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Abstract

We analyze a model of a two-candidate election in which voters have asymmetric
information and diverse preferences. Voters may costlessly choose to either vote for
one of the candidates or abstain. We demonstrate that a strictly positive fraction
of the electorate will abstain and, nevertheless, elections effectively aggregate voter’s
private information. The model also provides an explanation for observed patterns
of participation and partisanship.



1 Introduction

Over the last forty years the fraction of the electorate that participates in elections
has declined significantly in the United States.! The decline in participation has been
accompanied by a decrease in partisan attachment raising concerns about the degree
to which political outcomes actually enjoy the support of a majority of citizens.?
These concerns are heightened when it is observed that the decline in participation
is particularly pronounced among the less educated and less wealthy.® The possibil-
ity that the voting electorate is not representative leads naturally to concerns that
election outcomes are biased towards the wealthy and Letter educated.*

It is difficult to evaluate the effects of a decline in participation on electoral per-
formance without a model that explains what factors lead to changes in patterns of
abstention in the first place. Explaining participation in elections has proven to be

5 The cross-sectional

a particularly difficult problem for positive political theorists.
comparative static that education level is positively correlated with turnout has been
well established empirically.® A decision theoretic model that assumes it is less costly
for those with better information to participate would seem to be sufficient to explain
this cross-sectional variation.” However, declining turnout occurs at the same time as
education levels have increased. A decision theoretic model will have trouble simul-
taneously explaining the longitudinal phenomena of declining overall turnout while
membership in high turnout categories grows.®

In this paper we develop a game-theoretic model that can simultaneously explain

the observed crouss-sectional and longitudinal variations in participation and parti-

sanship as a function of the quality and distribution of information. The model

1See Lijphart (1997) for a review of the literature on turnout.

2Niemi and Weisberg (1984 page 483).

3 Abramson, Aldrich and Rohde (1991, page 102).

4Concerns about the possibility of biased outcomes has led to calls for reform e.g., Lijphart (1997)
argues in favor of compulsory voting as a solution to the problem of a biased electorate.

5Indeed, Morris Fiorina wrote: “turnout is the paradox that ate rational choice theory.” This
quote was used as a jumping off point by Bernard Grofman (1995) in an essay on rational choice
models of participation. Grofman properly observed that the test of a good model is not in providing
good point prediction but in the usefuluess of the model’s comparative statics. He concluded that
rational choice models centered on costs to vote do pretty well at predicting changes in participation.

8Wolfinger and Rosenstone 1980.

"See Matsusaka (1992) for an example of such a theory.

80f course, voting may have become more costly over this period. However, it seems more likely
that barriers to voting have been relaxed over this period.



presented here is an extension of a model developed by Feddersen and Pesendorfer
(1996), hereafter referred to as FP. FP examine a model in which there are two can-
didates (candidate 1 and 2) and two states of the world (state 1 and state 2). There
are three types of voters: voters who always strictly prefer candidate 1; voters who
always strictly prefer 2; and those who strictly prefer candidate 1 in state 1 and can-
didate 2 in state 2. FP refer to the first two categories of voters as partisans and the
latter group as independents. All of the independents are assumed to have identical
preferences i.e., if the probability of state 2 is above some threshold all prefer can-
didate 2. The set of independent voters is further partitioned into those who know
the true state and those that are uninformed but share a common knowledge prior.
Voting is costless and each voter may vote for either candidate or abstain.

FP showed that equilibrium behavior in large elections has the following features:

1. uninformed independents may suffer the ”swing voter’s curse” and have a strict
incentive to abstain even though they have a strict preference between the two

candidates;
2. abstention levels may be high even in large electorates;

3. even with strategic abstention, elections satisfy ” full information equivalence”
i.e., the winning candidate is the candidate that would win an election in which

all voters were fully informed and voted for their preferred candidate.

Our model generalizes the framework of FP in three ways. First, we introduce
a continuum of voter preference types and, hence, in a typical electorate no pair of
voters has exactly identical preferences. Preference diversity allows us to analyze

participation when information and preferences are correlated. Second, we consider

9The following example illustrates the swing voter’s curse. Suppose there are three voters who
must choose between candidate 1 and 2 using majority rule. There are two states of the world: state
1 and state 2. State 1 is more likely than state 2. All of the voters prefer candidate 1 in state 1
and candidate 2 in state 2. All voters know that exactly one of them knows the true state. It is
an equilibrium for those voters who do not know the state to abstain and to let the informed voter
decide the outcome. To sec why this is the case suppose that in the event the election is tied a coin
is tossed to determine the winner. In the proposed equilibrium uninformed voters strictly prefer to
abstain because their vote only changes the outcome when they vote for the wrong candidate-the
candidate not supported by the perfectly informed voter—and the wrong candidate wins the coin
toss.



environments with more than two states. Third, we consider the effects of noisy
information.

As in FP we assume that voter preferences depend on a private preference type and
on a state which represents the relative quality of the two candidates. For example,
suppose that an election is held to decide whether a bridge should be built. Each
voter’s private preference type is determined by the frequency they would use the
bridge. Those that would use the bridge more are more favorable towards building
the bridge. The “state” in this example corresponds to the cost of the bridge. As the
cost of the bridge increases all voters like the idea of building the bridge less.

Now suppose that voters know their preference type but are uncertain about the
state i.e., voters know how frequently they will use the bridge but are unsure about
how much the bridge costs. Each state thus determines a fraction of the electorate
that prefers candidate 1 to candidate 2 e.g., when the cost of the bridge is low 75%
prefer to build the bridge whereas if the cost is high 45% favor the bridge.

In the first part of the paper we present our model and analytical results. We
show that the full-information equivalence result in FP is robust i.e., candidate 1
wins with high probability in states in which a majority of the electorate strictly
prefers candidate 1 to candidate 2 and loses with high probability otherwise. The
most important contribution of this section is to give both necessary and sufficient
conditions for significant levels of abstention. We assume the set of states is finite and
therefore there is a critical state in which the fraction of the electorate that prefers
candidate 1 to candidate 2 is closest to 1/2. We show that a strictly positive fraction
of the electorate abstains if the fraction of the electorate that prefers candidate 1 to
candidate 2 is not equal to 1/2 in the critical state. On the other hand if the fraction
that prefers candidate 1 in the critical state is very close to 1/2 then the fraction of
the electorate that abstains is very close to zero.

The fact that abstention can occur under some model specifications but not others
raises concerns about the swing voter’s curse as an explanation for abstention. The
concern is as follows: surely there is always some state of the world in which exactly
half of any population would prefer une alternative to the other. Our results would
then be taken as evidence that the swing voter’s curse cannot provide an explanation

for abstention. However, such an argument misunderstands what a state represents



in our model. A state represents what a very large number of people may learn about
the relative quality of the two alternatives. Thus, in the bridge example it may be the
case that the true cost of the bridge may range continuously from $50 to $50,000,000
but that the most any very large number of people could ever learn about the true
cost is that it is above or below $25,000,000. In this case even though the true cost
of the bridge is a continuous random variable it is appropriate to assume there are
two states. A more fruitful test of the theory is to examine the comparative statics
of the model in settings where significant levels of abstention are predicted.

In the second part of the paper we provide comparative statics results for a se-
ries of examples. First, we demonstrate in a simplified version of the model that an
increase in the fraction of the electorate that is informed can lead to higher levels of
abstention and lower levels of partisanship. Next, we provide examples with noisy sig-
nals to illustrate how those with better information may participate more frequently.
Moreover, increasing the fraction of the electorate that receives a noisy signal can
increase levels of abstention among both the informed and uninformed alike. Noisy
signals also leads to an electorate that is biased towards the winning candidate. Fi-
nally, we illustrate how a highly biased distribution of information may result in an
electorate that is dramatically skewed towards one side of the ideological spectrum
and in an overall increased level of abstention. However, the biased electorate does
not result in biased outcomes. Indeed, in this example the biased distribution of
information actually results in a strictly higher probability an election will satisfy full

information equivalence than an unbiased distribution of information.

1.1 Related work

There are a variety of papers that focus on the consequences of costs to vote on
turnout. See Palfrey and Rosenthal (1983, 1985), Riker and Ordeshook (1968), Fed-
dersen (1992), Morton (1991) and Lohmann (1993a,b). For reviews of both the theo-
retical and empirical literature on turnout see FP, Aldrich (1993), Grofman (1993) or
Matsusaka (1992). Katz and Ghirardato (1997) develop a decision theoretic explana-
tion of roll-off. Their explanation of abstention relies on voters having non-standard
utility functions.

Our model assumes that the number of voters is uncertain and distributed accord-



ing to a Poisson distribution. The idea of using Poisson distributions to analyze large
anonymous games is borrowed from Myerson (1997a,b). The reader who is compar-
ing our model with FP will note that FP assumed the number of voters was known.
However, they effectively introduced population uncertainty by assuming a positive
probability each voter would abstain. The advantage of the Poisson distribution is
that it permits easy calculation of equilibrium profiles and examples even in very
large electorates.

