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Abstract

Using techniques from evolutionary game theory, we analyze
potential games with continuous player sets, a class of games
which includes a general model of network congestion as a special
case. We concisely characterize both the complete set of Nash
equilibria and the set of equilibria which are robust against small
disturbances of aggregate behavior. We provide a strong
evolutionary justification of why equilibria must arise. We
characterize situations in which stable equilibria are socially
efficient, and show that in such cases, evolution always increases
aggregate efficiency. Applying these results, we construct a
parameterized class of congestion tolls under which evolution
yields socially optimal play. Finally, we characterize potential
games with continuous player sets by establishing that a
generalization of these games is precisely the limiting version of
finite player potential games (Monderer and Shapley (1996)) which
satisfy an anonymity condition.
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1. Introduction

Congestion is the bane of motorized society. Each year, automotive traffic
squanders six billion hours of drivers' time; a conservative estimate places the
dollar value of this loss at $48 billion.! While some traffic is unavoidable, delays are
often far worse than necessary. An omnipotent social planner could often vastly
improve aggregate welfare by enforcing an efficient pattern of route selection among
drivers. Unfortunately, because of externalities, such a pattern typically fails to arise
on its own: driving on congested highways is a large non-cooperative game; in
choosing which route to take, drivers neither consider nor bear the full social costs
of the congestion they create.

Congestion is also a major problem in communication networks. For example,
when Internet users visit web sites, their utilization of network resources imposes
externalities on other users. Because individuals do not weigh the effects of the
congestion their actions create, inefficiencies arise.

In this paper, we introduce a new game-theoretic approach to studying
congestion which is based on an externality symmetry property which all congestion
problems share. We study potential games with continuous player sets, the
complete class of games satisfying the externality symmetry condition. We
characterize the sets of all Nash equilibria and of Nash equilibria robust against
small disturbances of behavior, and provide a strong evolutionary justification of
why equilibria must arise. We characterize situations in which evolution increases
social welfare, and establish that in these cases, the equilibria which are stable under
evolutionary dynamics are precisely those which are socially efficient. Lastly, we use
these efficiency results to construct a class of congestion tolls under which evolution
yields socially optimal play.

We analyze network congestion using continuous congestion games.
Congestion games were introduced by Rosenthal (1973), who proved the existence of
pure strategy equilibria in a finite player setting. Unfortunately, in most models of
congestion, the number of players is very large, so the discrete model can prove
quite cumbersome. This complexity is mitigated by the fact that in many large
population settings, players need not concern themselves with each individual
opponent's behavior, as their payoffs only depend on opponents’ aggregate

behavior. We therefore model congestion using continuous player sets and payoffs

1 See Arnott and Small (1994, p. 446).



which only depend on the distribution of opponents’ actions. In addition to
yielding a more tractable model, the continuum assumption allows us to use the
tools of marginal analysis. This enables us to investigate the efficiency of aggregate
behavior, which seems quite difficult to analyze in a discrete setting.

After specifying our game theoretic model of congestion, we must specify what
constitutes a reasonable prediction of play. The condition that is usually imposed is
Nash equilibrium. While this condition is standard, using it as a basis for prediction
requires a theoretical justification.

One approach to this issue establishes conditions under which fully rational
players will coordinate on an equilibrium.2 In general, the demands that this
eductive approach makes on players are enormous: at a minimum, players must
have thorough knowledge of opponents’ intentions and must be able to respond to
them optimally. These requirements, which at best are rarely satisfied, are especially
questionable when applied to games played by large populations. Hence, in our
current context, an eductive justification of equilibrium is inappropriate.

Evolution provides another basis for justifying equilibrium. Rather than
imposing strong assumptions about players’ knowledge and abilities, in following
the evolutionary paradigm one assumes that players respond myopically to
opportunities to improve their payoffs. In contrast to eduction, myopic adjustment
makes only modest demands on players' abilities. Awareness of the available
options and the ability to choose one which currently seems promising are
sufficient; these demands seem almost minimal conditions defining an economic
agent.

Unfortunately, this approach often fails to justify equilibrium play. Even in
simple normal form games, evolutionary dynamics can converge to closed orbits far
from any Nash equilibrium. In certain games, even chaotic behavior is possible.
Rarely is global convergence to equilibrium assured.? These problems present
major difficulties for analyzing large population games: in general, we cannot
guarantee that a population's behavior will ever even roughly approximate

equilibrium play.

2 For models following this approach, see Aumann and Brandenburger (1995) and the references

therein.

3 Numerous examples of limit cycles under the replicator dynamics and under the best response
dynamics can be found in Weibull (1995) and Gaunersdorfer and Hofbauer (1995), respectively. Cowan
(1992) analyzes an example in which fictitious play of a 4 x 4 game leads to chaotic behavior.
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What prevents convergence? In evolutionary models, players switch to
strategies which increase their payoffs. At first glance, constant adjustment toward
better performing strategies might appear to drive the population towards an
equilibrium state, where all payoff improvement opportunities are exhausted.
Unfortunately, this reasoning is flawed. At each population state, payoffs induce a
set of "uphill" directions in which evolution might lead. However, as the state
changes, so to do the payoffs accruing to each strategy, and consequently the uphill
directions. A wide variety of dynamic behaviors are possible depending on how the
landscape adjusts. Indeed, cycling is a common result: in this case, the payoff
landscapes behave like a staircase in an Escher lithograph, forming a cycle of inclines
which the population perpetually ascends.*

Shifting landscapes are a consequence of externalities: when players switch
strategies, they not only cause discrete jumps in their own payoffs, but also
marginally shift the overall strategy distribution, altering the payoffs to all strategies.
It is therefore noteworthy that the externalities which arise in congestion games
have a very special structure. As an illustration, consider a traffic flow over a
network of streets, and single out two complete routes (i.e., sets of successive streets),
A and B. If a newcomer to the city chooses to commute via route A, the effect he
has on a driver following route B only depends on the streets routes A and B have
in common. Hence, the marginal impact of this new commuter on the route B
drivers is the sum of the marginal increases in delay on every common street. But a
new route B driver has precisely the same set of streets in common with the route A
drivers. Therefore, the marginal effect of a new route A drivers on current route B
drivers is precisely the same as the marginal effect of a new route B driver on
current route A drivers. This property of congestion games we call externality
symmietry.

Externality symmetry places a critical restriction on the payoff landscapes a game
can induce. While it certainly remains true that the uphill direction varies from
state to state, under externality symmetry this variation must occur in a
topographically consistent fashion. In particular, one can always find a potential
function: a real-valued function defined on the state space whose uphill directions
at each state represent the reasonable courses of evolution. Since strategy revision

always drives the population uphill, closed orbits and chaotic behavior are

1 The shifting landscapes metaphor was introduced by Binmore and Samuelson (1997).
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impossible. Thus, the existence of a potential function provides an intuitive basis
for justifying equilibrium prediction.

Before discussing this, we consider how the potential function can be used to
characterize equilibrium. In a game with continuous player sets, Nash equilibrium
requires that within each role in the game, the payoffs to all utilized strategies are
equal and are no less than those to unutilized strategies. For example, at interior
equilibria, the payoffs to all strategies belonging to the same population are equal. In
this case, there is no uphill direction in which evolution can lead. Hence, such a
state must be a critical point of the potential function. More generally, we show that
the Nash equilibria of a potential game are precisely the points which satisfy the
Kuhn-Tucker first order conditions for a maximizer of the potential function. All
local maximizers are therefore Nash equilibria. When congestion is bad, these are
the only equilibria: when congestion costs are increasing in utilization, the
potential function is concave, and equilibrium is unique. However, congestion may
be beneficial; congestion externalities may be positive. In such cases, the potential
function will not be concave, and equilibria which do not maximize potential will
typically exist: for example, every interior local minimizer of potential satisfies the
Kuhn-Tucker conditions for a maximum and is therefore Nash. However, we shall
see that evolution selects against states which do not maximize potential.

Our main application of the potential function uses it to analyze continuous
time evolutionary dynamics. Rather than specify a particular model of evolution,
we instead consider a class of dynamics which satisfy a weak payoff monotonicity
condition which we call net monotonicity. This condition requires that in an
average sense, the growth rates of better performing strategies are higher than the
growth rates of those which perform poorly. Any reasonable evolutionary process,
in particular the replicator dynamics (Taylor and Jonker (1978)) and the best
response dynamics (Gilboa and Matsui (1991), Matsui (1992), Hofbauer (1995)) satisty
this condition. In fact, this condition is weaker than nearly any other condition
proposed in the evolutionary literature.”

Net monotonicity implies that when it is not at rest, the evolutionary process
ascends the potential function. Consequently, once the population is near a peak

(i.e., a local maximizer) of potential, it must always remain nearby. We are

5 Nachbar (1990), Friedman (1991), Samuelson and Zhang (1992), Swinkels (1993), and Ritzberger
and Weibull (1995) study classes of dynamics whose members satisfy some basic evolutionary
desiderata. Of these, the conditions considered by Friedman (1991) and by Swinkels (1993) are both the
weakest and the closest to the net monotonicity condition we consider here.
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therefore able to identify the states which are dynamically stable under net
monotone dynamics with the local maximizers of potential. Since all such states are
Nash equilibria, only Nash equilibria can be dynamically stable. We also establish
the converse result: all Nash equilibria which do not locally maximize potential
must be susceptible to some perturbation of aggregate behavior. Local maximizers
of potential are therefore the only sensible equilibrium predictions.

While local stability results provide strong reasons to believe that an equilibrium
that is reached will persist, they do not indicate whether one should expect
equilibrium to be reached at all. To establish this requires a global convergence
result which characterizes the ultimate behavior of the population for all possible
initial states. Global convergence results can rarely be proved. Nevertheless,
without historical data about a population's behavior, only through such a result
can an evolutionary analysis fully justify the prediction of equilibrium play.

Global convergence to equilibrium almost never occurs under the replicator
dynamics. The problem is extinction: once a strategy is absent from the population,
it never regenerates. All strategy profiles consisting of a single pure strategy are
therefore rest points; hence, many rest points are not Nash equilibria. However, in
most economic contexts, it is reasonable to expect the presence of a profitable
deviation to induce economic agents to change strategies. We introduce a condition
on evolutionary dynamics which we call non-extinction to reflect this assertion. It
requires that all rest points of the dynamics are Nash equilibria. This formalizes the
evolutionary desideratum noted above: if a state is not an equilibrium, a profitable
deviation exists, and we should expect some enterprising players to avail
themselves of it.

With the help of this condition, we can state our global convergence result. We
prove that in any potential game, under any evolutionary dynamics satisfying net
monotonicity and non-extinction, all evolutionary solution paths converge to Nash
equilibria. Regardless of the initial behavior of the population, the end result is
equilibrium; closed orbits and chaotic behavior are both impossible. Therefore, in
any congestion game, evolution completely justifies equilibrium prediction.

While we can guarantee that equilibrium behavior will eventually emerge, the
equilibrium need not exhibit desirable welfare properties. Of course, this is
generally true of Nash equilibrium: the dominant strategy equilibrium of the
prisoners’ dilemma is the archetypal example. One might hope that the properties
which lead to convergence in congestion games might also promote efficiency.

Unfortunately, externalities often obstruct efficiency. When players choose
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strategies, they consider only their own payoffs, ignoring the effects of their actions
on society at large. For example, roads that are relatively more sensitive to
congestion tend to be overused in equilibrium because each driver ignores the
marginal increase in congestion that he creates.

This discussion suggests that road networks in which streets are equally sensitive
to utilization might have better prospects for efficiency. With this motivation, we
consider isoelastic congestion games: congestion games in which all streets exhibit
isoelastic utilization costs, each with the same elasticity coefficient. More broadly,
we define the class of isoelastic potential games, which include isoelastic congestion
games as a special case. We show that isoelasticity implies that player's payoffs to
each strategy are directly proportional to the marginal social costs of the use of that
strategy. Because it ensures that the individual and the society agree on the relative
values of his available actions, isoelasticity has strong implications for aggregate
efficiency.

The key lemma behind our efficiency results establish that in isoelastic potential
games, the potential function is proportional to average payoffs. In conjunction
with previous developments, this lemma provides the foundation for our main
welfare results. We show that under any net monotone dynamics, average payoffs
increase along every evolutionary path. In other words, myopic adjustment
increases social welfare. Furthermore, the set of locally efficient states is identical to
the set of dynamically stable states. Any state which is robust against small
disturbances in aggregate behavior must yield locally optimal aggregate payoffs.

