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LARGE POISSON GAMES

by Roger B. Myerson

1. Introduction

This paper develops some fundamental mathematical tools for analyzing games with a
very large number of players, such as the game played by the voters in a large election. In such
games, it is unrealistic to assume that every player knows all the other players in the game;
instead, a more realistic model should admit some uncertainty about the number of players in the
game. Furthermore, if we assume that such uncertainty about the number of players in the game
can be described by a Poisson distribution, then the special properties of the Poisson distribution
may actually make our analysis of the game simpler than under the questionable assumption that
the exact number of players was common knowledge.

In a previous paper by this author (Myerson, 1994a), fundamental principles for analyzing
general games with population uncertainty have been introduced, and it has shown that some
convenient simplifying properties (independent actions and environmental equivalence) are
uniquely satisfied by Poisson games with population uncertainty. In this paper, we will focus on
some general theorems that facilitate the analysis of large Poisson games.

In Section 2, a general model of Poisson games is formulated, and existence of
equilibrium is proven. Section 3 develops some general formulas that can be useful for
characterizing the limits of equilibria of Poisson games as the expected number of players goes to

infinity. The main results in Section 3 are the magnitude theorem which enables us to easily



characterize the relative orders of magnitude of the probabilities of events, the offset theorem
which characterizes the ratios of probabilities of events that differ by a finite additive translation,
and the hyperplane theorem which gives probabilities of linear events. Section 4 uses these limit
theorems to derive the formula for pivot probabilities in large binary elections. An application of
these formulas to a voting game studied by Ledyard (1984) is developed in Section 5. The proofs

of the limit theorems from Section 3 are presented in Section 6.

2. Poisson games and their equilibria

In a Poisson game, we assume that the number of players is a random variable drawn
from a Poisson distribution with some mean n. (See Haight, 1967, and Johnson and Kotz, 1969.)
Given this parameter n, the probability that there are k players in the game is
p(kjn)=e™" n*/k!
From the perspective of any one player in the game, the number of other players in the
game (not counting this player) is also a Poisson random variable with the same mean n. This

property of Poisson games is called environmental equivalence; see Myerson (1994a) for a

formal derivation. To understand this environmental-equivalence property of Poisson games,
imagine that you are a player in a game with population uncertainty. The number of players
other than you is one less than the number of all players; but the fact that you have been recruited
as a player in the game is itself evidence in favor of a larger number of players. These two
effects exactly cancel out in the case where the number of players has been drawn from a Poisson

distribution. That is, after learning that you are a player in a Poisson game, your posterior



probability distribution on the number of other players is the same as an outside observer's prior
distribution on the number of all players.

The private information of each player in the game is (or her) type, which is a random
variable drawn from some given set of possible types T. In this paper, we assume that this type
set T is a compact metric space. The previous paper (Myerson, 1994a) assumed a finite type
set T. The class of compact metric spaces includes any finite set, as well as any closed and
bounded subset of a finite-dimensional vector space; so more generality is being allowed here.

Each player's type is independently drawn from this type set T according to some given
probability distribution which we denote by r. That is, for any set S that is a Borel-measurable
subset of T, we let r(S) denote the probability that any given player's type is in S, and this
probability is assumed to be independent of the number and types of all other players. By the
decomposition property of the Poisson distribution (see Myerson, 1994a), the total number of
players with types in the subset S is also a Poisson random variable with mean nr(S), and this
random variable is independent of the numbers of players with types in any other disjoint sets.

Each player in the game must choose an action from a set of possible actions which we

denote by C. In this paper, we assume that this action set C is a nonempty finite set.

The action profile of a group of players is the vector that lists, for each action ¢, the
number of players in this group who are choosing action c. We let Z(C) denote the set of
possible action profiles for the players in a Poisson game. That is, Z(C) is the set of vectors
X = (X(¢))ec» With components indexed on the actions in C, such that each component x(c) is a
nonnegative integer. Notice that Z(C) is a countable set, because C is finite.

The utility payoff to each player in a Poisson game depends on his type, his action, and
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the numbers of other players who choose each action. So utility payoffs can be mathematically
specified by a utility function of the form U:Z(C)xCxT ~ R. Here U(x,b,t) denotes the utility
payoff to a player whose type is t and who chooses action b, when x is the action profile of the
other players in the game (that is when, for each ¢ in C, there are x(c) other players who choose
action ¢, not counting this player in the case of ¢ =b). We assume here that U(e,s,¢) is a bounded
function and U(x.b,e) is a continuous function on the type set T, for every x in Z(C) and every b
in C.

These parameters (T, n, r, C, U) together define a Poisson game. For other related models
of population uncertainty see also Myerson (1994a, 1994b) and Milchtaich (1997).

The strategic behavior of players in a Poisson game can be described by a distributional

strategy, following Milgrom and Weber (1985). A distributional strategy for a Poisson game

(T.n, . C, U) is any probability distribution over the set CxT such that the marginal distribution
on Tisequal tor. So if T is a distributional strategy then, for any action ¢ in C and any set S that
is a Borel-measurable subset of the type set T, t(c,S) can be interpreted as the probability that a
randomly sampled player will have a type in the set S and will choose the action ¢. Because the
game specifies that players' types are drawn from the distribution r, the marginal distribution of t
on the type set T is required to satisfy the equation

Yeec Te.S) =1(S)
for every set S that is a Borel measurable subset of T. Also, as a measure, T must be countably

additive on measurable partitions of T.