Feddersen and Pesendorfer (1997) examine voting in two candidate elections with
private information and common values without abstention. They assume a continu-
ous state space and demonstrate that large elections satisfy full information equiva-
lence. In this paper we prove the same result for a finite state space. (Proposition 4).
We also demonstrate here that if there is a state in which a fully informed electorate
splits evenly between the two alternatives then there is no abstention in the limit. In
Feddersen and Pesendorfer (1997) this is always the case and hence abstention cannot

play a role in that model.

2 Model

We analyze a two alternative election. Alternatives are denoted by j € {1,2}. A
voter’s utility depends on a preference parameter 2 € [—1,1] = X, the chosen alter-
native 7, and the state s € S C [0, 1]. We assume the set of states S is finite and that
{0,1} C S, i.e., the smallest state is 0 and the largest state is 1.

We denote by u(j, s, z) the utility function of voters. Let
v(s,z) = u(2,s,2) —u(l,s, ) (1)

denote the utility difference of a voter type = between alternative 2 and alternative 1
in state s.

At the beginning of the game nature selects a state s and an electorate. The
electorate is chosen as follows. First, nature selects a number of players according
to the Poisson distribution with parameter v. Thus, the probability that there are n

players is given by




Second, every player is independently assigned a preference type according to the
distribution function F'(z). Third, every player receives a signal m € {§,1,..., M} =
M, where (0 describes an uninformative signal. We assume that conditional on s
the signal is independently distributed across agents. The probability that an agent
receives the signal m in state s is p(mn]s).

We make the following assumptions:

Assumption 1 v(z, s) is defined for all (z,s) € [-1,1] x [0,1]; it is continuous in ©
and strictly increasing in (x,s). Furthermore, v(—1,s) <0 for all s and v(1,s) >0

for all s € [0,1].

Assumption 2 The state s is chosen according to the probability distribution g(s)

where g(s) > 0 for all s € S.

Assumption 3 The distribution function F(z) has a conlinuous density f(r) and

f(z) is bounded away from zero on [—1,1].
Assumption 4 p(§|s) =1 —q for some 0 < q <1 and all s.

Assumption 5 (SMLRP) There is an o > 0 such that p(in|s) > « for all(s,m),m #

0. Moreover, if 8' > s and m' > m, m,m' # 0, then p(m|s)p(m’'|s') > p(mn|s')p(m']s).

Assumption 1 says that the payoff difference between the two alternatives is in-
creasing both in the preference type and in the state. Thus, higher states make
alternative A more attractive. Assumptions (2) and (3) are made for technical conve-
nience. Assumption (4) implies that signal  does not provide any information about
the state s. Assumption (5) says that all other signals are informative and satisfy the
strict monotone likelihood ratio property. Informally, SMLRP implies that higher

signals are more likely in higher states.

3 Equilibrium

Each player chooses an action a € A = {0,1,2} where a = 0 denotes abstention,
a = 1 denotes a vote for alternative 1 and a = 2 denotes a vote for alternative 2. By

n, we denote the number of agents who take action a. We assume that the election



outcome is determined by majority rule. Alternative 1 is the winner if and only if
ny < ny. This implies that in case of a tie, 1 will be the winner of the election.®

A symmetric strategy profile is a measurable function ¢ : [-1,1] x M — A(A).
The probability that a player with preference parameter x and signal m takes action
ais a.(z, m).

Given a symmetric strategy profile o the ex-ante probability that a voter takes
action a in state s is denoted by t,(s) where

ta(s) = D p(mls) /1 oo(z,m)dF(z) (2)
me M -1

Given ¢ we also define the random variables n4(s) to be the number of agents who
take action a in state s. Since, conditional on s, the probability of receiving any signal
is independent across agents and preference types are chosen independently, it follows

that n,(s),a € A, are Poisson random variables with the parameters
va(s) = v+ La(s)

We can also consider the random variables nj_i(s) that describe the number of
agents other than agent 7 who choose action a in state s. It follows from the properties
of the Poisson distribution that n,(s) and n;*(s) have the same distribution. In the
following we use the notation n,(s) and n, both for the description of the whole
population and for the description of the behavior of everybody else from the point
of view of a particular agent 1.

The results in this paper depend on the fact that a voter only influences the
outcome of an election when a vote is pivotal. In a voting model with abstention
there are two ways in which a vote can be pivotal: a voter can influence the election
outcome if either the election is tied (n, = n;) or if alternative 2 is ahead by one vote
(ng = n; + 1). In the event that ny = ny + 1 voting for 2 and abstaining both lead to
the outcome 2 and voting for 1 leads to the outcome 1. We label this event piv; and
say that a vote is pivotal for candidate 1. In the event that n, = ny voting for 1 and
abstaining both lead to the outcome 1 and voting for 2 leads to the outcome 2. We
label this event piv,. We label the event that a vote is pivotal (either piv; or pivy) as
piLv.

10Note that this choice of tie breaking rule is made for technical convenience. All of our results
would go through if in the case of a tie alternative 1 wins with probability 7 € 0,1).
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Given state s and a symmetric strategy profile o the probability a vote is pivotal

for alternative 1 is:

00 71/(?1(3)“2(8))(,4 (s ))m+1(yt1(s))z
Pr{piv;|s} Z !z + 1)! ! @

the probability a vote is pivotal for alternative 2 as:

0 L=t () +t2()) (g, (s))E (vt .
Pr{pivy|s} = Z € (vta(s))* (vt (s))

=0

; (4)

Tz

and the probability a vote is pivotal for either alternative as

Pr{piv|s} = Pr{piv|s} + Pr{piv,|s}. (5)

Since voters have private information about a common value state variable they
must form beliefs about the distribution over states conditional on the event a vote
is pivotal and their private information. If the profile ¢ is such that t5(s) > 0 for all
s then it follows that Pr(piv;

§) > 0 for all s. Therefore, the probability distribution
over states conditional on being pivotal for alternative j € {1,2} is well defined and

given by
Pe(piv,ls)o(s) Q
Y wes Pr(pivj|w)g(w)’

The probability distribution over states conditional on being pivotal and observing

B(s|piv;) =

signal mn is given by:

Pu(piny 9)g(s)p(mls) _ Blslpivy)p(n]s)
S wes Prpivi|w)g(w)p(mlw) Y yes B(w|pivy)p(m|w) ’

A symmetric strategy profile o is characterized by cutpoints if for every signal

(7)

ﬁ(SIp?:Uj, 7n)

m € M there is a pair of cutpoints 2!, < 22 such that any voter who receives message

m

m chooses 1 whenever the preference type is smaller than z} ; chooses 2 whenever

the preference type is larger than 22,; and abstains otherwise. We say the profile is

m?

characterized by ordered cutpoints when for any j € {1,2} z?, is non-decreasing in

m.

Definition 1 A strategy o is characterized by ordered cutpoints if there are culpoints
1

m

{(z] 22 )} s with the following properties: for every m € M =z < a2, for every
je{l,2} 1>l > ... >4 > -1 and oy(z,m) =1 if & < x},, ooz, m) = 1 if

x> 22, and op(z,m) =1 if 2}, <z < 2%,

m?

8



Observe that if a strategy profile is characterized by ordered cutpoints then voters
of type (z,m) with & < z}; vote for candidate 1 regardless of their private signal
whereas those for whom = > 22 vote for candidate 2 regardless of their private signal.
We say that voter types with = € (z},,23) take informative action.

In the following we consider symmetric Nash equilibria. The first proposition
demonstrates that every symmetric Nash equilibrium can be characterized by ordered
cutpoints and that the probability a voter chooses alternative 1 is strictly decreasing
in the state while the probability that a voter chooses 2 is strictly increasing in
the state. Proposition 1 is a straightforward consequence of the Strict Monotone

Likelihood Ratio Property (SMLRP) and Assumption 1.

Proposition 1 Suppose Assumptions 1-4 hold. Then a voting equilibrium exists and

any voting equilibrium can be characterized by ordered culpoints.

Proof. Existence is straightforward. For example, the existence proof in Myerson
(1997) applies.

Since there is a strictly positive probability that any player is the only agent it
follows that the probability a vote is pivotal for 2 is always strictly positive. Therefore,
by Assumption 1 there is an € > 0 such that all types z € [1 — ¢, 1] must vote for
2 independent of their signal m. By Assumption 3 the probability that a type is in
the interval [1 — €,1] is strictly positive and hence ty(s) is strictly positive in any
equilibrium. This in turn implies that there is a strictly positive probability that
there are no votes for 1 and one vote for 2. Hence the probability that a voter is
pivotal for 1 is strictly positive. Therefore, 3(s|piv;,m), j = 1,2 and B(s|piv,mn) are
well defined in equilibrium.

Fix a symmetric profile ¢ and let E(v(z,s)|pivj,m) denote the expectation of
v(z, s) with respect to 3(-|piv;, m). A voter of type (x,m) prefers to vote for 2 rather
than abstain if

E{v(z, s)|pivy, m} =Y v(x, s)B(s|pivy, m) > 0; (8)

3

he prefers to vote for 1 rather than abstain if

E{v(z, s)|pivy,m} =Y v(=, s)B(s|pivi,m) <0, (9)

8§



and he prefers to vote for 2 rather than 1 if

E{v(z, s)|piv,m} =Y _v(z, s)B(s|piv,m) >0 (10)

3

By Assumption 1 v(z, s) is strictly increasing in x. Thus, if it is a best response for
type x to vote for 2 then for every type ' > x the unique best response must be to
vote for 2. Similarly, if it is a best response for type x to vote for 1 then the unique
best response for every type ' < z must be to vote for 1. It follows that any voting
equilibrium can be characterized by cutpoints such that for any m € M z} < 22

and all types with < z}, vote for 1 when they receive signal m and all types with

1
mo

z > 22, vote for 2 if they receive signal m. Types in the interval (z x?) abstain.