A general global welfare maximization result is clearly impossible. To see why,
consider games in which congestion externalities are positive, representing benefits
to social coordination. Such games typically possess multiple stable equilibria, each
of which may induce different average payoffs. However, when congestion is
detrimental to payoffs, it might be hoped that a global efficiency result is possible.
We establish that in isoelastic congestion games with non-negative costs, there is a
unique connected set of equilibria, and that all equilibria are both globally efficient
and globally stable.

While our efficiency results may give reason for optimism (or at least
resignation) in the cases in which they apply, the isoelasticity condition which they
require is demanding. In most examples, this condition is not met; in such cases,
evolution usually fails to generate welfare maximizing outcomes. Inefficiencies
arise because drivers overburden the roads which are the most sensitive to use. One

might hope that by introducing a system of congestion tolls, a mechanism designer
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could force drivers to internalize the social costs of their actions, and thereby induce
them to select routes in a socially optimal manner.

We construct a parameterized class of congestion tolls which we call
proportional to marginal cost (PMC) tolls. The tolls are implemented facility by
facility, and so may be extracted as the facilities are used.® Under every PMC toll,
evolution leads to efficient play. Marginal cost pricing, which sets individual costs
equal to marginal social costs, occurs as a special case. However, many other
noteworthy tolling systems are available, including one which minimizes the size
of the tolls while keeping them non-negative, and another which achieves budget
balance. Indeed, fixing an efficient state, there is a PMC toll which yields any desired
level of revenue. Therefore, aggregate efficiency can be achieved regardless of the
budgeting requirements.

Realistically, setting very high tolls will reduce the number of drivers,
preventing a social planner from generating arbitrarily large tolling surpluses. More
generally, it is often natural to expect the sizes of the populations playing a game to
depend on the payoffs the game provides. We therefore extend our model by
introducing elastic demand. We show that versions of all of our previous results
on equilibrium, evolution, and efficiency continue to hold in this setting, and that
different PMC tolls all generate efficient outcomes but lead to different levels of
aggregate demand. Thus, by choosing the appropriate PMC tolling scheme, a social
planner can strike a balance between the ills of congestion and the dampening effect
of tolls on economic activity.

There are many settings in which network allocation issues arise not as a game,
but as a decision problem. Consider, for example, a problem faced by a monopoly
which runs a utility: to transport goods to all customers at the lowest possible cost.
Finding the optimal routing choice often requires solving an enormous
mathematical program. Our efficiency results have strong implications for solving
such problems. We show how by imposing an internal PMC tolling scheme, a
monopolist can implement a decentralized method of establishing and maintaining
efficient route allocations.

Our work is closely related to that of Monderer and Shapley (1996), who study
potential games with a finite number of players. In these games, as in those studied

here, all players' incentives can be captured by a single potential function defined on

6 Many cities now use electronic toll collecting systems which could implement such tolling schemes.

For discussion of these collection systems, see Gomez-Ibanez and Small (1994).
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the set of strategy profiles. Nash equilibria correspond to local maximizers of
potential; since myopic better responses increase potential, evolution leads to
equilibrium play. Lastly, Monderer and Shapley (1996) establish an equivalence
between finite player potential games and the finite player congestion games
introduced by Rosenthal (1973).

At least heuristically, the connections between the games studied here and those
considered by Monderer and Shapley (1996) are clear. In both cases, all players’
incentives are captured by a potential function, guaranteeing convergence to
equilibrium. However, examining only the definitions of each class of games, the
formal connections between the two are not obvious.

We establish these connections in the penultimate section of the paper. To do
so, we must consider infinite player potential games which are augmented by
incentive irrelevant payoff shifts. Evolution and equilibrium in the resulting
games, termed quasipotential games, can still be characterized using potential
functions. We also restrict attention to finite-player potential games which admit
an anonymous representation, which we call anonymous finite-player potential
games (hereafter, AFP games). To state our limit result, we first define a notion of
convergence: we say that a sequence of AFP games converges if the payoff functions
and (rescaled versions of) the potential functions converge as the population size
grows to infinity. We then prove that the limit of any convergent sequence of AFP
games must be a quasipotential game. Conversely, we establish that any
quasipotential game can be approximated arbitrarily well by AFP games, formally
justifying the use of the continuum of players model to approximate large, finite
player games. Using our convergence theorem, we characterize AFP games in
which, to a first approximation, evolution yields efficiency.

An early use of a continuous potential function can be found in the work of
Beckmann, McGuire, and Winsten (1956). These authors consider a model of traffic
which is equivalent to a special case of our elastic demand congestion model. They
use a potential function to characterize equilibrium and to establish conditions
under which equilibrium is unique. We extend their work by both broadening the
class of games to which potential function arguments can be applied and by
establishing results on evolutionary dynamics, social efficiency and optimal pricing

schemes.”

7 Friedman (1996, 1997) considers learning in a class of games with continuous player sets. Building on
the earlier paper, Friedman (1997) studies non-atomic externality games. In these games, the

aggregate play of each population generates a vector of externalities, with one component
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Our conclusions concerning efficiency build on a result from biological
evolutionary game theory known as the Fundamental Theorem of Natural
Selection. This result, first suggested by Fisher (1930), states that in doubly
symmetric normal form games played by a single population of players, average
payoffs increase monotonically along every solution path of the replicator dynamics.
The symmetry assumption requires that all pairs of entries in the payoff bimatrix are
equal. This condition arises naturally in a basic model from population genetics. In
this model, individual genes struggle to survive and reproduce, but because of
sexual reproduction always compete as members of pairs. The partnership
assumption captures the fact that the survival and reproduction of each gene in the
depends on the fitness of the pair's host.8 Our model generalizes the framework of
the Fundamental Theorem of Natural Selection in three ways: we allow multiple
populations, non-linear payoffs, and a broad range of evolutionary dynamics.

Section 2 introduces congestion games and doubly symmetric games, providing
two classes of examples to which our results apply. Section 3 defines potential
games and presents the equilibrium characterization result. Sections 4 and 5
investigate evolutionary dynamics and social efficiency, while Section 6 describes
congestion tolls which induce efficient play. Section 7 considers potential games
with elastic demand. Section 8 explains the formal connections between our work
and that of Monderer and Shapley (1996). Section 9 concludes.

2. Examples

2.1 Congestion Games

Continuous congestion games are a simple and tractable framework for studying
the utilization of resources arranged in a network. Flows of automobile traffic and
electronic data are natural applications. Rosenthal (1973) introduces congestion
games with a finite number of players and proves that they possess pure strategy

Nash equilibria. Unfortunately, many applications of congestion games involve

corresponding to each population. Each (non-identical) player's preferences depend only upon his
strategy choice and the externality vector. Using submodularity arguments, Friedman (1997)
establishes that convergence to equilibrium play is guaranteed under a number of discrete learning
procedures, including adaptive and sophisticated learning (Milgrom and Roberts (1991)) and correlated
learning (Foster and Vohra (1996)).

8 Extending the basic result, Akin and Hofbauer (1982) show that under the assumptions of the
fundamental theorem, each solution path converges to a unique limit point. For further discussion of
this biological model, see Hofbauer and Sigmund (1988, Chapters 3 and 23).
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very large numbers of players, making the discrete formulation difficult to manage.
In this section, we introduce congestion games with continuous player sets. We
provide examples of these games which serve to illustrate the results which we
develop in the remainder of the paper.

Consider a collection of towns connected by a network of streets. We associate
each of p pairs of home and work locations with a group of commuters who must
travel between them. Each player chooses a route (i.e., a subset of the streets)
connecting home to work; his driving time depends upon the traffic on the streets
he has chosen.

With this example in mind, we define continuous congestion games. A
congestion model is a collection {P, {m"} L {S”}pep, P, {(I)I"}Id,_,pep, {CO}Oem}' P is a set

})
of one or more populations, which in the commuting model correspond to the
home and work location pairs. The mass of population p € P is denoted m,, and m
= ZU m" equals the total population mass. The finite set @ contains the facilities

which are the building blocks of the players' strategies. Each strategy ie S, p € P
entails the use of some subset of the facilities @ ¢ @. We assume that there are no
irrelevant facilities: @ = UMPUIEQ(D,.”. Let p"(¢) ={ie S": ¢ € @} denote the set of

population p strategies which require facility ¢. A typical strategy distribution is x =

(X, ., X0, X7, o, X, ), where the upper subscript refers to the population and the

lower subscript to the strategy. The utilization of facility ¢ € @ is the total mass of

the players whose strategies use that facility:

1,(x) = Z 2.\',".

peSiiep toy

When a player selects a strategy, he bears the costs of each facility which the
strategy requires. The facility costs, ¢, [0, m] — R, are continuously differentiable
functions (with one sided derivatives at the endpoints) which report the penalties
accruing to users of a facility as a function of its utilization.” The congestion game

derived from a congestion model is identified with its payoff functions:

Fi(x) =- Eco(uo(x)).

OEQf

9 Later, the differentiability assumption will be dropped.
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Since payoffs to the strategies in a congestion game are sums of facility payoffs,
the payoffs to any pair of strategies are bound together by the facilities which both
use. In the commuting model, the costs of any pair of routes both incorporate the
delays on all streets which the routes share. Hence, if we increase the proportion of
players from population p using route i, this affects the players taking route j € Sf
through increased traffic on streets in @ N @]. The marginal effect of this increase

I

o . ) . )
— = - E o o Co - An increase in the use of route j has an the same marginal
oax; o€ ~@r v

15
At

effect on route i/ drivers; hence, i;\—, = —. We call this property externality

symmetry.

Our conclusions about congestion games fall in three overlapping categories:
characterization of equilibrium, convergence of evolutionary dynamics, and
efficiency. The backbone of our analysis is an implication of externality symmetry:
the existence of a potential function defined on the strategy space. The Nash
equilibria of a congestion game are precisely the states which satisfy the Kuhn-
Tucker first-order conditions for a maximizer of potential (Proposition 3.1). Under
any reasonable evolutionary dynamic, the locally stable states are exactly those
which maximize potential (Theorem 4.3). Moreover, the population must
eventually settle upon a connected set of Nash equilibria regardless of the initial
state (Theorem 4.4).

In general, because players do not bear the full social costs of their actions, Nash
equilibria are not efficient. However, if in a congestion game all roads are equally
sensitive to traffic, individual and social costs are closely linked: the potential
function, which captures individuals' incentives, is proportional to average social
costs. Consequently, we are able to show that in these games, which we call
isoelastic, aggregate efficiency increases over all evolutionary trajectories (Theorem
5.3), and the locally efficient equilibria are precisely those which are dynamically
stable (Theorem 5.4). Finally, if facility costs are also non-negative, equilibrium is
essentially unique, globally efficient, and globally stable (Corollary 5.5).

These efficiency results can be illustrated through a simple single population
example. A group of commuters must drive from their homes located at O to their
offices at D. A network of streets connects the locations. Two of the streets, 2 and 3,
go over bridges and are especially susceptible to congestion. Initially, only two
routes are connecting O and D are available: route, X, over streets 1 and 2, and route

Y, over streets 3 and 4. Two plans for improving the network are proposed. One
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plan recommends adding a fifth street, while the other recommends expanding
streets 2 and 3.

Initially, the time to take either route is 18 minutes plus congestion delays.
Fixing the total population mass at one, the time (in hours) required to traverse
each street as a function of the proportion of drivers using the street are ¢,(t) = c,(u)
=1 +uand (i) = c3(u) = 5 + u*. Hence, the total driving times on each route as a
function of the drivers' choices, (x, y), arel® Fy(x, y) = ¢;(x) + co(x) = 7§ + x + x*, and
Fy(x,y) = ca(y) + cu(y) = & + vy + y°. Symmetry considerations imply that the
equilibrium distribution is (x, y) = (3, 3), yielding an equilibrium driving time of
exactly 63 minutes. The equilibrium state is also the most efficient allocation of

drivers, minimizing the average driving time.