Any distributional strategy 7 is associated with a unique strategy function o that specifies

numbers o(c|S) such that



o(c|S) = 1(c,S)/1(S),
for any measurable set of types S that has positive probability, and for any action ¢ in C. Here
o(c|S) can be interpreted as the conditional probability that a randomly-sampled player will
choose the action ¢ given that the player's type is in the set S. In other papers (Myerson 1994a,
1994b), strategy functions are used instead of distributional strategies to characterize players’
behavior in a Poisson game, but it will be more convenient here to use distributional strategies.
We may let A(C) denote the set of probability distributions on the finite action set C.
Any distributional strategy T induces a marginal probability distribution on C, which may also be
denoted by T without danger of confusion. That is, under any distribution strategy t, the
marginal probability t(c) of any action ¢ in C is
t(c) = t(c,T).
When the players behave according to the distributional strategy t (or the corresponding
strategy function o), the number of players who choose each action ¢ in C is a Poisson random
variable with mean nt(c). Furthermore, the number of players who choose the action ¢ is

independent of the numbers of players who choose all other actions. This result is called the

independent-actions property, and it can be shown to characterize Poisson games (see Myerson,
1994a). So for any x in Z(C), the probability that x is the action profile of the players in the game

1S

ceC x(c)!

By the environmental-equivalence property of Poisson games, any player in the game
assesses the same probabilities for the action profile of the other players in the game (not

counting himself). Thus, the expected payoff to a player of type t who chooses action b, when



the other players are expected to behave according to the distributional strategy T, is
Yooz PxInT) Ub,)
Let G(b,nt) denote the set of all types for whom choosing action b would maximize this expected
payoff over all possible actions, when n is the expected number of players and t is the
distributional strategy. That is,
G(b,nt) = {t eT| ¥ P(x|nT)U(x,b,t) = max_. ), P(x |nr)U(x,c,t)}.

x€Z(C) x€Z(C)

This set G(b,nt) is a closed subset of T, because it is defined by an equality among two
continuous functions of t.

A distributional strategy T is an equilibrium of the Poisson game iff

7(b.G(b,n1)) = t(b), VbeC.

That is, a distributional strategy is an equilibrium iff, for every action b, all the probability of
choosing action b comes from types for whom b is an optimal action, when everyone else is
expected to behave according to this distributional strategy.

Our first main result is a general existence theorem for equilibria of Poisson games. (The
existence theorem of Myerson 1994a allows forms of population uncertainty more general than

the Poisson, but only allows finite type sets, whereas infinite type sets are allowed here.)
Theorem 0. For any Poisson game (T, n, r, C, U) as above (where T is a compact metric
space, C is a finite set, and U is continuous and bounded), there must exist at least one

distributional strategy that is an equilibrium.

Proof. We use a fixed-point argument on A(C), the set of probability distributions on the



finite action set C. Notice that the definitions of P(x|nt) and G(b,nt) above depended only on
the components (t(c)),.c. which form a vector in A(C). So G(b,nn) is well defined for any
vector 1 = (N(¢))ec in A(C).

For any vector 1 in A(C), let R*(n)) denote the set of distributional strategies t that satisty
the equation t(c) = t(c,G(b,nn)) for every c in C. Let R(n) denote the set of all vectors (t(¢)) ..
in A(C) such that T is a distributional strategy in R*(n), where we use the convention
7(c) = 1(c,T). These sets R*(n) and R(n) are convex, because they are defined by linear
conditions on T.

The sets R*(n) and R(n) are also nonempty. To show this, put an arbitrary ordering on
the finite set C and consider the distributional strategy t such that

©(c,S) = r({teS| ¢ = min{b| tcG(b,nn)} }).
This distributional strategy T assigns all type-t players to the minimal action (according to our
ordering) among their optimal responses to the anticipated behavior n. Then this distributional
strategy T is in R*(n)), and the vector (1(c)) ¢ is in R(n).

G(b,nn) is a closed subset of T and depends upper-hemicontinuously on 1, because the
probabilities P(x|nm) are continuous functions of 7 and the utility numbers U(x,c.t) are bounded.
Now suppose that we are given sequences {1, } -, and {t) }}_, such that T, € R*(n,) for every
k, and suppose that ), -~ 1 as k ~ «. The set of distributional strategies on the compact set CxT
is itself a compact metric space (see Milgrom and Weber, 1985, and Billingsley, 1968), and so
there must exist an infinite subsequence in which ty converges to some distributional strategy t
in the weak topology on measures. For every action b we have 1, (b,T\G(b,nn,)) = 0 for each k,

and so t(b,T\G(b,nn)) = 0. The limit vector (t(c)).. must therefore be in R(n), and so



R:A(C)--A(C) is an upper-hemicontinuous correspondence.
Thus, by the Kakutani fixed-point theorem, there exists some 1 in A(C) such that neR(n).

The distributional strategy in R*(n) that verifies this inclusion is an equilibrium. Q.E.D.

