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Abstract

A stage game is played infinitely many times. After observing the out-
comes of the game, players revise their beliefs about opponents’ strategies.
I show the general conditions under which players’ predictions become ac-
curate fast.
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1. Introduction

The objective of this paper is to show the general conditions under which players’
predictions become accurate fast in infinitely repeated games.

In each period, players’ choose an action, and update their beliefs about the
future evolution of the play according to the past history of outcomes. Assuming
that, after observing enough data, players’ posterior beliefs become accurate, it is
important to know what determines the speed of the convergence process. How-
ever, obtaining rates of convergence is difficult, and, in game theoretical models,
the literature on this issue is small. Jordan [92] obtained exponential rate of con-
vergence to Nash equilibrium for a class of myopic learning processes. Vives [93]
showed interesting examples of slow convergence (rate t‘é) and fast convergence
(rate t~2) in an economic model.

The question of how fast agents’ predictions become accurate is relevant even
if players do not fully optimize given their beliefs. In applications, it might be
interesting to assume that agents take almost best-responses, or myopic best re-
sponses, or best responses subject to “complexity constraints,” etc. I assume that
players choose a strategy according to an unspecified criteria. If players fully op-
timize given their beliefs then fast convergence to an equilibrium can be obtained
as a corollary of some of the results presented in this paper.

There are two standard notions of convergence. One is merging and the other
is weak merging. Players’ posterior beliefs merge with chosen strategies if players’
prediction about all future events eventually become accurate. Players’ posterior
beliefs weakly merge with chosen strategies if eventually players’ predictions about
all future events become accurate, except, possibly, distant-future events.

Players’ posterior beliefs merge with chosen strategies if and only if chosen
strategies are absolute continuous with respect to players’ beliefs (see Blackwell-
Dubins [62], and Kalai and Lehrer [93a] and [94]). Absolute continuity requires
that if an event occurs with positive probability then all players assign positive
probability to this event. If players’ posterior beliefs merge with chosen strate-
gies and players’ take best responses according to their beliefs, then the play is
eventually close to a Nash equilibrium play (see Kalai and Lehrer [93a] and [93b]).
However, convergence to Nash equilibrium also obtains if players’ posterior beliefs
and optimal strategies weakly merge, but do not necessarily merge. Hence, con-
vergence to Nash cquilibrium can be obtained under conditions which are weaker
than absolute continuity (sce Lehrer and Smorodinsky [97] and Sandroni [97]). In



this paper, I show that absolute continuity implies fast converge of agents’ beliefs
and true strategies.

Players’ beliefs and chosen strategies weakly merge fast, with density one, if
players’ beliefs and chosen strategies weakly merge faster than t=%% in a subse-
quence of periods which has density one. A subsequence of periods have density
one if the relative frequency of the periods in this subsequence converges to one
as time progresses.

The central result of this paper is as follows: If players’ posterior beliefs merge
with chosen strategies then players’ beliefs and chosen strategies weakly merge
fast, with density one. Hence, under absolute continuity, players’ beliefs and
chosen strategies weakly merge fast, with density one. However, this result is
obtained under some restrictions on players’ beliefs and chosen strategies which
are imposed to obtain mathematical tractability.

The result above is sharp. First, I show an example such that players’ posterior
beliefs merge with chosen strategies, but players’ beliefs and chosen strategies do
not. weakly merge faster than =% in a subsequence of density zero. Hence, in
general, even under absolute continuity, it is possible that, very rarely, players will
make mistakes in their predictions which are not consistent with fast convergence.
Moreover, I show another example such that players’ posterior beliefs merge with
chosen strategies, but players’ beliefs and chosen strategies do not weakly merge
faster than ¢, v > 0.5, with density one. Thus, the rate of convergence ¢=°2 is
sharp.

A natural question is the converse of the result described above. That is, does
fast weak merging imply merging? I show an example in which players’ beliefs
and chosen strategies weakly merge at rate t 1, and consequently faster than ¢=95,
but players’ beliefs and chosen strategies do not merge. However, I show that if
players’ beliefs and chosen strategies weakly merge faster than t~(1¢) ¢ > 0, then
players’ beliefs and chosen strategies merge.