Figure 1

Now suppose that street 5 is constructed, and that to prevent delays at the
intersection only west to east traversals are permitted. Driving times on the new
street are given by cs(u) = 7 + 1. Three routes from O to D are now available:
routes X and Y above, and route Z, which uses streets 3, 5, and 2. The costs

associated with each route are

Fox,y,2) =c(x) + cx(x + 2) = & + x + (x+2),

T
Filx,y,z)=cy+z)+cy) = 5 + (y+2)° +y,

Fix,y,2)=c(y+2) +cs(z) + er(x +2) = 5 + (y+2)° + tx + (x+2)".

Of course, adding a route can only improve the efficient average driving time: here,
(x°, v, z) = (465, 465, .070) yields the efficient average driving time of 62.47

minutes. However, at this state, the driving time on route Z is less than that on the

10" Notice that these functions are the negations of the payoff functions.
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other routes: 60 - F,(x*, y, z°) =54.48 <63.06 =60 - F\(x*, y*, z°) =60 - F(x", y', z').
Therefore, drivers from routes X and Y would switch to route Z. In fact, it can be
shown that under any reasonable model of evolution, regardless of the initial

distribution of drivers, the distribution of drivers' choices must ascend the function
flx,y,2) = —[%(x“ +y 22+ (D) + D+ (x+y+ })zz].

The population must settle at the unique local maximizer of this function, the state
(x*, y*, z*) = (419, 419, .162). This is the unique equilibrium of the game and yields a
common driving time of 63.39 minutes. Comparing this to the original time of
63.00 minutes, we see that, adding street 5 increases the equilibrium driving time.
This phenomenon is known as Braess’ paradox.'l In Section 6, we show how
efficiency can be restored to this network by imposing congestion tolls.

Suppose instead that streets 2 and 3 were widened, so that c,(1) = c3(u) = 5 + fu.
Symmetry again yields an equilibrium of (3, 3), resulting in a driving time of
exactly 58.5 minutes. This is the efficient designation of drivers for this
configuration of streets. Thus, widening existing roads would prove much more
effective than constructing a new road.

Finally, consider the consequences of implementing both projects. In this case,

the driving time functions are Fy(x,y,z) = & + $x + +z, Fy(x, y,2) = 55 + 1y + 1%,
and F,(x,y,z) = & + tX + 7¥ + 5z. It can be shown that any plausible evolutionary

trajectory must ascend the function
feey,2) = “3(C +y")+ 327 + 3 (x +y)z]

and therefore must converge to its unique local maximum of (x*, y*, z¥) = (.385, .385,
.230). This is the unique equilibrium of the game, yielding driving times of 50.30
minutes. Moreover, the function f is an affine transformation of the average cost

function

F(x,ylz) = %(X2 +}/2)+%ZZ +%(X+}/)Z + %ﬂ

11 The first example of this phenomenon was given by Braess (1968). For further discussion of Braess’
paradox, see Pas and Principio (1997) and the references therein.
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Hence, the globally stable equilibrium (x*, y*, z*) is also the state which minimizes
average driving time. In Section 5, we explain why the cost structure in this

example induces equilibrium efficiency.12

2.2 Reflexive Externality Games

In many settings, by performing a particular action a player only imposes
externalities on opponents who choose the same action. We call games with this
property reflexive externality games. They are played by a single population and are
defined by the property that the payoff to each strategy only depends on the use of
that strategy: F(x)=F(x) forallx e “and ie S. Such games trivially satisfy
externality symmetry. It is worth noting that reflexive externality games are single
population congestion games whose facility requirement sets @; form a partition of
D.

While our discussions have focused on settings in which congestion is bad,
congestion is often a boon; externalities can be negative or positive. Importantly,
the models we have described can be applied in either case. In congestion games,
decreasing facility costs reflect positive externalities, while increasing facility costs
indicate negative externalities; in reflexive externality games, positive and negative
externalities are represented by increasing and decreasing payoff functions,
respectively. We shall see that in the presence of positive externalities multiple

equilibria are the norm, but that under negative externalities, equilibria are unique.
2.3 Doubly Symmetric Games

Most work in evolutionary game theory has focused on single population linear
games, in which F(x) = Ax for some n x n matrix A (i.e.,, F(x) = (Ax), forall i e §5).
The standard interpretation of these games is based on a random matching
environment. Each entry A, of the payoff matrix expresses the payoffs that a player

selecting strategy i would receive in a random match with a player choosing strategy

12 Monderer and Shapley (1996) prove an equivalence between congestion games and potential games
with a finite number of non-anonymous plavers. However, it is easy to generate examples which show
that this result does not extend to the current context. To prove that every potential game is a potential
game, Monderer and Shapley (1996) use a construction in which the number of facilities grows (indeed,
grows exponentially) in the number of players. When there are a continuum of players such a
construction cannot be used. We note one exceptional case: it is easy to show that linear potential games
can always be derived from congestion models with linear costs.
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j. Thus, when the state is x, the expected return from a random match for a player
choosing strategy i is (Ax),, We can interpret these payoffs as the expected payoffs
from a single random match, or the average realized payoffs accruing to players after
a very large number of matches. In either case, it is the linearity of expectation
which defines the payoffs' functional form. The set of Nash equilibria of the
population game coincides with the set of symmetric mixed strategy Nash equilibria
of the two player normal form game with payoff bimatrix {(A;, AI)},,‘,€5.

If the payoff matrix A is symmetric (A, = A, forall i, je S), it defines a doubly
symmetric game. Under the random matching interpretation, the two players
involved in any match receive the same payoff. Hence, one player's gain is by
definition a gain for the opponent he meets. In the Introduction, we explained the
importance of these games in biology. We shall soon see that all doubly symmetric
games are isoelastic potential games; consequently, all of our results concerning
evolution and efficiency apply in this setting.13

3. Potential Games

A game with p continuous populations of players is defined by a strategy set for
each population and payoff functions for each strategy. The set of populations is
denoted P = {1, ..., r}, where r > 1. The set of strategies for population p is denoted 5"
={1, ..., n"}, and n = an” gives the total number of pure strategies. Each

population has a mass m", and m = er m" denotes the aggregate population mass.

By allowing different population masses, we ensure that each infinitesimal player is
of the same "size".

The set of strategy distributions of population p € P is denoted /" = {x € R":
lef’ = m"}, while ¥={x=(x', ..., ¥") e R": x" e Y} is the set of overall strategy
distributions. The continuous payoff functions are given by F/: .¥'—> R,ie S, pe
P. Note that the payoffs to a strategy in population p can depend on the strategy
distribution within population p itself. We let F': .= R" refer to the vector of

payoff functions for strategies belonging to population p and let F: .’— R" denote

13 It is easy to show that all doubly symmetric games can be represented as single population
congestion games with linear facilities costs; the converse representation also holds. We present doubly
symmetric games separately because the interpretations of the games are quite different, and the
homeomorphism between the two is not so transparent so as to yield a clear connection between the two
interpretations.
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the vector of all payoff functions. Similar notational conventions are used
throughout. However, when considering single population games, we omit
superscripts and assume that the population mass equals one.

The best response correspondence, BR: ./'— ./, maps each state x € /'to the set of
states whose supports consist entirely of best responses to x. Letting C"(x") = {ie 5,
x, > 0} denote the support of x”, we define BR” and BR by

BR(x)={z" e Y. C'(z')c argmaxF!(x)}, and

jes’

BR(x)={ze : z' € BR"(x) Vpe P}.

A Nash equilibrium of game F is a state whose support consists solely of best
responses to itself: C’(x") c argmax, F/(x) for all p e P. The Nash equilibria are
therefore the fixed points of BR; existence follows from the standard argument.

As we saw in Section 2, in congestion games the marginal effect of adding a
player choosing strategy i on the payoffs of players choosing strategy j is the same as
the marginal effect of adding a player choosing strategy j on the payoffs of players
choosing strategy i. In general, we say that a game F satisfies externality symmetry if
the following condition holds:

JF" _ OF]

€S) Sr=sforallie §'je S andp,qe P,

Unfortunately, in proposing externality symmetry we create a technical difficulty.
To see this most easily, consider a game with a single population. To make sense of
the partial derivatives in condition (ES), payoffs need to be defined for all
population masses in a small interval around 1. However, since we are only
concerned with the proportions of players choosing each strategy, the space of
strategy distributions only contains states for which the overall population mass is
exactly one. Thus, the partial derivatives in condition (ES) are not well-defined.

In congestion games, this problem is insubstantial. While we have defined
congestion games with fixed population masses, there is no difficulty in allowing
slight fluctuations: since payoffs are defined by way of facility costs, if we expand the
set of states to allow a range of aggregate population masses, payoffs continue to be
well-defined. Payoffs outside /’are those which would arise if the total population

mass was slightly lower or higher than the benchmark value. In this case, each
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partial derivative in condition (ES) has a natural interpretation as a measure of the
marginal impact of a newcomer.

To make formal sense of condition (ES), we must assume that payoffs are C'
(continuously differentiable) functions on a wedge of R" containing the simplex.
More precisely, the wedge is defined by #/ ={xe R": 0<x'<m’'Vie §,pe P, m" -
o< 21.\‘,” <m'+ a ¥V pe P}, where a is a positive constant. Externality symmetry
then implies that every potential game admits a potential function: a scalar valued
function i # — R whose gradient, Vf, is F: That is, condition (ES) implies

condition (P):

(P)  There exists a C' function f: #/ — R such that of (x)= F'(x)
8x’l7 H

!

forallxe ./ ie S", andpe P.

We call any game which satisfies condition (P) a potential game.

If the potential function fis C* (twice continuously differentiable), then the game
associated with f satisfies externality symmetry. Thus, condition (ES) is stronger
than condition (P). The main advantage of the added generality of condition (P) is
that it allows us to consider games with non-differentiable payoff functions. Using
this condition also makes extending the payoff functions to the wedge unnecessary.

While one can verify that a set of payoff functions define a potential game by
checking externality symmetry directly, it is more fruitful to construct the potential
function itself. A congestion game with payoff functions F'(x) = _ZM" c,(u,(x))

admits a potential function of the form

ﬂn:—zﬂ“%ga@.

oed

A reflexive externality game with payoffs F(x) = F(x,) is represented by the potential

function

ﬂﬂ:ZﬂRm&.

1eb

A doubly symmetric game with payoffs F,(x) = (Ax); admits the potential function

flx) = 5x- Ax.
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Finally, any single population, two strategy game is a potential game: given any
continuous payoff functions Fy, F;: .= R, a potential function satisfying condition

Z

(P) is given by
fix,y) = '[:Fl(z,l —z)dz + J‘“V F,(1-z,z)dz.

The potential function encodes all of the information players need when
deciding whether to switch strategies. Consider a state x € .%" at which F/'(x) > F/'(x)
and x/ > 0. At such a state, a player choosing strategy j would prefer to switch to

strategy i. But observe that /}(\_,’*’7\.,‘)(1‘) = (%(x) - %(x) = F/'(x) - Fl(x) > 0.

Consequently, a profitable strategy change leads to an ascension of the potential
function. More generally, we show in Section 4 that the uphill directions of the
potential function include all those in which a population of myopically rational
plavers might evolve. This property lies at the heart of our analysis.

Before considering evolution in potential games, it is revealing to characterize
their equilibria. The discussion above suggests that the Nash equilibria of the game
are related to the local maximizers of the potential function on strategy space. The

Kuhn-Tucker first-order necessary conditions for this maximization problem are

(KT1) %(x) =u" - A forallie S"andpe P,
(KT2) Axt =0 forallie §"and p e P, and
(KT3) A =0,

where e R" and 41 € R". We now show that these conditions completely
characterize the set of Nash equilibria.

Proposition 3.1: The state x € ./'is a Nash equilibrium of the potential game F if and
only if (x, u, A) satisfies (KT1), (KT2), and (KT3) for some Ae R" and pe R'.

Proof: If x is a Nash equilibrium of F, then since F(x) = Vf(x), the Kuhn-Tucker
conditions are satisfied by x, ¢ = max, F¥(x), and A/ = u" - F/(x).

Conversely, if (x, g, A) satisfies the Kuhn-Tucker conditions, then for every p € P,
(KT1) and (KT2) imply that F/(x) = ,_:%(x*) =y’ for all ie C'(x"). Furthermore,
(KT1) and (KT3) imply that F/(x) = u”‘ - A <y forall je S Hence, C'(x") c

argmax, F/(x), and so x is a Nash equilibrium of F. W
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Observe that in equilibrium, the vector of Lagrange multipliers u gives the
equilibrium payoffs in each of the r populations.

