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Abstract

An incomplete information game is defined by a probability distribution u over a
type space and payoff functions u. Probability distribution i is strategically close to
u if. for any bounded payoff functions u and any equilibrium of the game (u, u}. there
exists an approximate equilibrium of the game (u',u) under which all players get
approximately the same payoffs. This note shows that two probability distributions
are strategically close if and only if [1] they assign similar ex ante probability to all
events; and [2] with high ex ante probability, it is approximate common knowledge
that they assign similar conditional probabilities to all events.

Journal of Economic Literature Classification Numbers: C72, D82.

1 Introduction

An incomplete information game is described by a probability distribution over a type
space and payoff functions specifying each player’s payoffs. How does the set of equilibrium
payoffs change as the probability distribution over types changes? In a single person game
(i.e., a decision problem), it is straightforward to show that weak convergence of a sequence

of probability distributions is sufficient to ensure continuity of ex ante equilibrium (i.c..
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optimal) pavoffs. Thus small probability events have only a small impact on ex ante
payoffs. But in many player games, small probability events may have a large impact
on ex ante equilibrium payoffs (even when players are allowed to choose e-best responses
given their types). Formally, there is a failure of lower hemicontinuity of the (interim)
g-equilibrium correspondence. The problem is that an ex ante low probability event
may have a high ex ante probability impact via players’ conditional beliefs: with high
probability, some player may think it likely that some other plaver thinks it likelyv that...
the small probability event is true.

In this note. we describe the weakest topology on probability distributions that is
sufficient to restore lower hemicontinuity. Two probability distributions are close in this
topology if they are close in the weak topology (i.e., they assign similar ex ante proba-
bilities to all events); and, in addition, with high ex ante probability it is approximate
common knowledge that they assign similar conditional probabilities to all events.

Qur result provides a notion of the proximity of information, where information is
represented by probabilities on a fixed type space. The strategic closeness question was
first studied by Monderer and Samet [5], but with information represented by partitions
and fixed probabilities over states. Our result follows Monderer and Samet in showing the
importance of approximate common knowledge for proximity of information; we structure
the argument to emphasize the parallels with Monderer and Samet’s analysis, but we do
not know the precise connection. We believe that the changing probabilities approach of
this note allows the basic ideas of this literature to be presented in a clear and tractable
way.

Our purpose is to present our results in the simplest possible framework. In the discus-
sion following the results, we describe how our results would be changed with alternative

modelling choices, as well as the relation to other work.

2 Preliminaries

Fix a finite set of players, 7 = {1.....I}, with I > 2; players’ finite action sets, {A;},.7,
with #A; > 2 for all i € 7; a countably infinite set of types for each player. {T}},.;. and a
countably infinite set S of other uncertainty. Uncertainty is described by the state space
Q=T x. xT; xS The action space 1s A = A7 x ... x A;. We shall use notation such

as t;, t_;, a;, a_; with standard meanings. If ¢ € A (Q) is a probability distribution over



the state space, write p (f;) for the marginal probability of ¢ on Tj: if u(t;) > 0, write

p(t_g.slti) = %(tt—s)l and p(Et;) = > w(t_;.slt;). for any event E C ).
' ((tit_ ). s)EE

2.1 Incomplete Information Games

An incomplete information game (u.u) now consists of a probability distribution p €
A (Q), and players’ utility functions, u = {u;}, 7. where each u; : A x @ — R. The game
is bounded by M if ju; (a,w) —u; (@’ W) < M foralla.a’ € A, we QandicT.

A (mixed) strategy for player 7 is a function o; : Ty — A(A;). We write o (t) =
{7: (t)} ez and extend utility functions to mixed strategies in the usual way. Write
v [a; o pousty) for type t;’s interim expected payoff if he chooses action a; and other

plavers follow strategy profile o_; in game (p. u). i.e.,

v lag oo pusty] = Z plt_iositi)u; ((ag o (t_y)) (t.s)):

(t_,.s)ET., %S

and write V; [o: i, u] for player i's ex ante expected payoff: i.c..

