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Abstract

The purpose of this paper is to develop the theory of the firm to get
better understanding of situations in which individual employees enjoy some
bargaining power in their relations with the firm, and in which the terms of
employment are determined and adjusted through individual contracting and
recontracting with the firm. The main elements of the situations studied here are
that the employees are not organized, that the employment contracts are non-
binding or at least not for very long, and that the firm has opportunities to
replace employees.

The paper develops analyzes a dynamic model in which the processes of
contracting and re-contracting between the firm and its employees are intertwined
with the dynamic evolution of the firm's workforce. The analysis of the model is
somewhat complicated because the employment level is a non-degenerate state
variable that evolves over time and is affected by past decisions.

The main analytical results characterize certain important equilibria: the
profit maximizing, profit minimizing and stationary equilibria. The wunique
stationary equilibrium is markedly inefficient: it exhibits inefficient over-
employment and the steady state wages coincide with the workers’ reservation
wage. It confirms earlier results derived by Stole and Zwiebel (1996a,b) in the
context of a static model and shows that they are very robust even when the firm
has nearly frictionless hiring opportunities. In contrast, the profit maximizing
equilibrium captures a very different pattern. The outcome is nearly efficient
and the wage exhibits a mark-up over the reservation wage. The path of the wages
exhibits an interesting behavior--it declines sharply when it reaches its steady
state level.
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IL 60208. I worked on this paper while visiting the Center for Rationality and
Interactive Decision Theory and the Department of Economics of the Hebrew
University of Jerusalem, and the Institute for Economic Analysis at the
University Autonoma di Barcelona. I would like to acknowledge support by the NSF
and helpful comments by Henrik Horn, Sergiu Hart, John Hillas, Joram Mayshar,
Yoram Weiss, Drew Fudenberg and three anonymous referees.



A THEORY OF THE FIRM WITH NON-BINDING EMPLOYMENT CONTRACTS

1. Introduction

The purpose of this paper is to develop the theory of the firm to get
better understanding of situations in which individual employees enjoy some
bargaining power in their relations with the firm, and in which the terms of
employment are determined and adjusted through a process of individual
contracting and recontracting with the firm.

Obviously, the general situation addressed here is widespread. In many
or even most firms, the terms of employment of certain key employees are
determined in direct bargaining between the employee and the firm. But, more
importantly, there are many firms in which relations of this form encompass a
substantial subset of a firm’s workforce. The latter category includes firms
that employ highly skilled labor such as high technology firms, law-firms,
universities, and perhaps even small firms that employ less skilled labor.
These employment relations are clearly distinct from those described by the
standard wage setting firm’s model or the unionized firm's model.

Despite the obvious relevance of employment relations of this form, they
have not been discussed extensively in the theoretical literature. The only
analysis that I am aware of is presented by Stole and Zwiebel (1996a,b)?
(henceforth referred to as SZ). They develop a model of a firm that contracts
with each of its employees through separate bilateral negotiations. Their
analysis takes into account the intricate interdependencies among the
simultaneous bilateral relationships of the different individuals with the
firm. They derive a variety of insights that demonstrate the importance of
this approach. The central insights are perhaps that there is substantial

over-employment (in the sense that the value of the marginal product of labor



is well below the opportunity cost of labor), and that, despite the
bargaining, the wage is driven down to its competitive level. In some sense
the firm is maintaining a "reserve army" of inefficiently employed to reduce
the bargaining power of their colleagues. Perhaps the main limitation of their
theory is that the hiring decision of the firm is made once at the beginning,
so in particular workers who might leave in disagreement cannot be replaced.
This feature might have significant consequences in a bargaining situation in
which the threats of quits and terminations play a major role.

The departure point of the present paper is the recognition that this
theory should be completed to include considerations of employee substitution.
The main concern is not about the imperfect realism of the model itself, but
rather regarding the extent to which this theory is valid in an environment
with an access to a labor market, which is the sort of environment we are
normally interested in. The model of this paper expands SZ's basic framework
to incorporate this missing element. This necessitates the construction of a
dynamic model in which the processes of contracting and re-contracting between
the firm and its employees are intertwined with the dynamic evolution of the
firm’'s workforce.

In practice, the employment relations we want to study appear in a wide
variety of forms, and the theory discussed here will naturally have to
abstract of many of the features characterizing realistic situations. It will
focus on situations with the following features. The contracts between the
firm and its employees are non-binding or at least not binding for very long,
in the sense that they can be repeatedly renegotiated to adjust to changing
situations; the employees are "replaceable" but their replacement is not

frictionless in the sense that it requires time and effort. The assumption



that contracts are non-binding is obviously an abstraction, but it is not as
strong as it might seem at first (it is probably more appealing than the
alternative extreme of fully binding contracts). First, the degree to which
employees could be bound by contracts is greatly limited both by law and by
custom. Second, since only a few of the many dimensions of employment terms
are contracted upon formally, the degree to which employers can be bound by
long term contracts is also rather limited?.

We present what is perhaps the simplest model that still captures the
essence of this interaction. The focus of this paper is not on the details of
the negotiations, but rather on the significant consequences of these
circumstances for employment and output, and the model is constructed with
this in mind. The model features a firm which uses labor as its only variable
input. Two processes take place over time. First, a stochastic process brings
new potential employees to the firm and, second, the wages of the employees
are constantly renegotiated. In the absence of binding contracts, the firm and
a worker can only agree on the worker’s current wage rate. But in so doing
they take into account the expected value of their continued relations. The
bargained wage splits equally the surplus of this value over the value of the
disagreement outcomes. The disagreement value for the worker is the value of
his outside opportunities; the disagreement value for the firm is the
continuation value of the hiring and renegotiation processes without the
quitting worker. The behavior of the firm is described by an employment policy
which specifies its employment decisions as a function of the history of the
process. An equilibrium employment policy is such that the firm does not wish
to deviate after any history. This model has multiple equilibria. We

characterize the equilibria that maximize and minimize the firm’'s profit (for



any initial pool of employees) and the (unique) stationary equilibrium.

These equilibria crystalize different patterns of interaction that might
arise in this situation. The stationary equilibrium captures the behavior of a
"mean" firm which keeps its wages low by excessive employment. This
equilibrium reaches a steady state that coincides with the equilibrium outcome
in SZ, so it confirms the theory of SZ fully. Furthermore, this equilibrium is
very robust and its steady state outcome is independent of how fast the firm
can replace departing employees. The maximum profit equilibrium captures the
behavior of a "nice" firm which does not attempt to depress wages through
excessive hiring. The employment level ends up being nearly efficient or
somewhat lower than the efficient level. In this equilibrium, starting from a
low initial pool of employees, the behavior of the wage as a function of
employment fits into two distinct phases. In the build-up phase in which the
employment level is short of its steady state level, the wage is relatively
high. In the terminal phase, after employment reached its steady state level,
the wage is distinctly lower (in the continuous labor limit of the model, the
wage function is discontinuous at this point). This wage profile owes to the
absence of binding wage contracts. Earlier hires have a stronger position, but
since they anticipate their wages to be renegotiated downwards as more workers
are hired, they have to receive a relatively higher wage initially. The wage
paid in the terminal phase, after the steady state employment level was
reached, exhibits a mark-up over the workers’ reservation wage which
represents their alternative opportunities. Since the employment level is
determined in the model, this observation is not a straightforward consequence
of the fact that wages are determined in bargaining and indeed it does not

appear in the SZ model. The significance of this insight is in pointing out



another source of wage mark-up to the existing list that includes efficiency
wage and unionized labor. Finally, unlike the stationary equilibrium, the
profit maximizing one is affected importantly by how easy it is for the firm
to replace quitting employees. When the firm can do it quickly, the steady
state outcome reached by this equilibrium coincides with the efficient
equilibrium outcome of the standard model of a firm facing an infinitely
elastic labor supply curve at the workers’ reservation wage.

The insights reported above can be traced clearly to the fundamental
ingredients of the situation we study. They are therefore quite robust. Their
robustness is also illustrated by the two variations on the model that are
briefly outlined® in Section 7.

This paper should be probably classified as a contribution to "applied
theory." Namely, the focus is on modeling an economic situation, rather than
on the introduction of new methodological advances. At the same time, it
should be noted that the model has essentially the structure of a stochastic
game with a non-degenerate state variable. This family of games is not as well
mapped as, say, its sub-family of repeated games, and, consequently, the
equilibrium analysis here is not an immediate corollary of existing work. So,
the methodological contribution, if any, lies in the provision of an
interpretable and somewhat rich example with such structure, which is
sufficiently tractable to produce sharp characterization results.

The plan of the paper is as follows. Section 2 presents the basic model.
Section 3 contains preliminary analysis and introduces a certain class of
simple equilibria. Section 4 presents the main equilibrium analysis:
characterization of the maximum profit, minimum profit and stationary

equilibria. Section 5 derives the limit equilibrium outcomes for the case in



which workers are negligible relative to the size of the firm. Section 6
discusses the insights emerging from the equilibrium analysis. Section 7
reviews briefly two extensions of the basic model. Section 8 contains a few

remarks on the modelling. Section 9 brings concluding remarks.

2. The Model

This model considers a firm that uses labor as its only variable input
and workers who are identical in their preferences and productivity. The
events in the model take place over time. The time dimension is discrete and
denoted by t=1,2,«+¢. The significance of a period is captured by a common
discount factor §€(0,1). Following are the main ingredients of the model and

the solution concept.

Technology: The total present value of the output generated by perpetual
employment of n workers is F(n); the value of the output at any period in
which the firm employs n workers is f(n)=(1-§)F(n). F and hence f are
increasing and concave. The analysis below will be conducted only in terms of
f, but we introduce the dependency of f on § in this manner to make sure that,
when 6§ is varied and the length of the period changes, the production varies

with it appropriately.

Payoffs: A worker's von-Neumann-Morgenstern utility, evaluated in the
beginning of period t, of being employed (by this firm) in periods t,...,T at

wages w.,...,wr and not after that is

i 63'1Ws+6T'“1WU ’

s=t

where Wy is a worker's (exogenously given) utility of not being employed by

this firm. We shall assume that, once a worker is separated from the firm, he



will not be employed by it again, so that only employment profiles of the
above form are relevant.

The firm’'s profit given a profile {ng,ey}i~ o« of employment levels ng

and expenditures e, is

Y3t [ f(n,) -e,]

t=1

The magnitude (1-§)Wy will be referred to as the reservation wage of the

workers, since the worker’'s utility of being employed in perpetuity at this
wage, w/(1-§), is just equal to the utility of being unemployed, Wy. To assure

that the model is not degenerate, it is assumed that f(1)>(1-6)Wy.

The evolution of the workforce: At the beginning of period t, the firm faces a

pool of m, potential employees consisting of the n,.; who were employed in
period t-1 plus at most one new prospective employee who may arrive through an
exogenous arrival process. The per-period probability of a new arrival is a,
up to a large upper bound M,
a if my=n,,+1
Prob(m,|n, ;<M) = {
l-a if me=n,,
I1f n,.,=M, then my=-n, ;. M is assumed very large®, in particular, for some m
well below M, f(m)<m(1l-§)Wy.
The speed of arrival depends on the probability a as well as on the
"length of a period." Therefore, the speed of arrival will be measured here by

the ratio a/(1-6).

The flow of events: Roughly speaking, the events within any given period t

proceed as follows. Out of the my potential employees, the firm chooses those

it actually wants to employ in period t. Then the wages are determined in



bilateral bargaining between each worker and the firm. Finally, production
takes place, wages are paid and the period ends. The bargaining component is
not modelled as a non-cooperative game, but is rather left in a black box

which produces the bargaining outcome according to a rule that will be

specified later.

Production "@

The above description is incomplete, since in order to describe the bargaining
outcome, we have to introduce the possibility of disagreement. This requires

the following more elaborate description of the "off the path" developments.
Agreement
0 = 1y
Production
- < j disagreed
Moy = M-

As before, out of the my=m, ; potential employees, the firm picks n, ; at the

start. If the bargaining phase is concluded with no disagreement, the firm
proceeds to the production phase with ny=n, ; employees. If the bargaining
results in disagreement with some j employees, these j employees depart and
the firm is facing m, , = n, ,-j employees whose terms have to be renegotiated.
Before entering again the bargaining phase, the firm may further adjust this

pool to n; ,<m , and so on.



Notice that an employment decision is always followed by bargaining (as
opposed to the alternative of first negotiating the wages with the pool of
potential employees and then deciding on employment). This is an important
assumption which captures the essence of what we mean by non-binding

contracts. It is discussed further in Section 8 below.

History: A history records the evolution of the workforce including all the
information described in the diagram. The component added to history at period
t is of the form (mtJ,ntJ,...,mt*t,nt*t), where m, ;>ng ;>m ;+; so that the
number of rounds, k., satisfies l<k,<m; ;. A possible history in period t is a
sequence of the form

h™ = (my 1,0n1,1, .- .,ml,kl,nl‘kl), oo, (mg 1,My g, .. 0y jo,M ), OF

h* = (my1,np0, -0 my Dk ) s - -5 (e 1Ty, - oMy 5,0 5)

where in addition to the above properties, for t=2, my; = ng-qx or r%-Lkr1+l'

t-1
We will continue to use my and n, to refer to the initial number, my ,, and the
terminal number, ng x, - Thus, a history of type h™ precedes an employment
decision; a history of type h' precedes the bargaining phase. Let H’, H'
denote the sets of histories of the two types and let H=HUH". Let £(h) denote
the last number in the sequence heH.

Observe that the history records only employment levels. In particular,
it does not record wages. This is supposed to capture a situation in which

changes in employment are publicly observable, but wages are not. We will

return to discuss this point in Section 8 below.

Policy (employment policy): A policy is a function v: H - (0,...,M,C}. v(h) €

{0,...,M) means that the firm hires v(h) workers and hence v(h)<£(h); v(h) = C

means that the firm closes down and ceases to operate.



The policy is the counterpart of a strategy in a non-cooperative game.
The distinction between v(h)=0 and shutdown is that in the former case the
firm can continue hiring.

It is assumed that, when an employment policy is implemented, the
following rules apply: (i) Precedence of continuing employees: if at the
beginning of t the firm retains fewer than the m, potential employees, the ny_;
continuing employees have precedence over a new arrival. (ii) Equal retention
probabilities: If n, ;<m, ,, the retention probabilities are n, ;/my ; 1f i>1 or
t=i=1; n¢ 1/Ne-1x, if 1 and i=1.

Property, (i), is a simple way to build into the model a plausible
feature, without imposing additional structure such as training costs that
would rationalize this assumption. Its removal would not change the analysis
qualitatively. Property (ii) just gives further content to the symmetry of

this model with respect to the workforce.
Wage function: A function w: H' - R.

w(h) describes the wage that arises in the bargaining phase after the history
h. At the moment no restrictions are placed on the function w, but we will

soon impose on w a condition motivated by the underlying bargaining.

Value functions: Given a policy-wage function pair (v,w) and heHt, let:
W(h:v,w) = An employee's expected utility after the history h.

I(h;v,w) = Expected profit after h.