Since . satisfies constraint qualification, satisfaction of the Kuhn-Tucker
conditions is necessary but not sufficient for the local maximization of potential.
Thus, Proposition 3.1 suggests a division of the Nash equilibria into two classes: the
stable equilibria, which are local maximizers of the potential function, and the
unstable equilibria, which are not. This terminology is justified by Theorem 4.3,
which establishes that the equilibria which are locally stable under evolutionary
dynamics are precisely those which locally maximize potential.

In most potential games, many equilibria exist. However, it follows immediately
from Proposition 3.1 that if a game's potential function is concave, all of its

equilibria lie in a single convex set. In congestion games the potential function is
1, (X) . . . .7
given by f(x) = ~20€¢£) ¢,(z)dz; this function is concave whenever the facility

costs ¢, are increasing. Thus, we are able to show that when externalities are

negative, equilibria are essentially unique.

Corollary 3.2: If the potential function fis concave on .Y, then all equilibria of the
corresponding potential game F are in a single convex set. In particular, these

statements are true of all congestion games with increasing facility costs.

Proof: In the Appendix.

If in addition each strategy uses at least one facility with strictly increasing costs, the

potential function is strictly concave and equilibrium is unique.

4. Evolutionary Dynamics

In this section, we characterize evolution in potential games under net
monotone dynamics. To accomplish this, we show that the potential function
serves as a global Lyapunov function under any such dynamics. The existence of a
Lyapunov function rules out both closed orbits and chaotic behavior. Under the
additional assumption of non-extinction, it also guarantees the global convergence
of solution paths to Nash equilibria.

Throughout this section we use terminology which is standard in dynamical
systems and in evolutionary game theory. Formal definitions omitted from the text

can be found in the Appendix.
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4.1 Net Monotonicity and Non-Extinction

Any evolutionary dynamics associated with a game are described by a C' vector
field V: = R" on strategy space. The differential equation x = V(x) defines a
dynamical system on .¥" which for each initial condition x, admits a unique solution
{x,},., satisfying 4 x, = V(x,) for all t > 0. We assume throughout that .¥" is forward
imvariant under V: solutions do not leave strategy space.

The precise functional forms of the evolutionary dynamics used in the literature
reflect specific assumptions about the forces guiding evolution.!* In particular
applications, these precise assumptions may not apply. Consequently, rather than
investigating particular equations of motion, it is desirable to study general classes of
evolutionary dynamics.

Our main condition on the dynamics is called net monotonicity.

Net monotonicity: Z EVf’(x)Ff’(x) > () whenever V(x) # 0.

pel jeS¥

Geometrically, net monotonicity requires that except at rest points, the vector field
defining the direction of evolution forms acute angles with the payoff vector field.
For a more intuitive interpretation of this condition, observe that since the

solutions do not leave the strategy space, ZIV,”(x) = 0 for each population p, which
implies that Z}JZ;V,”(X) = 0. Net monotonicity therefore asks that the growth rates

of the better performing strategies tend to be higher than those of the worse
performing strategies. This need only be true in an average sense: even best
responses may become less prevalent if this decline is outweighed by the growth of
other strategies receiving high payoffs. Moreover, there is only a single inequality
restricting evolution in all r populations. Hence, the growth of poorly performing
strategies in some populations can be compensated for by the growth of well
performing strategies in others. The most closely related conditions in the
evolutionary game theory literature are those of Friedman (1991) and Swinkels

(1993), who impose restrictions similar to net monotonicity on each popula’cion.15

14 The prime examples are the replicator dynamics (Taylor and Jonker (1978)) and the best response
dynamics (Gilboa and Matsui (1991), Matsui (1992), and Hofbauer (1995)).
15 Friedman (1991) considers weak compatibility, which combines net monotonicity within each

population with extinction: x! =0 implies that V' (x) = 0. Swinkels (1993) studies myopic adjustment
dynamics, which satisfy net monotonicity within each population, but with a weak inequality
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Since F(x) = Vf(x), F(x) is the direction of steepest ascent of the potential function.
Hence, stated in terms of the potential function, net monotonicity requires that
whenever the population is moving, it is moving uphill. This observation
formalizes our claim in Section 3.3 that any reasonable evolutionary process must
climb the potential function. It also underlies our main technical lemma. We call a
C' function f: .¥'—= R a global Lyapunov function for the dynamical system x = V(x)
if for every solution trajectory {x,}..,, (i) < f(x,) 2 0 for all t, and (ii) 5f(x,) =0
implies that V(x;) = 0. Condition (i) requires that the function f is weakly increasing
along all solution trajectories, while condition (i) demands that f is strictly
increasing except at fixed points of V. Lemma 4.1 establishes that the potential
function is a Lyapunov function under any net monotone dynamics, providing a

powerful tool for characterizing evolution.

Lemma 4.1: If Fis a potential game and V is net monotone, then the potential
function of F is a global Lyapunov function for x = V(x).

Proof: Net monotonicity implies that < f(x,) = Vf(x,) - &, = F(x,) - V(x) 2 0 and
that V(x,) = 0 whenever £ f(x,) =0. B

Under the replicator dynamics, all faces and vertices of strategy space are forward
invariant: once a strategy is extinct, it never resurfaces. We feel that this property of
the replicator dynamics is not sensible in most applications. In economic settings,
knowledge of a payoff improving alternative should lead players to select this
alternative regardless of whether it is currently being played. In biological contexts,
rare mutations generate slight forces away from the boundaries of strategy space
which prevent this form of extinction; see Binmore and Samuelson (1997). In either
case, the abandonment of a strategy only seems reasonable as a consequence of
inferior performance, not as an implication of other modeling assumptions.

With this in mind, we introduce a second condition on the dynamics which we
call non-extinction. It requires that any rest point of the dynamics be a Nash

equilibrium.

Non-extinction:  V(x)= 0 implies that x is a Nash equilibrium of F.

replacing the strict one and with the additional requirement that all Nash equilibria are rest points
(although this latter requirement is omitted in some of his results). For other conditions on
evolutionary game dynamics which are stronger than net monotonicity, see Nachbar (1990), Samuelson
and Zhang (1992), and Ritzberger and Weibull (1995). See Weibull (1995) for a survey.

23—



Non-extinction is essentially a requirement that players avail themselves of
opportunities to improve their payoffs. While not satisfied by the replicator

dynamics, non-extinction is satisfied by the best response dynamics.

4.2 Evolutionary Stability

We now present our evolutionary stability results, which characterize the
dynamics at three levels of proximity to rest points. We first characterize the rest
points themselves in terms of the Nash equilibria of the underlying game. Next, we
consider local dynamics, studying evolution in small neighborhoods of all rest
points. Finally, we characterize the global behavior of the dynamics, proving that all
solution paths must converge to equilibrium.

A Nash equilibrium state is defined by the property that no player can improve
his payoffs by switching strategies. Thus, strategy revision by an infinitesimal set of
agents cannot improve their payoffs. This implies that any change from a Nash
equilibrium state must violate net monotonicity, and therefore that all Nash
equilibria are dynamic rest points. Under the additional assumption of net
monotonicity, only Nash equilibria can be rest points of the dynamics. This is the

content of Proposition 4.2.16

Proposition 4.2: If V is net monotone, then all Nash equilibria of F are rest points of
v = V(x). If in addition V satisfies non-extinction, then the set of Nash equilibria of
F and the set of rest points of x = V(x) coincide.

Proof: Let x be a Nash equilibrium of F, and let V be some net monotone
dynamics. Suppose D’(x) is the set of strategies in $' that are in decline at x: D"(x) =
{ie S" V'(x) <0}. Then D"(x) c C"(x") ¢ argmax, F'(x). But since ¥"is forward
invariant under V, V/(x)- 1 = 0; therefore, the inclusion implies that V"(x) - F'(x) <
0. Summing over p, we see that V(x) - F(x) < 0. Net monotonicity then implies that
V(x) = 0. The proof of the second claim follows immediately from the first claim

and the definition of non-extinction.

16 It is worth noting that the proof of this proposition does not depend on the existence of a potential
function; the result is valid for any game with continuous player sets, not just potential games.
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While we are able to identify equilibria with rest points of the dynamics, not all
equilibria are stable. The prototypical example of a failure of stability is a mixed
equilibrium of a pure coordination game. Consider a population of players

involved in the doubly symmetric game with the payoff bimatrix in Figure 2.

1

1,1 0,0
5
0,0 2,2
(1,0) x,y) 01
Figure 2 Figure 3

The payoff functions of this game are F,(x, y) = x and Fy(x, y) = 2y. In addition to its
two pure equilibria, the game possesses a mixed equilibrium in which § of the
players choose strategy one. By Proposition 4.2, this equilibrium must be a rest point
under any net monotone dynamics. However, it is repelling: for example, a slight
increase in the number of players choosing strategy one renders strategy one a
unique best response, driving all members of the population to coordinate on this
strategy. This is illustrated in Figure 3, which graphs the potential function of this
game: f(x,y) = Iyt + }/2. Since evolution must proceed uphill, we see that the mixed
equilibrium (3, ) is dynamically unstable. Only the equilibria which locally
maximize potential constitute credible predictions of play.

The predictions of the model of the behavior of a large population of agents
should be robust to small fluctuations in the agents’ aggregate behavior. Since we
ought to expect aggregate play to exhibit small deviations from the equilibrium
distribution, equilibria that are not robust against small disturbances do not
constitute reasonable forecasts. It is therefore important to determine which
equilibria are resistant to such fluctuations.

There are two main conditions used in evolutionary game theory to characterize
the local stability of equilibria. Roughly speaking, an equilibrium is Lyapunov stable
if no small perturbation can cause the population to leave the vicinity of the
equilibrium, even temporarily. The stronger criterion of asymptotic stability
requires that in addition, the population returns to equilibrium after any small

perturbation. Since net monotone dynamics drive the population up the contours
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of the potential function, it seems plausible that connections exist between its local
maximizers and the game's dynamically stable equilibria. These connections are
established in Theorem 4.3.

Before stating this result we require some additional definitions. We call a
closed set isolated if there exists a neighborhood of the set containing no Nash
equilibria outside the set. A set A c ¥ is smoothly connected if for any points x and
yin A there exists a continuous, piecewise differentiable curve y contained in A
whose endpoints are x and y. Closed, connected sets of Nash equilibria satisfy the
latter two properties in all but pathological cases. A set A < ./ is a local maximizer
set for fon . if (i) A is smoothly connected; (ii) f is constant on A; and (iif) there
exists a neighborhood B of A such that f(y) < f(x) forallye B-A and x € A. Since f
is continuous, all local maximizer sets are closed. Moreover, by Proposition 3.1, all
local maximizer sets consist entirely of Nash equilibria. Finally, the formal
definitions of Lyapunov stability and asymptotic stability can be found in the
Appendix.

We now state our local stability result.

Theorem 4.3: If V is net monotone and A is a smoothly connected closed set, then
(i) If Ais a local maximizer set, then A is Lyapunov stable;
(i.b) If Ais asymptotically stable, then A is a local maximizer set.
If in addition V satisfies non-extinction and A is isolated, the following are
equivalent:
(it.a) A is a local maximizer set;
(ii.b) A is Lyapunov stable;
(ii.c) A is asymptotically stable.

Proof: In the Appendix.

Part (i.a) of Theorem 4.3 tells us that under net monotone dynamics, all local
maximizers of potential are Lyapunov stable: small perturbations in behavior are
not enough to move the population away from these sets. Part (i.b) provides a
partial converse: any set which satisfies the stronger criterion of asymptotic stability
must be a local maximizer set. All other equilibria can be upset, though perhaps
only slightly, by an appropriate tremble.

If the evolutionary dynamics also satisfy non-extinction, we can say considerably
more. Without this condition, it is clear that local maximizers need not be

asymptotically stable; even if the set is isolated, there can be non-Nash rest points of
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the dynamics arbitrarily close by. Once we assume that such rest points cannot exist,
asymptotic stability follows. Furthermore, under dynamics satisfying both
conditions, local maximization of potential becomes a necessary condition for any
sort of stability: non-maximizers cannot even satisfy the weak requirement of
Lyapunov stability. In sum, under dynamics satisfying net monotonicity and non-
extinction, local maximizers of potential are attractors, and no other equilibria are
even moderately stable.