Viloypou) = Z e (t:) Z (o () (@;) vi Jas. 0w ty)

LET, a; €4,
= Z pt.s)u; (o (t).(t.s)).
(t.s)EQ

Definition 1 Strategy profile o = {0:},c.7 is an (interim) e-equilibrium of incomplete
information game (u,u) if for alli € T, all t; € T; with p(t;) > 0, all a; with oy (t;) (a;) >
0 and all a} € A,

vilaico_gpusty]) > v fay oo powty] — €.

Write £ (. u) for the set of e-equilibria of (p.u): a (Bayesian Nash) equilibrium is a

0-equilibrium; write £ (p.u) for the set of equilibria of (p. u).

2.2 p-Belief

For any event E, write Bf, (£) for the set of states where all players believe event E with
probability at least p (under u): for convenience, say that any event is believed for any p

by a zero probability type. Thus

BP(E)={(t.s) e Q:VieTI, p(t))>0= p(Elt;)>p}.

m



Iterating this operator gives
. n
CP(E) :”gl [Bff] (E).

Event E is p-evident if whenever it is true, each individual ¢ believes it with probability

at least p.
Definition 2 E is p-evident (under uu) if E C Bl (E).
Following Monderer and Samet [4], it can be shown:

Lemma 3 CF(E) = BF (CF (E)) and thus CF (E) is p-evident under p.

2.3 Topologies on Probability Distributions

The weak topology captures one intuitive notion of the closeness of probability distribu-
tions. In the countable state space setting of this paper, weak convergence is equivalent

to the convergence of probabilities uniformly over events. Thus define dy by the rule
do (p. ') = sup |u(E) - ¢ (E)].
ECQ

We will require extra conditions on conditional probabilities; write A, ./ (8) for the set of

states where every player has similar conditional probabilities about events under p and

/

w
foralli € T, u(t;) >0, ¢/ (t;) > 0,
and |u (E|t;) — @/ (Et;)] < éforall ECQ

A (8) = { (t.5) € Q

Ve show that for players to behave similarly under o and /. not only A, . (&) must
be a high probability event (for some small &), but also C"]‘,_‘S (A, (6)) must be a high

probability event. So let

dy (u.p) = inf {6 Ty (Cllf& (A (5))) >1- 5} .

and d* (p. 1) = max{do (. 1) dy () o dy (o)}

Clearly, d* is non-negative and symmetric. and d* (u. ') = 0 if and only if © = p’. Since
d* does not necessarily satisfy the triangle inequality, d* is not a metric. However. d~
generates a topology in the following sense: a generalized sequence {uk k€ K}, where
K is a directed index set with partial order >, converges to u if and only if for any ¢ > 0,

there is a k € K such that k > k implies d* (;Lk. 1) <e.



3 Results

3.1 Sufficiency

First we show that if d* (y. ) is small, ;¢ and ¢ are strategically close.

Lemma 4 Suppose that event E C A, (1) and E is (1 — £2)-cvident under p'. If o is
an equilibrium of (p,u) and u is bounded by M, there exists a (4ey + 22) M-equalibrium

o of (1. u) witho' (t) = (t) at all (t.s) € E.

Proof. We will construct suchao’. Let T; = {t; € T : (t.s) € E for some (t_;.s) € T_; x S}.
Consider the modified version of (u. ') where players are required to play according to o
at all states (t.s) in E (i.e.. player i's strategy o/ must satisfy o} (¢;) = o; (¢;) if t; € f,).
Consider any equilibrium o’ of the modified game (this exists by standard arguments). If
t; ¢ T.. then al(t;) is a best response to ¢’ for type ¢; in (¢'.u) (by construction). If

t; € fl, we have, for any a; € A;,
lvi lag o owsty) — v fag oy pows ty]) < 281
because E C A, , (£1): and
|v1~ [ai.(rl_z-:p'.u:ti] — U [ai.n,i; p’.u: ti]] < gqM.
because F is (1 — ¢g)-evident. Thus,
’vi [ai,nl_i;u',u:ti] — v [ai,(T—i'»IJ«-,U;tiH < (261 +£9) M. (1)

Now suppose t; € fi and o} (t;) [@;] > 0. By construction of ¢ and for any a € A,.