3. Limits of probabilities in large Poisson games

We now develop some general theorems for estimating probabilities of events in
equilibria of large Poisson games. Let us consider a sequence of Poisson games that are
parameterized by the expected size parameter n. For each of these games, suppose that some
equilibrium T has been identified that predicts what the players' behavior would be in the game.
Our goal is to characterize the limits of probabilities in these equilibria as the size parameter n
goes to infinity. In this section, we will not actually use the full Poisson-game structure (T, n, r,
C, U) that was introduced in the previous section. We will only use the set of actions C and the
size parameter n, along with the corresponding equilibrium <.

For each n and each ¢ in C, t,(c) is defined such that nt (c) is the expected number of
players who would choose action ¢ in the predicted equilibrium of the game of size n. The size
parameter n denotes the expected total number of players in the game; that is,

Yeeent (c)=n, andso ) . T,(c)=1, ¥n.

In this section, we can let T, denote the vector (T,(c))..c in A(C), because the other

components of the distributional strategy that was denoted by 7 in the preceding section will not

be used here. The vector nt, = (n7,(c)).c may be called the expected results vector in the game

of size n.



To approximate Poisson probabilities, we may use Stirling's formula (see Abramowitz
and Stegun, 1965), one version of which asserts that n! is approximately equal to
(n/e)"y2mn + /3 when n is large. To be more precise, let us define

1k) =

k!
(k/eY 27k + /3 ’

for any nonnegative integer k. Then we have
limy ., uk)=1.
This convergence is quite rapid and actually satisfies the stronger condition lim,_,, l(k)k =1.
Even for low values of k, 1(k) is not far from 1: 1(0) =.977, (1) =1.004, 1(2) = 1.001 and the
difference of (k) from 1 becomes less than 0.0001 when k=9.
Thus, with expected results vector nt, the Poisson probability of any possible action

profile x in Z(C) is

P(x|nt,) =[]

ccC

e nt (c) (nl’n(c))"(c)
x(c)!

e - n‘Cn(C) (n ,L.n(c))x(c)

ux(e)) (x(c)/e)® y2mx(c) +n/3
ex(c) - x(c)log(x(c)/(ntu(c)))— nt (c) )

ccC 1(x(c)) \/W

[¢)
m
@}

I
—

(Here the log function is the logarithm base e.) To simplify this probability formula, let us define
the function §:R, - R by the equations
G
P(0) =06(1 - log(0)) - 1= -] log(y)dy, v8>0,
1

P(0) = limg_o ¥(8) = - 1.



It is straightforward to verify that
P(1) =0, P(0)<0, VO+1,
and Y(¢) is a concave function with derivative
y'(6) = ~log(6).
The graph of this § function is shown in Figure 1.
[Insert Figure 1 about here.]

With this ¢ function, the Poisson probabilities can be written

en‘tn(c)W(x(c)/(nTn(C)))
3.1) P(x/nt) =[] '
ceC l(X(C)) W

To make equation (3.1) valid in the case where 7,(c)=0, we adopt the following convention:

if 7,(c)=0 and x(c) =0 then T (c)Y(x(c)/(nT (c))) = O,
if 7,(c)=0 and x(¢)>0 then (c)Y(x(c)/(nT () = ~=
(and ¢~ = 0). Taking the logarithm of equation (3.1), we get
(3.2) log(P(x,[nT,))/n

)i Y. (logux () + Slog(2 Tx (c) +7/3))

n

=Y . T(©Wx (c)/(nT (c))

Let us say that a sequence of vectors {x,},—; in Z(C) has a magnitude p iff the sequence
log(P(x,|nt,))/n converges to p as n goes to infinity. That is, p is the magnitude of the
sequence {X,} -y iff

p=lim___ log(P(x,|nt,))/n.
Notice that this magnitude must be zero or negative, because the logarithm of a probability is
never positive. When the magnitude p is negative, the probabilities P(x,|nt,) are going to zero at

the rate of e*". The following lemma, which follows easily from equation (3.2), is useful for

10



computing magnitudes of sequences. This lemma and all the other theorems and corollaries of

this section are proven in Section 6.

Lemma 1. Let {x }5., be any sequence of possible action profiles in Z(C). Then

log(P
o ) N o
n ) nt (c)

lim

That is, if either of these two limits exists, then both limits exist and are equal.

We now extend the notion of magnitude to sequences of events. We can represent any
event A as a subset of Z(C). The probability of the event A when nt,, is the expected results
vector is

P(Alnt,) =) A P(x|nT)).
Given any sequence of events {A_}}_; such that A < Z(C) for each n, we may say that the

magnitude of the sequence {A }}_, is
lim__., log(P(A,|nT,))/n,

whenever this limit exists.

Let us say that {x}&_, is a major sequence of points in the event-sequence {A }7_, iff
each x,, is a point in A, and the sequence of points {x,}} -, has a magnitude that is equal to the
greatest magnitude of any sequence that can be selected from the A events; that is

X, € A, Vn, and
lim___ log(P(x |nT))/n = lim __ max ., log(P(y|nt ))/n.

To satisfy the definition of a major sequence, we require that the limits in the above equation

11



must exist. The following theorem asserts that the magnitude of any sequence of events must

coincide with the magnitude of any major sequence of points in these events.