Local stability results are most important once a system reaches equilibrium, as
they establish whether we should expect the equilibrium to persist. However, they
do not guarantee that equilibrium will ever be reached. In general, evolutionary
game dynamics can exhibit closed orbits and chaotic behavior, with solution
trajectories perpetually avoiding neighborhoods of rest points. When this occurs,
equilibrium prediction is obviously inappropriate. Unless one can guarantee that
such behavior is impossible, a characterization of local stability is of decidedly less
interest.

Fortunately, we are able to establish that in potential games, under dynamics
satisfying net monotonicity and non-extinction, convergence to equilibrium is

assured. Let the limit set of x, w(x), be the set of accumulation points of the solution
with initial condition x: w(x)={ze ¥: 3 {x“}kzl c {x},, such that limx, =z},

Using this definition, we state our global convergence result.

Theorem 4.4: If V is net monotone and satisfies non-extinction, each limit set w(x) is
a closed, connected set of Nash equilibria. Consequently, the union of all limit sets,
U\,e,/a)(x), is equal to the set of Nash equilibria, and therefore to the set of fixed

points of x = V(x).

Proof: Follows immediately from Lemma 4.1, Proposition 4.2, and Lemma A.l

in the Appendix. W

The first claim of Theorem 4.4 establishes that solution trajectories starting from
each initial condition must converge to a connected set of Nash equilibria. In
generic games, all connected sets of equilibria are singletons, so each trajectory
converges to a unique limit point. More generally, because of our weak restrictions
on the dynamics, it is easy to construct examples in which convergence occurs in a
setwise fashion. The second claim shows that the sets of limit points, Nash

equilibria, and rest points are identical. In the absence of fluctuations in behavior,
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each of the three sets describes the possible long run behaviors of the population.

Together, these results fully justify Nash equilibrium prediction.

5. Efficiency

While in potential games evolution guarantees equilibrium play, our results
thus far make no claims about equilibrium efficiency. We now investigate payoff
efficiency in potential games. Our main results show that in isoelastic potential
games, average payoffs must increase along all solution paths, and all stable
equilibria are efficient. We begin this section by using a simple subclass of
congestion games to describe the impediments to efficiency. We then prove our
results in the more general context of potential games and discuss the implications

of these results for models of congestion.

5.1 Isoelasticity

To illustrate the barriers to efficiency, we consider a single population model of
traffic flow. Payoffs, reflecting driving times, are negative: F,(x) <0 whenever x, > 0.

Since adding cars increases travel times, Z(x)<0forallxe Yand allie S. In this

example, we assume that no two routes share a common street. This prohibits

cross-effects between the utilization of one route and the payoffs to another: 220

for all i # ;. By assuming away cross-effects we can make simple, precise statements
about efficiency.!”

Considerable insight into the welfare properties of congestion games can be
gained by considering payoff elasticities. We define the elasticity of strategy i (more
precisely, strategy i's payoff elasticity of utilization) by

N 150
g(x) = ——F,(x) )

The elasticity measures how sensitive route i's costs are to changes in the level of
driving volume. Since both payoffs and their "on-diagonal” partial derivatives are

negative, elasticities are positive.

17 Barro and Romer (1987) consider models of congestion without cross-effects and state conditions
under which congestion and equilibrium efficiency are compatible.
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Welfare can be measured using the average payoffs in the population at that
state. We call a state locally efficient if average payoffs F(x) = Z,X,Fz(x) reach a local
maximum at that state. Consider the impact on social welfare of introducing a new
player playing strategy i to the population. Since there are no cross-effects between

strategies, the marginal effect of this addition is equal to

:’:.‘
—
53
p—
I

3 (3, 25 (x)) + F.(x)

K

¥, 2 (2) + F (%),

The marginal social cost of increasing the representation of strategy i can thus be
split into two terms. The first, X, Z:(x), is the purely social component of marginal
social cost: it is the aggregate effect of the entrant on current strategy i players. The
second, F(x) is the payoff received by the new strategy i player, which has a marginal
impact on average payoffs because he is infinitesimally small. Substituting, we see

that

2L(x) = (&(x) + 1) F(x).

Thus, in the absence of cross effects, the marginal social cost created by a new strategy
i player is equal to the payoffs received by this player multiplied by one plus strategy
i's elasticity.

We now consider two implications of the previous equation. First, even in our
simple example without cross-effects, equilibria are not generally efficient. In
particular, strategies whose payoffs are more sensitive to their level of utilization
are overused in equilibrium. Suppose that z is an equilibrium of the congestion
game in which strategies i and j are both used. We can compute the marginal effect
on welfare of a switch by a player from strategy j to strategy i as

L(2)-2(2) =(a(z)+ 1) F(2) - (g(z) + 1) F(2).

Since in equilibrium F(z) = F|(z) = u < 0, this last expression equals
= (&(z) — &(2)) -

Hence, if route j is more sensitive to traffic than route i, a shift in behavior from

strategy j to strategy i is welfare improving.
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Second, consider a state at which the payoff elasticities of two strategies are equal:
£(x) = g(x) = €. In this case,
I () 4L (x) = (e + 1) (F(x) - ().
To interpret this equation, consider a driver who is debating a switch from route j to

route i. The previous equation implies that his benefit from making this switch,

F.(x) - F(x), is directly proportional to the marginal social benefit of this switch,

JL (x)—%(x). That is, the driver's incentives are simply a rescaling of social

o,
incentives. Hence, if the payoff elasticities of different routes are equal, individual
rationality leads to increases in aggregate efficiency.

The computations above take advantage of the absence of cross-effects.
Nevertheless, they suggest that if payoffs are equally sensitive to strategy utilization,
the prospects for efficiency are improved. In fact, with appropriate assumptions on
payoff elasticities we are able to obtain strong efficiency results.

These assumptions are easiest to understand in the context of congestion games.
Recall that the payoffs of a congestion game are defined by the facility payoffs c,, We
define the facility payoff elasticities by

’
uc, (1)

c, (1)

£(1t) =

for all levels of utilization for which the facility costs are non-zero. A congestion
game is isoelastic if there exists an € such that €,= ¢ for all ¢ € @. When this
condition is satisfied, the costs of all facilities are equally sensitive at all levels of use.

More generally, we say a potential game is isoelastic of degree ¢ # -1 if its payotf
functions are differentiable almost everywhere and it admits a potential function
which is homogenous of degree € + 1 on /. The following proposition justifies our

choice of nomenclature.
Proposition 5.1: Any isoelastic congestion game is an isoelastic potential game.

Proof: Recall that a potential function for congestion games is given by

o= -3 e (20dz.
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Since here the c, are isoelastic functions with elasticity ¢, they must take the form
co(ut) = a, uf, where the o, are constants. Moreover, since the ¢, must be well-

defined at zero, € must be non-negative. Therefore,

1, (X)

fx) = —Zj“ o,z dz

oed
1

= —ijl(zlm(x))“ .

oed

But since each u, is linear in x, f is a sum of functions which are homogenous of
degree € + 1 in x. Therefore, f is itself homogenous of degree e + 1. W

Define the aggregate payoff function, F: / — R, by
))
F(x) = Z,, ’\

A state is locally efficient if it is a local maximizer of F. The key to establishing our
efficiency results is the observation that isoelasticity implies the proportionality of
potential to aggregate payoffs.

Lemma 5.2: If F is isoelastic of degree € # 1, the function f(x) = 25 F(x) is a potential
function for F.

Proof: We need to show that Vf =F. By the definition of isoelasticity, each
payoff function F' is homogenous of degree e. Hence, if x € ¥ is a point of

differentiability of F, then externality symmetry and Euler's law imply that

¥ - /} L
/),\'_y ('\ ) F

[l
i
/—\
,.a
}
\/
_+_
el
/-:
P
N
~

e[’ jes”

= 1[2 Z\, ';1,(1)+1:P(A)J
qel jest

= L{eF/(x)+ F'(x)) = F/(x).

Since F is continuous, and since by definition any potential function of F is C',
7 (x) = F'(x)forallxe .. W

r).\' :
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Notice that the first summation above represents the marginal effect on the
payoffs of the original population of introducing a new player choosing strategy e
S'. Therefore, the computations within the parentheses show that once again,
equality of elasticities causes individuals' payoffs to be proportional to marginal
social payoffs.

In conjunction with Lemma 4.1, Lemma 5.2 provides us with a powerful tool for
investigating efficiency in isoelastic games. According to Lemma 4.1, directions of
ascent of the potential function are precisely those in which rational adjustments by
individual players can lead. Lemma 5.2 shows that if a potential game is isoelastic,
uphill directions of the potential function are those which increase aggregate
efficiency. Therefore, in isoelastic potential games, individuals' incentives and
social preferences are perfectly aligned; any adjustment in behavior which benefits
the adjuster also benefits the population as a whole.

The first implication we draw from this concordance of incentives is that average

payoffs must increase over all evolutionary paths.

Theorem 5.3: If F is an isoelastic potential game with € > -1 and V is net monotone,
then all solutions of the dynamical system % = V(x) satisfy £F(x,) 20, with equality
only at rest points of V. That is, evolution increases aggregate payoffs. If € < -1, then
solutions satisfy “LF(x,)<0.

Proof: Follows immediately from Lemma 4.1 and Lemma 5.2. B

Recall that doubly symmetric games are single population games in which
payoffs are determined by a single symmetric matrix: F(x) = (Ax), forallie S. Itis
easily verified that doubly symmetric games are single population isoelastic
potential games with & = 1. Therefore, since the replicator dynamics are net
monotone, Theorem 5.3 implies the Fundamental Theorem of Natural Selection.

The second claim of Theorem 5.3 states that in isoelastic games with & < -1,
evolution decreases social efficiency. In these games, individual and social
incentives are perfectly misaligned. However, it should be noted that this situation
cannot arise in isoelastic congestion games, which must have £ > 0; for € to be
negative, facility costs would need to be infinite at utilization level zero.

Because evolutionary paths ascend the potential function, dynamically stable
equilibria coincide with the local maximizers of potential. But since in isoelastic
games the potential function represents average payoffs, the local maximizers are

also the locally efficient states. Therefore, the locally efficient states and the
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dynamically stable equilibria coincide: the equilibria which are resistant to small

behavior trembles are precisely those which are socially efficient.

Theorem 5.4: If F is an isoelastic potential game with € > =1, then under any net
monotone dynamics, all stable equilibria are locally efficient and all locally efficient

states are stable equilibria.

Proof: Follows immediately from Theorem 4.3 and Lemma 5.2. (The precise
meaning of stability in the above statement depends on whether non-extinction is

also assumed: see Theorem 4.3.) W

In general, we can only guarantee that stable states will be locally efficient. For
example, in congestion games in which congestion is beneficial, multiple strict
equilibria will exist; while each may induce different payoffs, each is locally stable.
When congestion is detrimental, one might hope for a stronger result. As we saw
in Section 3, when facility costs are increasing, the potential function is concave, so
all equilibria maximize potential. But in isoelastic congestion games the potential
function is proportional to the aggregate payoff function. Hence, since each
equilibrium is a global maximizer of potential, each is globally efficient. Moreover,
since all plausible evolutionary processes lead to equilibrium play, all must yield

global efficiency. These conclusions are summarized in Corollary 5.5.18

Corollary 5.5: In isoelastic congestion games with non-negative costs, all Nash
equilibria are in a single convex set, and all are globally efficient. Moreover, under
dynamics satisfying net monotonicity and non-extinction, the equilibrium set is

both locally and globally stable.

5.2 Efficiency in Moderately Congested Traffic Flows

Uncongested traffic flows are efficient. If there are no purely social costs to
congestion, and all drivers choose the fastest available route, equilibrium clearly
maximizes welfare. To see this formally, observe that if each cost function ¢, is
independent of the level of utilization, then their common isoelasticity is zero,

implying efficiency.

18 Using techniques different from ours, Dafermos and Sparrow (1969) show that in congestion games
with increasing, isoelastic, convex costs (i.e., € > 1), Nash equilibria are globally efficient. Corollary
5.5 establishes that convexity is unnecessary for this result.