Observe that voters with types 27 are either indifferent between voting for j and

abstaining (if (zl,22,) is non-empty) or indifferent between voting for 1 and 2 (if
zl = x2). As a consequence either

B{o(ad, s)lpivg,m} = 0
or

E{v(al, )

o

piv,m} =0

To show that cutpoints are ordered observe that for m > m’, such that m,m’ # 0,

SMLRP implies that for all z
E{v(z, s)|piv;,m} > E{v(z, s)|piv;, m'}

and

Ef{v(z,s)

piv,m} > E{v(z, s)|piv,m'}

Therefore, it must be the case that 1 > 2> >, >—1forj=12 W

Proposition 2 In a symmetric equilibrium then ti(s) is strictly decreasing in s and

ta(s) 1s strictly increasing i s.

Proof. Since a symmetric equilibrium can be characterized by ordered cutpoints we

can rewrite Equation (2) as follows:

t(s) = Z p(7rz|s)F(a;11n) (11)

me M

10



and

t2(s) = D p(mls)(1 — Flay,)) (12)

me M
Since z? strictly decreasing in m for every j € {1,2} it follows from a standard
property of SMLRP that t;(s) is strictly decreasing and ta(s) is strictly increasing in
s. R

Note that the fact that every symmetric equilibrium must have ordered cutpoints
does not imply that there are always some voters who abstain. It allows for the case
where z! = 22 for all m € {1,2,..., M}. In particular, consider the case in which
there are two states and each voter receives perfect information about the state s.
In this case, every voter type that occurs with positive probability (except possibly
one type) has a strictly dominant strategy to vote for one of the two alternatives and
hence it must be the case that z}, = 22, for all m.

We now show that if there are any messages that are not perfectly informative
a strictly positive fraction of the electorate will abstain. We call a signal m € M

perfectly informative if there is a unique state s,, in which the signal can be received

with strictly positive probability i.e., p(m|s) > 0 if and only if s = s;,.

Proposition 3 Suppose Assumplion 1 holds. Suppose o is an equilibrium stralegy
and let (27),7 = 1,2 be the corresponding cutpoints. If m is not perfectly informative

2 _ 1
then x; —x,, > 0.

Proof. Equations (3) and (4) imply that

Zoo t1!8!312!8?‘"+1

=0 gl z+1)!

Pr{piv|s}

Pr{pivals) — g, DEEEOE

L{ti(s), ta(s)).

In the appendix (Lemma 6) we demonstrate that

0 0
—L{t;.t. —L{ty,¢
oL, (ti,t2) <O’862L( 1,t2) >0

and therefore, since t, is strictly decreasing in s and tyis strictly increasing in s it
follows that L(t(s),ts(s)) is strictly increasing in s.
Let B(s]Y) denote the probability of state s conditional un the event Y. We can

interpret 3(s|piv;,m) as the distribution that is achieved by updating 8(s|m) =

11



% with the signal piv; € {piv,, pivy} which satisfies SMLRP since L(t1(s),t(s))
is strictly increasing in s. If m is not perfectly informative then it is non-zero for two
or more states. Then by a standard property of SMLRP (see Milgrom (1979)) it fol-
lows that (s|pivy, m) strictly first order stochastically dominates 3(s|pivy, m). Since

v is strictly increasing in s this allows us to conclude that
E{v(z, s)|pivy, m} > E{v(z, s)|pivy, m}. (13)

Note that piv is the union of the events piv; and piv, which both occur with strictly

positive probability and therefore

E{v(z, s)|pivi,m} > E{v(x, s)|piv,m} > E{v(z, s)|pive, m}. (14)

Consider a voter (i,m) who is indifferent between voting for 1 and voting for 2, that
is,

E{v(z,s)

piv,m} = 0.

Such a voter exists by Assumption 1. By inequality 14 this voter strictly prefers to
abstain since conditional on pivy, i.e., if a vote for 1 is decisive the voter strictly
prefers alternative 2 and conditional on pivy (if a vote for 2 is decisive) the voter
strictly prefers alternative 1. Since v is continuous it follows that there is an interval
of voters who strictly prefer to abstain whenever m is not perfectly informative. B
To gain an intuition for Proposition 3 consider a (not perfectly informed) voter
who is indifferent Letween voting for alternative 2 and abstaining. This implies
that conditional on the event that 1y = ny the voter is indifferent between the two
candidates. Such a voter strictly prefers abstaining to voting for alternative 1. To
see this note that voting for 1 instead of abstaining only makes a difference in the
event that n, = n; + 1. Because the expected vote share of alternative 2 is strictly
increasing in s the probability distribution over states conditional on ng = n;+1 puts
more weight on states that are favorable to candidate 2.1 Thus, alternative 2 is even
more desirable in the event that n, = ny + 1 than in the event ny = n; and the voter
strictly prefers to abstain rather than vote for alternative 1. As a consequence there

is an interval of preference types who prefer abstaining to voting for either candidate.

WPechnically, the distribution over states conditional on ny = np + 1 first order stochastically
dominates the probability distribution over states conditional on ng = n;.

12



Proposition 3 does not exclude the possibility that the expected fraction of voters
who choose to abstain in equilibrium converges to zero as the population goes to
infinity. Thus, to conclude that our model predicts that a positive fraction of the
electorate abstains we need a stronger result: we need to demonstrate that the fraction

of voters who abstain stays bounded away from zero for all k.

4 Equilibrium Characterization for Large Popula-
tions

In the following we will consider a sequence of equilibria corresponding to a sequence
of expected number of voters 1, where v, — oo. Along the sequence we fix the

information structure defined Ly ¢(s), p(in|s) and F(z).

4.1 Preliminary Results

In this section we demonstrate four technical Lemmas that will allow us to prove our
main results on abstention and information aggregation.
We define the ratio of expected vote shares for the two alternatives given state

s € S and profile ¢ as:

ols) = wbs) (15)

B ta(s)

We use the subscript k to indicate the dependence of the equilibrium on the parameter
V. Thus, e.g., (04) denotes a sequence of voting equilibria and py(s) describes the
ratio of probabilities of voting for 1 and voting for 2.
Lemma 1 says that for large k the probability of the event ny = ng differs from
the probability of the event n; = ny + 1 by a factor that is approximately equal to
pr(s). Lemma 1 is a consequence of the assumption that the number of voters is a
Poisson random variable and was first proven by Myerson (1997b). The proof can be
found in the Appendix.

Lemma 1 Suppose that ty;(s) > 0 and ty(s) > 0 for all k. Then

Pr){piv|s}
Py {pivy]s}

— 0

pi(8)

as k — oo.

13



Proof. see Appendix A. B

If tix(s) > tax(s), i-e., the expected vote share of alternative 1 is larger than the
expected vote share of alternative 2 then the Lemma implies that the event n; = ng
is more likely than the event n; = ny + 1. In addition, the relative likelihood of these
two events converges to the square root of the expected vote shares.

The next three lemmas are concerned with the distribution over states conditional
on a vote being pivotal. Since every voter behaves as if a vote is pivotal characterizing

this distribution is essential for our results.

Let
Viu(s) - Viu(s) } ) (16)

i.e., the states that minimize the difference between the square roots of the expected

T = {arg min

vote shares for each alternative. The next lemma shows that in a large election
conditional on a vote being pivotal almost all probability weight must be on states

inT.

Lemma 2 Suppose that (a:{k - arf\,k) >e¢>0forj=1o0rj=2andallk. Then as
k— 00 Yoot Bi(slpivy) — 1 for j =1,2 and 3.1 Br(s|piv) — L.

Proof. see Appendix A. W
Let z(s) denote the preference type who is indifferent between the two alternatives

in state s. Thus z (s) is defined by the equation

v(z(s),s) =0 (17)

Assumption 1 implies that x(s) is well defined for every s € S. All voters with
preference types x < 2:(0) prefer alternative 1 in every state and hence have a strictly
dominant strategy to vote for 1. Similarly, voters with preference types z > z(1)
always vote for alternative 2. If there are many voters and if F(z(1)) > 1/2 (F(2(0)) <
1/2) then with high probability the majority of voters prefers alternative 1 (alternative
2) irrespective of their information and hence alternative 1 (alternative 2) must win
the election with high probability in every state. The following assumption rules out

these trivial cases.

Assumption 6 (2(0)) > 1/2, F(x(1)) < 1/2.
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We define s' to Le the largest state in which 1 is elected if all voters know the
state, i.e.,
s' = max{s: F(z(s)) > 1/2}
Similarly, we define s2 to be the smallest state in which 2 is elected if all voters know
the state, i.e.,
s? =min{s: F(x(s)) < 1/2}
Clearly s' < s? and (s!,s?) is a pair of consecutive states. Also note that s!, s? are
well defined if Assumption 6 holds.
The following Lemma says that in a voting equilibrium with a large electorate

beliefs over states conditional on a voter being pivotal are concentrated on s' and s?.