2. The Model

There exist n players. Each player ¢ € {1,...,n} has a finite set ). of possible
actions. Let A(Y",) be the set of probability distributionson >, . Let >~ = [[ >,
i=1

be the set of action combinations. Let 5" be the set. of histories of length ¢ +1,0 <



t < 0o. Define H = [JY' as the set of finite histories.
14

A cylinder with base on i € 3. is the set C(h) = {w € % Jw = (h,...)} of
all infinite histories such that the ¢ 4 1 initial elements coincide with h. Let

be a filtration where Sy is the trivial o-algebra, 3, is the o—algebra generated by
the cylinders with base on Zt, and § is the o-algebra generated by the algebra

of finite histories 3 = | Gy .
t>0

Each player ¢ € {1,2,...,n} has a payoff function u;, : > — R; a chosen
behavior strategy f; : H — A(>_,) which describes how player ¢ randomizes
among possible actions conditional on every possible history; and a belief about
opponents’ strategies f* = (f}, ..., f1). The chosen strategy profile is defined by
[ ={(f1,.... fn) . BEach player knows his own strategy, i.e., f; = fI.

Given a strategy profile g, there exists a probability measure yu, (see Kalai
and Lehrer [93a] for details) that represents the probability distribution over play
paths generated by g. Given a finite history h € H, the induced strategy profile
gn is defined by g,,(h) = g(h.h) for any h € H.

3. Main Concepts and Results

Definition 1. After observing history h € H, the difference, in the sup-norm,
between player i’s posterior beliefs and chosen strategies is given by

[

= sup g, (A) — pyp (A)]
AET
If || fu — fill < € then, after observing history h € H, the absolute difference

between the probability assigned by player ¢ to any event and the true probability
of the event is smaller than «.

Definition 2. Fix a natural number . After observing history h € H, the dif-
ference, in the d;—mctric, between player i’s belicfs and the chosen strategies is
given by

di{fu. fr) = sup b (A) — g (A)]

AES;, 0< <!



If d(fn, f ﬁ) < ¢ then, after observing history h € H, the absolute difference
between probability assigned by player ¢ to an event, within ! periods, and the
true probability of this event is smaller than e.

Definition 3. Player i’s beliefs and chosen strategies merge if there exists a
set 2 € § such that ug(Q) = 1, and for every path w € Q, w = (w(t),...),

‘ fuy — f;(t)

That is, player i’s beliefs and chosen strategies merge if, given enough data,
player i’s posterior beliefs become close, in the sup norm, to the true probability
distribution.

goes to zero as t goes to infinity.

Definition 4. Player i’s beliefs and chosen strategies weakly merge if for every
natural number [, there exists a set 0 € S such that ps(Q2) = 1, and for every
pathw € Q, w = (w(t)....), d(fuw) [} (1)) goes to zero as t goes to infinity.

w

That is, player ¢’s beliefs and chosen strategies weakly merge if, given enough
data, player i’s beliefs and the true probability measure assign similar probabilities
for all measurable events, except possibly the ones that may only be observed in
the distant future. Next, I define absolute continuity and local absolute continuity:

Definition 5. Chosen strategies f are locally absolutely continuous with respect
to player i’s beliefs f* if for every A € 3°, pusi(A) = 0 implies ps(A) = 0.

The assumption of local absolute continuity requires that if any finite-time
event occurs with positive probability, then player ¢ assigns positive probability
to this event. Local absolute continuity is a relatively mild restriction. Under
local equivalence, players can unambiguously update their beliefs by Bayes’ rule.
However, the mere fact that players are able to revise their beliefs in a Bayesian
fashion does not necessarily imply that players predictions will eventually become
accurate. Ior example, consider the case of a player flipping a fair coin many
times. Suppose the player believes that the probability of heads is 0.3. Local
absolute continuity is satisfied because the player does not assign probability zero
to any finite-time event. However, the player’s posterior beliefs are never close to
the truth.