—33—



More interesting is the case of moderately congested traffic flows. Walters (1961)
and Vickrey (1969) both suggest that when roads are utilized at levels below capacity,
congestion costs are affine functions of utilization. With this in mind, we say that
congestion costs are moderate if ¢, is affine and non-decreasing for all g€ @. To
obtain an efficiency result, we must also assume that the uncongested travel times
of taking various routes are the same.!” This is plausible if all routes between
location pairs are of approximately the same length. Formally, we say that a

congestion game has equal fixed costs if for all p € P, there is a constant k¥ such that
zae(p, ¢,(0)= k" forallie S"

If the cost functions include fixed costs, they clearly cannot be isoelastic.
However, if within each population the fixed costs of each strategy are equal,
drivers' decisions are unaffected by these fixed costs, which must be borne regardless
of the route ultimately chosen. Hence, no player's incentives are affected if we
simply eliminate all fixed costs from the model.2 Moreover, because the fixed costs
have a uniform impact on aggregate welfare, an efficient state in the new game is
also efficient in the original game. Since striking the fixed costs generates a game
with non-decreasing, linear costs, Corollary 5.5 implies the following efficiency
result.

Corollary 5.6: In congestion games with moderate congestion costs and equal fixed
costs, evolution increases aggregate efficiency and all equilibria are globally stable
and globally efficient.

6. Efficiency through Congestion Tolls
6.1 Proportional to Marginal Cost Pricing

So far, we have characterized evolution in potential games and established that
evolution leads to efficiency when costs are isoelastic. Unfortunately, as Braess'
paradox illustrates, when costs are not isoelastic inefficient outcomes are possible.
Inefficiency arises because players do not consider social costs when selecting

strategies. By introducing a system of congestion tolls, we can force players to weigh

19 Indeed, Braess' (1968) original example uses affine cost functions which do not have this property.
20 This shifting of payoffs is the basic idea behind quasipotential games, which are discussed in
Section 7.1.
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the social costs of their actions in a manner which leads to the play of welfare
maximizing strategy distributions.

We begin by considering this mechanism design problem in the context of
potential games. While in any potential game, evolution leads to the ascension of
the potential function, f, our mechanism designer prefers that evolution increase
overall social welfare as measured by average payoffs, F. Suppose the mechanism
designer can introduce an extra component (e.g., transfer payments) to the payoffs of
the game which alters each player's incentives but which is irrelevant to social
welfare. If he could introduce these payoffs in such a way that the newly constructed
game had potential function [, then evolution in this new game would lead to
increases in efficiency in the original game. In fact, as long as the potential function
of the new game is proportional to F, both functions exhibit the same uphill
directions, and evolution enhances aggregate welfare.

~

Call the potential function of the new game f. We would like to construct
payoffs in such a way that /} =k F, where k > 0. To accomplish this, we write f =f+
t: that is, we express the new potential function as the sum of the original potential
function and a new function, f, which we call the transfer potential function.
Differentiating the latter identity, we see that we must solve for a set of transfers T/
such that the augmented payoff functions F' = F’ + TV define a potential game
whose potential function is )A‘ Observing that t = kF - f, we see that if the payoff
functions are smooth,

T/(x) = 2()

ox ‘V

= kL (x)-L(x)

X oax;

= kLZ infjj—f;?<x>]+<k—1>F;’<x>.

qel jest

The summation in the last expression represents the purely social marginal effect of
a player choosing action i€ S". When k = 1, the transfer simply adds the social
impact of each action to the individual player's payoffs, implying that the newly
constructed payoffs are equal to marginal social payoffs. Thus, forcing the new
potential function to equal average costs yields marginal cost pricing. More
generally, individual's payoffs in the new game are proportional to marginal social

payoffs: FP'= F' + TV = k<. For this reason, we call these transfer schemes

ol
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proportional to marginal cost (PMC) pricing. Under every PMC pricing plan,
evolution yields efficiency.

To determine PMC transfer payments in congestion games, recall that payoff
functions in these games are given by F/'(x) = —2 cor c,(u1,(x)). Therefore, noting

that

1 ifgear,
: ('):{

o' 0 otherwise,

we see that

T (x)

Il
-~

221( > (i (u (‘”ﬂ +<k—1>[ 2(—co(zto<x>>)]

qeljes’ \oab At ) oe@f

:—kZu + (k- 1)2c i, ]

oco! e’

This equation implies that PMC transfers can be achieved by placing congestion tolls
directly on the individual facilities. Letting k= ¢ — 1, we see that for each k¥ > -1, the

following equation defines a set of PMC Congestlon tolls:
(T) 1) = 2 (uc,(u) - ke (u)).

The parameter k, which we call the elasticity threshold, has a simple interpretation:
when the cost elasticity of a facility is exactly x, the congestion toll is set to zero; at
cost elasticities higher than k, positive tolls are imposed; at cost elasticities lower
than x, subsidies are paid.

In general, without additional intervention by the mechanism designer, PMC
tolling can only guarantee local efficiency. However, if congestion costs are
increasing and never too concave (i.e., if uc)(1) 2 -2c,(u) for all ¢ and u), average
payoffs are concave. In such cases, evolution under PMC tolling leads to global

efficiency.

Theorem 6.1: In congestion games whose cost functions satisfy ucy(u) > -2cy(u) for

all ¢ and u, aggregate payoffs are concave. Consequently, under any PMC toll,
evolution from any initial condition yields global efficiency.
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Proof: In the Appendix.

If congestion costs are increasing and convex, the conditions of the theorem are met,
and evolution under PMC tolls yields global efficiency.

We illustrate PMC tolling using our example from Section 2. In particular, we
reconsider the case in which a fifth street was added, increasing equilibrium travel
times. Ignoring fixed costs, which are equal over each complete route, the travel
times on the streets are given by c¢,(u1) = cy(1t) = 1, c,(11) = c3(u) = 1?, and c;(u) = Lu.
Therefore, applying the previous formula, we see that the efficient driver allocation
of (x', v, z) = (.465, .465, .070) can be achieved by introducing congestion tolls of

17K u, o) = t(u) = 27K u®, and 75(u) = 1=«
K+1 K+1 2(k+1)

T(u) = t(u) = u

for any x> -1.

Three values of the elasticity threshold deserve special attention. First, choosing
a elasticity threshold of zero, which corresponds to setting k = I3 = 1, induces

K+1

marginal cost pricing. The resulting tolls are 7,(1) = 7,(1t) = u, To(u) = Ta(u) = 2u°, and
(1) = su: marginal cost pricing imposes tolls on every street.

Intuitively, the inefficiencies that arise in this example are entirely due to
congestion on streets 2 and 3. Adding street 5 reduced efficiency because it allowed
drivers to use both of the congested arteries: since the drivers do not account for the
social impact of their choices, route Z, which includes both street 2 and street 3, is
overused in equilibrium. It therefore seems reasonable to hope that efficiency could
be restored by imposing tolls solely on these two streets.

This is precisely what happens if we choose a elasticity threshold of one. In this
case, T,(1t) = 73(u) = 1u°, and 1y(1) = 14(u) = 7s(u) = 0. Thus, while marginal cost
pricing yields efficiency, by using PMC tolling we can achieve efficiency with fewer
and smaller tolls.

Finally, consider choosing k = 1.414, leading to tolls of 7,(1t) = 7,(u) = =172 u, 7o(u)
= 1o(u) = .243 u*, and 75(u) = —.086 u. In this case, negative tolls are charged on the
less congested streets. Aggregate toll revenue, given by

XIn(x) + o(x + 2]+ ynly + 2+ oyl

+ (X" + Z) + (Y + )+ (),
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equals zero. Thus, by using tolls on the more congested streets to subsidize travel on
the less congested ones, we can simultaneously achieve efficiency and budget
balance.?!

This example illustrates a number of general properties of PMC tolling. Under
marginal cost pricing (x = 0), as long as costs are monotone only positive tolls are
charged. However, as the example demonstrated, marginal cost pricing often
imposes more drastic tolls than are needed to generate efficiency. To determine the
smallest non-negative PMC tolls, we let

Epn = moin irl}f £, (1)
equal the minimum cost sensitivity of any facility at any level of utilization. By
choosing k = &,,,, we achieve efficient allocations with the least intrusive tolls that
are guaranteed to be non-negative. Equation (T) implies that tolls are non-negative
at K = €., and that choosing a higher value of x would lead to the imposition of a
negative toll. On the other hand, if costs are non-negative and monotone, lower
elasticity thresholds generate higher tolls:
—(uc,(u)+c, (1))

< 18u) = B <.
21l ( ) (K_ + 1);

Hence, setting k equal to &, yields tolls with the desired properties.2

Finally, elasticity thresholds parameterize toll revenues. To see this, note that
for any u such that either c, (1) or ¢, (u) is strictly positive, IAIVIE T, (1) = oo, IETIB (1) =
—e, and + 7, (1) < 0. Hence, if we fix any state x € .¥" which induces positive costs
for some strategy, there is a one-to-one, decreasing mapping between elasticity
thresholds (on the interval (-1, «)) and aggregate toll revenues (on the real line).

Thus, given any efficient state and any desired toll revenue r, there is a unique set of

21 Of course, one could also achieve budget balance by charging a positive toll and then dividing the
accumulated surplus among all drivers. The advantage of the method proposed above is that all
subsidies are given as the drivers use the routes, obviating the need to determine who the drivers are.
22 In general, if one cannot ignore fixed costs (as we did in the example), then any facility with a
positive fixed cost will have an elasticity which approaches zero as its utilization approaches zero.
On the other hand, the population will ultimately allocate itself efficiently. Thus, if negative tolls
are undesirable, what is most important is to ensure that they need not be paid at states near the
efficient states that will ultimately arise. Consequently, if in computing &y, we restrict attention to
utilization levels near those of efficient states, then g, will typically be strictly positive. Thus, at
the states that are actually likely to arise, tolls will be non-negative and smaller than those resulting
from marginal cost pricing.

—38~



PMC tolls which yield revenue r at this state. In particular, efficiency and budget

balance can always be achieved.

6.2 Decentralized Solution of Network Decision Problems

So far, we have concerned ourselves exclusively with games played by
continuous sets of players. However, congestion is also a common problem for
monopolists who must transport their products over networks. Consider, for
example, a utility company which must provide customers with electricity over a
power grid. Given consumer demands, it would like to do so in a way which
minimizes total transport costs.

Our results imply that a monopolist can use a simple method to find and
maintain an efficient routing for its goods.?? The monopolist imposes a purely
internal PMC congestion toll. Whenever a particular bundle of goods could be
transported at a lower toll-augmented cost by switching its route, the routing is
gradually adjusted until the improvement opportunities vanish. Theorem 5.3
implies that this myopic improvement process always lowers aggregate
transportation costs. If the original cost functions satisfy the conditions of Theorem
6.1, this procedure must lead to a globally optimal routing choice. If not, refining
the adjustment procedure can guarantee locally and even globally efficient
outcomes.2? Either way, our efficiency results provide a decentralized method of
both finding efficient route allocations and maintaining efficiency in the face of

variations in available routes and supplies, transport costs, and customer demands.

7. Potential Games with Elastic Demand

To this point we have implicitly assumed that all players from each population p
must choose one of the strategies from S”. However, if all strategies are quite costly,
some players might prefer to opt out of the game entirely. For example, if the game

models route selection, lengthy driving times and high tolls might cause drivers to

23 Note that if more than one supply source exists, we can specify populations by destination rather
than by origin/destination pairs so as to internalize the choice of sources.

24 1f the firm occasionally makes small, random adjustments in the routing choice, by applying
Theorem 5.4 we see that these perturbations will serve to disrupt any inefficient equilibrium, thereby
guaranteeing local efficiency. In addition, if the monopolist initially solves for the globally optimal
routing, decentralized adjustment can maintain the global optimum so long as changes in the underlying
model do not cause dramatic shifts in the cost structure (e.g., the globally optimal routing choice).
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abandon the commute. To capture this possibility, we could simply add a strategy
whose payoff equals some minimal acceptable value independently of the behavior
of the population. But more generally, we would like to allow different players to
have different reservation values for playing the game. In this section, we show
how elastic demand can be incorporated into potential games, and explain how our
previous results can be extended to this case.

