonic increasing in (x ,y) and

dut ut
lim —— = 1lim = for all 4 and k.

i i
x£-+ 0 axz g 0 k

Q/

&

+ 5 and center at the

M, 1is the closed cube with side length ¥ L7

5 K
(5-3).

N

point

Typically Al(m)l(,s) would be chosen to be negative in order to raise

positive amounts from each consumer.

This phenomena has also been encountered in general equilibrium models with

transaction cost, c.f. [ 10 ].
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This is Arrow's '"exceptional case", c.f. Arrow [ 1 ].

Note that this distribution of endowments is essentially identical to
that used for the Lindahl mechanism (see equations (4.19d)) since tly"

L M e
Ay

i, ~ 1 _ h,6 % *
is the tax C (m ,s ;» ) and %.C (m,s

S “h *® ~ ok

. i = =
)(D) uhty qy -

+ 1 i
< 3
We use oD /dy instead of P /ay since it is possible that

* * i ~ L
Ve = Y (m /m') = 0 for some k in which case oD /By is not defined.

We normalize prices here on the simplex defined by all non-negative

prices (p,q) with norm equal two (2). Or, we may alternatively and
1

without loss of generality redefine the norm by |s| = 5(ptq) and

normalize on the unit simplex for this norm.
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