Hereafter, 1 assume that chosen strategies are locally absolutely continuous
with respect to all players’ beliefs, unless otherwise indicated.
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Definition 6. Actually chosen strategies f are absolutely continuous with respect
to player i’s beliefs f' if, for every A € S, puyi(A) = 0 implies ps(A) = 0.

The assumption of absolute continuity requires that if any event occurs with
positive probability, then player i assigns positive probability to this event.
Proposition 1, below, relates absolute continuity and merging.

Proposition 1. Playeri’s beliefs and chosen strategies merge if and only if chosen
strategies are absolutely continuous with respect to player i’s beliefs.

Proof - For the assertion, see Blackwell and Dubins [62], and Kalai and Lehrer
[93]. For the converse, see Kalai and Lehrer [94].

Proposition 1 shows necessary and sufficient compatibility conditions on play-
ers’ prior beliefs and the truth which ensure that players’ posterior beliefs merge
with chosen strategies.

Proposition 2, below, provides an alternative characterization of merging which
will be useful to prove the main results of this paper. Moreover, proposition 2 is
useful to determine whether merging occurs in specific examples.

Given w € ¥® w = (w(t)....), w(t) = (w(t — 1),a), a € %, let z; be
measurable functions defined by:

Z(w) = 1if p(Cw(t))) = 0;and

) = tog [ e TN o > 0
zi(w) = lo e 1)(C'( ) if s (Clw )

That is, z; is logarithm of the ratio of player ¢’s beliefs to chosen strategies over
next period’s events. Let ¢} be E{z}/ S;_1}, and let v; be Var{z;/ 3;_1}, where
E and Var are expectation and variance operators associated with the true prob-
ability measure pi5, respectively.

Definition 7. The ratio of playeri’s beliefs to chosen strategies over next period’s
events is bounded away from zero and infinity if there exists 6 > 0 and M > 0
such that for every finite-history h € H, and for every stage game outcome a € X,
such that ps(C(h,a)) > 0,

1 (CUD,
§< M < M.
5, (OO )



Proposition 2. Assume that the ratio of player i’s beliefs to chosen strategies
over next period’s events is bounded away from zero and infinity. Then, player
i’s beliefs and chosen strategies merge if and only if

Z(’j > —oc and Zw;’ < OC a.8. fif.

4 t

Proof - See Appendix.

If players’ beliefs and chosen strategies merge then players’ beliefs and chosen
strategies weakly merge, but not conversely. Example 1, below, illustrates this
point.

Example 1. There are two players, 1 and 2. Payoffs are given by the matrix

(1.2) L R
T (1,0) (0.0)
B (0,0) (1.0)

Player 2 is indifferent between the outcomes of the game and plays L in all periods.
Player 1 believes that player 2 plays L with probability 1 — t%? at period t. Player
L plays T in all periods. Clearly, player 1’s beliefs and chosen strategies weakly
merge. However, player 1's beliefs and chosen strategies do not merge because, in
all periods, player 1 believes that the probability that player 2 will play L in all

remaining periods Is zero, and the true probability of this event is one.

Kalai and Lehrer [94], Lehrer and Smorodinsky [97], and Sandroni [97] ob-
tained compatibility conditions between players’ beliefs and chosen strategies
which are weaker than absolute continuity, but strong enough to ensure weak
merging. The motivation of these authors is the notion that, as illustrated by
example 1, absolute continuity is an unnecessarily strong compatibility for con-
vergence to Nash equilibrium. On the other hand, example 2, below, suggests a
connection between merging and fast weak merging.

Example 2. Continue with the set up of example 1, but assume that player 1
believes that player 2 plays I with probability 1 — (H;Q)p at period t. Note that
if p > 0 then player 1’s beliefs and chosen strategies weakly merge. However,
merging obtains only if p > 1 because, in this case, player 1 assigns positive
probability to the event in which player 2 plays L in all periods. On the other
hand, if p < 1 then player 1 assigns zero probability to the event in which player
2 plays L in all periods. The higher is p, the faster is the convergence rate.