(2.1) W(h;v,w) = w(h) + Sa{min{1l,v(h,£(h)+1)/£(h)]W[h,2(h)+1,v(h,£(h)+1) ;v W]+
(1-min(1l,v(h, 2(h)+1)/2(h) )Wy} + §(l-a)(min[1l,v(h,2(h))/2(h)]W[h, £(h),v(h,£(h)); v, w] +

(1-min{1,v(h, £(¢h))/2(h)])Wy}

10



If £(h)=C, then H(h;v,w)=0. If 2(h)»C, then

(2.2) M(h;v,w) = £(£(h)) - 2(h)w(h) + é{ell[h,2(h)+1,v(h,L(h)+1) v, ,w]

+ (l-a)I[h, £(h) ,v(h, £(h)) v, w])

Thus, W(h;v,w) consists of the current wage, w(h), plus the discounted value
of continuation, which is either the value of W in the next period or Wy,
depending on whether the worker is retained. Both the future value of W and
the retention probability may depend on whether a new worker will arrive, and
this explains the separate terms multiplied by §a and §(l-a) on the RHS of
(2.1). Equation (2.2) is explained similarly.

The purpose of the following condition is to introduce into the model

the idea that the wage is determined in bargaining.

Equal split bargaining condition:

Given v, the wage function w satisfies equal split if for all heH*

(2.3) Wh;v,w) - Wy = max(II(h;v,w) - M¢h,2(h)-1,v(h,£(h)-1);v,w),0)

When I(h;v,w) = I(h,£2(h)-1,v(h,£(h)-1), this condition says that the wage is
determined so as to equate the worker’'s utility gain from continued employment
(the LHS) to the firm's gain from retaining this worker (the RHS). But, if for
some reason, the firm insists on unprofitably keeping workers even though
I(h;v,w) < I(h,2(h)-1,v(h,2(h)-1), the workers cannot be bargained to below
their reservation values, so in such a case the wage will only fall down to
equate W(h;v,w) to Wy. As was mentioned before, the bargaining phase is not
modelled explicitly, and this condition only characterizes its outcome. We

shall return to discuss this issue in Section 8 below.
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Equilibrium: The pair (v,w) is an equilibrium if for all heH  and j<i(h)

(2.4) v(h) € Argmax,e(o,..., tny,cylICh,n;v,w)

(2.5) N¢h,v(h);v,w) = I¢h,v(h),j,v(h,j);v,w)

where the functions II, W satisfy (2.1-3).

Let & denote the set of all equilibria. Condition (2.4) requires that
after any history, h, it is in the best interest of the firm to choose
employment level (or shutdown) v(h), given the common expectation that future
employment and wages will continue to be governed by v and w. (2.5) requires
that, after an employment decision prescribed by the equilibrium policy, it is
more profitable for the firm to have the expected agreement with these
employees than to have disagreement with some of them. Condition (2.5) is
based on the premise that, in the unmodelled bargaining phase, the firm can
force disagreement with any number of its employees.

Since the workers do not take any action in the above model, it might be
supposed that the modeled situation is a decision problem rather than a
strategic equilibrium problem. But, in fact, this a genuine equilibrium
problem. The expectations of the workers regarding the future determine
W(h;v,w) which enters the bargaining condition (2.3) and in turn affects the

wages. The workers’ missing moves are hidden in the bargaining black-box.

3. Preliminary Analysis

The equilibrium analysis is developed in three steps. The first is
characterization of the wage and profit functions arising for a class of
simple employment policies. The second step presents the equilibria
sustainable by the policies of this class. The third step characterizes the

extremal equilibria in the class of all policies.
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3.A. Wage and profit with simple employment policies

A stationary N policy is v such that v(h) = Min[£(h),N], for all heH™.

That is, when following such policy, the firm always aims at reaching N in the
fastest way, regardless of the history. Given a stationary N policy v and a
wage function w such that w(h) depends only on £(h) and N, i.e.,
w(h)=w(2(h);N), we also have W(h;v,w)=W(£L(h);N) and O¢(h;v,w)=II(L(h);N). For

heH* s.t. £(h)=n<N, system (2.1-3) can be rewritten as follows.

(3.1) W(n;N) = w(n;N) + §[eW(min{n+1,N};N) + (1-a)W(n;N)], 1=n=<N

(3.2) NO(n;N) = £(n)-w(n;N)n + §[all(min{n+l,N};N)+(1l-a)I(n;N) ], 0<n<N

(3.3) W(n;N) - Wy = Max[lI(n;N) - M(n-1;N),0] 1<n<N

A solution to system (3.1-3) is an assignment of values to w(n;N), W(n;N),
1<n<N, and to II(n;N), 0<n<N, which satisfy the system. A solution is feasible
if it satisfies I(n;N)2I(n-1;N)=0, for l<n<N. If a feasible solution exists,
the associated N is also called feasible. Notice that feasibility assures that
the firm indeed wants to follow the prescription of the stationary N policy at
levels n<N.

Let Af(n) = f(n) - £(n-1), the value of the marginal product. Let

2 f: . ,
¥ - Af
(n) n{n+1) i,ll (1)
Since £1=M the term —z—f:iAf(i) is a weighted sum of the
i=1 2 n(n+1) i=1

marginal products with higher weights assigned to the marginal products of
later units®. Since f is concave, ¥ is a decreasing function of n. The

function ¥ will play an important role in the model. In a static version of
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this model in which the firm hires n workers once and for all (the SZ model),
¥(n) captures the gross surplus (gross of the worker’'s opportunity cost (1-
§)Wy) to be shared by the firm and a worker. While the direct contribution of
a worker is Af(n), there is also an indirect contribution in depressing the
wages of the others, which explains the appearance of the infra marginal
productivities (if the worker quits, the remaining workers will renegotiate
the wage to reflect their increased contribution).

Let N° denote the maximal n such that ¥(n)=(1-6)Wy. Since £(1)>(1-8)Wy,
such a positive N° exists. Assume that ¥(N°) is exactly equal to (1-86)Wy. This
assumption will simplify the presentation of later arguments by avoiding

"integer problems."

Proposition 1: (i) N is feasible iff N=<N°
(ii) For N=<N°, the unique feasible solution to (3.1-3) is
[(F(n)+(L-86)Wy]/2 n<N
(3.4) w(n;N) = {
[(N+1) (1-86)W(N)+[ (N+1) (1-8)+28a] (1-6)Wyl/2[ (N+1)(1-6)+6a] n=N
The proof (and all subsequent proofs in this section) are relegated to
Appendix 1. Both at n<N and at n=N, the wage w(n;N) is a weighted average of
¥(n) and the reservation wage (1-6§)Wy, with a higher weight on (1-6)W; when
n=N. Since ¥(n) is monotonically decreasing in n, so is w(n;N). Due to the
change in weights at n=N, the downward jump of w(n;N) is larger than it would
be if w(n;N) were governed by the same formula at n<N and n=N.
Since IM(N;N)=[f(N)-w(N;N)]/(1-6), (3.4) also yields an explicit
expression for I(N;N). Let x(n) denote the profit flow accruing to a firm who
employs n workers at the workers' reservation wage (1-6)Wy,

x(n) = £(n) - n(l-6)Wy.

14



In other words, m is the profit flow in the standard benchmark case of a wage

setting or a neo-classical firm.

a1 Sa (N+1) (1-8) 1 o
(3.5) I(N;N) =3=1 D8 8a "~ M D) (1-8) 8« [N+1§1"(l)]’

Thus, (1-6)I(N;N) -- the flow equivalent of II(N;N) -- is a weighted average of

n(N) and the arithmetic average of n(i) for i=0,...N.

Figure should be placed about here

The figure depicts the relationship between (1-8)I(n;n), n(n)

and -—%}-}2}:(1) . For convenience we draw continuous curves although these
are actually discrete points. The concavity of n(n) assures that the two solid
curves are as shown. x(n) is maximized at one or two adjacent n’s. Without any
loss we assume that it is maximized at a single point: N® = Argmaxw(n).
Clearly, NS<N® since NS is the largest n such that Af(n)=(1-6)Wy. N* denotes
the smallest maximizer of II(0:n). Since for n<N, w(n;N) is independent of N,

N* also maximizes II(n;N), for any n<N*. The following proposition confirms the

features shown in the figure.

Proposition 2: (i) The curves =x, (1-§)II(n;n) and 7§%I f:n (i) intersect at N°,
i=0
where the latter has its unique maximum. (ii) ArgmaxI(n,n) = N** or

(N** N*""+1). (iii) N"<NS<N™"<NC.

In fact, it is easy to see that, when the contribution of the individual
worker is not too large relative to the total production at N®, then the above
‘inequalities are strict, N*<NS<N**. Notice that the observation that the
maximizer of I(0:n) is strictly smaller that the maximizer of I{(n;n) is
somewhat surprising. It owes to a certain dynamic effect that will be
discussed later.

15



3.B. Equilibria in N policies

Section 4 below brings comprehensive equilibrium analysis. Before
turning to it, we present here special equilibria in which the behavior is of
the simple variety described above (i.e., there is a level N that the firm
plans and everybody expects it to reach and retain thereafter), and the wages
and profits along the paths of these equilibria are as summarized by (3.4-5).
The purpose of this part is both to give some idea on how the model works and
to introduce equilibria that play an important role in the subsequent
analysis.

Recall the stationary N policies defined above. A stationary N
equilibrium is a regular equilibrium in which the policy happens to be a

stationary N policy.

Proposition 3: There exists a unique stationary N equilibrium. In it N=NO.

The stationary N° equilibrium is sustained by the following
considerations. At n<N®, the hiring of an additional worker is profitable,
since the worker's combined contribution to production, Af(n+l), and to the
reduction of the total wage bill (recall the declining wage profile between n
and N°), exceeds the firm's cost of employing this worker. At n>N°, the
workers have to be paid at least their reservation wage (1-6§)W;, since the
firm is expected to return to N° where the workers’ continuation utility will
be Wy. This means that hiring beyond N° does not reduce the total wage bill,
so it must be unprofitable as Af(n)<(1l-§)Wysw(n;N).

Consider next a somewhat broader class of policies. Let ng,,(h) denote

the maximal employment decision (even numbered coordinate) in the history h.
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Definition: A gquasi-stationary N policy is v such that, for any h with

Npax(h)<N, v(h)=min[£(h),N].

That is, a quasi-stationary N policy is like a stationary N policy as long as

N was not exceeded. Let N be the minimal n such that I(n;n)=M(N9;N%) .

Proposition 4: For each Ne[ﬁ,N°] there exists a quasi-stationary N

equilibrium.

The quasi-stationary N equilibria with N<N° are sustained by trigger
policies. If the firm deviates and exceeds the original N, a punishment phase
is triggered in which the stationary N® equilibrium is played. Consider an
equilibrium with steady state employment level N<N°. At n<N, continued hiring
is profitable, just as was explained following Proposition 3 above. However,
if at n=N+1, the firm was still expected to return to N, the argument given
for the N° equilibrium would not work, since here W(N;N)>W; and the firm would
achieve a reduction of the wage bill by such additional hiring. Instead, such
additional hiring is deterred by triggering the less profitable NO
equilibrium.

Recall that the speed of arrival of new employees is measured by the
ratio a/(1-6). Notice, that the levels N® and N° are independent of a/(l-§),
but N depends on it. When a/(1-§) is sufficiently large, so that arrival is
fast, N < N*. When a/(1-§) is relatively small, so that arrival is slow, N is

close to N° and hence NS<N. In such a case N° and N* are not supported in this

manner by triggering the N° equilibrium.
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4, Further equilibrium analysis (all equilibria)

Obviously, this model has other equilibria outside the class discussed
above. For example, a variety of complicated patterns can be sustained by
using the N° equilibrium as a punishment phase. We now look at the set of all
equilibria--not only those supportable by quasi-stationary policies.
Specifically, we characterize the profit maximizing equilibria, the profit
minimizing equilibria and the stationary equilibria. All the proofs for this
section are collected in Appendix 2, but an intuitive exposition of the ideas
of the main proofs are provided in 4.D below.

4.A. Preliminaries

Since the following analysis considers histories in more detail, it will
be useful to review some relevant notation. First, recall that components of a
history that refer to different periods are separated by brackets. Thus,
h=(8,8,7) refers only to the beginning of the first period, before the final
employment for that period was determined: the initial number of potential
employees was 8, the firm decided to hire all 8, but one of them dropped out
through disagreement. In comparison, h={(8,8),8] covers the first period and
the beginning of the second: the initial number was 8, who were also employed
for the first period, and there was no new arrival in the second period. Both
of these histories belong to H so both will be followed by an employment
decision of the firm.

Second, let (v,w)|, denote the continuation prescribed by policy-wage
pair (v,w) after the history h in the obvious way.

Third, given (v,w) and a history heH”, let I""*"(h)=I(h,»(h);v,w) and
W ¥(h)=W(h,v(h);v,w). Notice that argument of II*"¥ is a history in H", while

the argument of II(+;v,w) is a history in h*. This notation will help cut down
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the length of histories we have to actually write.
Next consider the set of equilibrium payoffs. Let V(m) denote this set,
given an initial pool of m potential workers,
V(m) = ((I*"(m),W"(m)): (v,w)E&.

The next result is obviously needed before proceeding to characterization.

Proposition 5: For any m, V(m) is compact.

Thus, in particular, there exist eduilibria which maximize (minimize) the
expected profit, I, and equilibria which maximize (minimize) employees’

expected utility, W.

4.B. Maximum profit equilibria

Theorem I is the main result of this section. Its main messages
regarding the maximum profit equilibrium are: when the arrival of new
employees is sufficiently fast, this equilibrium reaches a steady state level
in [N*,N®*], and for an initial m<N*, it coincides with the quasi-stationary N*
equilibrium; when the arrival is slow, this equilibrium essentially coincides
with the stationary N° equilibrium.

Let (v,w) denote a maximum profit equilibrium from among all
equilibria. That is, for all m, (¥,W)e Argmax(II**(m): (v,w)e&).

When there are multiple such equilibria, we will select one for which the
initial employment decision, v(m), is maximal, for each m. Also let
H(h)=I*"(h)=I(h;7,%) and W(h)=W""(h)=W(h;v,%). Analogously, let II(h) denote

the minimum equilibrium profit after h, i.e., O(h) = Min{II*"*(h): (v,w)€&).
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Theorem I: (i) Equilibrium employment and profit:
(a) There exists N>N® such that, for m<N, v(m)=m and
M(m) = MaxXjep gemer{x(m) + ml(m-1) + 6(1-a) [T(]) + JIW(F)-Wyl)
+ Sa[ll(k) + min(k,m)[W-Wy]])/(m+l)
s.t. I(j)=0(m) and T(k)=I(m+l).
For m>N, v (m)=N and I(m)=II(N).
(b) For any heH' on the path of (¥,%), (7,W)|n=(V,%W)|(tm).tm))

(ii) I1f the rate of new arrivals a/(1-6) is sufficiently large, then:

(a) For m<N*, (v,w) coincides with the quasi-stationary N* equilibrium.