Theorem 1. A sequence of events {A,}7_, has a magnitude if and only if there exists a
major sequence of points in {A_}7_,; and if such a major sequence exists then the magnitude of
{A,}5- is equal to the magnitude of any major sequence in {A,} 5=y Thatis,

lim log(P(A |nT))/n = lim max log(P(y, |nT))/n.
n-e nee Yy €A
Theorem 1 and Lemma 1 imply as a corollary that, in large Poisson games, almost all of

the probability in any event must be concentrated in the regions where the formula

S T w( x(©) )

nt (c)

is close to its maximum. If B, = A for all n then the hypothesis about {B, }7_; in the following
corollary is equivalent to assuming that every major sequence of points in {A_}7_; can have only

finitely many points that are in the corresponding subsets {B} 7 _;.

Corollary 1. Suppose that {A_}7_; is a sequence of events that has a finite magnitude.

Suppose that {B_}7_, is a sequence of events such that

. [ y.(c) ) ) [ x (¢) )
limsup max ) T () ¥ < lim max ) TV .
nee y,eB, ceC nT(c) nee x €A ceC nt (c)

P(B,|nT) P(A,\B,[nT)

Then lim =0 and lim_
"7 P(A_|ntT) P(A |nT)

—oc -0

Lemma | and Corollary 1 alert us to a useful way of recalibrating action profiles. For any

12



possible action profile x in Z(C), for any action ¢ in C, the ratio x(c)/(nt,(c)) may be called the
c-offset corresponding to x when nt  is the expected results vector. That is, the c-offset is a ratio
which describes the number of players who are choosing ¢ as a fraction of the mean of the
Poisson distribution from which this number was drawn.

For any action ¢ in C, we may say that a(c) is the limit of major c-offsets in the sequence

of events {A}_, iff, for every major sequence of points {x_}7_, in {A }]_;, we have
o(c) = lim_,, x,(c)/(nT,(c)),
and (to avoid triviality) there exists at least one such major sequence of points in {A } | _;.
Consider any vector w = (W(c)) ¢ In RC such that each component w(c) is an integer
(which may be positive or negative or zero). For any event A, we let A-w denote the set of
vectors in Z(C) such that adding the vector w would yield a vector in the event A; that is,
A-w={x-w| x€ A, x-we Z(C)}.
The following theorem relates the probabilities of such pairs of events that differ by such an

additive translation in large Poisson games, when limits of major offsets exist.

Theorem 2. Let w be any vector in RC such that each component w(c) is an integer. For
each action ¢ such that w(c) # 0, suppose that lim_, nt (c) =+, and suppose that some number

a(c) is the limit of major c-offsets in the sequence of events {A }7_;. Then

P(A_-w|nT )
lim ———— "

n-—=

- w©)
P(A |nT) Heee o™

Our definitions of magnitude and major sequence can be applied to a single event A as

well as to a sequence of events {A_}7_, in the obvious way. That is, given A ¢ Z(C), n is the

13



magnitude of the A and {x_}5_, is a major sequence in A iff x €A for all nand
p=1lim__ log(P(A[nT))/n = lim___ log(P(x_|nT ))/n.

Theorem 1 may be called the magnitude theorem, and Theorem 2 may be called the offset
theorem. If the magnitude of an event A is larger than the magnitude of some other event B, then
we know that the probability of B will become infinitesimal relative to the probability of A, and
the conditional probability of B given AUB will go to 0 as n ~ . But the magnitude theorem is
not useful for comparing the probabilities of the events that differ by adding or subtracting a
fixed vector, because the difference between such events may seem small in large Poisson games
and so they usually have the same magnitude. So relative probabilities of events that differ by a
simple additive translation must be compared using the offset theorem instead.

The magnitude of an event only tells us about the rate at which its probability goes to
zero. To estimate the probability of any individual point more precisely, we can apply equation
(3.1), using the fact that the 1 factor is close to 1 and therefore can be ignored. Our next limit
theorem gives estimates of the probabilities of other events, but it requires some further
restrictions. This limit theorm only considers a fixed event that has a simple linear structure, and
the distributional strategy T, is assumed to be a constant T that is independent of n.

Let J be a positive integer. Let w,... ,w; be vectors such that, for each i, w; = (w;(¢)).cc
is a vector in R® and each component w;(c) is an integer. We allow that w;(c) may be a negative
integer (in which case w; would not be in Z(C), because Z(C) only includes the nonnegative
integer vectors in R®). Suppose that the vectors Wi.... .wj are linearly independent, in the sense
that the vector equation Y ;w +.. TY;w; = 0 has no solutions other than Y =-.=Y;=0

Let H(w/....,w)) denote the set of all vectors x in Z(C) such that there exist integers

14



,...,¥7 such that x = y,w,+... +y,w,. (Notice that the integers vy,,...,y, may be negative, but the
Yioe¥s YW Y W) gErs Y ,....Yy may g

linear combination y;w+... +y;w; must have all nonnegative components to be Z(C).) This set

H(w/,....w;) may be called the hyperplane event in Z(C) that is spanned by the basis {w,....w}.

That is,

J 3
H(wy,...,w)) = {Z'yiwi Yy,w(c) = 0 Ve, y, is an integer Vi} c Z(C).
i1 i

Let H*(w/,...,w;) denote the set that we get if we drop the restriction that each vy; coefficient must

be an integer; that is

J J
H*(w,..,w)) = {Zyiwi Y yw(c) > 0 Ve, yeR Vi} c RC.
il il

The following theorem tells us how to estimate the probabilities of hyperplane events in large

Poisson games.