7



The focus of this paper is to establish the exact connection between merging
and the rate of weak merging. To achieve this objective, I make the following
definitions:

Definition 8. A sequence a; goes to zero, with density one, if for every € > 0,

547 G < ey <t
i/ ol <=j<ty

t t—oo

That is, a sequence a, goes to zero with density one if |a;| is arbitrarily small
with arbitrarily high frequency.

Definition 9. Playeri’s beliefs and chosen strategies weakly merge, with density
one, at the rate t™", if, for every natural number [, there exists a set ) € & such
that ps(2) = 1, and for every path w € Q, w = (w(t), ...), t"di{ fu) f;(t)) goes to
zero, with density onc.

That is, player i’s beliefs and chosen strategies weakly merge, with density
one, at the rate t 77, if the d;-distance between player i’s posterior beliefs and true
strategies goes to zero, with density one, faster than 7.

Definition 10. Player i’s beliefs and chosen strategies weakly merge fast, with
density one, Iif player i’s beliefs and chosen strategies weakly merge, with density
one, at the rate =97,

The rate ¢t is standard for fast convergence (see Vives [93]). For mathemat-
ical tractability, I impose the following restriction on chosen strategies:

Definition 11. Players do not randomize using vanishingly small probabilities
if there exists v > 0 such that for every stage game outcome a € ¥, and for
every finite-history h € H, such that ug(C(h)) > 0, either py, (C(h,a) = 0 or
,ufh(C(hﬁ a) >

Players are typically indifferent about which probabilities to use when they
decide to randomize. Players do not randomize using vanishingly small probabil-
ities if players do not take actions with arbitrarily small (and strictly positive)
probability.



If players do not randomize using vanishingly small probabilities then the ratio
of player 7’s beliefs to chosen strategies over next period’s events is bounded away
from infinity.

If players do not randomize using vanishingly small probabilities, and player
’s beliefs and chosen strategies weakly merge, then the ratio of player ¢’s beliefs
to chosen strategies over next period’s events will eventually become close to one.
However, this ratio may approach zero on paths that have zero measure (under
1)

It is easy to check that in examples 1 and 2, the ratio of player 1’s beliefs
to chosen strategics over next period’s events are bounded away from zero and
players do not. randomize using vanishingly small probabilities.

The main result of this paper is proposition 3 stated below:

Proposition 3. Assume that the ratio of player i’s beliefs and chosen strategies
over next period’s events is bounded away from zero and players do not randomize
using vanishingly small probabilities. If chosen strategies are absolutely continu-
ous with respect to player i's beliefs then player i’s beliefs and chosen strategies
weakly merge fast, with density one.

Proof - See Appendix.

Corollary 1. Assume that the ratio of playeri’s beliefs and chosen strategies over
next period’s events is bounded away from zero and players do not randomize using
vanishingly small probabilities. If player i’s beliefs and chosen strategies merge
then player i’s beliefs and chosen strategies weakly merge fast, with density one.

That is, if chosen strategics are absolutely continuous with respect to player
i’s beliefs (or if player #’s beliefs and chosen strategies merge) then, except in
some rare periods, the d;-distance between player i’s posterior beliefs and chosen
strategies, at period ¢, is smaller than ¢7%%.

Example 3, below, shows that even if player i’s beliefs and chosen strategies
merge, then player i’s beliefs and chosen strategies may not weakly merge at rate
t7%% in a subsequence of upper density zero. (The upper density of a subse-
quence L C N is defined as limsup,, . #{L{1,...,m}/m.) Hence, even under
absolute continuity, the dj-distance between player i’s posterior beliefs and chosen
strategies, at period ¢, may, in some rare periods, be greater than ¢t=%°.



Example 3. Continue with the set up from example 1, but assume that player 2
plays R with probability 0.5 iu every period. Player 1 believes that player 2 plays
R with probability 0.5(1 + 1/t"#3) in all periods t such that there exists a natural
number j € N, j > 1 such that t = j*. In all other periods, player 1 believes that
player 2 plays R with probability 0.5.