To define the demand functions, we let I" be a closed interval of real numbers

representing possible payoffs in population p. Let Q = (Q', ... , Q"): Hp I" -

Hp[O,m"] denote the vector of demands in each population as functions of the

payoffs in all populations. We assume that Q is C' and invertible, and that its
derivative matrix is always of full rank. Furthermore, we assume that "cross-price”
effects are symmetric: %— = % for all i, j € P. Finally, we let Q=(Q' ..., Q)
Hﬁ[(),m"] - l—[r I" denote the inverse demand function.

To introduce elastic demand to potential games, we add strategies representing
outside options. For each population p, we let the augmented strategy space equal
S"={0)u S, where strategy 0 represents the outside option. We define the payoffs
to the new strategy in terms of the inverse demand function:

Fi(x) = Q'(m' = x},...,m" = x}).

Q'(m' —x,,...,m" —x}) is the payoff received by the marginal player who leaves the
game. But while Q" only represents the marginal player's payoffs, using it as the
"payoff function” for the outside option is nevertheless the appropriate way to
introduce elastic demand. If there exists a strategy i € S’ such that F’ > Q”, there are
players currently using the outside option who would prefer to use strategy . If all
strategies j € S’ satisfy F¥ < Q', then there are players in the game who would
prefer to switch to the outside option. Only when F!' < Q¥ for all j e S with
equality for at least one j is demand calibrated with the available payoffs.

The elastic demand game we have defined admits a potential function. We

establish this by checking that externality symmetry holds. First, observe that %1\—, =0

= %’ for all ie S and all p, g € P. Second, since the original game is a potential

ot 1z . . o P/ . .
game, we see that Lf\— = ;— Finally, we claim that %— = 2° To establish this, let

oax] \ ox f

DV, denote the derivative of the vector field F at the point x. The claim follows
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from the observations that DQ, = (DQQW))’1 (i.e., that the derivative of the inverse

demand function equals the inverse of the derivative of the demand function) and
that the inverse of a symmetric matrix is symmetric.

While our results from the previous sections can be extended to this general
setting, to simplify the discussion we restrict attention to congestion games and to
demand functions which only depend on own-population payoffs (so that
Q" (m* —xy,.,m X)) = o (m" —x}) for all p e P). In congestion games, facility costs
are well defined for all population sizes in the interval [0, m"], and hence payoff
functions are well defined on the new strategy space ./, which allows for the

outside option. The potential function for this elastic demand game is

fx) = —2( j(:’“""cw(z)dz)_ 2[ | Q)’(z)dzj.

0ed pel

It is easily checked that the equilibria of this game are those points which satisty the
Kuhn-Tucker first order conditions for a maximum, and that equilibrium is unique
if congestion costs are increasing and the law of demand holds.?

All of our results on evolutionary dynamics continue to hold in the elastic
demand setting. The obvious extension of net monotonicity to this context has a
natural interpretation: it requires that better performing strategies tend to prosper,
and that players tend to switch to and from their outside option as their preferences
dictate. Our results generalize immediately: the potential function continues to be a
Lyapunov function under net monotone dynamics, and the local and global stability
results still obtain.

The isoelasticity conditions from Section 5 continue to yield behavior which is
efficient conditional on realized demand. To see this, consider an equilibrium of an
elastic demand game whose payoff functions (other than the inverse demand
function) are isoelastic. If we fix demand levels at their equilibrium values, the
game that remains is isoelastic; hence, equilibrium behavior must be efficient
conditional on these levels of demand. An analogous argument establishes that
placing PMC tolls on the facilities yields efficiency conditional on realized demand.

While a social planner designing tolls for a highway network clearly desires

conditional efficiency, he also is likely to have preferences concerning realized

25 Since the demand functions are functions of payoffs rather than prices, we must require them (and
hence the inverse demand functions) to be fitcreasing.
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demand itself. If demand is very high, even the conditionally efficient allocation
may result in severe congestion. On the other hand, excessive tolls inordinately
depress demand, preventing productive economic activity.

Fortunately, in choosing the elasticity threshold a social planner can influence
aggregate demand. Recall that PMC tolls are parameterized by their elasticity
threshold. Increasing this threshold reduces tolls, which makes continuing to drive
a more desirable option. While under inelastic demand this directly affects
aggregate toll revenues, under elastic demand the immediate effect is on the
attractiveness of the outside option to the marginal driver. By choosing the
elasticity threshold appropriately, a social planner can strike a balance between

congestion delays and the tolls' dampening effects.26

8. Potential Games as Limits of Finite Player Games

In this section, we establish the connections between potential games with a
continuum of players and the finite player potential games of Monderer and
Shapley (1996). We begin by defining quasipotential games, which are extensions of
continuous potential games that admit a potential function characterization of
equilibrium and evolution. We then prove that quasipotential games are precisely
the limits of finite player potential games which satisfy an anonymity condition.

For notational convenience, we restrict attention to the case of single population
games; all of the results which follow can be extended to the multipopulation case.

8.1 Quasipotential Games

In Section 5.2, we noted that subtracting a constant from all players payoff
functions did not affect their incentives: for each fixed profile of opponents’ actions,
the relative payoffs to a player's strategies are unchanged. More generally, suppose
we fix a particular action profile for a player's opponents and add a constant to the
player's payoffs at all strategy profiles consistent with the specified profile of
opponents’ behavior. Once again, the player's incentives are unaffected.
Consequently, an analysis of evolutionary dynamics would not be affected by such a
change.

26 Since the toll elasticity is scalar valued while the levels of demand in each population form a
vector, a social planner can only choose the levels of demand from a one parameter family.
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We call any game that can be created by modifying a potential game with such
payoff shifts quasipotential game. Let a shift function, o: /= R, be a continuous
function from the simplex to the real line. A shift vector, X: ./’— R", is a vector
valued function whose components are all the same shift function: X, =ocforallie
S. A population game Fisa quasipotential game if F=F + X for some potential
game F and some shift vector X.

Since adding a shift vector to payoffs does not affect the set of Nash equilibria,
Proposition 3.1 extends to quasipotential games: the Nash equilibria of the
quasipotential game are precisely the points which satisfy the Kuhn-Tucker
conditions for a maximum of the potential function. Furthermore, it is easy to see
that the potential function f associated with any potential game F will serve as a
Lyapunov function under net monotone dynamics for any quasipotential game
derived from F. Since V- 1=0,

F V=(F+2%)-V=(F-V)+o(1-V)=F. V.
Thus, if V is net monotone with respect to Fand x = V(x), then
%f(\t) = Vf(x,)) - x, =F(x)) - V(x) = F(x) - V(x) 20,

with equality only when V(x,) = 0. Hence, by our results in Section 4, the potential
function of the potential game F also describes evolution in any quasipotential game
derived from F. It is worth noting, however, that the efficiency results from Section
5 need only carry over if the shift function is constant; other shifts perturb average
payoffs in a way which is not captured by potential.

8.2 Anonymous Finite-Player Potential Games

We describe a finite player game by a triple {1, {Sa}ae[, {u”}”el }, where I = {1, 2, ...,

N} denotes the set of players, and S, and 11, represent player o's pure strategy set and
payoff function, respectively. The payoff functions are defined on the set of pure

strategy profiles S = HGE[S(,. Foreach ave I, letS_, = HﬁwSB-

and Shapley (1996), we call a game a finite player potential game if there exists a
function P: S — R such that

Following Monderer

”(l( S(ll, 5—(1) - ”nr(Sm S—a) = P( S(’, ’ 57(1) - P(Sw S—a)
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forall s, s/ € S, s.,€ S, and ae I. That is, any unilateral deviation has the same
effect on both the deviator's payoffs and the potential function. The potential
function serves as proxy for each player's payoff function when the strategies of his
opponents are held fixed. It is easily verified that potential games can also be

characterized as the class of games which admit the representation
ll(l(S(Il S*(I) = P(S) + a(‘l(S*(l)/

where for each @€ I, a, is a function from opponents' strategy profiles S_, to the real
line.

Since in continuous potential games the players are anonymous, we restrict
attention to finite potential games in which players’ payoff functions can be
expressed as a function of their action and their opponents’ aggregate behavior.
Furthermore, since we are focusing on continuous potential games with a single
population, we only consider games in which all players' payoff functions are
identical.2’” More precisely, we first assume that all players strategy sets are identical:
S.=Spforall o, Be I. Define the function x to map strategy profiles s € S (and, with
a slight abuse of notation, s , € S_,) into their distributions in the simplex %/ Then
the anonymity conditions imply that each player's payoff function can be expressed

in the form
U{Sa S5_a) = P(x(5)) + a(x(s_,)),

where the potential function is now a map from a discrete version of the simplex to
the real line, as is the adjustment function, a.

This expression for player a's payoffs only depends on the strategy distribution,
x(s), and player a's strategy choice, s, (which is used to determine x(s_,)); it does not
depend directly on the identity of player p. Consequently, we can represent this
game with anonymous payoff functions u: .¥— R which for each strategy ie S
express the payoffs to strategy i € S given overall strategy distribution x € .%’ Letting

e; denote the ith unit vector, we write

27 More generally, in the multipopulation case, all players within each population must have
identical payoff functions.

—44-



We call any finite player game which admits this representation an anonymous
finite-player potential (AFP) game.

We now show that despite their rather different definitions, quasipotential
games are precisely the limits of sequences of AFP games in which the number of
players approaches infinity. To prove this result, we need to assume that the
sequences of potential functions and payoff functions converge to limit functions.
We must therefore extend the domains of definition of each from a discrete version
of strategy space to the entirety of strategy space. From here onward, each potential
function is assumed to be a C' function on ., and each payoff function is

continuous on ./
Fixing a strategy set S, let {({11;\} _,P‘\')} be a sequence of AFP games whose
ren N=n

population sizes approach infinity. We say that the sequence converges to the limit

game ({u,}lgg,P) if () +PY —< P, (il) u¥ —— u, forallie S, and (iii) there exists

a K such that all " and all +2~ are Lipschitz continuous with Lipschitz constant

K.2% Since the potential function in finite player games aggregates payoffs, in
condition (/) we rescale potential by the number of players so that we can compare
the potential functions of games with different numbers of players. Condition (ii)
requires the uniform convergence of the payoff functions. Condition (iii) is a
smoothness condition which is satisfied in most examples.2? Using this natural

notion of convergence, we can state our limit result.

Theorem 8.1: If {({u,‘\'}leg,P‘\')} is a convergent sequence of AFP games, then its

N=n

limit, ({”1},65'1))' is a quasipotential game. That is, there exists a shift function o

such that for allie S, u,= 4 + o.
Proof: In the Appendix.

In AFP games, potential functions are only defined on the strategy space, 4. But
in order for the partial derivative mentioned in the theorem to be well-defined, the

limit potential function P must be defined on the wedge #/. Therefore, to make

28 The C" norm of a continuous function defined on a compact domain is the supremum norm: “lz” o = Supy
h(x). The C! norm of a continuously differentiable function is the sum of its C’ norm and the C" norms of
its partial derivatives.

29 Alternatively, one could use a stronger notion of convergence requiring that the rescaled potential
functions converge in C? and that the utility functions converge in C'.

45—



sense of the statement of the theorem, we must extend each P" to #/ in such a way
that the extended functions continue to converge in the C' norm. The limit
function will then be C' function on #/. Importantly, any convergent sequence of
extensions yields a quasipotential game as its limit. Our proof establishes that given

any such convergent sequence, the function
o(x) = lviirl(a‘\’(x)ﬁL PN (3 x))

exists and is the shift function for the limit quasipotential game. Consequently, the

limit games arising from different extensions will differ in their shift functions o.
This observation also follows from noting that the unshifted payoffs 4~

ax.

depend on

the extensions of P but must ultimately vield the same shifted payoff functions u, =
(),\’:

+ o regardless of the extension.

The converse of Theorem 8.1 is also true: given a any quasipotential game with
potential function P (defined on #/) and shift function o, the proof of Theorem 8.1
implies that the sequence of AFP games defined by setting PY(x) equal to NP(x) and
a(x) equal to o(x) - P(31x) converges to the original quasipotential game. In other
words, every quasipotential game is the limit of an appropriate sequence of AFP
games, and may therefore be viewed as an approximation to a large, finite player
potential game.