(b) For me(N*,N*], ¥((m,m),m]=m, ¥[(m,m),m+l]€{m,m+1l}, U [(N®,NS), NS+1]=N®
(i.e., employment reaches a steady state level in [m,N®] and remains there).
(c) For me(N*,N ], v(m)=m, ¥[(m,m),m]=b[(m,m),m+1]=N* (i.e., m are hired for
one period; thereafter N® are retained and (v,W) coincides with (¥,W)|ys).

(iii) If the rate of new arrivals a/(1-§) is sufficiently small, then:

For m<N°-1, (¥,w) coincides with the quasi-stationary N°-1 equilibrium. For

m>N%-1, (¥,%) coincides with it after at most one period, as in (ii)-(b),(c).

Theorem I-(i) gives the general structure of the profit maximizing
equilibrium. It prescribes hiring the initial pool only if it does not exceed
N. It then continues to a profit maximizing equilibrium that maximizes the
total net surplus (of the firm and its initial set of employees). Part (i)-(b)
says that this equilibrium has an almost Markovian property in the sense that,
from any employment level reached on the path, (v,w) restarts again, i.e.,
‘for heH*, (¥,W)|p = (V,W) | (¢(v),t(nyy- Notice, however, that we cannot say that
(v,w) restarts after any history on the path. For h’eH” on the path, the

correct statement of the "almost" Markovian property is that the continuation
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equilibrium depends on the current pool and last period’'s employment: if
h=(m;,n;), ..., (mg-q,04-1) ,my, then (v,W)|, = (D’w)l(mt—y“c-ﬁ'mc”

Part (ii) reports what is perhaps the central message of this theorem.
When the arrival of new employees is sufficiently fast, the steady state
employment level will settle in [N",N®]. If the size of the initial pool is
below N*, the maximum profit is achieved by the quasi-stationary N*
equilibrium, i.e., for heH™ on the path, v(h)=min[£(h),N*] and TI(m)=I(m;N").
Starting from an initial m in (N*,N*], employment will remain at m or climb
steadily to another steady state level in [m,N®]. In this range, the
equilibrium policies are the same as quasi-stationary N policies on the path,
but are somewhat different off the path. If, for example, "off the path" of
the equilibrium starting with m=N*+1, employment fell to N* due to a
disagreement, the equilibrium policy will entail staying at N* rather than
returning to N'+1, as an N policy would prescribe.

Starting from initial m's above N® but not too large, the firm hires all
m employees for one period, in the following period it cuts its workforce down
to the efficient level N® and thereafter remains there. The intuition is that,
after settling at N®, the retained workers are paid strictly more than their
reservation wage. The firm extracts some of this surplus by employing
everybody at relatively low wages (possibly below their reservation wage). The
workers agree to such low wages for the chance of being retained after the
subsequent reduction in the workforce. The case of initial m’s above N is
explained in the same way except that the initial number is so large that
hiring all of them for one period is not profitable. The notion of hiring
workers for a single period and then firing them is of course extreme. If the

model was modified to include significant training costs or other
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restrictions, the firm would go directly to N® without this intermediate step.
Part (iii) claims that, when the arrival of new employees is
sufficiently slow, the maximum equilibrium essentially coincides with the
quasi-stationary N°-1 equilibrium. If a single worker is not too significant,
this equilibrium is near the stationary NO equilibrium. Together with Theorem
II-(iii) below this implies that the entire equilibrium set collapses around

the N° equilibrium.

4.C. Minimum profit equilibria

The minimum profit equilibrium is also Pareto inferior to other
equilibria and generally seems as a less convincing prediction for behavior.
For this reason, Theorem II below is somewhat less central for the substantive
messages of this paper. It is presented mainly to complete the equilibrium
analysis. So, a reader who is less interested in the equilibrium analysis
itself, can skip this part without losing much in terms of the substantive
discussion.

The analysis here requires another preliminary technical point. In a
couple of points in the proof of Theorem II, the argument requires convexity
of V(m). The problem is that V(m) need not be convex. The points for which the
convexity is needed are relatively minor, so one possibility would be to just
drop them. Alternatively, V(m) can be convexified by assuming that everybody
observes the realization of a public randomizing device at the beginning of
each round. The introduction of public signals involves no conceptual or
technical difficulty, but it would complicate the notation. We will therefore
adopt the following approach. The proof of Theorem II will be conducted under
the assumption that V(m) is convex and we will indicate clearly where this
property is used. A remark following the proof (in Appendix 2) takes up this
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point and explains how the randomization can be formally added, why all the
arguments remain in tact, and what might be lost without it.

Let (v,w) denote a minimum profit equilibrium from among all equilibria.
That is, for all m, (v,w) € Argmin(II**(m): (v,w)€&). When there are multiple
such equilibria, we will select one for which the initial employment decision,

v(m), is maximal, for each m. Also, let O(h)=N¢2(h)=l(h,v(h);y,w) and

W(h)=w-2(h)=W(h,v(h) ¥,¥).

Theorem II: (i) Equilibrium employment and profit: There exists N=>N® such
that, for m<N, y(m)=m, [I(m) is strictly increasing in m and

I(m) = £(m) - me(m,m) + §[(l-a)I(m) + all(m+l)].
For m>=N, [I(m)=I(N).

(ii) If the rate of new arrivals a/(1-§) is sufficiently large, then:

For m<N, y[(m,m),m]=y[(m,m),m+1]=0. @I satisfies the following system:
O(m) = {n(m) + mI(m-1) + §(l-a)I(m) + Sall(m+l)}/(m+l).

(iii) If the rate of new arrivals a/(1-§) is sufficiently small, then:

(v,w) coincides with the stationary N° equilibrium.

Thus, when the initial pool of employees is smaller than N, all are

hired for the first period. When the arrival of new employees is fast, all
employees are fired after the first period. Then the continuation from zero is
with an equilibrium (v,w) such that M ¥(0)=I(m) or O(m+l), depending on
whether or not there was new arrival in the beginning of the second period.
That is, the equilibrium (v,w)|, is more profitable than (v,w)|,. The expected
dismissal of all workers hardens their bargaining position in the first period

by removing any expected future gains. This results in relatively high wages

which minimize the profit.
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Notice that the difference equations in (ii) allow to solve completely
for the equilibrium profits and the number N. This is done by solving this
system for m=0,...N, under the assumption I(N)=I(N+1). Denoting this solution
by My(m), m=0,...,N, we have that N is the first N for which I(N)>My,; (N+1),
and I(m)=Iy(m) for all m=0,...N.

Like in other models of dynamic games, the minimum profit equilibria
have poor welfare properties, and do not seem to offer a convincing prediction

for behavior.

4.D. Intuitive discussion

The precise intuition behind Theorems I and II is embodied in the
proofs. The rough intuition relies on the positive relation between the firm’s
profit and the total surplus implied by the bargaining condition.

Specifically, let S (v,w) denote the expected total net payoff of the firm and

its employees, evaluated at the beginning of a period, before the uncertainty
about the new arrival was resolved, when the preceding period had m employees
and when the continuation is expected to follow the equilibrium (v,w) played

from its start. That is,

Sp(v,w) = (L-a){II¥"¥(m)+v(m) [W"(m)-Wy]} +

a (I (m+1)+min(m,v (m+1) ] (W (m+1) ] -Wy])

The appearance of min[m,v(m+l)] reflects the fact that, in the event of new
arrival in the beginning of the next period, only the payoff of the original m
employees is taken into account. Consider now an equilibrium (v,w) such that

v(m)=m. Using condition (2.3) to substitute out w(m,m) in

I¥¥(m) = £(m) - w(m,m)m + §{(l-a)I*"¥[(m,m),m] + a¥"[(m,m),m+1]},
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we get the following key observation
(4.1) I¥(m) = {(x(m) + mI**(m,m,m-1) + 8§Su[ (¥, W) | (@ m])/(m+l),

where n(m)=f(m)-(1l-§)W; is the increment to the net total surplus associated
with employment m and (v,W)|(nm 1S the continuation of (v,w) after the
history (m,m). Expression (4.1) is interpreted as follows. The surplus
available for the bargaining, =x(m) + §Sal (VW) | (mmy) - m“"(m,m,m-1), is split
equally among the firm and the m workers. Hence the firm's payoff is 1/(m+l)
of that plus its disagreement payoff, ¥'*(m,m,m-1), which amounts to the RHS
of (4.1).

Now, the RHS of (4.1) is maximized when II*¥(m,m,m-1) and Sy{(v,W) | (n,m]
are maximized. Clearly I*'"(m,m,m-1) is maximized when the continuation after
the history (m,m,m-1) coincides with (¥,W)|p-; which gives the maximum
possible profit starting from m-1. The total net future payoff,

Sal W W) | (mm], 1s bounded from above by x(N®)/(1-6), which is the maximum
possible total payoff generated by this firm. This is achieved by an
equilibrium that starts and remains perpetually at N*. Therefore, for m=N*® the
profit maximizing equilibrium continues to N°® after one period. Starting from
m<N° the equilibrium employment proceeds upwards in the direction of N*®* for
the same reason. In these cases, the equilibrium employment may not reach N®
owing to additional short run considerations that will be discussed later.

The analysis of the minimum profit equilibrium is understood
_analogously. I'"(m,m,m-1) is minimized of course by the continuation with
(v,¥) |g-1, and Sm[(u,w)|(mm)] is minimized by a continuation that reduces
employment to O when this is possible in equilibrium (i.e., when there are

equilibria whose total profit starting at employment 0 exceeds [I(m)).
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3.E. Features of the main equilibria
The N° equilibrium

In the model of SZ, on which the present model builds, there is once and
for all hiring decision in the beginning. In the unique equilibrium of that
model the employment level is N°. My initial conjecture was that this outcome
would not be supported as an equilibrium in the presence of substitution
possibilities. As it turns out, the N° equilibrium has a very robust existence
in the model. Following are some of its main properties.

(i) Stationarity: A stationary equilibrium (v,w) is such that v(h) = v(£(h)),

for all heH™ and w(h) = v(£2(h)), for all heH*.

Proposition 6: The N° equilibrium is the unique stationary equilibrium.

This result strengthens the result of Proposition 3 which establishes N as
the only equilibrium in a stationary N policy.

(i11) Almost uniqueness for slow arrival rate: When the speed of arrival of new
employees, a/(l1-§), is small, the equilibrium set collapses around the NO
equilibrium. The minimum profit equilibrium coincides with the N° equilibrium
and the maximum profit equilibrium coincides with the quasi-stationary NO-1
equilibrium. The latter equilibrium is near the former when N® is not too
small.

iii) Independence of a/(1-§): The wages along the path as well as the long
run outcome (after the level N° was attained) are independent of a: N itself
as well as W(N°:N%) and NI(N°;N°) do not depend on a/(l-§). To see this recall
that N° is the solution to ¥(n)=(l-8§)Wy, which is obviously independent of a,
and w(NO;N%)=(1-6)Wy, W(N°;N®)=Wy and NM(N?;N%)=x(N°)/(1-6) are also independent

of a. Since £(n)=(1-§)F(n), it follows that N° and the long run outcome,
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W(N°:N%) and I(N°;N°), are also independent of (1-§).

(iv) Inefficiency: The N® equilibrium clearly does not maximize the total net
surplus. This follows immediately from N°>N® which uniquely maximizes the
surplus. The N° equilibrium is also Pareto dominated by other equilibria. For
example, the quasi-stationary N°-1 equilibrium clearly yields higher profit
for the firm and to any initial pool of employees. Since W(N°;N%)=Wy, so that
workers are just indifferent to being employed, even for an initial pool m>N°,

no worker loses in the N°-1 equilibrium relative to the N° equilibrium.

The N* and N® equilibria

These equilibria maximize the firm’s profit starting from employment
levels m<N* and m>N® respectively. The N" equilibrium belongs to the family of
quasi-stationary N equilibria examined in Section 3 but the N°® equilibrium
does not.

The N® equilibrium obviously generates the maximum possible total
surplus, while the long run outcome of the N* equilibrium is inefficient
(since N*<N®). The reason that, despite the close relationship between profit
and total surplus in this model, the N* equilibrium is inefficient will be
explained in Section 6 below. But, it is worth noting that, if arrival of new
employees is fast, i.e., a/(1l-6) is large, then N* is near NS,

Wwhen the arrival of new employees is slow, the levels N* and N® cannot

be sustained as a steady state by any equilibrium.

5. Limit versions of the outcomes

Before turning to discuss the equilibrium results further, we derive two
limit versions of the outcomes arising with N policies. The first version

corresponds to the case in which the length of the time period is relatively
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short, so that decisions can be updated relatively quickly. The second
captures a situation in which each worker is "small" relative to the size of
the firm. The substantive insight emerging from the latter is that, when the
individual worker is of negligible size, the outcomes remain essentially
unchanged, using an appropriate sense of equivalence. This version also
facilitates occasionally sharper exposition of results. A reader who will skip
this section and go directly to the following discussion should not lose much
in terms of the understanding.
The continuous time 1limit

Let the length of a time period be denoted by z. The parameters of the
model now take the form

§(z) = e*% and a(z) = l-e™@%,

so that r is the discount rate and a is the arrival rate (rather than a
probability).

In the limit as z—+0, system (3.1-3) becomes:

(5.1) I(n;N)=[f(n) - nw(n;N) + all(min{n+1,N};N)]/(r+a) 0<n<N
(5.2) W(n;N)=[w(n;N) + aW(min{n+1,N};N)]/(r+a) 1<n<N
(5.3) W(n;N) - Wy = Max[II(n;N) - I(n-1;N),0] 1<n<N

The limit the versions of w(n;N), II(n;N) and W(n;N) can be obtained either by

solving (5.1-3) or by taking directly the limits of (3.4-5).

[¥(n)+rW;]/2 n<N
(5.4) w(n;N) = {
[(N+D)r¥(n)+[ (N+1)r+2a]xWy] /[ 2(N+1) r+2a] n=N
=1 o Ir(N+1) 1 i
(5.5) (v, ) = r{ (N+1)r+(:zTr (M) + (N+1) r+a [N+1ién(l)]
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The continuous labor limit

Consider the continuous time version summarized in (5.1-5) above. In an
e-version of the model, the size of the individual worker is e¢. This is in the
sense that, in terms of the contribution to production and the rate of
arrival, a batch of 1/¢ workers (¢ is restricted to be an inverse of a natural
number), is equivalent to a single worker in the original version, as if each
worker was split into 1/¢ smaller ones. The data of an e-version are
fe(n)=f(ne), a‘=a/¢ and Wi=Wye, so that for e=1 it coincides with the original
model. The term labor unit will be used to describe one worker in the original
version of the model, and the equivalent batch of 1/¢ workers in the e-version
of the model. Thus, in terms of labor units, the basic data remain the same
across the different e¢-versions. The important distinction between the
different versions is that the employment of a labor unit in an e-version
requires negotiations with 1/¢ independent workers.