Theorem 3. Suppose that T, = 1 for every n, and t(c) > 0 for all c in C. Lety be the
vector that maximizes Y .. T(€)y(y(c)/T(c)) subject to the constraint that y € H*(w/,...w)).

Let M be the JxJ matrix such that the (1,)) entry is

Mj; = Ycec Wil©)W;(€)/y(©).

Then

lim

N

pU #0/2 Lece PHOVOE/ () det(M) [ _.(2my(c))

P(H(w ,.w)|nT) ] \j any

To read this theorem more clearly, let us use the approximate equality symbol = to
indicate functions of n whose ratio converges to 1 as n goes to infinity. With this notation, the

conclusion of Theorem 3 may be rewritten

? TEn)J/z CE“C n7(c) P(y(c)/ T(c))

ydettM) ] . v27mny(c)
15

P(H(W,.w)|nT) =



Let y,, denote the point in H(w/,...,w)) that is closest to the vector ny described in Theorem 3.
Using equation (3.1) and the first-order conditions of the optimization that defines y, the above
approximate inequality can be simplified to

(2 TEn)J/Z

P(H(w,....w))|nT) = [
Jdet(M)

) P(y_InT) .

In the proof (see Section 6), Theorem 3 is actually derived from this approximate equality.

4. Pivot probabilities in voting games

As an application of the limit theorems from the preceding section, consider a model of a
large election in which the voters must choose among two candidates who are numbered 1 and 2.
The winner will be the candidate with the most votes. In the case of a tie, the winner will be
determined by a fair coin toss.

Consider a sequence of election games, parameterized by the size n which will go to
infinity in the limit. In the game of size n, suppose that our equilibrium analysis has predicted
that the numbers of votes for candidates 1 and 2 will be independent Poisson random variables
with means nt_(1) and nt, (2) respectively. The environmental-equivalence property of Poisson
games implies that each voter similarly perceives that the number of other voters who vote for
candidates 1 and 2 are independent Poisson random variables with means nt (1) and nt(2)
respectively. Let us assume here that these T (c) numbers converge to some limit that we denote
by t(c); that is,

lim,_,, t,(c) = t(c), VceC.

16



(If these probabilities did not converge then a convergent subsequence could be chosen, so there
is little loss of generality in assuming such convergence.) When we consider only the two
actions of voting for 1 and voting for 2, we could take C = {1,2} and have 1 (1) + 7,(2) = 1 for
all n. However, to derive formulas that can be readily applied when voters have more
alternatives (such as abstention or voting for other candidates), we use here only the weaker
assumption that at least one limiting t(c) is positive; that is,
(1) + t(2)> 0.
In the analysis of rational voting behavior, we may want to estimate a voter's probability

of changing the outcome of the election, which is called his pivot probability. So let us consider

a voter who is planning to vote for candidate 1. There are two ways that his vote for candidate 1
could change the outcome of the election. His vote could break a tie in which candidate 1 would
have lost the fair coin toss, or his vote could make a tie in which candidate 1 would win the fair
coin toss. Thus, the pivot probability of a vote for candidate 1 is

.5 x P(Tie) + .5 x P(Candidate 1 is one vote behind candidate 2) .

To compute this pivot probability, we begin by computing the probability of a tie. In
set-theoretic terms, the event of a tie is {x€Z(C)| x(1)=x(2)}, which is the hyperplane event
spanned by the single vector w such that

o(l)=w?)=1
In the notation of the preceding section, with this vector w, the event of a tie is denoted H(w).

To assess the magnitude of a tie, Theorem 1 and Lemma 1 tell us to characterize the

major sequences {X,};-; which asymptotically maximize
x,(D) x,(2)
17n(1)ll’[ n‘cn(l)) * 1',,(2)1”[ nrn(2))

17




subject to the constraint x € H(w), that is
Xp(2) = x,(1).
Choosing a subsequence if necessary, suppose that the X sequence gives us limiting offsets
a(c) = lim_,, x,(c)/(nt,(c)) for each c. Then the above maximand converges to
(1) + T(2)P(a(2)),
and the constraint on x, becomes
t(Da(1) = 1(2)a(2).
Because the derivative '(e(c)) equals -log(a(c)), the maximum over « subject to this constraint

is achieved when
0=-1(1) log(a(1)) - 7(2) log(t(Da(1)/(2)) (¢(1)/(2)).

and this first-order condition is satisfied together with the constraint at the unique solution

a(l) = yT2)/tu(l), a2) = yi(1)/T(2).

Thus, {x,}5—; is a major sequence of points in the event of a tie iff

lim, _, x,(1)/(nt,(1)) = a(1) = y(2)/(1),

lim, _. x,(2)/(nt,(2)) = a(2) = yT(1)/7(2).
So for each c, this number a(c) is the limit of major c-offsets in the event of a tie.

In any such major sequence, the magnitude (from Lemma 1) is
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xn(
T

1) ol K@
+ T

1) (DY nt (2)

= 1y yply=@ /) + 1@ ulyT) /@)

= (1) [yT@)/ A (1 - 1og(T@)/T(M) - 1))

+ T(Z)(\/T(l)/T(Z)(l -log(yT(1)/t(2))) - 1)
=2/T()t(1) - T(1)-t©(2) = - (JT(1) - /T(2))%.

lim _ ©(1) ll,l[

n
n

Thus, by the magnitude theorem (Theorem 1),
4.1) lim__ log(P(H(w)|nT))/n = 2y/(1)T(2) - (1)~ T(2).