ViAo ppun ] > v [l oo pouty) (2)
So.
V5 [Ei,rr’_i;u'.u:ti} > v @ ooty — (261 + &) M, by (1),
> wlal.o_ppouity] — (281 + 22) M, by (2),
> v lalol gl uity] — (451 +265) M, by (1). W

Proposition 5 Suppose that d* (. ') < 6. Then if 0 is an equilibrium of (p.u) and u
is bounded by M, there exists a 66M -equilibrium o of (u'.u) with

WViloipwou] = Vo' 4]l < 36M forallie T,



Proof. If d* (u. ') < &, then dg (u. ¢') < & and thus
W (E) = i (E) < & for all E C QO (3)
also dy (p. 1) < 6 and thus
1O (A (8))] 2 1= 6 (1)

Now let & be any equilibrium of (i, u). By Lemma 3, C';ll,_‘S (Auw (6))1s (1 — 6) —evident
(under ). So by Lemma 4 (with F = Ci,_‘s (Au, (6)) and e, = g2 = §) there exists
a 66 -equilibrium of (u',u) with ¢’ (t) = o (¢) at all (t.s) € Ci,_é (Apw (6)). Now (4)

implies
Wile' i) u) — Vi(aow u)| < 61
and (3) implies

Vi oo u) > Vi(oypou)f <260, B

3.2 Necessity

Conversely, we shall show that d* (i, ') must be small if i and p’ are strategically close.
To do this, we construct u and an equilibrium o of (g, u) such that no approximate
equilibrium of (¢’,u) is close to @ when d* (i, 1') is large. We do this first for the trivial
case when dy (1, ¢¢’) is large and then for the more interesting case when dg (. z¢/) is small

but dy (u. p’) is large.

Proposition 6 If dy (i, ') > 8. there exists u bounded by 1 and an equilibrium o of
(pe.u) such that every 6-equilibrium of (1. u). a’. satisfies Vi(o:p.u) = Vi(o':p/ . u) > &

for alli.

Proof. If dy (p. 1) > &, there exists E C Q such that u(E) — ¢/ (E) > 8. Consider the
1,ifweFE

degenerate game where u; (a.w) = . Clearly, V; (e pou) = Vi (o ) u) > &
0, otherwise

for any strategy profiles o and ¢/. W
To deal with the case where dy (u. p') is large, we will first construct a class of games
illustrating why ex ante equilibrium payoffs may be very different even when dqg (u. 1t') is

small. We will use this construction in proving the next Lemma.



The Infection Game. Label actions A; = {x;,y;....}, and for each i € 7.
fix nonempty type subsets {fl} . each fl C T;. and some non empty events
Fy , each F;, C Q. for every t; Eleff Write E = fl X .. X fj x S: let
w ((ri.a_i) (t.s)) = O
1—p(F,, |t;),ift; ¢ Ty and (t.s) € F,
—p(F, |ti).ift; ¢ T, and (t.s) ¢ F,,
—e, if t; € fl and a_; = x_;
2 ift; € ]A', and a_; # z_;

ui((yira) - (t.8) =

where € > 0, and, for all z; ¢ {z;.yi}, ui ((zi,a-;) . (t.s)) = =1, forall a_; €
A_; and (t,s) €

The game has the following interpretation. All actions other than r and y are strictly
dominated for all players, and are thus irrelevant. If a player is a “strategic type” (i.c..
t; € fi), then he will choose & if other players choose x, and y if other players choose y.
If a player is a “committed tvpe” (i.e., t; & fl) then his best response is independent of
the actions of other players. Note that u is bounded by 3.