Let we(n;N), II°*(n;N) and W°(n;N) denote the solution to (5.1-3) with the
basic data of the ¢-version. Next, define w(n;N)=lim._.,w*(n/¢;N/¢)/¢,
W(n;N)=lim oW (n/e;N/e)/e and II(n;N)=1im,I*(n/e;N/e). Here, n and N are
measured in labor units. The actual numbers n/e and N/e¢ increase indefinitely
as ¢ approaches 0, but the equivalent numbers of labor units remain constant.
Notice that W(n;N) is obtained as the limit of the ratio W¢(n/e;N/c)/e, while
I(n;N) is the limit of Nf(n/e;N/e) itself. This reflects the fact that, due to
the negligibility of the individual worker, W is now a density, so it is not
anymore of the same order as II(n;N) which remains of finite sizeb. Taking the

limits’ of the e-versions of (5.4-5) yields
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n
1 / 1
—I;Efo (X) dX""EIWU n<N
(5.6) w(n;N) = {
N. 2 p Nr+2
r 4 / r+sa -
Shrra) [NQ!;xf () dx] + T2 rW, neN

Similarly,

N
Ny = {2 v 1 ]
(5.7)  T(N;N) r{Nr+an(M+Nr+a[N£n(X)dx]

It is interesting to observe that the continuous limits of w(n;N) and
I(N:;N) are essentially of the same form and on the same order as their
discrete counterparts in which n and N are actual numbers of workers rather
than labor units. In particular, the downward jump of the wage at a steady
state level N<N® that was recognized before, turns here into a discontinuity,
w(N7;N) = lim _,w(n;N) = fgxf’(x)dx/nz+rwu/2 >

[2Nr[oxf’ (x)dx/n+ (Nr+a)rWy) /2 (Nr+a) = w(N;N).

6. Discussion

Throughout the discussion we will occasionally refer to the benchmark
case of the wage setting firm, which sets the wages of its workers
unilaterally. The wage setting firm always pays its workers exactly their
reservation wage, i.e., w° = (1-§)Wy. Its discounted profit at any stationary
employment level n is =(n)/(1-6) and its optimal steady state level is
therefore the level NS=Argmaxn(n) pointed out before.

Multiplicity of equilibria

In a sufficiently rich dynamic model as this one, there is no escape

from multiplicity of equilibria. We can of course achieve "uniqueness” by

imposing the stationarity refinement, which will single out the N° equilibrium
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(see Proposition 6). But this will deprive us of the broader range of insights
that are generated by some of the other equilibria. The N° equilibrium
corresponds to a scenario in which the firm is expected to use over-employment
to extract the surplus of the workers. The profit maximizing equilibrium
corresponds to a scenario in which it is expected that the firm will not try
to extract the workers’ surplus by excessive employment. Both of these seem as
valid considerations that should be understood and might appear in different
relations of this type.

Although the present model is different in important ways from a
repeated game model, it is useful to point out the analogies between these
models. The N° equilibrium is reminiscent of the repeated game SPE in which a
unique one-shot equilibrium is played repeatedly. In both models, these
equilibria have very robust existence which is reflected in their being the
only stationary equilibria and the only equilibria when the periods are long.
Despite the inefficiency of these equilibria, it is difficult to dismiss them:
they capture natural considerations, and in both models one can envision
reasonable circumstances that will make them likely to prevail. The maximum
profit equilibria of the present model are reminiscent of the collusive
equilibria of the repeated game. They share with them the (near) efficiency
and their fragility. In both models, these equilibria are sustained in the
face of tempting short run deviations, by the threat of triggering a
transition to a less profitable equilibrium.

This analogy perhaps clarifies that the maximum profit equilibrium, on
the one hand, and the stationary NO equilibrium, on the other hand, capture
some of the main considerations of interest. At the same time, this analogy

reinforces the sense in which there is no merit in picking one of these
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equilibria and dismissing the other. In oligopoly theory, both of these
equilibria provide useful predictions and this should be the case here as
well.
The steady state level effec

In quasi-stationary N equilibria with N<N° (which include the maximum
profit equilibrium for initial m<N"), the wage w(n;N) changes sharply at the
steady state level N. Inspection of formula (3.4) or (5.6) reveals it
immediately in that w(n;N) depends on a at n=N, but is independent of a at8
n<N. In the continuous labor case of Section 5 this sharp change is actually
translated to a discontinuity at N: lim gw(n;N)=w(N";N)>w(N;N). Notice,
however, that there is no discontinuity in the stock values II(n;N) and W(n;N).

There are thus two related features that call for explanation: the sharp
change (or discontinuity) of w(n;N) at n=N and the complete independence of
w(n:N) of a at n<N. The "discontinuity" is a robust phenomenon in this class
of equilibria. It is explained by the absence of binding contracts, which is a
central feature of the model, and it survives variations on the model, such as
the two extensions outlined in Section 7 below, and other similar extensions
like publicly observable shocks to the production technology. In contrast, the
independence of w(n;N) of a at n<N seems to be a consequence of the constant
arrival rate, rather than a consequence of a qualitative feature of the model.
It may not survive variations that would make the arrival rate dependent on n.
But even in such cases, the "discontinuity" will continue to be present.

Consider the "discontinuity". At a steady state level N, the expected
utility that a worker bargains for is W(N;N). The same situation is expected
to prevail in perpetuity, so this expected utility is paid through a constant

wage,
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(6.1) w(N;N) = (1-§)W(N;N).

At n<N, The worker bargains for W(n;N). This sum cannot be paid through the
constant average wage (1-§)W(n;N), since upon the next arrival the worker'’s
power will be sufficient to secure only utility of W(n+l;N)<W(n;N) and her
wage will be renegotiated downwards. Therefore, w(n;N) has to exceed (1l-
§)W(n;N) by a magnitude that compensates for the anticipated drop in the

worker’s bargaining power. Indeed, from (3.1-3) we have for n<N

(6.2) w(n;N) = (1-6)W(n;N) - sarW(n+l;N)

Thus, the term -§aAW(n+1;N)>0, which is absent from (6.1), reflects the non-
binding nature of the wage agreements. For the steady state level effect to be
significant, it has to be that this term does not become exceedingly small
when employment gets close to N. This can be examined more sharply in the
context of the continuous labor version. The counter-part of (6.2) in the

continuous version is

(6.3) w(n;N) = rW(n;N) - aW;(n;N)

Since W(n;N) is clearly continuous in n everywhere (including at n=N), w(n;N)
is discontinuous at n=N if 1im,_yW,(n;N) is bounded away from 0. From the equal
split condition in its continuous form, W(n;N)-rWy = II;(n;N), we have W;(n;N)

= II,;(n;N). Thus,

(6.4) w(n;N) = rW(n;N) - all;;(n;N)

Letting I,;(N7;N)=lim ;;(n;N), we can write (6.4) in the limit of n~N as

(6.5) w(N7;N) = w(N;N)- all}; (N7;N)
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Thus, the extent of the gap at N is associated with the curvature of II(n;N)
near n=N. Notice that, a-priori, there is no reason to expect this curvature
to be zero. To see that this is indeed the case, let us calculate directly the

continuous version of II(n;N),

(N-n)/«x
0

I(n;N) = [£(n(s))-n(s)w(n(s);N)]e ™ds + e *T[£(N)-Nw(N;N)]/r.

Twice differentiating and evaluating in the limit as n-oN yields
M (NT;N) = (eN[w(NT;N)-w(N;N)| - a[£ (N)-w(N";N)-Nw,(N";N)])/a?
Combining this with (6.5), we get

(6.6) My(NT;N) = - [£(N) - w(NT;N) - Nwy(NT;N)]}/[a+zN]

Now, for any N<N°, the RHS of (6.6) is bounded away from zero® (it can be
verified by noting that £ (N) - w(N7;N) - Nw;(N7;N) = ¥(N) - rWy which for
N<N® is strictly positive by the definition of N°). Thus, the "bonus" which
keeps the wage above its long run average remains non-negligible up to N.

The other feature we noted above--the independence of w(n;N) from a for
n<N--appears to be a consequence of the uniformity of the arrival rate across
states. If we allow these rates to differ and let a(n;N) denote the arrival
rate at employment level n, then w(n;N) might depend on the a’s as well. In
this case the basic difference equation for w(n;N) is

[Af(n)+(n-1)w(n-1;N)+(1-8§)Wy+S [a(n;N) -a(n-1;N) ] [I(n;N)-II(n-1;N) ] /(n+l) n<N
W(n;N)-{[Af(N)+(N~l)w(N-1;N)+(1-6)WU-5a(N-1;N)(H(N;N)-H(N-l;N))]/(N+1) n=N
Thus, when a(n;N)=a(n-1;N), w(n;N) will depend on the arrival probabilities,
but as the difference between the n<N and the n=N branches suggests, the
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steady state level effect will be still present for the reasons explained
above. Obviously, when a(n;N)=a(n-1;N)=a, as we assumed throughout, the term
Aa(n;N)AI(n;N) vanishes!?,

The wage mark-up

At the steady states reached by the maximum profit equilibrium, the wage
embodies a mark-up over the reservation wage (1-6)Wy. This mark-up is most
pronounced at N, but in general it is present at N® (and in other steady
state levels in [N*,N®*] if such exist) as well. For the N* equilibrium (and,
in fact, for any quasi-stationary N equilibrium with N<N%) the presence of the
mark-up can be directly observed in Figure 1 from the fact that the (1l-
§)II(N;N) curve is strictly below the x(N) curve.

Since the wage is determined in bargaining, the existence of the mark-up
might not seem too surprising at first. But a further thought would reveal
that it is somewhat counter-intuitive. The steady state level of the profit
maximum equilibrium might seem incompatible with surplus for the workers,
since this surplus can be extracted from the workers through increased
employment. To see this point, let N be a steady state of the maximum profit
equilibrium (i.e., N=N" or N® or some point in between), and consider an
equilibrium with steady state employment N+1 such that, if employment falls
from N+1 to N, the continuation coincides with the N equilibrium. Letting w

denote the steady state wage of this equilibrium, we have from (2.3)

[£(N+1) - (N+1)w]/(1-6) - [E(N)-Nw(N;N)]/(1-6) = w/(1-6) - Wy

Since w = Af(N+1)+(1-8)Wy+Nw(N;N)]/(N+2) > (1-6)Wy, the profit at the steady
state of this equilibrium indeed exceeds the profit at N. Notice, however,

that this observation does not contradict the status of N as a steady state of
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the profit maximum equilibrium. When the (N+1)st worker arrives, it would
indeed be profitable for the firm to switch to the N+l equilibrium, and this
is deterred by the equilibrium punishment that would be triggered. But ex-ante
this switch is unprofitable, since the anticipation of such excessive hiring
would harden the employees’ bargaining position and hence would result in a
lower profit.

In the stationary N° equilibrium, the above described consideration of
surplus extraction from the employees is left unhindered, and indeed
employment is driven up to a steady state level where the wage falls to the
reservation wage. For the same reason, the equilibrium wage in SZ model also
coincides with the reservation wage. This contrast underlines the fact that
the appearance of the wage mark-up as a robust phenomenon (e.g., it survives
the variations outlined in Section 7 below) owes to dynamic considerations and
thus requires the dynamic framework adopted in this paper.

The significance of the equilibrium wage mark-up beyond this paper is in
adding another potential source of wage mark-up to the existing list in the
literature that includes efficiency wage and unionized labor. Obviously, this
is not an entirely new consideration, since the mark-up is explained here by
the wage bargaining and is thus related to the unionized labor explanation.
But it nevertheless refers to a different environment and to industries in
which the degree of unionization and collective bargaining might be very low.

The speed of arrival of new workers

Recall that the effective speed of arrival is captured by a/(1-6) (or
a/r in the continuous case) and that both N® and N° are independent of a/(1-
§). Observe, however, from the proof of Proposition 2 that N* depends on a/(1l-

§): when a/(l-§) is large, N* is near NS and w(N";N")=(1-6)Wy. In other words,
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when the firm can find new employees fast, the steady state outcome of the
maximum profit equilibrium is near the neo-classical outcome both in terms of
employment level and in terms of the wage.

In fact, as can be seen from (3.4), it is true for other quasi-station-
ary equilibria with steady state levels N<N° that, when a/(1l-6) is large
w(N;N) is near (1-6§)W;. This observation might seem to contradict the finding
of Section 5 regarding the continuous labor limit. There, as ¢ approaches 0 in
going to the continuous labor limit, the arrival rate of individual workers,
a/e, approaches «, but as seen from (5.6) the limit w(N;N) is above rwW, for
N<N®. The source of the difference is that, when ¢ approaches 0, the arrival
rate a/¢ and the worker's size change simultaneously. On the one hand, fast
arrival shortens the duration of the loss imposed by a quitting worker, hence
diminishing the significance of the worker’s threat. On the other hand, the
magnitude of the temporary increase of the total wage bill caused by a quit
becomes more significant in relation to the wage of a single worker. Thus, the
worker's threat is not diminished relative to the gains over which the worker
bargains and the wage is not driven to rWy

Over-employment/Under-employment:

The efficient employment level is of course N*®*, where the marginal
product is approximately equal to the reservation wage (more precisely,
Af(N®)>(1-6)Wy and Af(N®*+1)<(1-6)Wy). We will refer to employment levels above

and below N*®* as over-employment and under-employment respectively.

The steady states reached by the maximum profit equilibrium fall in the
interval [N*,N®*] and thus exhibit either under-employment or efficient
employment. The under-employment at N" reflects two considerations. The Long

run consideration recognizes that N®* is the most profitable from among the
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steady state employment levels in [N*,N*] that the profit maximizing equilib-
rium reaches. This simply follows from the strict monotonicity of I(n) over
this range. The short run consideration is associated with the steady state
level effect identified above. The higher wages at employment levels short of
the steady state level make it profitable to settle to a steady state level
sooner rather than later, even if it is somewhat less profitable in the long
run. Indeed, the faster the arrival of new employees, the less significant is
the short-run consideration and the closer is N" to N®. Obviously, for initial
levels above N®, the short-run consideration is absent and the maximal
equilibrium settles to N®.

The N° equilibrium, and all the other quasi-stationary equilibria with
steady state levels N>N*, exhibit over-employment. This is because, besides
increasing output, an additional worker weakens the bargaining power of the
other workers and hence lowers the wage. In some sense, in these equilibria
the firm keeps a "reserve army" of inefficiently employed workers to keep the
wages low. This over-employment phenomenon appears already in the model of SZ.
Since in their model N° is the only equilibrium employment level, over-
employment appears as a necessary feature of the wage negotiating firm. In
contrast, the present model points out that efficient or nearly efficient
employment is as plausible in this setting. While the under-employment at N*
is robust and interpretable, it is probably less convincing as a prediction.
The more meaningful contrast between the two extreme equilibrium behaviors is
between over-employment and (near) efficiency.

Recall the standard monopsony firm model with an upward sloping labor
supply curve. There, the firm restricts its employment to keep the wages low.

This consideration does not seem related to the under-employment in the
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present mode, but in some sense it is similar in reverse to the over-employ-
ment phenomenon. Here, due to the bargaining, excessive employment lowers the
wages.
Distortion of other inputs

The employment of other inputs will also be distorted from their
efficient levels. Suppose that the firm employs also capital denoted by K. The
production function will now be f(n,K), and pgx will denote the rental rate of

capital. Thus,
n(n,K) = £(n,K) - n(1-8)Wy - pxK

Incorporation of capital into the model in a complete way, will require
some further modelling decisions about the timing of investments, their
reversibility, their observability, etc. Although this might be an interesting
extension in itself, we will not develop it here. Instead, we will only
examine the stock that maximizes the profit of the firm at the steady state
employment level reached at equilibrium.