For each candidate c, let v(c|nt,) denote the pivot probability of a vote for candidate c.
We have seen that the pivot probability of a vote for candidate 1 is half of the probability of a tie
plus half the probability of candidate 1 being behind by one vote. But the event of candidate 1
being behind by one vote differs from the event of a tie by subtracting one vote for candidate 1.
So by the offset theorem, the probability of candidate 1 being behind by one vote is
approximately /7(2)/7(1) multiplied by the probability of a tie. Thus, the pivot probability of a

vote for candidate 1 is

(42)  v(1|nt) = P(H(w)|nT) (1 +‘/1(2)/T(1))/2 = P(H(w)|nT,) [ V(1) +,/'c(2)) .

2yT(l)

(Recall that the approximate equality symbol = here indicates functions of n whose ratio
converges to 1 as n goes to infinity.) Similarly, the pivot probability of a vote for candidate 2 is
half of the probability of a tie plus half the probability of candidate 2 being behind by one vote,

which is approximately

43)  v|nty = PAE@)] 0t (1 +/T(D/3@))/2 = PHW)|nt,) [ o 1(2)]-

2/1(2)
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Equations (4.2) and (4.3) imply that

(4.4) lim vaint) | 3@)
" v@2|nt) (1)

In particular, if the expected vote total for candidate 1 is less than the expected vote total for
candidate 2, then a vote for candidate 1 is more likely to be pivotal than a vote for candidate 2,
because the probability of candidate 1 being behind by one vote is greater than the probability of
candidate 2 being behind by one vote.

We can apply Theorem 3 to get a stronger approximation of these pivot probabilities, but
this hyperplane theorem requires that the distributional strategies T, must be constant. So
suppose now that

T, =T, Vn.
Applying Theorem 3 to H(w) where w = (1,1), we have J = 1, and
H*(w) = {xeR"| x(1) =x(2) > 0}.
Theorem 3 tells us to find the vector y that maximizes ) .. T(c)y(y(c)/T(c)) subject to

yeH*(w), that is y(1) = y(2) > 0. Again using ' = -log, we find that this maximum is achieved

when

y(1) = y(2) and 0=-log(y(1)/t(1)) - log(y(1)/7(2)),

that is, when

y(D)=y(@) = yu(1)t(2).

Thus we get y(c) = a(c)t(c) for each ¢, where a(c) is as above, and so

Yoo 10 B/ = ) ulyT/2m) + 1@ blyT /7))

=2 /7 (1) - T(1)- T(2).
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With J=1, then the matrix M is just the single number.

M=1/y(1) + 1/y(2) = 2/yT(1)T(2).
Substituting these values into the formula in Theorem 3 and simplifying, we get the following

approximate formula for the probability of a tie:

en(:z M) (1) (@)

2¢/7nyT(1)T(2)

Thus, the pivot probabilities can be approximated by the formulas

VI - - @) | [ oy 4
4.5) v(1[nT) £ [ T(—lz-)w ‘1(2)) ’
4yTnyT(1)T(2)

nR VI - 1) - %2)) .
46) v(2|n0) e [ yT(l) \/T(2)) _

A G

These pivot-probability formulas can also be derived from mathematical formulas

P(H(w)|nT) =

u

u

involving Bessel functions. When the number of votes for candidates 1 and 2 are independent
Poisson random variables with means nt(1) and nt(2) respectively, the probability that candidate

1 gets exactly k more votes than candidate 2 is

CORIEN (&) v I (2n ‘C(l)f(2)>
k b

T(2)
where I is a modified Bessel function (see formula 9.6.10 in Abramowitz and Stegun, 1965).

With large n, the following approximation formula for modified Bessel functions can be applied

e2n V()2
4TTny/T(1)T(2)

(see formula 9.7.1 in Abramowitz and Stegun, 1965).

L2nyTh @) =
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5. Ledyard's model with costly voting

To illustrate the power of these results, we now derive a Poisson version of a basic
theorem in social choice that was originally shown (for a multinomial model) by Ledyard (1984).
By using a Poisson model, we should be able to derive Ledyard's results more cleanly and simply
than was possible with the model of nonrandom population size that Ledyard (1984) used.

Consider a voting game in which the players are voters who can choose to abstain from
voting. In this voting game, each player's type has two components: his policy type and his
voting cost. Suppose that the set of possible policy types is some finite set ©, and suppose that
the voting costs are drawn out of the interval from 0 to 1. So the type set T is the compact set

T=0 x[0,1].

As in Section 4, there are two candidates numbered 1 and 2, but we now allow that each
player has three possible actions denoted by elements in the set C = {0,1,2}. Here action 1 is
voting for candidate 1, action 2 is voting for candidate 2, and action 0 is abstaining. As above,
the winner is the candidate with the most votes, and we assume that the winner will be
determined by the toss of a fair coin in the event of a tie.

Each player's policy type 6 in © determines the policy benefits u(c,0) that he will get if
candidate ¢ is the winner of the election. But we must also take the cost of voting into account.
When candidate ¢ wins, a player who has policy type 6 and voting cost y would get a total utility
payoff equal to u(c,0)-y if he voted in the election, while a similar player would get a total
utility payoff equal to u(c,0) if he abstained in the election.