Lemma 3 Supposc Assumptions 1-6 hold. Consider a sequence of voling equilib-
ria. Then Bi(s'|piv) + Bi(s?|piv) — 1 as k — oo. Also, for j = 1,2, Br(st|piv;) +

Br(s?|piv;) — 1 as k — oo.

Proof. see Appendix A. i

To gain some intuition for Lemma 3 note that there is set of states for which the
ratio of the expected equilibrium vote shares of the two alternatives is closest to one.
Since, from Proposition 1 the equilibrium expected vote share of candidate 1(2) is a
strictly de(in)creasing function of s it fullows that this set consists either of a unique
state or of a pair of consecutive states. Call this consecutive pair of states {s',s"}.
If it is not the case that either s' or s? is in this set then suppose for e.g., that s
< & and s! < ¢”. The fact that all beliefs are concentrated on the set {s,s"} implies
that ti4(s) > F(z(s')) > .5 for all s. But then by Lemma 2 all beliefs must be
concentrated on state s = 0 < s’ i.e., under such a profile voter’s beliefs conditioned
on a vote being pivotal must be concentrated on the state which gives the lowest
expected vote share for candidate 1.

In the following Lemma we refine the characterization of the limit support of the
distribution G (s|piv): we give conditions under which both s'and s? have positive

probability conditional on a voter being pivotal. Let
M = {in: p(mn, s"p(mn, s*) = 0 and p(m, s') + p(m, s*) > 0}

denote the set of signals that allow an agent to distinguish states s' and s? with

certainty. In other words, an agent who receives a signal m € M and knows that
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s € {s',s?} can determine the state with certainty. The expression (F'(z(s')) —
F(2(s?)) Smenr P(1n]s) denotes the expected fraction of voters who receive signals in
M in state s and who have state dependent preferences over the states in {s', s’}
Following FP we call such voters perfectly informed swing voters.

The following assumption requires that the probability a voter is a perfectly in-

formed swing voter in state s € {s!, s} must be less than twice the difference between

1

» and the fully informed vote share in states st i=1,2.

Assumption 7 2|3 — F(z(s)| > (F(z(s")) = F(2(s*)) Cmem p(m|3) fori=1,2.

Assumption 7 requires that F(z(s*)) # % for i = 1,2. In words this means that
the under conditions of full information it cannot be the case that exactly half the
voter are expected to prefer candidate 1 to candidate 2. Furthermore, if F(z') =
1 — F(2?) i.e., the expected vote shares for each candidate in states s! and s? are
symmetric around % then Assumption 7 always holds whenever there is a strictly
positive probability that an agent receives a signal that doues not allow him to perfectly
discriminate between s! and s?.

The next Lemma demonstrates that when Assumption 7 holds then conditional
on being pivotal a voter believes both states s' and s? have probability bounded away

from zero.

Lemma 4 Suppose Assumptions 1-7 hold. Then there is an € > 0 and a k' < 00

such that By, (s'|piv) > €, Bi(s¥|piv) > ¢ for allk > K.

To understand why Assumption 7 is needed in Lemma 4 consider the following

example:

Example Suppose there are two states s = 1, 2. Further suppose that F'(z(1)) =
0.75, i.e., the probability that a randomly drawn voter prefers 1 in state 1is 0.75 and
F(z(2)) = 0.4, i.e., the probability that a randomly drawn voter prefers 2 in state 2
is 0.6. Thus 2].5 — ["(2(2))| = 0.2 and F(x(0)) — I"(z(1)) = .35.

First consider the case where all voters know the state. Clearly this implies that
in a large electorate alternative 1 gets cluse to 75% of the vote in state 1 and close

to 40% of the vote in state 2 with probability close to one. Conditional on a vote
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being pivotal the probability of state 2 converges to one in this case. Also note that
Assumption 7 is violated in this case since .35 > 2.

Now assume that some voters do not know s, i.e., do not get a perfectly informative
signal. In a large electorate, if there is a small fraction of uninformed voters, these
voters must behave as if the state is s = 2. Thus an uninformed voter will vote for
candidate 1 with probability 0.4 and for candidate 2 with probability 0.6. If g is the
probability that a voter is informed then the expected vote share for candidate 1 in
state 1 is now

t(s=1)=¢q-0754+(1—-¢q)-04
and the expected vote share for candidate 2 in state 2 is

ta(s =2)=¢q-06+(1—gq)-06=0.6.

Thus the described equilibrium strategies and the resulting limit distribution over

states conditional on a vote being pivotal is valid as long as
q-0754+(1—¢q)-04>06

or
0.2

0.35
For ¢ < 0.2/.35 Assumption 7 is satisfied and the Lemma shows that both states s = 1

q >

and s = 2 must have strictly positive probability in the limit distribution over states

conditional on a vote being pivotal.

4.2 Full Information Equivalence

In FP and in a follow up paper, (Feddersen and Pesendorfer 1997), it was demon-
strated that elections have a property called full information equivalence: the election
outcome under private and asymmetric information converges in probability to the
election outcome that would occur if all the voters knew the true state and voted for
their preferred candidate.

The following Theorem demonstrates that this property also holds for the present

model. In fact, the result follows as a corollary to Lemma 3.

Proposition 4 Suppose Assumptions 1-5 hold and F(z(s')) > 1/2. Then, as k —
00, the probability that alternative 1 is elected converges to 1 for s < s' and to 0 for

s> sl.
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Proof. By Step 1 of the proof of Lemma 2 it follows from F(z(s')) > 1/2 that there

J

. —x) ) > e form' >mand all k. As a consequence, there

is an € > 0 such that (z
is an ¢’ > 0 such that
|t;(s) — t;(s')] > €. (18)

Hence t, is strictly decreasing in s with slope bounded away from zero and t, are
strictly increasing in s with slope bounded away from zero. By the proof of step 2 of

Lemma 2 we know that for any convergent subsequence

lim <\ﬂ1(31) - \/t2(51)>
> 0> lim (\/t1(32) - \/52(32)) .

If the above two inequalities are strict then (18) together with the strong law of large

numbers implies the Theorem.

In the remainder of the proof we show that indeed both of these inequalities
must be strict. To see this first note that (18) implies that at least one of the two
inequalities is strict. Thus suppose that lim <\/t1(81) — \ﬁg(sl)) = 0. Then by the

argument given in step 2 of the proof of Lemma 2 f(s'|piv;) — 1. This implies
that t;(s') — F(2(s')) > 1/2 (by Assumption) which contradicts the hypothesis
that lim (ﬁ(sl) - \/’/2(81)) = 0. An analogous argument shows that the second

inequality is strict. W

4.3 Abstention

In this section we demonstrate that Assumption 7 guarantees that the fraction of
voters who abstain stays bounded away from zero as k — oo. This assumption
guarantees abstention because it ensures that as the population size grows imperfectly
informed voters must place positive weight on both states s! s? conditional on a vote

being pivotal.

Proposition 5 Suppose Assumptions 1-7 hold. Suppose there exists a signal m such
that p(m|s) > 0 for any s € {s',s?}. Then there is an a > 0 and a k' such that the

expected fraction of volers who abslain in equilibrium is larger than o for allk > k'.

Proof. see Appendix A. B
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In the following we provide an intuition for Proposition 5: From Lemma 3 we

know that

. q(sY) Pry.(pivy|s!
Bi(s'|pivi) =~ - J‘( )1 (P 12| ) ——
505 Pra(pina]s") + 9(s2) Pra(pivi|s)

Recall that p(s) is strictly decreasing in s since ty(s) is strictly increasing in s and
t1(s) is strictly decreasing in s. Using the approximation formula derived in Lemma
1 we can compute:

q(sl)l’l‘kﬂpivl\sll

) vV pr(s?) (19)

1 . ~
/Hk(s Ip'LU‘l) ~ q(S])prkgp,w”s]) +g(32)‘)rk£2ivl|32n
; v re(st) v/ Pr(s?)

Conditioning on the event piv, can therefore be interpreted as conditioning on the

event piv; and an additional conditionally independent signal, where the probability

of observing the additional signal in state s is given by

1/y/pr(s)
£ 1/4/pi(s)

If both By (s!|piv)) and B (s?|pivy) are bounded away from zero and if pr(s) is strictly

decreasing in s then there is an ¢/ > 0 such that
Be(s!|pivy) < Be(s!|pivy) — €,

for all k, i.e., the two probability distributions are different even in the limit. But this
is enough to allow us to make the argument given in Proposition 3 for an interval of
preference type with length uniformly bounded away from zero and hence Proposition
5 follows.

The previous proposition demonstrated that a strictly positive fraction of the
electorate will always abstain but it did not provide a sense of how large that fraction
may be. The next proposition provides a bound on the fraction of agents who abstain
in equilibrium. Define a crilical state to be an § € argmin, |F'(z(s)) — 1/2] ie., a
state in which the fraction of the electorate that prefers candidate 1 to candidate 2
is closest to 1/2. It follows from the definition of s' and s? that § € {s',s*}. We now
show that the fraction of the electorate that abstains in a large election goes to zero
as |F(x(3)) — 1/2] goes to zero. Note that § is a state that would lead to the closest

election outcome if all agents know the state of the world. Thus, if there is a state
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in which the election is expected to be very close under complete information, then

there is very little abstention.