Thus, for a fixed stock of capital K, let II(n,K;N) denote the counter-
part of M(n;N) and let N* and K' be defined by N*=ArgmaxyI(0,K*;N) and
K*=ArgmaxgI(N*,K;N*). Thus, given capital stock K', employment N* is the steady
state level reached by the profit maximizing equilibria starting at me[0,N"],
and given N* and the quasi-stationary N* equilibrium that supports it, K' is

the optimum capital stock. The first order condition satisfied by K* is

QU (N, K;N") _ 1 {6“"2(1\’"””1_6)2“2“"‘)

0K 1-6 (N*+1) (1-8) +d«

which means that the weighted average of the marginal products is equal to the

rental rate
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daf, (N, K*)+(1-8) $ £ 01,5

1=0

(N*+1) (1-8) +b«

=Dy

Thus, if capital and labor are complements, Af,>0, then K* represents
under-investment in capital in the sense that f,(N",K")>p,; if capital and
labor are substitutes, Af,<0, then K® represents over-investment in capital,
f,(N*,K*)<p,. Notice that this means that K* is distorted relative to the
optimal stock given the equilibrium N*, rather than just relative to the first
best level K*® given by (N®,K®) = Argmax, ,n(n,k). The incentives for investment
in capital are distorted since it directly affects the wage: more capital
increases or decreases the marginal product of labor and hence the negotiated
wage according to whether Af,;>0 or Af,<0.

The distortion in the employment of other inputs is a consequence of
determination of the wage in bargaining, rather than any of the other features
of the model. Indeed this point already appear in the SZ model as well as in

Grout (1984).

7. The dynamic evolution of firm's labor force: two extensions
The dynamical interaction between the hiring and recontracting processes

is the central element of this model and indeed it generates the main specific
insights. While the simplicity with which this element was modeled above is
helpful for the exposition, it leaves unanswered some questions regarding the
robustness of the results and the role of other important factors. Two
.extensions are briefly outlined below (a more detailed analysis is presented
in Sections 6 and 7 in Wolinsky (1996)). The first enriches the dynamics of
the labor force to include the possibility of employee departures as well, so

that non-trivial hiring and replacement go on continually. The second
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extension endogenizes the arrival process by letting it be determined by the
firm's recruitment efforts.

A. The incorporation of departure process: The model is extended by adding a
process of departure whereby employees may leave the firm for exogenous
reasons. Thus, in addition to the a arrival process, in the end of any period,

each employee may depart with probability 8.

a if m=n+l
(7.1) Prob(m=m|n,-;=n<M) = { nf if m=n-1
l-a-ng if m=n

That is, in each period the pool of the potential employees may increase or
decrease and, conditional on the occurrence of a departure at some period,
each of the employees has equal probability B to depart. To assure that (7.1)
is well defined, it is assumed that a and B satisfy a+MB<l. The expected
utility of a worker who departs through the exogenous departure process is Wp
which might but need not be equal to Wy. The employee reservation wage is
therefore (1-6)Wy+6§8(Wy-Wp), which coincides with its previous value if Wp=Wy
The notions of history, policy, stationarity and equilibrium are just as they
were defined earlier. The quasi-stationary equilibria here differ from their
previous counterparts in that, after the maximum employment level is reached,
employment continues to fluctuate due to departures and the continued hiring
of replacements. Some of the results and insights are as follows.

(i) There exists a unique stationary equilibrium. It is characterized by a
target employment level N°. This equilibrium is the counter-part of the N°
equilibrium discussed above, but w(N°®;N°) is below the reservation wage (1-
§)Wy+6B(Wy-Wp), since workers take into account the higher wages they may get

after colleagues' departures in the future.
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(ii) There exist quasi-stationary equilibria with target employment levels
below N° which yield higher profit to the firm than the stationary N
equilibrium. In these equilibria the wage exhibits the counterpart of the
steady state level effect discussed earlier. But since in this version
employment fluctuates on the path, this effect appears repeatedly on the path.
When departures reduce the employment to below the target level, the firm
enters a rebuilding phase with higher wages. When the target level is reached,
the wage drops again and so on.

B. Endogenous arrival process: In the end of each period t the firm chooses
the probability a, of arrival in the beginning of t+l. Probability a is
induced at the cost c(a), where c is increasing and convex. So arrivals are
affected by a costly recruiting effort. The policy now includes the choice of
the arrival rate, but otherwise remains the model remains the same. There is a
stationary equilibrium with the same steady state level N® and a family of
quasi-stationary N equilibria with N<N°., One difference from before is that in
these equilibria the arrival probability a(n;N) depends on the current
employment n. The following observations can be made.

(i) In quasi-stationary N equilibria with N<N®, the wage continues to exhibit
the steady state level effect and the associated mark-up over the reservation
wage.

(ii) In the continuous labor limit of any quasi-stationary N equilibrium, the
equilibrium arrival probabilities, a(n:N), are independent of n, thus yielding
as a result the constant arrival rate which was assumed in the main model.
(iii) In quasi-stationary N equilibria with N<N°, the recruiting effort
remains substantial even near the equilibrium steady state level. In contrast,

the recruiting effort of a wage setting firm in this environment approaches
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zero as employment approaches its steady state level.

8. Remarks on the modeling
The bargaining black-box

The model of this paper is not a fully specified non-cooperative game.
The employment decisions are analyzed just as they would be in a non-
cooperative game model, but the wage bargaining component is left as a black
box. The advantage of this approach is in its simplicity: it avoids the
complicated modeling of strategic multi-person bargaining processes, thus
allowing to focus the attention on more central issues. There is, however, a
conceptual difficulty in invoking the equal split condition when the surplus
to be divided depends on future decisions of the firm, since if the firm
contemplates a multiple step deviation from its employment policy, it will no
longer share the same expectations with its workers. For this reason, the
equilibrium definition in Section 2 requires only immunity against single step
deviations by the firm. In a model with discounting and bounded payoffs, this
limitation itself is harmless, since in a fully specified strategic model, it
would still be sufficient to consider only single step deviations from it!!.
But in the context of the present model this is a limitation rather than a
result.

However, it should be mentioned that the bargaining component of the
present model can be replaced by a strategic bargaining procedure that
implements the desired equal split outcome. Wolinsky (1996) and Stole and
Zwiebel (1996b) outline alternative bargaining procedures that would

2

accomplish this!?, Of course, once such an implementation is adopted, the

single deviation property is again a result rather than a limitation.
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Observable Wages

Recall that the public histories on which behavior may depend consist of
the record of employment but not wages. The rationale behind this assumption
is that the individual wages in this model are not publicly observed. This of
course does not completely justify this modeling decision, since behavior can
be conditioned on private information as well. But it at least points out that
there is good reason in the model to treat wage history differently. A similar
approach was taken by much of the literature on repeated games with imperfect
monitoring.

Let us consider briefly the case in which the entire history of wages is
observable and can be conditioned upon. In this case the pie over which the
parties bargain each period might become highly non-convex, since the wage
information can be used to trigger sharp transitions from one phase of an
equilibrium to another. Under such circumstances it is not obvious what the
equal split rule represents and it makes sense to think on the bargaining in a
strategic form such as mentioned above. Without going through a formal setting
and analysis of this model, it is straightforward to see that it would have an
equilibrium in which the behavior coincides with that of the wage setting
firm: the wage is always (1-6)Wy and hiring proceeds in the shortest path to
N*. Such equilibrium is supported by a trigger policy that would switch to the
minimum profit equilibrium of the model analyzed in this paper (which like all
the equilibria of that model continues to be an equilibrium here), if any of
the past wages was lower than (1l-6)Wy.

Seniority
The seniority of incumbents which is built into the employment policy is

meant to capture a plausible feature of this environment without modeling in
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detail the training costs or other elements which give natural advantage to
the incumbents. It should be noted however that this assumption does not play
a major qualitative role in the analysis. Suppose, for example, that the
incumbents and the new arrival are treated equally, and consider the quasi-
stationary N equilibria. The difference now would be that, at the steady
state, workers would face a risk of being unemployed. This would modify the
expression for workers’ utility but not much else. In fact, a closely related
consideration is already being made in the extension outlined in Section 7.A,
where workers face an exogenous risk of departure.

The order of moves and the non-binding nature of contracts

Recall that in any period, employment is determined first and then the
wages are bargained. This is a central assumption intended to capture the "at
will" nature of the employment relations modeled here. This assumption means
that the parties can quickly take advantage of changing circumstances and
renegotiate.

One can think about an alternative model in which the firm gathers n+l
candidates and then auctions off n one-period employment contracts among them.
If these contacts are binding for the one period and arrival is sufficiently
fast, say a=1, so that when the contracts expire the firm will again have n+l
candidates, then the equilibrium outcome would coincide with that of the wage
setting firm, i.e., the wage and employment would be (1-§)Wy and N®
respectively.

This contrast, brings out the important features of the environment we
are discussing. It has to be that, either employment contracts are not binding
(at least along some dimensions), or the normal duration of the contracts is

short relative to the normal speed with which new workers can be recruited.
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§. Concluding Remarks

There are of course important aspects that have been ignored here and
should be considered in further research. First, the heterogeneity of workers
both with respect to their skills and with respect to the opportunities to
replace them are probably important, particularly in employment relations
involving highly skilled labor, which often fit the general type of situation
modelled here. Second, the internal organization of the firm might both affect
and be affected by employment relations of this type. Jackson and Wolinsky
(1995) consider this point briefly in the context of a simple network model of

a firm, but this topic requires much more attention.
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Appendix 1

Proof of Proposition 1: If N is feasible, the feasible solution to system
(3.1-3) also solves the modified system in which the RHS of (3.3) is replaced
by I(n;N) - NI(n-1;N). This is a linear system of 3N+l independent equations
with the 3N+1 unknowns w(n;N), W(n;N), MI(n;N), n=1...N and II(O;N). It
therefore has a unique solution. The wage arising in this solution is given by
(3.4). This can be verified as follows. For n<N, use the modified (3.3) to
substitute for W on both sides of (3.2) and rearrange to get

(1-8§+6a)I(n;N) - Sall(n+l;N) = (1-§+6a)lI(n-1;N) - Sall(n;N) + w(n;N) - (1-6)Wy
Use (3.1) for substitution on both sides to get

f(n) - nw(n;N) = f(n-1) - (n-L)w(n-1;N) + w(n;N) - (1-§)Wy
The solution to this system of difference equations is the n<N branch of
(3.4). To get w(N;N), substitute from (3.1) and (3.2) into (3.3) to obtain

w(N;N)/(1-6) - Wy = [£(N) - Nw(N;N)]/(1-8) -

{[£(N-1) - (N-1L)w(N-1;N) + éa{f(N) - Nw(N;N)]/(1-6)]}/(1l-6+6a).
Then, substitute for w(N-1;N) from above to get the n=N branch of (3.4). Thus,
if N is feasible, the feasible solution is be given by (3.4).

Now, consider N=<N° and the corresponding solution based on (3.4). Since
¥(n) is a decreasing function and Y(N%)=(1-6)Wy, for any n<N, ¥(n)=(l-6)Wy.
This and (3.4) imply that, for any n<N, w(n;N)>(1-6)W; and hence W(n;N)=W, and
I(n:N)=II(n-1;N). Therefore, this is a feasible solution for (3.1-3). It
follows that any N<N° is feasible.

Suppose to the contrary that N>N? is feasible. From above, w(N;N) is
given by (3.4) and the feasible solution solves the modified system. But, for
N>NO, w(N;N)<(1-6)W; implying W(N;N)<Wy. Hence, by the modified (3.3), II(N;N)

< M(N-1;N), contradicting the feasibility. Thus, N is feasible iff N<N®. QED
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Proof of Proposition 2: (i) A straightforward rearrangement yields (see

footnote 3) ﬁ(n)-%ﬂ ﬁn(i) = [¥(n)-(1-6)Wyln/2. Since ¥(N°)=(1l-8§)W;, the
i=0

1 , . . . .
— 551t(1) and the x curves intersect at N°. Since ¥(n) is strictly
i=0

1 $r(i) is

decreasing in n, these curves intersect only once. Clearly, o1
i=0

maximized at N°, since it is increasing when it lies below n and is decreasing
when the opposite is true. The (1-6)II(n,n) curve is just a convex combination
of the other two, hence it also intersects them at NO.

(ii) From (3.5) and after some rearrangement we get:

Sign{ll{n+l;n+l) - M(n;n))} =

Sign(sal (n#2) (1-5)+alan(nrl) + (1-8)7 [(n+1) 7 (n+1) - Lx ($)])
i=

By the definition of NS, An(n+l) is positive for n<N° and negative for nzN°.
By the definition of N°, the second term is positive for n<N® and negative for
n>N®. Therefore, ArgmaxI(n;n)C[NS,N°). Also, for n>NS, the expression on the
RHS is strictly decreasing, as can be seen by taking the first difference of
that expression, [(n+2) (1-6)+6a] [at?r(n+2)+(1-6)An(n+2) ], which is negative
since A%x<0 for all n and An(n)<0 for n>NS. Therefore, ArgmaxIl(n,n)=N*" or
(N** N**+1}C[NS,NO) .

Next observe that Sign{II(0;n+1)-N(0;n)} = Sign{I(n;n+l) - I(n;n)}. After

some manipulation of (3.1-5) we get:

Sign{Il{n;n+l) - I(n;n)) =

Sign{sa[(n+l) (1-§)+sa]An(n+l) - (1-8) [n(n)-——]L— ﬁn(i)]} }
n+1 i=o
which is negative for n=N®. This and the definition of N* imply that N"<N® (and

in fact this is true for any other maximizer of I(O;n)). QED

Proof of Proposition 3: The uniqueness will follow from Proposition 6. Here we

just show the existence of an equilibrium (v,w) such that v(h)=min{2(h),N°].
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Let w(h) = w(£(h);N%), where for nsN°, w(n;N°) given by (3.4) and, for n>N°,
w(n;N% = (1-6)Wy.

First, observe that, after any history, w satisfies condition (2.3). For
h such that £(h)<N°, this is so since system (2.1-3) is described by (3.1-3)
and w is the feasible solution. For h such that £(h)>N°, w(h)=(1-6)W,; implies
that (2.1-2) are given by

M(L(h):N%) = f(n) - n(l-§)Wy + SI(N";N%) and  W(L(h))=Wy.
Therefore,
(#)  T(L(h);N%) -I(N%;N°) = £(2(h)) - £(N°) - [£(h)-N°](1-8)W; < O.

Since Max[I(£(h);N°) -T(N°;N%) ,0] = O = W(L(h)) - Wy, condition (2.3) holds as
well.