Let the number of players in this voting game be a Poisson random variable with mean n.

Each player's policy type is a random variable drawn from @ according to some probability
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distribution p, where p(0) denotes the probability of having policy type 6. Each player's voting
cost is a random variable drawn from [0,1] according to a probability distribution that has a
cumulative distribution function F such that the derivative at zero F'(0) is strictly positive. That
is, we assume that the probability density of voting costs must be strictly positive at 0, but
nobody can have a negative cost of voting.

We also assume that the policy types and voting costs of all players are independent
random variables. That is, each player's policy type and voting cost are independent of each
other and of all other players' types.

The total utility payoffs defined above are bounded and depend continuously on the
voter's type, as the equilibrium-existence theorem in Section 2 requires. Thus, this Poisson game
of size n has at least one equilibrium, which we may denote by t,. The main result of this
section is that, if the expected number of players in the voting game is large, then the candidate

who offers the greater expected policy benefits will almost surely win in equilibrium.

Theorem 4. In the voting game described above, suppose that the expected policy

benefits for a randomly-sampled voter are greater from candidate 2 than from candidate 1; that is,

Y oco P(0) u2,0) > Y g0 p(6) u(1,0).
Then the probability of candidate 2 winning in the voting game of size n under the equilibrium 1,

must converge to 1 as the size parameter n goes to infinity.

Proof. Let ©, denote the set of policy types in @ that prefer candidate 1, and let ©,

denote the other policy types; that is
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©, = (00| u(1.8) > u(2,0)}, ©,= (60| u(1.0) < u(2.0)}.

In equilibrium, for each candidate c, each player with policy type in ©_ will either vote for his
preferred candidate ¢ or abstain, because voting for the less preferred candidate is strictly
dominated by abstaining.

Given any candidate ¢ in C, let -c¢ denote the other candidate in C. Let v (c) denote the
probability that a vote for candidate ¢ would be pivotal in the equilibrium 7, of the voting game
of size n. In this equilibrium, a player of policy type 6 in O prefers to actually vote for

candidate c (rather than abstain) iff his voting cost is less than
(u(c,8) - u(-c.,0)) v, (c).
Thus, the probability that a randomly sampled player will vote for candidate ¢ in equilibrium,

which we denote by t,(c), must satisfy the equation

5.1 T(e) = ) p(@)F((u(c,e)—u(—c,ﬁ))vn(c)>.

80,

We now claim that the expected total number of votes nt (1)+nt,(2) must go to infinity
as n—o. If not, then both candidates' expected scores nt (1) and nt,(2) would have finite limits
(taking a subsequence if necessary), and then the pivot probabilities v, (1) and v (2) would
converge to the positive pivot probabilities that are associated with independent Poisson-
distributed vote totals that have these limiting expected values. But then (5.1) would imply that
7,(2) must have a strictly positive limit, and so nt,(2) goes to infinity, as claimed.

So if we look only at the players who actually vote, then the sequence of games
considered here has an expected voting population that goes to infinity as n—~c. That is, we could

reparameterize our sequence by letting
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m(n) = nt,(1)+nt,(2) and T, (c) = T,(c)/m(n), Vee (1.2},
and we would then get a sequence {{Tm} that satisfies all the properties of the {1} sequence in
Section 4 (where we required that a positive fraction of the population must be voting for 1

and 2). So equation (4.4) from Section 4 can be applied here to give us

1 2
(5.2) lim V(D = lim___ Bl ).
v.(2) S\ T

The fact that at least one candidate's expected score is going to infinity implies that both
pivot probabilities v (1) and v,(2) go to 0 as n—e. Thus, by differentiability of the cumulative

distribution function F at zero,

L P(O) F((u(c,0)-u(-¢,0))v,(0)) = p p(6) F'(0) (u(c,0)-u(-¢,0))v (c))
for each candidate ¢. Then (5.1) gives us

(D Zgg@l P(B)F'(0) (u(1,8)-u(2,0)) v (1)

T,.(2) Zegez P(B)F'(0) (u(2,8)-u(1,0) v, (2) .

So applying (5.2) we get

T (1) Yoo, PO 1,0)-u2.0)) |1 (2)
T2 Yo, P(O)(W(2,0)-u,0) \ (1)

That is,

(5 ”) Tn(l) ZGE@I p(e)(u(l,ﬁ)*u(Z,O)) 2/3
3 _
) o-0, p(6) (u(2,0)-u(1,6))

By the basic assumption that candidate 2 offers greater expected policy benefits than
candidate 1, the right-hand side of (5.3) is strictly less than one. So the expected score of
candidate 2 must be going to infinity and, in the limit, the expected score of candidate 1 is less

than the expected score of candidate 2 by a strictly positive fraction of candidate 2's expected
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score.

Recall that the standard deviation of any Poisson random variable is the square root of its
expected value, and this square root is a vanishing fraction of the expected value as the expected
value becomes large. So the expected excess of candidate 2's score over candidate 1's score is
becoming infinitely many times the standard deviation of either score as n—«. Thus, the

probability that candidate 2 wins must be converging to one. Q.E.D.