Proposition 6 Suppose Assumplions 1-6 hold. For every ¢ > 0 there is ann > 0

F(z(3)) — 1/2] < 1 implies that limsup,(l — t1x(s) — tax(s)) < € for all

such that
s € S, i.e., the expected fraction of voters who abstain is bounded above by & for

sufficiently large k.

The intuition is that if

F(z(3)) — 1/2| is very small then the equilibrium vote
share of each alternative must be close to 1/2 in both s' and s*. But (by Lemma 1)
this implies that a single vote provides very little information about the state since
voters are expected to vote for either candidate with close to equal probability in both
s! and s%. Hence conditioning on the event piv; provides very similar information to
conditioning on the event piv, and a small fraction of the electorate abstains.!?

As a corollary this implies that if the state space is “fine”, i.e., if the utility

variation between the states s! and s? is small then the level of abstention is small.

Corollary 1 Suppose Assumptions 1-6 hold. Then for every e > 0 there is an v and
a k' such that if max, [v(z, s2) — v(x, s')| < v then the expected fraction of voters who

abstain s less than ¢ for all k > k'

We can use Propositions 5 and 1 to relate the level of abstention to the “aggregate”

level of information. Consider the following example.

Example Consider the bridge example from the introduction and suppose vot-
ers are uncertain about the true cost of the bridge. Specifically, let the true cost of the
bridge be a continuous random variable ¢ € [0, 1] that is drawn by nature according
to some probability distribution. Suppose that there are K television stations who
each do an independent investigation into the cost of the bridge and televise a news

report that reports only if the bridge is very expensive or not too expensive. Thus,

12 Agsumption 6 implies that there cannot be a state in which the expected vote shares are exactly
equal under full information. In this casc the fraction of voters who abstain converges to zero.
We excluded it here hecause it would require a different proof. The reason is that in this case the
fraction of voters who use their private information may converge to zero. Therefore, a more delicate
argument is needed to establish full information equivalence (sce Feddersen and Pesendorfer (1997))

I

which is needed to prove Proposition 5.
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the only information a very large number of voters can learn about the cost is from
a TV report. The probability that a television station reports the bridge costs as
high is equal to r(¢) where r(c¢) is strictly increasing in ¢ and r(c) > 0 for all ¢ i.e., as
the true cost of the bridge increases a news report is more likely to report that the
bridge is expensive. Each voter watches at most one television news report but some
do not watch at all. The probability a voter watches a report is q. Let s, = E(c|k)
denote the expected cost of the bridge conditional on k out of K television stations
reporting that the Lridge is expensive. Finally, suppose that the expected payoff of

agents given k endorsements for alternative 1 is given by
E{v(x, )|k} = vz, s)

where v(z, s;) satisfies Assumption 1.
This example can be represented in our model as a finite state space model in
which the state space is S = {sg, ..., sk} and the probability a voter observes report

m € {0,,h} in state s is

qk : _
i if m=~n

p(mlsy) =< q(1—£) if m=1

(1-q) if m=90

When K = 1 there are two types of agents, those who are perfectly informed and
those who are uninformed. When K > 1 there are no perfectly informed agents.
When K — oo the state space approximates a continuous state space [0, 1].

Clearly, if the number of independent investigations by television stations is large
then sx,1 — s is small. More precisely, for every v > 0 there is a K such that
Sg41 — Sk < v uniformly for all k = 0,1,..., K. Thus, many independent reports leads
to better aggregate information and a smaller fraction of the population abstaining

in equilibrium as long as v is continuous in s.

5 Partisanship, Information and Participation

In this section we use a simplified version of our model to demonstrate how private
information combined with preference diversity can result in two seemingly contra-
dictory comparative statics: (1) more informed voters participate with higher prob-

ability than less informed voters; and (2) increasing the fraction of the electorate
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that is better informed results in increased abstention. This version of the model
also demonstrates that partisanship and information are linked. In particular, we
illustrate why a better informed electorate may be less partisan than a less informed
electorate.

Assume there are two states s = 1,2 and

r—1lifs=1
vl@,s) = { z+1ifs=2 (20)

The agents’ prior assigns probability 1/2 to either state. Agents are distributed
uniformly on [—1,1]. There are three signals M = {1,2,0}. Signals 1 and 2 are
informative while @) provides no information. Voters receive an informative signal
with probability ¢. The conditional probability of observing signal m € M given
state s is p(mls) where:

pq if m=s

P(‘NLIS) = (1- plg if m #s,m # 0
(1-q) if m=1{

and p > 1/2.

An equilibrium in this model is characterized by the vector of cutpoints (:1:(},, z%, x5, 73, T, 71
where z7_is the voter type who is indifferent between voting for candidate j and ab-
staining conditional upon observing signal . Let G(1|piv;,m) be the probability of
state 1 given piv; and message m.

1

+ p(mn|2) Pr{piv;|2}
p(mll) Pr{piv;|1}

B |piv;,m) = (21)

It follows from (20) that for any j € {1,2} and m € M the cutpoint 27, is given by:
2l = 203(1|piv;,m) — 1 (22)

“mn

The expected vote share for candidate 1 in state s is ¢1(s) and, from Equation (11),

can be written

b (s) =5 (p(Lls) (1 + o) + p(2s) (1 + 23) + p(B]s)(1 + z})) (23)
Similarly the expected vote share for candidate 2 in state s is

bls) = 5 (p(11s)(1 — %) + p(2s)(1 — 2) + pOIs) (1 - 23)) . (24)
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We analyze equilibrium behavior in large elections. Lemma 1 requires that in the

Pr{piv,|2} V12(2)y/ 61 (1) Pr{pivy|2} (25)
Pr{piv,|1} [t:(2)4/t2(1 Pl{pwz]l}

Ju) = /6(2) = 1a(2) - /(1) (26)

The system of equations (22)-(26) may be solved to find a limit equilibrium strategy

limit (as v — o0):

Lemma 2 implies:

profile.

5.1 Perfectly informative signals

Suppose the signal m € {1,2} is perfectly informative i.e., p = 1. In this example
the only variable is the fraction of the electorate that is perfectly informed (g). This
assumption combined with the symmetry of the setting greatly simplifies the system
of equations and permits an analytical solution. Observe that :1:]1 = —1 and l’% =1
for any j € {1,2} i.e., all voters who observe a perfectly informative signal vote for
candidate 1 if they observe signal 1 and candidate 2 otherwise. By the assumption of
a symmetric distribution of preference types it must be the case that t;(1) = ¢2(2),
t1(2) = to(1) and zp = —af. A little bit of algebra can be used to show that the ratio

of pivot probabilities reduces to

Pr{piv,|2} _ t1(2)
Pr{pivy|1} \ t1(1)
Pr{piv |2} _ t1(1)
Pr{piv,|1} \ t1(2)

We can now find the symmetric limit equilibrium by solving the following system of

equations for the cutpoint 2 and the expected vote shares t1(1) and t1(2):

1:(},: 2 -1
L) =+ 50— ia
L(2) = 50— g0+ 7))

oy = -4

9 qf‘zl

L(l) =5 (27)
1— 2

tfl(Q) = (27(],1)




Abstention as a function of the fraction of the electorate that is perfectly informed is
given by the equation:

1_
1= 1,(1) = 4(2) = ¢—2

Figure 1 plots this function and illustrates that when the fraction of the electorate
that is perfectly informed grows the result may sometimes be more abstention. Since
perfectly informed voters never abstain one might imagine that increasing the fraction
of such voters in the electorate would automatically reduce abstention. However, as
the fraction of informed voters grows so does the informativeness of the election
result. As a consequence the uninformed voters become more willing to abstain.
When the fraction of the informed electorate is small this equilibrium effect dominates
and abstention increases. When the fraction of the informed electorate is large the
additional abstention of the uninformed is outweighed by the additional participation

by the informed.

0.14 .
0.14 E N,
0.12 o \

0.1 - |
0.08 \
0.0 ,// \
0.04 \
0.03 / \

00 0.2 0.4 q 0.6 0.8 1

Figure 1.

This model can also be used to illustrate the relationship between information
and partisanship. One natural definition of a partisan is a voter who always votes for
the same candidate independent of the state. The set of voters with preference types
below zj and who do not receive an informative signal always vote for candidate
1 while those with types above —xjalways vote for candidate 2. Thus there is a
set of voters in this model who behave like partisans. The expected fraction of the
electorate that behaves like partisans is just the fraction of uninformed voters who
do not abstain. This fraction is given below:

, q
(-0 -55)

-4
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Figure 2 plots this fraction and demonstrates that as the fraction of the electorate

that is informed increases the fraction of voters behaving like partisans decreases.

1.
S
08
0.6
04
02
00 02 03, 0 08 1
Figure 2.

5.2 Noisy Signals

In this section we examine a set of examples in which no voter has perfect information.
We say that a signal that is informative but not perfectly informative i.e., p € (.5,1)
is noisy. The motivation for considering noisy signals is that changes in either the
quality of information or in the fraction of the electorate that is informed can effect
the decision of all the voters. In particular, if voters only have noisy signals then
as the fraction of the electorate that is informed increases it may be the case that
abstention increases among both informed an uninformed alike. The examples also
illustrate how noisy signals lead to a biased electorate without introducing a bias in
outcomes. We say that the electorate is biased in some state s if the mean of the set
of voters expected to vote in state s is not 0.