The feasibility of N° implies that, for any h such that £(h)<N° and any
n, T(£(h);N°)>M(n;N° and hence v(h)=min[£(h),N°]=£(h) is optimal. Therefore,
equilibrium conditions (2.4) and (2.5) are satisfied for such h. For h such
that £(h)>N°, it follows from (#) that v(h)=min[£(h) ,N°]=N® is optimal. QED

Proof Proposition 4: Let Ne[ﬁ,No] and recall that ng,,(h) denotes the maximal

employment level over h. Let N(h) = N if ny.(h)<N and N(h) = N if ng.e(hy)>N.
Define (v,w) by v(h)=min[2(h),N(h)] and w(h)=w(£(h);N(h)), where for n>NO,
w(n:N)=(1-6)W;. I.e., as long as the employment never surpassed N, the firm
is supposed to follow the stationary N policy; if the firm ever deviated and
hired more than N, the stationary N® equilibrium will be triggered.

Clearly, after histories such that N(h)=N° the continuation is an
equilibrium. When N(h)=N and £(h)<N, system (3.1-3) holds and since N<N°® is
feasible v is optimal. Finally, if N(h)=N and £(h)>N, then it follows from

proposition 2 and Ne[ﬁ,N°] that II(N:;N)=I(N°;N°) so that v(h)=N is optimal. QED
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Appendix 2: equilibrium characterization results

Part A: preliminary results

The discussions of the maximum and minimum equilibria share some common
arguments presented in this part. The reader is referred to Section 4.A. to
recall the description of histories and other notation, like I*'"(h) and
W "(h). Also recall from Section 4.D. that S (v,w) is the expected total net
payoff of the firm and its employees, evaluated at the beginning of a period,
before the uncertainty about the new arrival was resolved, given that the
preceding period had m employees and that the continuation is according to the

equilibrium (v,w) played from its start,
Sm(u,w)-(l-a){H“"(m)+v(m)[W*'(m)-Wﬁ]}+a(HW"(m+l)+min[m,v(m+1)][W“"(m+1)]-wu]}.

Proposition A: (i) If (v,w) is an equilibrium such that v(m)=m, then
(A.1) "(m) = {a(m) + mI”"(m,m,m-1) + §Su( (¥, %) | (@ m]}/(m+l)
(ii) If there exists an equilibrium (v,w) such that
(A.2) (m(m) + mI¥'*(m-1) + 6S,(v,w)}/(m+l) = II*¥(m-1)
then there exists an equilibrium (v’ ,w ) such that v’ (m)=m,
W) lane-1= W ot VW) L am,m), o= (VW) |, W W) mm, o=V, W) |1 and
I¥'¥(m) is equal to the RHS of (A.2).
Proof: Let (v,w) be an equilibrium such that v(m)=m. Condition (2.3) implies
f(m) - w(m,m)m + §{(1l-a)*¥[(m,m),m] + oll**[(m,m),m+l]) - I**“[(m,m,m-1)] =
w(m,m) + §(1l-a){v{(m,m),m]/m}W ¥ (m,m),m] + (1-v[(m,m),m]/m)Wy} +
ASa{min[v[(m,m),m]/m,l]W“"[(m,m),m+l]+(1-min[u[(m,m),m]/m,l])wu} - Wy
Solve it for w(m,m), substitute the result into
¥ = f(m) - wim,m)m + §{(l-a)I*¥[{(m,m),m] + all¥'¥[(m,m) ,m+1])

and then substitute S, from above to obtain (A.l).
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(ii) To complete the description of (v’ ,w ), let (v ,W )| (nnm=(V,¥)|(w-1,n) and
W W) |l @ax,m=V%) | (@-1,ny, for all n<m; let (¢’ ,w’) coincide with some
arbitrary equilibrium after all other histories (not mentioned here or in the
statement of the proof); and let
w (m,m) = {f(m) + 6§[(l-a)I*'"(m)+ aI¥'¥(m+l)] - I¥'¥"(m-1)

- §(1-a) [ (v”(m)/m)W¥(m) + (1-v”(m)/m)Wy] - Sa[min(v”(m+l)/m,1)W "(m+1)

+ (1-min(v”(m+1)/m,1))Wy] + Wy}/(mt+l)
Let us verify now that (v’ ,w ) is indeed an equilibrium. By the choice of
w (m,m), equilibrium condition (2.3) holds after the history (m,m). Since, by
construction, the continuations after all histories other than m are
equilibria, we only have to verify that the employment decision at m is
optimal. Following the steps of part (i) of this proposition, we have that
% (m) is given by the LHS of (A.2). Hence, ¥ % (m)=I1”"¥(m-1)=II(m,n;v’ ,w ),
for all n<m, where the first inequality follows from the condition of this
proposition while the second follows from the definition of (v’ ,w") and the
fact that (v,w) is an equilibrium. Thus, v’ (m)=m is optimal. M

We now turn to proving the results reported in Section 4.

Proof of Proposition 5: Let (v,w)e&. First, observe that w(h) is bounded from

above and below. For any heH', I(h;v,w) < n(N®)/(1-6). Hence, w(h) < n(N®)/(1l-
§). Therefore, W(h)=Wy implies that w(h)=-n(N%)/(1-6)2.

By Tychonoff Theorem!®, the set Y = {((v,w): |w(h)| =< n(N%)/(1-6)?) is
compact in the product topology.

Now, E is closed, since if a sequence {(v;,w;)} is such that (v;,w;)€&,
for all i, and v;(h)-v(h), w,(h’)-w(h’) for all heH, h’ eHt, then (v,w) also
satisfies (2.3-5) and hence is an equilibrium. Since ECY, it is a closed

subset of a compact set and hence is compact.
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Finally, the continuity of I*'"(m) and WY'"(m) as functions of (v,w) in
the product topology implies that the set of equilibrium payoffs,

(" (m),W™(m): (v,w)€&) is compact.  QED.

Part B: Maximum profit equilibria

The reader should start with Part A of this appendix.
Proof of Theorem I: Parts (i) and (ii). Clearly I(m)zlI(m-1). Let N be the
smallest m such that v(m+l)=m.
Proposition B.l: (i) For m<N, (m) is strictly increasing and
(B.1) T(m) = MaXjgp yeger(n(m) + ml(m-1) + §(l-a) [T(j) + F{W()-Wyl]
+ Safl(k) + min(k,m) [W(k)-Wy]]}/(m+l)
s.t. Q(j)zO(m) and TM(k)=2I(m+1).
Proof: The proof unfolds through three claims.
Claim B.1.1: If v(m)=m, I[{(m,m,m-1)] = M(m-1)
Proof: Clearly, from the maximality of 0, I{(m,m,m-1)] < I(m-1). It therefore
follows from Proposition A that
(B.2) T(m) < {n(m) + mll(m-1) + 8§Su[(¥,W) | (m,m])/(mtl)
Since M(m)=(m-1), RHS(B.2)=II(m-1). Therefore, it follows from Proposition A
that there exists an equilibrium starting with m whose payoff is equal to
RHS(B.2). By the maximality of I, II(m)=RHS(B.2) and hence I[(m,m,m-1)] =
T(m-1). a
We thus conclude that (B.2) holds with equality. It then follows that
(B.3) M(m) < {x(m) + mll(m-1) + SMax(, w)egSul(v,w))}/(m+l)
Claim B.1.2: If v(m)=m, (B.3) holds with equality.
Proof: (B.3) and I(m-1)<l(m) immediately imply that RHS(B.3)=M(m-1).

Proposition A then implies that there exists an equilibrium whose profit
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starting at m is equal to RHS(B.3). The maximality of I then implies that
(B.3) holds with equality. O

The next step is to show that, if (v,w) is an equilibrium that maximizes
Sy(V,W), then in its second period after v(m) and v(m+l), (v,w) coincides with
(v,w).
Claim B.1.3: For m<N ,
Max(, wegSa(v,w) = Max(II(i) + 1[W(i)-Wy]| i=m and T(i)20(m))} +

Max{lI(i) + min[i,m][W(i)-Wy]| ism+l and M(i)=0(m+l))

Proof: Step 1l: For i<N +1, q€[0,i] and (v,w)€& such that v(i)=i,

M(1) + qW(1) = Max(, weglI(i,1i;v,w) + qW(i,i;v,w)].

To see that, let (v’ ,w ) € Argmax{I(i,i;v,w)+qW(i,i;v,w): (v,w)e& and v(i)=i}.
Observe that
(r(L)+iM(E-1)+6S, [ (v W ) | 1,1)] )}/ (A1) =(LI(L-1)+1¥ % (D)+L (W ¥ (1) -Wy] ) /(i+1)
> (ill(i-1) + T(i)])/(i+l) = @I(i-1),
where the equality follows from rearrangement of x(i)+6S;[ (v’ ,w" )| ;,], and
the first inequality follows from the choice of(v’,w’ ) which implies
¥ % (1)+q[W ¥ (1)-Wy]2T(i) and hence I ¥ (1)+i[W ¥ (1)-Wy]=lI(i).

Then, by Proposition A, there exists an equilibrium (v”,w”) such that
v (i)=1i, W, W), 1-0=L®) 1o, W7,w") |(q,0,=(v" ,w )| and
w”, W) | i1y, 141~V W ) |is1. Since on the equilibrium path the only difference
between (v”,w”) and (v’ ,w ) is that w”(i,i)sw’ (i,i) and since g<i, it follows
that "% (i) + qw (i) = I ¥ (i) + qw " (i). Equilibrium condition (2.3)
implies W% (i) = " *"(i) - M(i-1) + Wy. It then follows that
7% (1) + qWw " (1) = (q+1)I*" ¥ (1) - qli(i-1) + qWy < (q+D1)T(1) - qll(i-1) +
qWy = T(i) + qW(i).

Therefore, (v,w) maximizes II + qW over all equilibria starting with 1i.
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Step 2: Let j = ArgMax;[lI(i) + i[W(i)-Wy]] s.t. M(i)=I(m),
and let k = Max i ((1) + min[i,m][W(i)-Wy]] s.t. I(i)=N(m+l). For m<N, there
exists an equilibrium (v,w) such that v(m)=j, v(m+l)=k and thereafter it
continues according to (¥,w)|; and (v,W) |, respectively.

To see this, let (v,w) have the features just mentioned. In addition,
after any history h starting with m,i such that i»j or with m+l,i such that
i=k, let (v,w)|, coincide with (¥,w). Finally after all histories not covered
above let it coincide with some arbitrary equilibrium. Since all continuations
are chosen to be equilibria and since NI(j)zI(m) and I(k)=M(m+l), (v,w) is
clearly an equilibrium.. Hence, there exists such an equilibrium.

Thus, Step 1 implies that the equality appearing in the statement of
Claim B.1.3 holds as inequality, with the left hand side being smaller or
equal than the right hand side. Step 2 then implies that this is actually an
equality, as required by the claim. a

Claims B.1.1-3 imply Proposition B.1.

Proposition B.2: (i) N = N3,

(ii) For m>N, u(m)=N.
Proof: (i) Suppose to the contrary that there exists m<N® such that v(m+l)<m.
It follows from Proposition B.1l that all employment levels on the path of
(v,%) |, are smaller or equal to m. This and m+1<N® imply that m(m+1)>(1-
§)I(m). Since also Sgyy (¥,w)2N(m+1)=I(m), we have

[x(m+l) + (m+1)TT(m) + 8Spey(P,W)]/(m+2) > M(m)
From Proposition A-(ii), there exists an equilibrium (v,w) such that
U(m+1)=m+1l and II*"*(m+1)>0(m), contrary to the supposition that v (m+1)<I(m).
Therefore, N > NS,

(ii) Suppose to the contrary that there exists some j>N such that w(j)>N. It
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follows that there exists j>ﬁ such that v(j)=j. Let m be the minimal such j.
Since, by the definition of N, m>N+1, v(m-1)<m-1. This implies [x(m-1)+(m-
l)ﬁ(m-2)+6Maxmwa1(u,w)]/m<ﬁ(m-2), which in turn implies n(m-1)+6Max, .S,
L(v,w)<(m-2)<l(m-1), and hence n(m-1)<(1-§)II(m-1). Now, since v(m)=m, we have
from Claim B.1.2, T(m)=[n(m)+mil(m-1)+6Max, ,Sy(v,w)]/(m+l). It must be that
v{(m,m),m)<m, since otherwise Maxmwsm(v,w)Sﬁ(m)/(l-é) and hence
T(m)<[#(m)+mlI(m-1)+6x(m)/(1-6)]/(m+l)<

M(m-1), contradiction. Now, if v[(m,m),m+l]<m, then Max, ,S,(v,w) <

Max, 4Sp-1(v,W); if ((m,m),m+1l]=m+1l, then Max, ,S,(v,w) =<
(l-a)MaxmwSmﬂ(u,w)+aw(m)/(1-6) < Maxmwswﬂ(u,w). Thus, n(m)+éMax, ,S,(v,w) <
w(m-1)+6MaxmwSW1(u,w) < f(m-1). Therefore,

I(m)=[n(m)+ml(m-1)+Max, S,(v,w)]/(m+l) < M(m-1), contrary to the assumption
that v(m)=m. Therefore, v(m)=N, for all m>N. m

Propositions B.1-2 together establish Theorem I-(i-a) and immediately
imply I-(i-b).

The proof of Theorem I-(ii) is split into two propositions. Throughout
the following analysis, it is assumed that the rate of arrival is sufficiently
fast to so that the quasi-stationary equilibrium at N* exists and that
M(N*;N*)>II(N?;N°) . This implies that I(N";N")>II(m) for all m.

Proposition B.3: For m<N*, (¥,W)|, coincides with the quasi-stationary N*

equilibrium. That is, I(m)=I(m;N"), W(m)=W(m;N*), @w(m,m)=w(m;N") and on the
path v (h)=min[£(h) ,N"].

- Proof: Let N be the smallest ms<N such that T(m) + m[W(m)-Wy] > D(m+l) +
m[W(m+l)-Wy]. If no such m exists, let N = N. Clearly N=1, since M(0)<II(1l).
The proof will first show that, for any ms<N, (V,w)|, coincides with the quasi-

stationary N equilibrium, and then show that N=N".
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(i) From the choice of N, for each m<N,
T(m) + m[W(m)-Wy] < H(m+l) + m[W(mt+l)-Wy)

Therefore, for j<m and k<m+l,
(x(m) + mi(m-1) + §(1-a) [M()+][W(G)-Wy]] + Sa[l(k)+min(k,m) [W(k)-Wy]])/(m+l)
< {n(m) + mi(m-1) + 6§(1-a) (M(m)+m[W(m)-Wy]] + Sa[l(m+1)+m[W(m+1)-Wy]]})/(m+1l)
This together with Theorem I-(i) establishes the proposition for m<N.
(ii) Since T(N) + N[W(N)-Wy] > I(N+1) + N[W(N+1)-Wy], essentially the same
argument establishes that j=k=N maximize
(r(N) + T(N-1) + §(Ll-a) [M(3)+] (W) -Wyl] + Sa[l(k)+min(k,N) [W(k)-Wy]]}/(N+1).
(iii) Parts (i) and (ii) of this proof together with Theorem I-(i) imply that,
for initial m<N, the following hold. After any history h in which N was not
exceeded, v(h)=min[2(h),N]. The values II(m), W(m) and W(m,m) satisfy system
(3.1-3). Since this system has a unique feasible solution, the (v,w)
equilibrium (starting from m<N) coincides with the quasi-stationary N
equilibrium.
(iv) Obviously, the maximality of I implies that NeArgmax,lI(0,n). The strict
monotonicity of Il then implies that N must be the minimal element of
Argmax_ 1(0,n). Thus, N=N*.