Game (g, u) has an equilibrium ¢ under which all types of all players always choose
action x;: the expected payoff to each type of each player is 0: the expected payoff to
deviating to y; is 0 for committed type t; ¢ f, or —¢ for standard type t; € i

But now consider probability distribution p' with p/ (Fy, |t;) — p (F3, ;) > ¢ for all
t; ¢ T. If t; ¢ i then the payoff to y; is:

Taras

t) (1= pFy 1) + (1= p/[Fy 1) (- F ) = g [Fr ) — p By 6] > 2

Thus y; is the unique s-best response irrespective of others’ actions: that is. at any =-
equilibrium of (u’. u), type t; ¢ T: plays y;. So at least one player chooses y at each state
{(t.s) in Q\E

Now consider type t; with g’ (E

ti> < 1 —¢. With at least probability ¢. at least one
of the opponents is playing y. So payoff to y; is at least 22 — (1 —¢)e > =. Thus y; is
unique e-best response for t; in any e-equilibrium of (4. ). By definition, at each state

(t.s)in Q \B}fs (E) , at least one player ¢ has u' (E ti> < 1—¢, hence we conclude that

at least one player 7 chooses y; at each state in Q \B}ff (E) , l.e., the strategic types in

Q \Bi,—‘: (E) are “infected” by the committed types. We can then look at type ¢; with



I <B‘ll,_s (E)

at least one player chooses action y;. Thus every type t; with p’ (C’;,—5 (E')

ti> < 1—¢, and the argument iterates. So at every state in {2 \C;fs (E) .

t1> <1l-¢
has interim payoff more than ¢ in any e-equilibrium.

Note that dg (g, it) is irrelevant for the above construction: in particular. it is pos-
sible to have dg (u. ') small (which implies that g’ (E) is close to 1), but still have
T <Cf‘7€ (E)) much smaller than 1. In this case, equilibrium payoffs of the game (y. u)
(which include all players having ex ante payoff 0 by choosing action z in equilibrium)
may be very different from equilibrium payoffs of the game (x',u) (where in every equi-
librium, with high probability, each player gets payoff at least £ by choosing action y). In
the following Proposition, we verify that dy (p. 1') large is exactly the condition we need

to construct E with these properties.

Proposition 7 If dy (p. ;') > 8. there exists u bounded by 3 and an equilibrium o of

'

1. u) such that every §-equiltbrium of (1. u), o', satisfies
/ Yy 0-€q Ak

52
Vilo'opf ] — Vilorpou] > T for somei €T,
Proof. By construction. A, . (6) has the form fl X .. X fl x S, where t; ¢ IA} holds if
and only if there is event F;, C Q with g/ (Fy |¢;) — p(Fy, [t) > 6. Set E = A, e (6). and
consider the infection game constructed for these events (with £ = 6). In the equilibrium
o of (p.u) where z is always played, V; (o:p.u) = 0 for all i+ € Z. Since dy (p. ') > 6,
i [C’:L,_‘S (E)] < 1-4. By Lemma 3, C';,_‘S (E) = Bi,_é (C}f& (E)) = () Q\Z;, where
JET

Z; = {(t 8) (C}L,"S (E) ‘ t]-> <1- 6}. So there exists a player i with p/ (Z;) > %. In
any equilibrium o’ of (/. u), player 7’s interim payoff is more than ¢ at all states in Z;
by construction. His interim payoff is at least 0 at all states in Q2\Z;. Thus his ex ante

pavoff is more than (?) §+(1- %) 0= 6—;, |

3.3 Summary of Results

To sum up. Proposition 5 showed that if d* (x.p') is small, then ex ante equilibrium
pavoffs are close in (. u) and (' u). If d” (u. ') is large. then either do (p. p') is large.
in which case Proposition 6 shows that ex ante payoffs may be very different: or d; (u. 1)
(or dy (g, 1)) 1s large, in which case Proposition 7 shows that ex ante payoffs may be very

different.



Our results mav be summarized more formally as follows. Write
o p'iue) = sup inf max |Vi[o' ' ou] = Vi o e
cEE(p,u) o'efe(p v) €T

and 0" (p.psu,e) = max{o(p,piu.e). o (' ue)}.
So " (. ¢'; u. €) measures the strategic closeness of p and g
Proposition 8 d* (;Lk.u) - 0e 0" (uk.u:u.f) — 0 for all bounded u and £ > 0.