Assume the same structure as in the model above except those who are informed
observe a noisy signal, i.e., p € (.5,1). There are now three cutpoints that must be
calculated. Even those who are informed learn something from the event a vote is

pivotal therefore z! # z]. However, the symmetry of the example still implies that

z) = —a}, 2} = —a3 and ) = —a}."
In Table 1 below the entry A is the total level of abstention, A; is the fraction
of the informed voters who abstain and A, is the fraction of uninformed voters who

abstain. In the last row we look at the case in which there are no uninformed voters.

BThe system of equations used to compute the following examples may be found in appendix B.
We compute examples liere because we are unable to solve the system analytically.
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In the last column we look at the result when the signal is perfectly informative.
Three things stand out in these examples. First in every cell it is the case that
abstention by informed voters is strictly lower than abstention by the uninformed.
Second, increasing either the informativeness of the private signal or the fraction of
the electorate that is informed always results in higher levels of abstention by the
uninformed and often by informed voters as well. Third, increasing either p or g
always results in a larger increase in abstention among the uninformed than among

the informed.

Table 1.
p=.55 p=.7 p=1
A =.001 A = .015736
g=.2| A;=.001 A; = .013656 | A, = .09
A, =.001 A, = .016256
A =.001996 A =.030915
g= 4| A, =.001984 A; = .027747 | A, = .15
A, = .002004 A, = .033027
A =.00299 A = .045488
g=.6| A, =.00297 A; = 042275 | A, = .17
A, = .003 A, = .050308
A = .00398 A = .05941
g=.81 A; =.00398 A; = .0573 A, = .13
A, = .00402 A, = .0681
g=1 | A; = .004975 A; = .072632 A=0

To see how noisy signals can generate the full spectrum of partisans and a biased

electorate consider the following two examples.

Table 2.
T, 3 Ly a:a ! | 28
N A= 164
p:‘% —95| —82| —32] 32| .821.95| A =.065
' A, = .31
s A= 17
22'95 —96 | —76| —45] 45| .76 ] 96| A; =.10
‘ A, = 45

14The reader may wonder if there is a theorem that might be proved to the effect that those with
better information always participate more frequently and that abstention among the uniformed al-
ways increases faster as the clectorate as a whole becomes more informed. While this pattern appears
to be robust for a variety of examples it is possible to construct a counterexample in which those
with better information abstain with higher probability than those with worse information. The
example requires the introduction of considerable asymmetry in preferences. Details are available
upon request from the authors.
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These cutpoints define seven intervals. All voters with preferences in the interval
(—1,z}) and (22,1) are strong partisans for candidates 1 and 2 respectively in the
sense that they always vote for their candidate independent of their private informa-

tion. Those in the intervals (x:}, 22) and (2}, 2%) are weak partisans in that they either

vote for their candidate or abstain. Voters in the interval (23,2]) are independents
i.e., they may vote for either candidate depending on their information. However, we
may want to introduce a further distinction among the independents and, following
the voting behavior literature, call those in the intervals (23, 2;) and (zf, 1) inde-
pendent leaners because e.g., those in the interval (2%, z;) vote for candidate 1 when
they observe signal 1 and when they observe () whereas those in the interval (z;, zl)
only vote for 1 when they observe signal 1.

Increasing the fraction of the electorate that receives the noisy signal from .6 to
.8 has the effect of reducing the fraction of strong partisans and independent leaners
while increasing the fraction of weak partisans and pure independents. Abstention
only increases by 1% however abstention among both the informed and uninformed
increases by more than 50% among both groups. The overall abstention figures mask
the fact that the composition of the abstainers changes dramatically in each state.
Consider the case in which p = .95 and ¢ = .8. In state 1 the probability of observing
message 1 is p(1]1) = .76 and the probability of observing message 2 1s p(2|1) = .04.
Thus in state 1 76% of the weak partisans for candidate 2 will abstain (i.e., voters in
the interval (21, 2?)) while only 4% of the weak partisans for candidate 1 will abstain.
Since all of our analytical results continue to hold in this example we know that in
state 1 candidate 1 almost surely wins and in state 2 candidate 2 almost surely wins.
Noisy signals generate an electorate that is biased for the winner. Even though the

observed electorate is biased the outcome of the election is never biased.

6 Bias and Abstention

Another stylized fact about participation in elections is that those on the left always
participate less frequently than those un the right. The explanation for this appears
to be the correlation between education (a proxy for information) and political pref-
erences. The correlation may work as follows. Those with higher levels of education

enjoy higher incomes and this pushes their political preferences to the right. The fol-
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lowing example demonstrates that a biased distribution of information in our model
can lead to an electorate that is always biased towards the more informed end of the
ideological spectrum. While the bias in the electorate may be dramatic this does not
result in a biased outcome. Indeed, in this example the biased distribution of in-
formation results in strictly higher probabilities the election satisfies full information
equivalence than an unbiased distribution of information.

For purposes of exposition call those with preference types below 0 leftists and
those above 0 rightists. Assume the same structure as in example 1 above with the
proviso that all rightists observe the perfectly informative signal while leftists receive
the uninformative signal. Thus the distribution of information is maximally biased
towards those on the right. It is clear that any abstention due to the swing voter’s
curse will occur only among leftists guaranteeing that, independent of the state, the
portion of the electorate that votes will be skewed to the right. Because the rightists
all vote for 1 when they observe signal 1 and vote for 2 otherwise it only remains
to determine the behavior of the leftists. The cutpoints, expected vote shares and
expected level of abstention by those on the left (AL) are given in Table 3.1°

All leftist voters with preference types below xj are partisans for candidate 1 (the
leftist), voters in the interval (2, 2) always abstain and those in interval (23,0) are
partisans for candidate 2 (the right wing candidate). The level of abstention among
the leftists is extreme at 30% nevertheless candidate 1 wins in a landslide in state 1
as does candidate 2 in state 2, indeed the margin of victory is the same in each state.
Thus the pattern of abstention may be dramatically skewed towards one end of the
ideological spectrum without biasing the outcome of the election. Of course in this
example while voters have different preferences they have common values in the sense
that all prefer candidate 1 in state 1 and candidate 2 in state 2. It is a simple matter
to generalize this example, indeed any of the above examples, to include voters who
always prefer one candidate or the other independent of the state.1°

To get a sense of the effect that a skewed distribution has on equilibrium behavior

15The systemn of equations that was solved to gencrate this example may be found in Appendix
B.

161t is also the case that in actual elections the level of abstention changes from one election to the
next and that abstention among those on the left is higher in elections the democrats lose than when
the democrats win. We have constructed examples with symmetric distributions of voters in which
those on the left always abstain more frequently and abstention is higher when the left candidate
loses. Details are available from the authors upon request.
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consider example 1 above where ¢ = .5 and there is no bias in the distribution of
information. See column 2 of Table 3 below. In this case the fraction of the electorate
that is informed is the same as in the above example. The difference is that a leftist

is as likely to receive an informative signal as a rightist.

Table 3.

Bias | No Bias
:1“[}, —-.8 | -1/3
a:; -.211/3
t(1) | .6 2/3
tr(1) | .1 1/6
t1(2) | .1 1/6
t2(2) | .6 2/3
A 3 1/6

Abstention is lower in this example meaning that a biased distribution of informa-
tion increases abstention. It also follows that a skewed distribution of information
decreases partisanship since abstention only occurs among the uninformed and the
only partisans in both examples are thuse who are uninformed and vote. Finally,
while both the biased and the unbiased electorate choose candidate 1 in state 1 and
candidate 2 in state 2 with high probability, in large finite elections the biased distri-
bution of information actually result in lower probabilities of error than the unbiased
example. This follows from the fact that all the informed voters vote correctly in
each setting. The uninformed voters only introduce noise thus the fact that absten-
tion is higher with the biased distribution of information marginally improves the

performance of the electoral mechanism.

7 Conclusion

In the first section of the paper we demonstrated that abstention due to the swing
voter’s curse is robust to preference diversity and variable information environments.
However, the dependence of the size of abstention on the state space raises some
questions of interpretation. Under what circumstances is a coarse state space an
appropriate model and when is a fine state space more appropriate? It seems to us
that the coarse state space model is more appropriate under conditions in which the

quality of the aggregate information available to voters is low. Congressional, state
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and local elections along with ballot initiatives are more appropriately described as
low information affairs than are presidential or senate elections.