Finally, one can combine Theorem 8.1 with our results from Section 5 to
establish conditions under which evolution in large AFP games will yield
approximate efficiency. Suppose that a sequence of AFP games converges to an
isoelastic potential game: that is, we can choose extensions of the potential
functions P such that the limit potential function is homogenous of positive
degree and the limit shift function is identically zero (or, more generally, a constant
function). Theorem 8.1 then implies that for any AFP game far enough along the
sequence, the potential function P* will be approximately proportional to average
payoffs. Therefore, in these large, finite games, evolution leads to approximate
efficiency.
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9. Conclusion

We investigate equilibrium, evolution, and efficiency in games satisfying
externality symmetry. All such games admit a potential function, whose gradient
equals the payoff functions of the game. Since any reasonable evolutionary process
must increase potential, we are able to establish results on both the local and global
stability of equilibrium. We provide conditions under which evolution yields
efficiency, and exhibit pricing schemes which induce efficiency in cases in which it
does not naturally arise. Finally, we show that our class of continuous games is the
limiting case of the discrete potential games of Monderer and Shapley (1996).

The examples developed throughout this paper illustrate our model's fitness as a
framework for studying externalities in large populations. We hope that future

research on externalities will benefit from the tools developed here.

Appendix

A.1 Evolutionary Dynamics: Definitions and Auxiliary Results

Most of the definitions we require are stated in Section 4; only those which were
omitted are provided here. A neighborhood of a closed set A — .¥’is a set which is
open relative to ./’and contains A. A closed set of fixed points A ¢ .¥’is Lyapunov
stable if every neighborhood B of A contains a neighborhood B'of A such that
{x,}., cBforallxe B'. That is, solutions starting at all points sufficiently close to
A always remain close to A. A closed set of fixed points A < ¥'is asymptotically
stable if it is Lyapunov stable and there exists a neighborhood B of A such that w(x) ¢
A forall x € B: in other words, solutions starting from all points close enough to A
remain nearby and eventually converge to A. The existence of a global Lyapunov
function allows a strong characterization of the limit behavior of a dynamical
system, as the next proposition shows. Its proof can be found in Losert and Akin
(1983, Proposition 1) and Robinson (1995, Theorem 5.4.1).

Lemma A.1: Iff: ¥'— R is a global Lyapunov function for x = V(x), then each limit
set w(x) is a non-empty, compact, and connected set consisting entirely of fixed
points of V and upon which f is constant.
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Global Lyapunov functions also form the basis for a sufficient condition for
Lyapunov stability. The following lemma follows immediately from a result of
Bhatia and Szeg6 (1970, Corollary 3.3.5); also see Weibull (1995, Theorem 6.4).

Lemma A.2: Iff: ./— R is a global Lyapunov function for x = V(x) and A is a local
maximizer set of f, then A is Lyapunov stable.

To prove asymptotic stability results, we need slightly stronger conditions. We
calla C' function f: .= R a strict local Lyapunov function for the set A under % =
V(x) if (i) A is a local maximizer set of f, and (/i) there exists a neighborhood B of A
such that £ f(x,) > 0 whenever x € B - A. The existence of a strict local Lyapunov

function for the set A implies its asymptotic stability. The proof of this result can be
found in Hale (1969, Theorem 10.1.1); also see Weibull (1995, Theorem 6.4).

Lemma A.3: Iff: ¥ — R is a strict local Lyapunov function for A, then A is
asymptotically stable.

A.2 Proofs Omitted from the Text

Proof of Corollary 3.2: The first claim follows immediately from Proposition 3.1. To
prove the second claim, consider a congestion game whose payoff functions are

constructed from weakly increasing cost functions c,. Choose x, y € .¥; by the first
claim, it is enough to show that the potential function f(x) = —zowj’:amco(z)dz is
concave on the line segment joining x and v.

For A€ [0, 1], let v(A) = Ax + (1 = A)y, and let v ,(4) = u,(Ax + (1 - A)y). If the cost
functions are differentiable, then

fle(2) = = e 0. 0N (e5(D)

oed

which is non-positive since ¢, > 0. If the cost functions are not differentiable, the

result is proved in a similar fashion by considering the left and right hand
derivatives of c,. W
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Proof of Theorem 4.3: We first require the following lemma.

Lemma A.4: The potential function f is constant on any smoothly connected set of
Nash equilibria of F.

Proof: Let A be a smoothly connected set of Nash equilibria of F, and let y and z
be elements of A. Then there exists a piecewise smooth function y: [0, 1] » A c ¥
with f0) = y and A1) = z. Since

1) = f) = | Vf-ds = [[Foe)- v 0],

it is sufficient to show that the integrand F(y(f))- y'(t) equals zero at all points at
which yis differentiable.
Let t be a point of differentiability of . For each p € P, define u”(x) = maxF/(x)

and A (x) = pu’(x) - F/(x) for all x € A. Observe that these functions are continuous,
and that F/(x) = u"(x) - A7(x). Hence,

F(y)-7' () = S(F () - (7Y )

pel

= 3 (W ) 1 YOI+ [ () (7Y ().

pel

Since yc 7, 1 - (y")(t) = 0 for each p € P, so the first term in each summand is
identically zero. To prove this is also true of each second term, note that since all
points on y are Nash equilibria, Proposition 3.1 implies that x!" A7(x) =0 for all x € .
Furthermore, that yc .¥'implies that (') (t) = 0 if y(t) = 0. Consequently, A’ (A1))
(y'Y(t)=0forallie 5" and all p € P, completing the proof. 1

We continue with the proof of Theorem 4.3. Part (i.a) follows immediately from
Lemma A.2 and Lemma 4.1. To prove part (i.b), let A be a smoothly connected
asymptotically stable set. Then there is a neighborhood B of A such that V(x) # 0
and w(x) c A for all x € B-A. Net monotonicity implies that £ f(x,) = Vf(x,) - X, =
F(x,)- V(x;) >0 forall x,e B-A. Applying Lemma A.4, let ¢ be the unique value
taken by fon A. Then there cannot exist a z € B — A such that f(z) > ¢, as this would
contradict that £ f(x,)

_. >0and w(z) c A. Therefore, since A is smoothly

Xy

connected it is a local maximizer set.
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To prove the remaining results, we show that (ii.c) = (ii.b) = (ii.a) = (ii.c). The
first implication, that asymptotic stability implies Lyapunov stability, is true by
definition. To prove the second implication is true, let A be a smoothly connected,
isolated, Lyapunov stable set, and suppose to the contrary that A is not a local
maximizer set. Since A is isolated, we can find a neighborhood C of A which
contains no Nash equilibria outside A. Because C is an open neighborhood of A, we
can choose a second neighborhood B of A such that the (Hausdorff) distance
between B and .- C is strictly positive. Finally, since A is Lyapunov stable, there
exists a third neighborhood B' < B of A such that all solutions starting in B' never
leave B.

Applying Lemma A.4 once again, let ¢ be the unique value which f takes on A.
Since A is not a local maximizer set, there exists a point x € B’ such that f(x) > c. By
Lemma A.1, the limit set of x, w(x), consists entirely of rest points of the dynamics.
No point in A can be in @(x), as this would violate net monotonicity. Moreover, C
contains no Nash equilibria, and therefore, since V satisfies non-extinction, no rest
points. Consequently, w(x) c ¥/'-C. But since B is bounded away from .¥'-C, this
contradicts that the orbit of x never leaves B. Hence, A must be a local maximizer
set. This proves that (ii.b) = (ii.a).

Finally, we prove that (ii.a) = (ii.c). Let A be an isolated local maximizer set.
Since A is isolated, there is a neighborhood B of A such that all Nash equilibria in B
are in A. Hence, non-extinction implies that V(x) # 0 for all x € B - A, and so net
monotonicity implies that 4 f(x,) > 0 for all x,e B - A. Thus, since A is a local
maximizer set of f, f is a strict local Lyapunov function for A. Lemma A.3 then

implies that A is asymptotically stable. W

Proof of Theorem 6.1: We need only prove the first claim, as in its presence the

second claim follows from previous results. Assume that each facility cost function
c, satisfies ¢, (1) = —2c,(u) for all utilization levels u. Rewrite the aggregate payoff

function as

Fo =3 D FX
- Y S Y, )
- —Zouo(x)co(llo(l'))'
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Choose x,y € ./ It is enough to show that the aggregate payoff is concave on the
line segment joining x and y.

For A e [0, 1], let v(A) = Ax + (1 - A)y, and let v,(A) = u(Ax + (1 = A)y).
Differentiating twice, we see that

£ F(0(A) = = 3 (04(1)) (2a(A) (0, (A)) +2¢4(2,(A))

oed

Substituting u for v,(4), we see that this expression is non-positive whenever wc;(u)

> -2¢,(u). Hence, F is concave. B

Proof of Theorem 8.1: We are given a convergent sequence of AFP games

re . BN

i({u;\} \,P‘\)f . To prove our result, we must first extend the potential functions
en N=n

so that they converge in the C' sense on /. Any extension will do; for concreteness,
one can think of the extension which is homogenous of degree zero.

Let a* be the adjustment function for the N player AFP game. Since the payoff
functions 1" and the potential functions P* are continuous functions on .¥, we can

take the adjustment functions a" to be continuous on .%. For all large enough N,

define
o"(x) =a%(x) + PY(3x) and
o(x) = {mlo (x).

We prove that the limit game ({1} ,P) is a quasipotential game by establishing
_+-

that o is its shift function: u, = <= + o for allie S. We begin by showing that the

limit which defines ¢ exists.
Observe that

1 (x) = P‘\J(-\‘)+ﬂ‘\'(‘\v'\-‘:§' )

PY(x) = PY{x =5 )+ PY(x—5)+ a5
= PY(x) - PY(x - %)+ o™ (). (1)

If welet 6" (x) = o ( ) then

u¥(x) = PY(x)= PN {x =)+ 0] (x). ?



To prove that the o° converge, we require the following lemma.

Lemma A.5: The functions (P‘\"(x)—P‘\’(x—f’\—;)) converge uniformly to 5-as N — .

Proof: Since each P is C', the Mean Value Theorem implies that for some z(x)

on the linear segment connecting x and x—%,

PY(x) = PY(x = %) = VPV (2} (1) e,

1

or, alternatively,

PY¥(x) = PY(x — ) =+ Z= (2] (). V

Since the functions &%~ are uniformly Lipschitz with constant K, and since

|zY (x) - x| < &, we see that

17 4 (z‘,‘\'(x))—;—‘%p(_x)i < & forallve & (4)

Equation (3) implies that

a0 P ()10

N i N SN
< max([F 25 (2 (1)) ~ L ()| + L () - £ (x)

223

But equation (4) and the fact that +2~ < 2 jmply that the right hand side of

the above expression approaches zero as N approaches infinity. This completes the
proof of the lemma. U

We continue by noting the following Lipschitz-like inequality for the functions
(P‘\"(x)—P‘\"(x—f’\—i)). Applying the uniform Lipschitz condition satisfied by the

. N . o ;
functions 42— and using the definition of z* above, we see that




< K(\x—yh%). 5)

By the definition of convergence for a sequence of AFP games, 1" —< 5 u, This

fact, Lemma A.5, and equation (2) imply that the ¢ converge uniformly on %/ Call
the limit function o..

We claim that 0,= ¢, for all /, j € S. To see this, suppose to the contrary that c,(z)
> 0,(z) + € for some z and some £ > 0. Then for all large enough N, 6" (z) > o7 (z) +

&

£, The definition of ¢ then implies that for all large enough N,

> % (6)

(N-Dx~c,

For any x, let w’ (x) = ~—. Applying equation (1) and inequality (5), and
recalling that the " satisfy a uniform Lipschitz condition, we see that

o™ (x) = o™ (y)
(1 (20 () = (P (0 () = P¥ (a0 (1) - )
- (u;.‘ (w0 (1) = [P (@ () = PN [ () - r)))‘
) =10 (0l ()] + [P () () = P (a0 () - %)

(
- (P () - P (w0 () - )
< ZK(‘ZUL,V(x)— w;,\'(y)’f\l,)

This contradicts inequality (6). Therefore, the o; must all identical: o,=0c forallie
S.

It is easily verified that o is the shift function defined at the beginning of the
proof. To complete the proof, we need to show that forallie S, u,= 2= + ¢. But in

ox.

light of our computations above, this identity follows from taking the limit of
equation (2) as N approaches infinity. W
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