The subsequence L = {t/ t = j*, j € N} has upper density zero. For all paths
w = (w(t), ...) Vidi(fuq, fiq)) = 0.5t°%, t € L. Hence, player 1’s beliefs and
chosen strategies do not weakly merge at rate t=°° in this subsequence.

By definition, ¢} = 0 if t # j% and e} = 0.5log(l — 1/5%) if t = j* v} = 0 if
t # 34, and v} = 0.5log*(1 — 1/4) + 0.5log*(1 + 1/j) — (el)? if t = j*. However,
if £ > 0 then log(1l + x) < x; and if © < 0, but sufficiently close to zero, then
log(l — z) > (=2)z. Hence, if j is sufficiently large then 0 > e} > —1/5°, and
0 < v} <2.5/5%. By proposition 3, player 1’s beliefs and chosen strategies merge.

Example 4, below, shows that even if player i’s beliefs and chosen strategies
merge then player i’s beliefs and chosen strategies may not weakly merge at rate
t7", v > 0.5, with density one. This example shows that the rate =% is sharp.

Example 4. Continue with the set up from example 1, but assume, as in example
2, that player 2 plays R with probability 0.5 in every period. Player 1 believes
that player 2 plays R with probability 0.5(1 + 1/t7),~v > 0.5, in all periods.

If v >~ > 0.5 then, for all paths w = (w(t).,...), t'd1( fuwq), f;(t)) goes to infinity
as t goes to infinity.

By definition, ¢! = 0.5log(1—2/t""), and v} = 0.5log?(1-2/t") + 0.5log®(1+2/t")
— (e!)?. Hence, if t is sufficiently large then 0 > e} > —4/t"", and 0 < v} < 10/t
By proposition 3, player 1’s beliefs and chosen strategies merge.

A natural question is whether the converse of proposition 3 holds. That is, does
fast weak merging imply merging? Example 2 shows that this is not necessarily
true. In example 2, if p = 1, then player 1's beliefs and chosen strategies weakly
merge at rate t71. Hence, player 1’s beliefs and chosen strategies weakly merge
fast, with density one, but player 1’s beliefs and chosen strategies do not merge.

Definition 12. Fix ¢ > 0. Player ¢'s beliefs and chosen strategies weakly merge
faster than t~(7¢) if there exists a sct ) € S such that pg(Q2) = 1, and for every
pathw € Q, w = (w(t),...), "I d (fuo, ffu(t)) goes to zero as t goes to infinity.
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A “partial converse” to proposition 3 is given by proposition 4.
o

Proposition 4. Assume that the ratio of player i’s beliefs and chosen strategies
over next period’s events is bounded away from zero and players do not randomize
using vanishingly small probabilities. If player i's beliefs and chosen strategies
weakly merge faster than t~U7<) for some ¢ > 0, then player ¢’s beliefs and
chosen strategies merge.

Proof - See Appendix.
Appendix

Definition A.1 Chosen strategies f are asymptotically continuous with re-
spect to player i’s belicfs ' if, for every sequence of sets {Ax}, Ax € R

pp(Ag) — 0= ps(Ap) — 0.
k—o0 t—oo
Proposition A.1 Chosen strategies f are absolutely continuous with respect
to player i’s beliefs f' if and only if chosen strategies f are asymptotically contin-
wous with respect to player i’s beliefs f'.

Proof Assume that f is absolutely continuous with respect to fi. Take a
sequence Ay € Sy such that pp.(Ax) — 0 as k — oc. Assume, by contradiction,
that there exists a subsequence, also indexed by k, { Ax} such that ps(Ax) > > 0.

Take a sub-subsequence, also indexed by k, such that i (Ax) < 5.

Let B = (\ B, where By = |J Ax. Then, p:(By) < > # — 0.

s=1 k>s k>s ST

Thus, psi(B) < pp(Bs) - 0. Hence, p1s:(B) = 0 and py(B) = 0.