In the second section of the paper we presented a set of examples that demon-
strate the range of phenomena that are consistent with the model. In particular we
demonstrated that a biased electorate may be caused by a biased distribution of in-
formation without creating a biased outcome. The fact that a large range of behavior
may be supported as equilibrium in some information environment complicates the
task of using this model as a predictive tool. However, the normative results that
elections work well as information aggregation mechanisms even in the face of what
would appear to be a systematically biased electorate and large scale abstention is
highly robust. At a minimum this should give pause to those who would argue that

a persistently biased electorate inevitably leads to biased outcomes.
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8 Appendix A

The modified Bessel function I, (z) is defined as

Note the following facts (see Abramowitz and Stegum (1970) p. 376):

Iy(z) = 5hL(z) (28)
I(x) = Iy(z)— %10(1‘)
2

Lz) = h(z) - ~h(z)

lo(0) = 1,1,(0)=0,1;(0) =0

Io(z) = Ly(2) = %11(1,)

Also note that from equation 9.7.1. in Abramowitz and Stegum (p. 377) it follows
that

T

: vinr
lim XY= =1 29
TL“‘ 1,,(:1:) ( )

Clearly, the first two equations of 28 imply (together with the initial conditions
10 (0) - 1,.[1 (O) = 0) that

Iy(z) > [(z) (30)

since 1{(z) — I(x) < lo(x) — I;(2) and hence ly(x) — I;(x) cannot change sign (or be
equal to zero) for z > 0.

Similarly, the second and the third equations imply that 13 (z) — I{(z) < 2(I; (z) —
I, (z)) and together with the initial conditions this again implies that I;(z) > Iy()
for all > 0. Also note that

2
lo(x) — Iy(z) = —Li(x)
This, together with Iy(x) — Iy(x) > Io(x) — 1,(x) implies that
Iy()
)

(:
Iy(2) Io(z) —
0< —1<———11(— -

Therefore it follows that
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Definition 1 Define the function L(v,w) =

_\&11!2\/{6!

Lemma 5 L(v,w) = ¥=- (/o)

Proof. Note that

(2y/7)"

a0 L F T
z =0 :r‘ x+l

ST vt foranyv >0, w > 0.
=0 z!z!

evw) | 2V

Iy(2v/vw) 1+ 22(1!)2 24(21)2 26(31)2
B (w)'  (w)®  (w)?
St ar et

B iv“"uﬂ'
B r=0 ala!
VB oy = VB (V) QP QYR
Jo ! AT 951191 259131
_ Vo [(Viw) | (Viw)? N (Vvw)® N
Jo L1 1121 ot T
w oww?t o 0%? < Tt
- (T t oy ) T X ae )
Lemma 6 OL(v,w)/dv < 0,0L(v,w)/0w > 0.
Proof.
oo xp® ! oo vEwT oo zvF 1wt oo wTwTH!
o (B ) (520 5) - (570 50) (25 2
(Z::U L:r!m! )
_ i v It i VrWT i v T i 1wt
(- D+ 1)) \ g ala! (- Diet ) \ & 2l(z + 1)
oo 00 T 1 wE 41 Yy ,”;rflwr Uywy+l
B ;};} (x — D+ D) yly! (- Dyl (y + 1)
B ZZ 1+l/ leIUH 1 B 1 N 1 B 1
S e=-Dally-D! [+ 1)y (¥+1y @+l (z+1)z
A straightforward calculation shows that
1 _ 1 1 _ 1 _ 2ry-a2?-y?
[(mﬂ)y (y+1)y + (vt (@tD)x] = @+)y(y+ )z <0

From Lemma 5 we know that

L(v,w) =

Vw i (2v/ow)
Vo Lo (2v/1w)



Therefore using equations (28)

oL _ 1 L@y
Ow 2v/vw I (2/03/w)
Lo (2V/0v/@) = g7l 2VoVW) 1L (2vVw)
Lo (2/V/) Lo (2yye)’
Iy (2v/00)" = 1, (2y/00)°
Iy (2v1w)’
Since Iy (z) > I; (x) > 0 for 2 > 0 (Equation 30) the result follows. B
Lemma 1. Suppose that t1;(s) > 0 and ty(s) > 0 for all k. Then

Pri{piv|s} B
Pry{pivy|s}

pi(s)

as k — oo.

Proof. First note that by Lemma 5

Px‘k{p'i’lfz|8} B ,/I/ktlk 10 (2Vk\/tlk—"5))
Pr, {piv|s} B Jvitar(s) I (QI/km)

e (el )

Iy (20 (5)t (4))

By Assumption 1 there is an € > 0 such that for all z € [=1,—1+¢) an agent strictly

prefers alternative 1 for all states s and similarly for all z € (1—¢, 1] an agent strictly
prefers alternative 2. This implies that t;,(s) is bounded away from zero for all k£ and
all s. Now the result follows from Equation 31 l

Lemma 2. Suppose that (:1:]1-,; - :zrj,;,k> >¢>0forj=1orj=2andall k. Then as
k= 00 Saer Aulslpivg) — 1 for j = 1,2 and Syer Aulslpiv) — 1.

Proof. By the assumption of strict SMLRP it follows that ¢;(s) is strictly decreasing

while t9;(s) is strictly increasing in s with

tlk(S) — ['lk(sl) > ¢ >0 (32)

sz(b'/) — sz(S) > CI > O

for s’ > s and for all k. Consider a convergent subsequence and let ¢;(s) = limy_ tix(s).

Further, let
\/tl(s) - \/t‘z(s)

33

} (33)

T = {arg min



It follows from 32 that 7' consists either of a singleton or a pair of consecutive states.
We now show that agents must believe that conditional on a vote being pivotal the
state is almost certainly in 7".

Using Lemma 5 we write

Pry, {piUZ I SI} P k(DT ") (g ()% (ti(s')

— xz=:0 !
Pri{pive|s oo e Mk (D) () (5))* (wt1k(8))"
Kk{piva|s} PR adr g

PACTICORENCOII N (2,, Ly s bar ()
ICTOINONA (2,, tm(S)tzk(s))

! !
cv(tlk(s)——tlk(s')+—n2k(s)7t2k(s'))1° (2”\’ i () (s ))
1() (21/\ / tlk(S)tQk(S))

Note that from Equation (29) it follows that

(JQVk\/m
M — ch(hk(s)"‘1k(5')’H'zk(3)-‘2k(é‘/)) \/%2% Fae ()
Pry {pir,|s} ‘Quk\/m
\/271’2l/k ﬁ]k(s)tQk(s)
' .t ’ \/ v/ ’
Er (") bar (") V“'(<\/"1k(s)\/52k(8)) *( tin(s)— ‘?k(sl)) )

tie(8)tar(s)

It follows from Lemma 1 that

Pr;{pi,]s'}
—_—
Pri{pivy|s}

(Vo) = V) > (Vuls) = euls)) (3)

Since 35 holds for any s € T and §' ¢ T' it follows that
2ser Pri{pivi|s'}
S scs Pri{pivis}
Y oep Pra{pivals’y
Zs(g s Pric{piva|s}
S Pri{piv)s'}
- —
Sscs Pri{piv]s)

if

— 1.

— 1 and hence

Now Lemma 1 implies that

Since
g(s) Pri{pivy|s'}
Sscs 9(8) Pry{piv;[s'}

Oy (s|pivy) =

34



the Lemma follows B

Lemma 3. Suppose Assumptions 1-6 hold. Consider a sequence of voting equilib-
ria. Then Bi(s'|piv) + Bi(s¥|piv) — 1 as k — oo. Also, for j = 1,2, Bi(s'|piv;) +
Br(s?|piv;) — 1 as k — oo.

Proof. Consider a sequence of voting equilibria (27,),j = 1,2. Consider a conver-
gent subsequence of (27,,).

Step 1: Suppose a:{k — a7, — 0 for j =1,2. Then gi(s'|piv) — 1 as k — oo and
F(z(s")) = 1/2.

Proof. Since

E(u(2?,, s)|piv, 1) = B(o(ahyy, s)lpivy, M)
E(v(zl,, s)pivy, 1) = E(u(xhyy, s)|pivy, M)

it follows from the continuity of v that for z € [2%,,,2%] and 2/ € [z}, 214]

L(v(z, s)|pivy, 1) — E(v(z, s)
E(v(2, s)|pivg, 1) — E(v(a', s)|pive, M) — 0

pivy, M) — 0 (36)

Since the signal satisfies Assumption 2 it follows that there exists an s, s’ such that
Pri(s = s|piv;) — 1 and Pry(s = '|piv,) — 1. By equation 36 and the fact that
t;x(s) is bounded away from zero it follows that s = s'.

We now show that it must be the case that F(z(s')) = 1/2. Suppose this were
false. F'(z(s')) < 1/2. Then the fraction of voters who prefer 2 in state s is less than
1/2 — € for some ¢ > 0. Since 23, — 2%, — 0 for j = 1,2 it follows that the fraction
of voters who vote for 2 is less than 1/2 — ¢/2 for sufficiently large k for all s. This in
turn implies that the probability that ny, = n; is maximized at maxges s contradicting
the assumption that I"(z(s")) < 1/2.

Step 2: Suppose lim (a:{k - zf\,k) >¢>0for j =1orj= 2 Then fi(s!|piv) +
Br(s?|piv) — 1 as k — oo.

Proof. By Lemma 2 we know that Y7 i (s|piv) — 1. Thus it is sufficient to show
that T C {s!, s?}.

Consider a convergent subsequence and let t;(s) = limy_ oo tjx(s). From the de-
finition of T and the monotonicity of ((s) it follows that if t1(s!) > ta(s') and
t1(s') < to(s!), then T C {s',s*}. To see that this is indeed the case suppose
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§ =argmax s and § < s'(an analogous argument can be made if there is an " € T

T
with s” > s?). By (32) we have

d < \/tz(sl) — \E(sl) (37)

From the definition of T' (2) we know s! ¢ T' which implies

Bi.(s > 3|piv) — 0. (38)
Consider any m such that p(m|s') > 0 and let
xi(m) = {x: E{v(z, s)|piv,m} = 0}.