This establishes Proposition B.3 which in turn establishes Theorem I-
(ii-a). ™

Proposition B.4: (i) For me(N*,N*], v[(m,m),m)=m, v[(m,m), m+l]€{m,m+l},

U[(N®,N%) ,N°+1]=N® (i.e., employment reaches a steady state level in [m,N®] via
the shortest path).
(ii) For me(N®,N], ¥(m) = m and v[(m,m),m] = v[(m,m),ml] = N® (i.e., m

workers are hired only for one period after which only N® are retained).
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£ r(d)+(m-N%) O _n(ve) + (o) T ()
i=N®+1 1-8

M(m) - m+1
(iii) For m > N, v(m) = N and the continuation is as in (ii).
Proof:
Claim B.4.1: T(m) + m[W(m)-Wy] is monotonically increasing in m for m<N®.
Furthermore, m=N® maximizes it over [O,N].
Proof: From Proposition B.3, I(m) + m[W(m)-W;] is increasing over [O,N"],
Suppose that, for some me(N",N°®]

T(m-1) + (m-1)[W(m-1)-Wy] > I(m) + m[W(m)-Wy]

1t follows from Theorem I-(i) that v[(m-1,m-1),m-1] = ¥y[(m-1,m-1),m] = m-1,
hence T(m-1) + (m-1)[W(m-1)-Wy] = x(m-1)/(1-8). But, I(m) + m[W(m)-Wy] =
x(m)/(1-6) > m(m-1)/(1-6) = M(m-1) + (m-1)[W(m-1)-Wy], where the first
inequality owes to the existence of the quasi-stationary m equilibrium for
which I + m[W-Wy] = x(m)/(1-§), and the second inequality owes to the
monotonicity of n(n) over [0,N®*]. Now, the resulting inequality contradicts
the supposition. Therefore M(m) + m[W(m)-Wy] is monotonically increasing for
m<N* .,

Observe now that, if there is j>N® such that I(j)+j[W(j)-Wy] >
T(NS)+NS[W(N®)-Wy), then there is also a j>N® such that, for all i<j,
M)+j (W) -Wy) = T(1)+1[W(i)-Wy]. Let m be the maximal j=N® with this
property (i.e., for all i<j, this inequality holds). The maximality implies
that T(m)+m[W(m)-Wy] > M(m+1)+(m+1) [W(m+l)-Wy]. We can now use again the
argument used above. It follows from Theorem I-(i) that
p{(m,m),m]=v[(m,m) ,m+1]=m, hence M(m)+m[W(m) -Wy]=n(m)/(1-6). But,

T(m)+m([W(m)-Wy] = n(m)/(1-8) < n(N*)/(1-8) < T(N3)+NS [W(N®) -Wy],
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where the first inequality owes to N®=Argmaxwx(n), while the second owes to the
existence of a quasi-stationary N® equilibrium in which IH4N®({W-W;]=n(N®%)/(1-6).
Now, if m>N®, the first inequality is strict, contrary to the property that
defines m. Therefore, m=N%. a

Claim B.4.1 together with Theorem I-(i) imply Proposition B.4-(1i),(ii).
For me(N*,N*], v(m)=m (since N*<N) and ¥[(m,m),m+1] = ¥[(m,m),m] = m (since
T (m)+m[W(m) -Wy]2M(m-1)+(m-1) [W(m-1)-Wy}). For me(N*,N], ¥(m) = m and
v[(m,m),m] = ¥[(m,m),m+1l] = N® (since m=N*® maximizes H(m)+m[W(m)-Wy]), and
employment remains at N®. Since M(NS)+NS[W(N®) -Wy] = n(N®)/(1-6),
(B.5) M(m) = (n(m) + n(N®)6/(1-6) + ml(m-1)}/(m+l)

The solution to this simple difference equation is

£ n (i) +(m-N¥) %n (N9 +(NS+1) T (N9)
H (m) = 1=N%+1

m+l
Now, N is the lowest value of m>N® such that II(m+l) as given by the above

formula is smaller than II(m).

_ (el m(me1) - £ (d) +(vee1) [_ib-n(Nswfn(i)—ﬁ(NS)
M (m+1) -O(m) = =1 1o ===

(m+1) (m+2)

Obviously, the difference (m+l)-lI(m) is monotonically decreasing in m and
becomes negative at some finite value of m.
Proposition B.4-(iii) follows immediately from Theorem I-(i). M
This completes the proof of Theorem I-(ii). Finally, Theorem I-(iii) is
established by the following.

Proposition B.5: If a/(1-§) is sufficiently small, then: for msN°-1, (¥,W)

coincides with the quasi-stationary N°-1 equilibrium; For m>N%-1, it coincides
with it after at most one period.

Proof: The main idea of this proof is to show that, for sufficiently small
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a/(1-6), MT(m-1)<O(m) for all m<N’. This then implies that on the path of these
equilibria employment is increasing at least up to Ne-1.

Claim B.5.1: For any ¢>0, there is >0 such that, if a/(1-6)<n, then for any
equilibrium (v,w), all m<N® and any history heH  such that £(h)=m, we have
v(h)=m and [I**(m) - i%gw(i)/(l-&)(m+1)|<e.

Proof: Observe that this property holds for m=0, and suppose that it holds up
to m-1<N°. Specifically, choose n; so that this property holds for ¢ <
Minmmo[w(m)fgzﬁ(i)/m]/3 {(which is-positive). In the proof of Theorem II we
show!® I(m)=[x(m)+ml(m-1)+§Min, ,S (v ,w)]/(m+l) (see inequality (C.2) in that
proof). This and Sy(v,w)zII(m), imply I(m)=[n(m)+md(m-1)]/(m+1l-§). From the
inductive assumption, for a/(l-8§)<n,,
u(m)>[1r(m)+?§;n(i)/(1-5)]/(m+1-5)-e-[7r(m)-§:x<i)/m1/(m+1-s)+'fz;:x(i)/(l-a)m-e >
3¢ + N(m-1) - &€ - € = I(m-1) + ¢

This implies that, for any equilibrium (v,w) and any history heH’ such that
2(h)=m, v(h)=m. Hence, there exists 5, such that, for a/(1-8)<n,, |Sy(v,w)-
n(m)/(1-8)|<e. This together with Proposition A and the inductive assumption
imply that, for any equilibrium (v,w) and a/(1l-6)<n=min{n,,ny)

I *(m) < [w(m)ﬁizr(i)/(1-8)+me+6r(m)+65]/(m+1) <j%01(i)/(1-6)(m+1)+e
n*(m) > [r(m){iiw(i)/(l-&)-ms+6r(m)-5&]/(m+l) >j%01(i)/(l-6)(m+l)-e
so that the required property holds for m. a
Next observe that the quasi-stationary N°-1 equilibrium exists for all

values of a/(1-6). This follows from M(NO-1;NC-1)=IT(N°-1;NO)=II(N°;N?), where
the latter equality is a property of N°. This implies that I(N°-1)2M(m), for
all m>N°-1. From the Claim B.5.1 above we have that, if a/(1-6) is
sufficiently small, then for any equilibrium (v,w) and any m>N°-1,

Sy(v,w)sm(N°-1)/(1-6)=Sy0(quasi-stationary N°-1 equilibrium).
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It then follows from Theorem I-(i) that, for m<N°-1, (v,w) satisfies system
(3.1-3) with N=N°-1, so that it coincides with the quasi-stationary N°-1
equilibrium.

Clearly, the above argument also implies that, for any initial m>N°-1,
the continuation of (¥,w) after at most period will coincide with the quasi-
stationary N°-1 equilibrium. That is, there exists N’=N°-1 such that
v(m)=nin[m,N’ ] and v[(v(m),v(m)),v(m)] = v[(¥(m),v(m)),v(m)+1l] = N°-1. M

This completes the proof of Theorem I. QED

Part C: Minimum profit equilibria

Proof of Theorem II: Let N be the first m=N® such that (1-§)I(m+1l)>x(m+l).

Notice that, since there is m<M for which n(m)<0, such N<M exists. Since, for
all m, I(m)<MO(m;N° and N° is the first m>N® for which the above relationship
holds for the stationary N° equilibrium, it follows that N>N°

Proposition C.1l: For m<N, I(m) is strictly increasing in m and

O(m) = (n(m) + mI(m-1) + &Ming, 4)egSu(v,w) )/ (m+l)
Proof:
Claim C€.1.1: If y(m)=m, then I[(m,m,m-1)} = I(m-1)
Proof: Clearly, from the minimality of I, H{(m,m,m-1)] = I(m-1). It therefore
follows from Proposition A that
(c.1) O(m) = (x(m) + mI(m-1) + §Sul(L,¥) | (mm])/(m+1)

Observe that

RHS(C.].)'_II(ID‘].) ”(m)-’-asm[ (Z’E) ‘ (m,m)] -H_(m-l) = ﬂ'(m)+65m[ (Z,H) l (m,m)] 'H(m)m)m'l)

I.I.(m) -E(mymsm-l) > 0
Therefore, it follows from Proposition A that there exists an equilibrium

whose payoff is equal to RHS(C.1l). By the minimality of II, I(m)=RHS(C.1l) and
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hence [I{(m,m,m-1)] = H(m-1). a

We thus conclude that (C.l) holds with equality. It then follows that
(C.2) O(m) = (x(m) + mlI(m-1) + &Ming, ,)egSn(¥,W)}/(mtl)
Claim €.1.2: If I(m)>O(m-1), then (C.2) holds with equality.
Proof: If RHS(C.2)> II(m-1), then Proposition A and the minimality of I imply
that (C.2) holds with equality. To complete the proof, we will establish that
RHS(C.2)=[0(m-1).

Suppose to the contrary that RHS(C.2)<l(m-1). Let (v”,w”) €
ArgMing, 4)egSn(v,w). Construct (v’ ,w ) to coincide with (v,w) except as
follows: v’ (m)=m-1 and (¥' ,W )| (g w1y coincides with (v,¥)|p-1; for i=m, m+l,
(v W )| (mm, coincides with (v”,w")|;;
wo(m,m) = Wy - §(L-a) [ (v (m)/mW " (m) + (1-»”(m)/m)Wy]

- Sa(min(v” (m+l) /m, D)W ¥ (m+l) + (l-min(v”(m+l)/m,1))Wy]

In words: starting from m, the path of (v’ ,w ) involves hiring m-1 and
continuing thereafter according to (y,w); if the firm deviates and hires m in
the first period, the continuation is according to (v”,w”) if it actually
employs them, and it is according to (v,w) if it disagrees with some of them

Let us verify that, under the supposition RHS(C.2)<(m-1), (v’ ,w ) is an
equilibrium. Since all the continuations are chosen to be equilibria, we only
have to check the equilibrium conditions at m. The details of (v’ ,w ) and the
definition of §, yield
M(m,m:v’ ,w ) = £(m)-mw’ (m,m)+§[(1-a)I ¥ (m)+all’ ¥ (m+1)] = n(m)+6S (v’ W)
Therefore, by the initial supposition, I(m,m;v" ,w") < O(m-1)) =
N{(m,m,m-1);v’ ,w ). Condition (2.3) is satisfied after the history (m,m),
since w (m,m) was chosen to satisfy W(m,m;y,w)=Wy. Also, the decision y(m)=m-1

is indeed optimal. It follows that 0¥ % (m) = I(m-1), which contradicts either
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the minimality of I(m) or the assumption [I(m)>I(m-1).

Therefore, the supposition is false, so RHS(C.2)= @I(m-1) and (C.2) holds with
equality. O

Claim C.1.3: Suppose that m satisfies [I(m)>[I(m-1) and n(m)<(1l-6)I(m). Then
(C.3) Ming, w)esSn(v,w) = Ming wegd ¥ ¥(m+l) + min{v(m+l) ,m} [W"(m+1)-Wy]}
and if n(m)<(1-6)I(m), then (C.3) holds with strict inequality.

Proof: Let (v’,w’)eArgMin“hwmgSm(v,w) and note that it therefore minimizes the
RHS of (C.3) as well. Consider an equilibrium (v”,w”) such that v”(m)=m,

W W) l@oe-1 = ¥ e, W79) w1 = w’ ,w)|y, for i=m,m+l, and
W”, W) g+ = (V' ,W )|m. Notice that, after m, (v”,w”) coincides with (v,w),
since (v’ ,w ) is a continuation of (y,w); after m+l, it coincides with
(v’ ,w ). Therefore, it immediately follows that such an equilibrium exists.
Observe that

7" (m) + m[W " (m)-Wy] = x(m) + 6Su(v" ,w) < Su(v ,w )(1-8) + 8S,(»" W) =
Sp(v” W' ).

where the inequality follows from =«(m) < (1-6)I(m) < (1-8)S,(v” ,w ).
Therefore,

S,(v”,w”) < (1-a)Sx(v’ ,w) + o[l ¥ (m+l) + min[v’ (m+1) ,m] (W ¥ (m+1) -Wyl]
Now, (C.3) must hold, for otherwise the last inequality would lead to a
contradiction Sy(v”,w”) < Sy(v’,w ). Clearly, if a(m)<(1-6)I(m), the above
argument implies that (C.3) holds strictly. a

Claim C.1.4: (i) For all m<N, I(m) is strictly increasing.

(ii) For all m>N, II(m) = II(N).

Proof: (i) The proof consists of two steps.

Step 1: If n(m)>(1-6)I(m-1), then O(m)>0(m-1).

To see this, observe that the following inequality holds
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(r(m) + md(m-1) + éMing, 4yegSu(v,w)}/(m+l) > O(m-1),

since, for any equilibrium (v,w), Sy(v,w)zO(m)=0(m-1). Proposition A-(ii) then
implies that there exists an equilibrium (v’ ,w") such that v’ (m)=m and
¥ (m) is equal to the LHS. Proposition A-(i) immediately implies that
¥ % (m) = Min{II***(m)| (v,w)€& and v(m)=m).
Therefore, I(m) = I*'¥ (m) > O(m-1) u]
Step 2: If m<N®*, then I(m)<I(m+l).
Clearly, I(1)>I(0). Let m<N® be such that O(m)>I(m-1). If x(m) > (1-6)I(m),
then m<N® implies ax(m+l) > (1-6)II(m) and, by Step 1, I(m)<O(m+l). Consider m
such that n(m)<(1l-6§)I(m). Suppose to the contrary that O(m+l)=[I(m). This
implies that W(m+1l)=W; and hence
Ming wegl”'"(m+l) + min[v(m+l),m] (W " (m+l)-Wy]]} = O(m).
This together with Claim C.1.3 imply

Ming, wyegSn(v,w) < I(m) < Ming, ,)egSm1(v,W).
This together with (C.2), Claim C.1.2 and the monotonicity of n(m) for m<N®
yield

OI(m+l) = (n(m+l) + (m+1)I(m) + 6Ming, wyegSaer(¥, W)}/ (m+2)

((mt+l) [7(m+l) + m(m) + SMing, wyegSar1(v,w)]/(mtl) + I(m)}/(m+2)
> {x(m) + mI(m-1) + 6Min“hwmgsm(u,w)}/(m+l) = II(m),

where the strict inequality follows from a direct comparison between [I(m) and
{x(m+l) + md(m) + SMing, 4)egSmr1(¥,W)}/(m+l). Both are weighted averages using
the same weights, but in the latter these weights multiply larger terms. This
contradicts the supposition that I(m)=I(m+l). Therefore, M(m)<I(m+1).