On the other hand, A, C B, Vs € N and pus(A;) > e Vs € N.

So, us(Bs) > £ Vs € N. However, Byy; C Bs. So, By | B.

Thus, ps(Bs) | ps(B) = 0. This is a contradiction.

Assume that f is asymptotically continuous with respect to f*. Suppose, by
contradiction, that there exists a set A € < such that pyi(A) = 0 and pg(A) >
6> 0.

By the Carathcodory extension theorem, it is possible to define the probability
measure of a set in ¥ as a “limit” of the probability measure of sets in 3°. That is,

11



by the very construction of a probability measure in the Caratheodory extension
theorem,

pp(A) = inf{> " g (Bi)/A C Y Bi, Bi € S}
k k

The symbol > appcars instead of | J, indicating that we consider only count-
able disjoint sets By € Sy, whose union covers A. So, for every e > 0, there

exists sets B(e)x € S such that Y pp (B(e)x) < e and A C 3 B(e)x. Hence,
k=1 k=1
o0 k(e)
6 < S s (B(e)y). Thus, there exists k(e) such that § < >~ iy (B(e)x) - Let D(e)
k=1 k=1
k(e)
be the set > B(e). Then,
k=1

pp (D€)< pp <Z B(e)k> < €. Thus, psi (D(€)) — 0.

e—0

Consider the sequence D(1) € Sy 1. 5 (D(%)) — 0 because pyi (D(1)) — o.

s 8§— 20 S SO0

K(2)
But, s (D(3)) = py (AZ B(%)k> > 6. This is a contradiction.

q.e.d.

Given w € ¥®. w = (w(t)...), w(t) = (w(t — 1),a), a € I, let z} be Iy
measurable functions defined by:

That is, ¢ is the ratio of player i’s subjective probability over (¢ 4 1)-histories
and the true probability of this history.

Proposition A.2 Chosen strategies are absolutely continuous with respect to

player i’s belicfs if and only if, almost surely with respect to uy, z} converges to
a strictly positive number as ¢ goes to infinity.

12



Proof - =) Assume, by contradiction, that f is not absolutely continuous with
respect to f'. By proposition A.1. there exist £ > 0 and a sequence {A,} € Q9,
such that

wr(A,) > e and pgi(Ay) = 0

—0C

Let B,,s € S, m € N, be defined by
‘ )
Br:L,6 =qwWweE Ex, CU{(’ZU) 2 5 Vi 2 m .

By assumption, z; converges to a strictly positive random variable z (almost
surely with respect to py). Hence, there exists 5 > 0 small enough and m € N
large enough such that

/Lf (B ') 2 1-—

m,6

SN

Thus, any set such that the intersection with By, 5 is empty has uy—measure
smaller than 5. Any set A, € 3V is a finite disjoint union of cylinders that belongs

to U . Let D, € SY be A, minus all its cylinders that do not intersect By, .
Jj2m
Note that the union of all these cylinders has pyj—measure smaller than $. Thus,

pr(Dy) > = and g (Dy) — 0.

n—oc

SRR

By definition, D,, is a finite sum of disjoint cylinders {C}} € 30 such that

6
1 (Cy) 2 5/1f(Ck)-

Therefore, B
o
/.sz(D“) > B/Jf(Dn)-

A contradiction.

«<)Assume that f is absolutely continuous with respect to f*. By the Radon-
Nikodym theorem there exists a random variable y' (the Radon-Nikodym deriv-
ative) such that py = [y'Opp and y' is strictly positive (almost surely with
respect to iz ). However, under absolute continuity, yi = 1/} converges to y' al-
most surely with respect to pi, (see Kalai and Lehrer [94], proposition 1). Hence,
x! converges to =1/ y" almost surely with respect to fi;.

q.e.d.

13



Proof of Proposition 2 - Assume that player i's beliefs and chosen strategies
merge. By proposition 1, chosen strategies are absolutely continuous with respect
to player ¢’s beliefs.