If p(ml|s) > 0 for sume s € T then (38) implies that a voter who receives signal m
and conditions on the event that a vote is pivotal believes the probability of state
s > s! is close to zero for large k. Thus if p(tn|s') > 0 then for all € > 0 there is a ¥’
such that for £ > £

ap(m) > x(s') — ¢
But this in turn implies that {;;(s') — 1/2 converges to a non-negative number and
hence \/tl(sl) — \/tg(b'l) > 0 contradicting (37) B
Lemma 4. Suppose Assumptions 1-7 hold. Then there is an ¢ > 0 and a k' < oo
such that By (s!|piv) > €, Bi(s*|piv) > ¢ for all k > K.

Proof. Suppose contrary to the Proposition that there is a subsequence such that
B (stpiv) — 0

This implies that
B(s®|piv) — 1

and hence t,(s?) — F'(2(s%)) and ty(s?) — 1 — F'(2(s?)). Moreover, since all voters

who receive a noisy signal behave as if state 2 occurred,
Lir(s)) — F(z(s?) + (P2(sh)) — F(a(s%)) Zp(m|sl).
M
and

to(s') =1 — 1"(:1;(.52)) - (F(a:(sl)) — F(a:(sz)) Zp(mlsl).
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Let A = (F(z(s!)) — F(z(s?) S p(in|s') and observe that

(\/F(m(s2)) FA— 1= Fla(s) - A)2 < (\ﬁf(a;(s2)) . F(:,;(sﬂ)))2 (39)

whenever 0 < A < 1 — 2/°(x(s?)).
Assumption 7 says that 0 < A < 1 — 2F(x(s?)). Hence 39 holds with a strict

inequality whenever A > 0 and therefore we have that for sufficiently large k

(\/a(él)) \ﬂzk > (\/tu \/7%(32)))2_ (40)

To see that (40) also holds (for large k) when A = 0 observe that in this case
tie(s?) — F(z(s?) < 1/2 and tu(s?) — 1 — F(x(s?)) > 1/2 since every agent

behaves as if state s? has occurred.. Thus we have that for large k
le(sz) < qu(Sl) < 1/2
L-Zk(b"z) > sz(sl) > 1/2
and (40) follows for large k.
From the proof of Lemma 2 we know that
2
Prk{pwj\s \/\/’11 Jar (s ”k((\/'lk(* — 1/t (s2 ) <\/t1k(s’)ﬂ/¢%(sl)) >
Pry, {pwj|82}
Lig(s2) ok (s

Inequality (40) then implies that for every ¢ > 0 there is a k' such that for k > k'

\/\/llk Jtar (s 51
\/\/tlk Jax(s

Since g(s) and (;;(s) are bounded away from zero for all s this in turn contradicts

(41)

w(s”|piv) —

l|p77y

Be(s'|piv) — 0. (The argument for the case where f3i(s*|piv) — 0 is analogous.) W

Proof of Proposition 5: Since Assumption 7 holds we can apply Lemma 3
to establish that 3;.(s!|piv) > ¢ > 0 and i (s*|piv) > ¢ > 0 for large k. By Assumption
1 this in turn implies that 2, — ar’}uk >e¢>0for j=1o0rj =2 for large k. Thus,
there exists an ¢ > 0 such that pi(s) — pp(s') > ¢ for all s < s'. From Lemma 1 we
know that

q(sl)l’l‘kilﬂv]!sll
VPr(s')

/-}k( |p“' )_ /( ) u!pzvl\a )+(( ) lkflﬂvl‘é )) —0
: pr(sh) Vor(s?)
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and hence there is an &' and an €' such that
Be(s'|piny) < Be(s'|pivy) — € (42)

for all k > k. Consider an agent who receives a signal m with p(m|s') > 0 and
p(m|s?) > 0. Since (42) holds it follows that there is an ¢ > 0 and a &’ such that for
k> K

E{v(z, s)|pivy, m} < E{v(z, s)|pivy, m} — €

s)|pivi,m} = 0 and 22, , is given by E{v(z?, 1, s)|pivy, m} =

Since x}, ;. is given by E{v(z,, ,
0 the result now follows. &

Proof of Proposition 6: Step 1: First we demonstrate that the fraction
of players who abstain and who receive a signal that allows them to exclude a state
in the set {s', s?} converges to zero. le., we show that the fraction of voters who
abstain and who receive a signal with the property p(mn|s')p(m|s?) = 0 converges to
ZEro.

To prove Step 1 we distinguish two cases:

s1) > 0 and p(in]s?) = 0 or p(m]s') = 0 and p(m|s?) > 0. Suppose

Case 1: p(mn
W.L.O.G that p(in|s') > 0 and p(in|s?) = 0. In this case receiving message m permits

the agent to perfectly discriminate between states s' and s*. Now it follows that
Ev(zx, s)|pivy,m) — E(v(zx, s)|pivy, m) — 0
since

E(v(, s)lpivy,m)  — v(z, s1)

E(v(x, s)|pivg,m) — v(z,s')

Case 2. p(m|s') = p(m|s?) = 0. In this case receiving the message m tells the
agent that the state is neither s! or s2. It follows from SMLRP that either p(m|s) = 0
for any s < s! or for any s > s2. W.L.O.G let p(in|s) = 0 for any s < s'. Let § < s!
be the largest state such that p(3|rn) > 0. Now it follows from p(s) strictly decreasing
in s that

W

)

L(v(z, s)|pivy,m) — v(z,3)

E(v(z, s)|pivy,m) — v(z,
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and the fraction of types receiving message m that abstain goes to zero.

Step 2. In Step 2 we demonstrate that the fraction of voters who receive a signal
with the property p(im|s')p(in|s?) > 0 and who abstain can be made arbitrarily small
if 7 is sufficiently small. These are voters whose signal does not allow them to exclude
a state in the set {s! s?}. To prove this we demonstrate that for small 7 the beliefs
conditional on the event piv; are very cluse to the beliefs conditional on the event
pLU,.

Assume that the critical state is s!

F(z(s)) — 1/2|. (The case

ie., s! € argmin,
where s = argmin, |I"(2(s)) — 1/2| is entirely analogous.)

Observe that liminf ty:(s') > 1 — I'(2(s")) since every voter with type & > z(s')
prefers candidate 2 if the state is in the set s € {s', s’} and by Lemma 2 we know
that By (s'|piv;) + Bi(s?|piv;) — 1 as k — oo. Since candidate 1 wins the election in
state s! with probability close to one (Proposition 4) it follows that t1x(s!) > tar(s').
Since the expected vote shares must be less than or equal to 1 in each state it must

be the case that t;(s') < F(x(s')) for sufficiently large k and we get the following

inequality:

02 Jlau(s) = fins7) 2 V1= Fale1) = P lals))

Therefore,

R — JFee)
1 < liminf \/pi(s!) < limsup y/pi(s!) < - F(g;(sl))' (43)

Further, observe that since vote shares are monotone it follows that
L(s?) > 1 — F(a(sh)).
By Lemma 3 B (s'|piv;) > =, i (s*|piv;) > £ > 0 and by Lemma 2 this implies that

(Vo) = Vfealot)) = (Veulsh) = ielsh)) =0

As a result we get that

liminf 1/t1.(s?) > \/1 — F(z(s")) + /1 = F(z(s') — \/F(a:(sl)
= 2y/1 — F(a(s")) — \/F(:l:(sl)
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and

5> 24/1 = F(a(s")) - \/F(a:(sl).

44
1 — F(a(sh)) (a4

1 > limsup y/px(s?) > iminf y/pi(s

Equations 43 and 44 imply that for any £ > 0 there is an 7 > 0 such that for
F(x(s')) — 1/2 <1 we have that

1 < liminf {/pi(s') < limsup y/pi(s!) < 1+¢ (45)
1 > limsupy/pi(s?) > liminf /py(s?) > 1 — <.

Lemma 1 and the fact that p(m|s')p(mn|s?) > 0 then implies that for every ¢ there
is an 7 such that for I'(x(s!)) — 1/2 < 7 implies that

B (st pivy,m) — B(s!|pivy, m) < &

for sufficiently large k and therefore for every € there is an 7 such that for F(z(s!)) —
1/2 <7 and for in

L{v(x, s)|pivy,m} — E{v(z, s)|pivy, m} < £” (46)

which yields the result. B

10



9 Appendix B

The system of equations for the noisy signals example is given below:

— 1 0(1) - 4(2)

A, = —uy
1 2
A
al
1+ ti1(2)
2
J,} = ——————(1)—1
lzp [0l
1+ P t1(2)
. 2
S,

1-p [0()
L+ 55 am

t1(1) = .5q ((1 +alp+ (-2 - p)) +.5(1 = q)(1 + zp)
h(2) = Bq((1+2)1—p)+ (1 —adp)+5(1- )1+

The system of equations for the biased distribution of information example is

given below:

AL = 5(.1:%—:1:5))
2
1(}\ = -1
1+m
2
15 = -1
147
v = tl(l)tQ(g),y
1 = 2
t1(2)t,(1)
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