By the definition of N and the monotonicity of n, for all me[N®,N),
x(m)>(1-6)I(m). Thus, Steps 1 and 2 together cover the entire range [O,N)

required in part (i).
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(ii) Suppose to the contrary that there is m>N such that O(m)>O(m-1). Since by
the definition of N, n(m)<(l-6)I(m), it follows from Claim C.1.3 that (C.3)
holds strictly. This implies in turn that O(m+1)>I(m), for otherwise any
equilibrium continuation after m is also an equilibrium continuation after m+l
implying that (C.3) holds with equality, contrary to the above conclusion.
This reasoning then goes on to imply O(M)>I(M-1). But the argument of Claim
C.1.3 adapted for this case leads to the contradiction
Min(yﬂﬂegsm(v,w)<Min(yﬂnegsm(v,w). Therefore, for any m>N, I(m)=I(m-1) and hence
I(m)=I(N) . a

Claims C.1.2 and C.1.4 together establish Proposition C.1. O

Proposition €C.2: For m<N,

O(m) = £(m) - mw(m,m) + §[(1l-a)lI(m) + all(m+l)]

Proof: Step 1: For i=<N+l, q€[0,i] and (v,w)€& such that v(i)=i,
(i) + quW(i) =< Minuhwmg[ﬂ(i,i;u,w) + qW(i,i;v,w)].

To see that, let (v’ ,w ) € Argmin(II(i,i;v,w)+qW(i,i;v,w): (v,w)e& and v(i)=1)}.
From Proposition A-(i) and since Q(i-l)sﬂ"”“’(i,i,i-l),

(m(i) + iI(i-1) + 8S;[ (v ,w )| (,511/(1+]) = I(i-1).
Therefore, by Proposition A-(ii), there exists an equilibrium (v”,w”) such
that v”(i)=1, (", w") | i, i-0=,®) -1, W7, w") | ,0,=(W ,w )] and
(W”, %) 1y,101=(W ;W ) |i41. Since on the equilibrium path the only difference
between (v”,w”) and (v’ ,w ) is that w”(i,i)zw’ (i,i) and since g=i, it follows
that ¥ (1) + qW " (i) < I ¥ (i) + qw ¥ (i). Equilibrium condition (2.3)
implies W' " (i) = ¥ (i) - H(i-1) + Wy. Hence,
T (1) + qW (1) = (q+D)I7 ¥ (1) - q(i-1) + qWy = (q+D)I - qU(i-1) + qWy =
o(i) + qI(i).

Therefore, (v,w) minimizes I + qW over all equilibria starting with 1i.
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Step 2: There exists (v" ,w) € Argmin““wmgsm(u,w) such that
% (m)=I(m) and I’ ¥ (m+1)=I(m+1).

Consider an equilibrium (v,w) in the above Argmin. Suppose that v’ (m)=j
and v’ (m+1)=k. Recall from Step 1 that H(j)+j[W(J)-Wyl<T®'¥(j)+j[W"¥(j)-Wy]
and I(k)+min{k,m] [W(k)-Wy]<I*'"(k)+min{k,m] [W¥(k)-Wy]. Let x,y€(0,1] be such
that xI(j)+(1l-x)I*'"(j)=I(m) and yH(k)+(1l-y)I*'*(k)=I(m+1l). By the convexity of
the equilibrium payoff sets!?, there exists an equilibrium (v’ ,w ) such that
¥ (j)=0(m) and ¥ ¥ (k)=I(m+l). Furthermore, S,(v’,w )<S (v,w) and hence
(v ,w) € Argming, ,)egSp(v,w.)

Proposition C.2 now follows from Proposition A. B8

Propositions C.1-2 together establish Theorem II- (i)

Proposition G.3: If the arrival rate is fast enough, then

I(m) = {n(m) + md(m-1) + §(1-a)(m) + Sall(m+l)}/(m+l)
Proof: If the "arrival rate" is fast enough, there exist equilibria (v,w) such
that II*'*(0)>I. By the assumed convexity!* of the equilibrium payoff sets,
there exist equilibria (v’ ,w ) and (v”,w”) such that o ¥ (0) = O(m) and
m¥" % (0) = I(m+l). This implies that there exists an equilibrium (v,w) such
that v(m)=v(m+l)=0, (v,w)l(m'o)-(u’,w’)|0 and (u,w)|(mﬂ)=(v”,w”)|o. Now,
IV (m)+v (m)W¥(m)=I(m) and I*'¥(m+1)+v (m+1)W *(m+1)=0(m+1l). Obviously, this
together with the observation
Ming, wyegSn(v,w) = §[(1l-a)d(m) + all(m+l)]

imply that this inequality holds in fact as an equality. Substituting this in
(C.1) when it holds as equality we get the result. M

This concludes the proof of Theorem II-(i),(ii). The proof of II-(iii)
follows.

Proposition C.4: If a/(l1-6) is sufficiently small, (y,w) coincides with the
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stationary N° equilibrium.

Proof: We first show that, if a/(l-6§) is sufficiently small, then N=N°. Let

e=[n(N°) - x(N°+1)]/2 > 0. From Claim B.5.1 (proof of Theorem 1), there is

sufficiently small a/(l-§) such that E(No-l)égi;(i)/(l-6)N°-a. From the

definition of N9, g;;(i)/No = n(N®°). Therefore,

(1-86)I(N%+1) > (1-8)I(N°-1) zié_}(i)/NO-(l-s)e - A(N%)-(1-6)e > n(NO+1).

Thus, by the definition of N (see beginning of the proof of Theorem II), N=N°.
Now, this together with Claim B.5.1 and with Proposition C.2 imply that,

for m<N°, w,W and @I satisfy system (3.1-3) for N=N°. Therefore, (v,w)

coincides with the N° stationary equilibrium. [

This completes the proof of Theorem II. QED

Remark: The convexity of V(m)

The convexity of equilibrium payoff sets V(m) is required to establish
the equality O(m) = £(m) - mw(m,m) + §{(l-a)I(m) + all(m+l)] in Theorem II- (i),
and to establish the existence of an equilibrium (v,w) such that II¥'¥(0) =
I(m) in Theorem II-(ii). Both of these results are relatively minor for this
paper. The former observation is used later in Theorem II-(iii) to establish
the exact coincidence of the minimum profit equilibrium and the stationary N°
equilibrium when arrival is slow. However, without that observation, we can
still argue that these two equilibria are arbitrarily close. Thus, convexity
of V(m) is not crucial for this paper, but for completeness let us discuss it.

V(m) can be convexified by assuming that everybody observes the
realization of a public randomizing device at the beginning of each round.
With the signals, the component added to the history in period t is of the

form (mtJ,HtJ,ntJ,...,mtlc,ﬁt*t,nb*t), where the §'s are independent random
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draws from the uniform distribution on [0,1]. Let H® denote the set of
histories ending with a signal, so that H=H|JH|JH', where H™ and H' are as
before. The employment decision is made now after a history in H?. The
notation will be kept close to the previous analysis as follows. For heH™,
think of v(h) as a function from [0,1] to (O0,...M;C) meaning v(h)(8) is the
choice prescribed by v after history h,feH?. Similarly, given (v,w) and a
history heH™, let NI"'"(h) and W”'"(h) be functions defined on [0,1] which give
the expected profit and employee utility respectively, for each realization of
the public signal after h, i.e., II*"(h)(8)=II[h,d,v(h)(§);v,w] and
W2*(h)(8)=W[h,8,v(h)(8);v,w]. Let E[{I*"¥(h)], E[W"¥(h)] and E[8(h)W ¥ (h)]
denote the expectations of these functions with respect to 4, e.g.,

E[II*'"(h) ]=Eg{II[h,d,v(h)(8);v,w]}. Obviously, the set of expected payoffs,
given an initial pool m, {(E[II**(m)],E{W'"(m)]): (v,w)E& is now convex.

It is a routine matter to verify that all the arguments of Parts A, B
and C of this appendix go through to the public signals case after the
following simple modifications. Replace everywhere the expressions II'"(h),
W¥(h), v(h)W*(h) and min[m,v(h)]W¥(h) by their expectations w.r.t. the
last signal: E{II*"*(h)], E[v(h)W**(h)] and E{min[m,v(h)]W""(h)}. Wherever v(h)
is treated as a number, think of it as a constant function, e.g., read v(h)=n
as saying v(h)(8)=n for all 4.

Part D: Stationary equilibria

Proof of Proposition 6: Let (v,w) be a stationary equilibrium. Let ﬁ(f(h)),
Q(E(h)) and G(ﬁ(h)) denote II(h;v,w), W(h;v,w) and w(h) respectively. Consider
the equilibrium path starting with m=0. Stationarity implies that this path
must eventually reach some stationary level or stationary cycle. That is,

there are numbers k and K, k<K, such that v(m)=m, for m<K, and v(K+1l)=k.
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Suppose k=K. This implies that, for m<K+l, the path of (v,w) is that of
a stationary K equilibrium and that K<N°. In other words, ﬁ(K)-H(K;K),
W(K)=W(K;K) and w(K)=w(K;K). Being an equilibrium implies that fi(K+1)<fi(K).
Thus, from condition (2.3), W(K+1)=W,. Therefore,

W (KAL) +6 [ (L-a)K/ (K+1) JW(K)+8 [1- (1-a)K/ (K+1) |Wy<Wy

which upon rearrangement and substitution yields
(#) G(K+l)5(1-6)wu-6(l-a)[w(K;K)-(l-S)WU]K/(K+1)(1-6).
Hence,
() A(K+1)-M(R) = fI(K+1)-T(K;K) = £(K+1) - £(K) - (K+1)w(K+l) + Kw(K;K) >

Af(K+1) - (1-8)Wy + [w(K;K)-(1-8)Wy]K(1l-ba)/(1-6) =

Af(R+1) - (1-8)Wy + [W(K)-(1-8)Wy] (1-8a)K(KR+1)/2[(K+1)(1-6)+8a] =

([¥T(KR)-(L-86)Wy) (1-6a) (K+1) (K+2) - §[2(K+1)-a(2K+1) ] [Af(K+1)-(1-6)Wy])

/2{(K+1)(1-6)+6a]

The first inequality makes use of the fact that, according to the policy, the
continuation profit is M(K) after K and at least that after K+l; the second
inequality follows from (#); the equality that follows is obtained by
substitution from (3.4); the fourth is gotten from rearrangement using the
definition of ¥. The last inequality is obvious for Ke[NS,N%), since then
Af(K+1)-(1-6)Wy<0 while [w(K;K)-(1-§)Wy]>0 by the definition of N?; for K<N®,
this is seen from the third expression in the chain since then both Af(K+l)-
(1-6)Wy>»0 and [w(K;K)-(1-6)Wy]>0.

Thus, fI(K+1)-I(K)>0 for all K<N°, implying that K=N°. Hence, K=N°.

Suppose k<K. Since H(k)<f(k+l)=<...<f(R)<fi(k), we have N(i) = I(j), for
all i,je(k,K]. This implies W(k+1)=W, and hence

fi(k) = £(k) - kw(k) + §fi(k)

W(k) = w(k) + 6(L-a)W(k) + aWy
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Since for m<k, the path of (v,w) is that of a stationary k equilibrium, it
follows from the above equations that Q(k)-w(k;k+l). We now can repeat the
same argument used in the first part to show and that ﬁ(k+1)-ﬁ(k)>0 for all
k<N°, implying that k=N° (the argument is in fact easier since
w(k:k+1)>w(k:k)). Therefore, W(i)=W, for all i€[k,K] and hence w(i)=(1-§)Wy
for all i€[k,K]. But this contradicts (i) = NI(j), for all i,je[k,K].
Therefore, on the path starting at m=0, there may not be a cycle [k,K] with
k<K.

Thus, the path starting from m=0 coincides with the path of stationary
N® equilibrium. Finally, it remains to establish that there cannot be another
cycle [k,K], N°%k<K, which would be reached by a path starting from some m>NO .
If there were such a cycle, then for ie[k,K], f(i)-i&(i) > f(NO)-NO(1-8)Wy.

This implies G(i)<(1-6)WU, for all i€[k,K] in contradiction to Q(i)zwu. QED
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Footnotes

1. Another class of intermediate situations, between the neo-classical firm and
the fully unionized one, is addressed by the small literature on unionized firms
that face two separate unions, e.g., Davidson (1988), Horn and Wolinsky (1988a,b)
and Ben Porat (1989).

2. SZ discuss this issue in more detail and provide references to the legal
literature on such "at will" employment contracts.

3. These extensions are discussed in more detail in an earlier working paper
version Wolinsky (1996).

4. The upper bound M saves us some extra work on establishing the boundedness of
the problem, but it is almost obvious that in no equilibrium will the employment
get near M and that this assumption is not crucial.

5. Rearrangement yields the alternative formula

¥(n) = %[f(n) — $ ()]

i=1

6. Indeed, observe that the RHS of equation (3.3), which is the one equation that
brings together W(n;N) and M(n;N), approaches 0 as ¢ goes to zero. The limit
version of (3.3) is W(n;N) - Wy = 3I(n;N)/dn.

7. There are two limit operations here: first with respect to the length of the
period and then with respect to the size of a worker. Notice, however, that the
same continuous labor limit can be reached by going directly from the discrete
version to the limit with respect to the worker’s size. To keep the equivalence
between successive scenarios, as we go to this limit, the speed of arrival must
increase at roughly the same rate at which the worker’s size shrinks. This means
that the effective length of a period shrinks to zero in this process anyway. So
there is no real issue about the order of the limits. If we break this connection
and let the worker's size shrink, but keep the speed of arrival constant, it
would be like the exercise of varying the speed of arrival that we discuss later.

8. An alternative way to state the same observation is that, for any feasible n
and N such that n<N, w(n;n)<w(n;N). That is, at a given n, the wage is lower if
this n happens to be the target level than it would be otherwise.

9. It is clear why the curvature of the profit function is proportional to the
rate of change of the instantaneous profit f(n)-nw(n;N) near N. Since II;(n;N)
. captures the increase in profit due to trading instantaneous profit on the path
to N for earlier attainment of N, and this in turn changes at the rate at which
the instantaneous profit does.

10. It is interesting to note, however, that in the continuous limit of a
variation on the model mentioned in Section 7 below in which arrival rates are
selected optimally by the firm at each instant, the independence of w(n;N) of the
arrival rates emerges as a result.



11. This follows from well known results in dynamic programming which have
already been applied repeatedly in the repeated games literature.

12. The reader who will look at these references will also surely appreciate the
substantial complexity that was avoided by the modeling approach adopted above.

13. See, for example, Ash (1972).

14, That part of the proof of Theorem II does not require the convexity of V(m),
so no extra assumptions are added here.

15. Recall that for now we are simply assuming the convexity of the equilibrium
payoff sets. But in a remark following the proof of Theorem II we will explain
how the convexity can be achieved through public randomization.
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