11 00
By definition, ) z! = logz}. Hence, by proposition A.2, > 2 > —00 a.s. fuf.

-1 j=1
el It is known that e} < 0, (see Lehrer and Smorodinsky [96],
t

el

Define z; = z;

|

lemma 2). Thus, liminf 12} > —00 a.s. ;. By definition, E{(}) /S¢a} = 0.
J

By assumption, |2!| is uniformly bounded. That is, there is an 7" > 0 such that

|2{] < T. Assume, by contradiction, that >, v; = oo on a set of paths to which

17 assigns strictly positive probability. By Freedman [75], corollary 4.5, part (a),
t

lim inf 2:1 2;- = —oc in a set to which p; assigns strictly positive probability. A
]:

contradiction. Thus, S27°, v < oc a.s. py. Hence, by Freedman [75], corollary

OC .
>4

o>
< 00 a.s. jiy. Therefore, ) el > —oo a.s. py.
=1 :

Jj=1

4.5, part (b),

o0
: aasume that S°° 0 i
On the other hand, assume that % v; < oo and ) €j > —oc a.s. pg. Then,
j=1

by Freedman [75], corollary 4.5, part (b), |3 2| < oc a.s. py. Thus, 37 Zy > —oc
=1 i=1

a.s. pus.By proposition A.2. chosen strategies arc absolutely continuous with re-
spect to player 7’s beliefs. By proposition 1, player i’s beliefs and chosen strategies
merge.

g.e.d.

Lemma A.1 If player i’s beliefs and chosen strategies merge then

oC

ZE{(Z;)Z /1) < o a.s. .

t=0

Proof - By proposition 2, 3 ;2 v; < oc and 3~ €} > —00 a.s. juy.
=1

J
oC

However, (—1)e; > 0. Thus, >_ (63)2 < oo a.s. yy. By definition, v; =
i=1

14



E{(ZZ) /St — (e . Hence., S1° OE{(zt) /i1 < oo a.s. py.
q.c.d.

Given a natural number £ > 1, let zi,‘t be 3., —measurable functions defined

zi(w) = 1if pp(Clw(t +k))) = 0;and
l_uf(C(U+UD el k .
o8 | ety ) O+ ) >0

where w € £, w = (w(t + k), ...), w(t + k) = (w(t), ...).

Lemma A.2 If player i’s beliefs and chosen strategies merge then for every
natural number &,

ZE{(zzt)z Sy} < o0 as. iy
t=0

The proof of lemma A.2 is completely analogous to the arguments given in propo-
sition 2 and lemma A.1. Therefore, this proof is omitted.

Lemma A.3 Consider a sequence {c,,n = 0} such that ¢, > 0 and ) ¢, <
nz0
oc. Then, nc, goes to zero with density one.

Proof - Assume, by contradiction, that there exists ¢ > 0 and 6 > 0 and a
subsequence n(k) such that, for every k& > 0,

{j/ e = e 1 < j < n(k)} = on(k).

Let A, be the set {j/ je; 2 2,1 < j < n(k)}. Then, {Anwk)} = on(k).
Consider a sub subsequence, k(r), such that n(k(r+1)) > 2n(k(r)). By definition,

n(k(r+1)) n{k(r+1)) 1
C; =€ —.
DR E LD DR
JEA L (k(rg1))s J21(K(T)) FEA L (k(rt1y)s JZ(K(T))

However, 7{ Ank41))} = on(k(r + 1)). Hence,

) € Ay § > 0} 3 Sn(k(r -+ 1) = n(k(r) > Dn(k(r + 1)



Thus,

n(k(r+1)) L .
Z 1 S {j/ je Ankrar))s 1 2 n(k(r))} S
i~ n(k(r+1) g

jGAn(k(r+ 1)) _]271(/&(7))

~
DO O

Therefore,
n(k(r+1))

> > e

FE€Aw(ra1yy, 2 n(k(r))

oo

— -
j
A contradiction.
q.e.d.
Lemma A.4 If s € (0,1] and r € (0,1] then }log(f)’ > ls—rl|.
Proof - Consider the function f(z) = log(z) — . Then, Z f(z) = - —1. Hence,

L f(x)=0ifz e ( 1]. So, log(s)—s = log(r)—rif s > rand log(s) g_log(r)—
(2)] = llog(s) — log(r)| = [s — ],

q.e.d.