Proof. (=) By Proposition 5, if u is bounded by A/ and e > 6Md* (p*. ), 0" (1*. pyu.2) <
3Md* (p*, 1), Thus ¢* (1%, piu.e) — 0 for all bounded u and € > 0 if d* (1%, ) — 0.
[«=] If d* (¢/. 1) > 8, then by Propositions 6 and 7 we can find u bounded by 3 such that
either o (i p;u.e) > ‘57 or o (p.piug) > ‘572, and thus ¢™ (¢, gy u.e) > 551— ||

Thus the topology generated by d* is the weakest such that o~ (uk.,u: u.z) — 0. for

all bounded v and £ > 0, for any convergent sequence.

4 Discussion

e The relation to Monderer and Samet {4]. Our work follows Monderer and
Samet [4] who considered an alternative system of perturbing an information system.
They fixed a state space and probability distribution and considered variations in the
countable partitions of that state space that players observe. Our characterization
of the proximity of information has a similar flavor to Monderer and Samet’s, but
we have not been able to establish a direct comparison. By considering a fixed tyvpe
space, we exogenously determine which types in the information systems correspond
to each other. In the Monderer and Samet approach. it is necessary to work out
how to identify types in the two information systems. Thus we conjecture that two
information systems are close in Monderer and Samet’s sense if and only if the types
in their construction can be labelled in such a way that the information systems are

close in our sense.

e Upper Hemicontinuity. This note addresses a lower hemicontinuity question.
In the discrete state space setting of this paper, the weak topology is sufficient
for upper hemicontinuity. Milgrom and Weber [3] analyze upper hemicontinuity in

general state spaces.



e Alternative Notions of Approximate Equilibrium.

— It is crucial that the notion of s-equilibrium is interim. We require that each
player’s action choice be within ¢ of a best response, contingent on his realized
type. If we required only ex ante e-equilibrium, we would be allowing players
to make choices that are very far from being best responses (even if only with
ex ante small probability}). If we had used ex ante s-equilibrium in our con-
struction, the weak topology generated by dy would be sufficient to generate

payoff continuity in the countable state space setting considered in this paper.'

— We require pure strategy interim s-equilibria; that is, we require that each pure
strategy played with strictly positive probability (no matter how small) be
within £ of a best response. By contrast, both Monderer and Samet [51 and
an carlier version of this work (Kajii and Morris [2]) used the weaker notion of
mixed strategy interim g-equilibria: any type’s mixed strategy must generate
an interim expected payoff (contingent on his type) within ¢ of a best response
but might involve plaving (with small probability) actions that give pavoffs a
long way from a best response. The results are unaffected by this distinction,

but the arguments are simpler under the approach described here.

e Semnsitivity to small probability events. We have seen that weak convergence
is not enough for strategic closeness in general. But at some p, weak convergence
is sufficient. Say that probability distribution g is insensitive to small probability
events if dy (,uk, ;L) — 0 implies d* (uk. u) — 0. Using the fact that convergence of
conditional probabilities is uniform on a finite event, it can be shown that a necessary
and sufficient condition for u to be insensitive is that it can be approximated on a
finite subset of Q: that is, for all £ > 0, there exists a finite (1 — ¢)-evident (under
j1) event E such that j(E) > 1 —¢. Then it is straightforward to identify a number

of sufficient conditions for u to be insensitive:

— u has finite support: {t : p(t) > 0} is finite.

— p is independent over types: for allt € T, Y u(t.s) = [] p(t:).
seS i€l

11n countable state spaces, the weak topology is equivalent to the strong topology. Engl [1] shows that
the strong topology is sufficient and (for uncountable state spaces) necessary for lower hemicontinuity of

the ex ante =-equilibrium correspondence.
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— 1t is perfectly correlated over types: for all (t.s) € Q. p(t.s) >0=t, ==
tr.
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