Lemma A.5 Let {a,.i =1,....,T} and {b i=1,..,T} be two finite sequences

of real numbers such that a; > 0. b; = 0, Z a; = 1, and Z b; = 1. Assume that
i=1 i=1
b; >~ > 0 whenever b, > 0. Then,

max \a; — b;| < Zb la; — b;| .
7

Proof - Let j be such that |a; — b;] > |a; —b], i = 1,...,T. If b; > 0 then
b; > v and so, |a; — b;| < %7 la; — b;| < Z b; la; — b;| . Consider the case b; = 0.

T T
By assumption, > a; = Y 0; = 1. Then,

=1 =1
a; = a; — b] = Z ([)7' — (1,7') + Z (bz - (I,i) = Z b - Cl Z a;.
b;>0,i#£7 b =0,i#7 b >0,i#7 b;=0,i%#£7
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Hence,

T

bi
'(l]' — 1)]‘ = Uy g a; + Z 1; = Z (b?j - (Li> S Z -r; ‘(11', - b7| .

b =01} by >0,i£] i=1
q.e.d.

Proof of Proposition 3 - By lemma A.2, for every natural number £,

o

ZE{(zi,)z 31} < o0 a.s. iy

t=0

By lemma A.3, almost surely with respect to py, tE{ (z};yt)Q /S } converges to
zero, with density one. Thus, almost surely with respect to py, t0'5E{\z}gyt\ /S
converges to zero, with density one.

Given a natural number & > 1. let y.,, be Syyp-measurable functions defined

by:
o) = gy (Clult + 1)) = gy (Cluot + R)))|

where w € 2% w = (w(t + k)....), w(t + k) = (w(t),...). By lemma A.4,
E{yp /St < E{| 2] /S0

Therefore, almost surely with respect to puy, t%°E{y;, ,/S¢} converges to zero,
with density one. By lemma A.5,

; 1.
oy fuen) < max. ;E{yk’,,/%t}.

.....

Hence, there exists a set 2 € S such that us(2) = 1, and for every path w € €2,
w = (w(t),...), t"°d( fuq. f;(,)) goes to zero, with density one.

q.e.d.

Lemma A.6 - Fix z > 0. If n(+9)

2. Cn

n=0

c,| goes to zero then < o0,
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Proof - For n large enough, |c,| < -3 So, 3 |ea| < oc. However, for every

nz0
k

> e

n=1

k

< >0 e

n=1

natural number k,

q.e.d.

Lemma A.7 - If 2 d>0andr >~ >0 then ’logf

g%\s—d.

Proof - By assumption, s > v6 and r > 4. By the mean value theorem,
there exists £ > 6 such that logs — logr = —é—(s — 7). Hence, llog f‘ < % ls — 7.

q.e.d.

Proof of Proposition 4 - Let yj, and 2}, be defined as in the proof of
proposition 3. By lemma A.7, for every w € ¥, w = (w(t), ...), if us(C(w(t))) > 0
then |z} (w)] < %yiyt(w). By definition, yi (w) < di(fuw, f;(t)). By assumption,
and lemma A.G, there exists a set 2 € G, such that 1;(Q) =1, and if w € €2 then

o0 ) sl .
Zodl(fw(,,), ffum) < oc. Hence, almost surely with respect to py, Zo \zijl < 00.
j= j=

-1
o i i , . o AN i

However, > z1; = logz}. So. almost surely with respect to s, x; converges to

7=0
a strictly positive number. By proposition A.2, chosen strategies are absolutely
continous with respect to player ¢’s beliefs. By proposition 1, player i’s beliefs
and chosen strategies merge.

q.e.d.
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