Following Ledyard (1984), we can now take the story back one stage to the point in time
where the candidates choose their policy positions. Suppose that the players in the voting game
have preferences over some given policy space, and each candidate can choose any policy
position in this space. After the candidates choose these policies, the policy benefits u(c,0) will
be equal to the benefits that a player of policy type 8 would get from the policy position chosen
by candidate ¢. Theorem 4 tells us that, when n is large, any candidate who does not choose a
policy position that maximizes the players' expected benefits can be beaten almost surely by a
candidate who chooses a policy position that maximizes the players' expected benefits. Thus,
both candidates should rationally choose a policy position that maximizes the players' expected
benefits. If there is a unique policy position that maximizes the players’ expected benefits, then
both candidates must rationally choose that same position, in which case nobody will actually
vote in the voting game. Thus Ledyard (1984) showed that democracy may achieve the classical
utilitarian ideal of expected welfare maximization in a voting game where nobody actually votes

in equilibrium!
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6. Proofs of the limit theorems

We begin with a useful fact about Y(8) = 0(1-log(0))-1. For any nonnegative number 0.
(6.1) W(B)<2 - 6.
To verify this inequality, it can be shown by differentiation that the convex function 2-0-(0) is

minimal when 0 = e, where is equal to 3-¢, which is positive.

Lemma 1. Let {x,}}—; be any sequence of possible action profiles in Z(C). Then

log(P
lim ———Og( (X, In%,) =lim___ Y .o 7,0 lIJ[ %,(¢) ]
h T

n

That is, if either of these two limits exists, then both limits exist and are equal.

Proof. From equation (3.1) we get
log(P(x,[nT))/n~ Yo 1,()¥lx,(©)/ (T ()
= ¥..c (log(ix () +.5log2 Tx (¢) + T/3))/n

The term log(1(x(c)))/n is must go to zero as n goes to infinity, because 1(x(c)) is always close
to 1, and the term log(2mx,(c) + m/3) is always positive. So the equality in Lemma 1 can fail
only if there exists some action ¢, some positive number €, and some infinite subsequence of the
n's such that

log(2mx,(¢) + m/3) > en and x(c)>e™"/(2m) - 1/6, Vn,

and so x,(c)/n goes to +=. Inequality (6.1) implies

T(OW(x,(e)/(nT,(€))) <274(€) - x,4(c)/n,
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and tn(c)w(xn(c)/(ntn(c))) +.5log(2mx,(c) + m/3)/n

<21.(c) - (x,(c) - .5 log(2mx,(¢c) + m/3))/n.
With x_(c)/n going to +e and 7,(c) bounded, the right-hand sides of these two inequalities must
both go to ~>asn ~ +e. Butthen ) . l’n(c)lp(xn(c)/(ntn(c))) and log(P(x |nt ))/n must both
go to —o. That is, in any subsequence where the difference between ) __. 7 (c) w(xn(c)/(nrn(c)))
and log(P(x_|nT ))/n goes to any limit other than zero, both expressions must go to <. Thus

their limits must be equal. Q.E.D.

For any integer k and any nonnegative number A, let p(k|A) denote the probability that a
Poisson random variable with mean A would equal k. That is,
p(k|A) =e™* Ak /k!

We now prove two more computational lemmas about Poisson distributions.

Lemma 2. Let A be any nonnegative number and let i be any integer such that i > A.
Consider the event that a Poisson random variable with mean A is greater than or equal to 1. The

probability of this event can be bounded by the following inequality

Y p(k|A) < p(im(;)
k=i i—- A

Proof. For any positive integer 0,
(i8] A) = e 4 AT /(148)! = (e* Al/il) (A3 /((i+1)...(1+8)) < p(i|A) (A/D)P.

Thus,

28



T p(k|A) < p(ilA) [Z(k/i)é) - p(iM(—l—.) - p(im(
k=i 8=0 1-A/i

i
i-A)

Q.E.D.

Lemma 3. Let A be any positive number, and let h and k be any two integers. then there

exists some numbers € and 1 such that € is between 0 and 1, 1 is between h+¢ and k+¢, and

pk[A) _ Ao 2) wworr) _ [ A )T e (k-n/en
p(h|A) h+e

Proof. Suppose first that k <h. Then

k h
Og( STIFT) R BTy BN

But from the basic definition of the Riemann integral,

/ h )
)‘fkhxk log(8)d0 < Y 1og(i/A) < A [ ™V log(8)4d0,

i=k+1 (k+1)/%

because the log function is monotone increasing. So there must exist some € between 0 and 1

such that

pk|M) | _ 4 e _ . ) )
log( P(hk)) Af(m),/x log(9)d0 )“(w((k &)/4)- ¥l 8)/)‘)),

where the second equality follows from the fact that §r'(0) = -log(6). Reversing the roles of k
and h, it is straightforward to show that these equalities also hold in the case where k > h.
By a second-order Taylor expansion, there is some number 1 between k and h such that
k+e h+e h+e|( k-h 1{ A} k-h|?
e R e el
A A A A 211 A

The second equality in the Lemma follows easily from this Taylor expansion. Q.E.D.
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Theorem 1. A sequence of events {A_}_, has a magnitude if and only if there exists a
major sequence of points in {A_}7_,; and if such a major sequence exists then the magnitude of
{A,}5_, must be equal to the magnitude of any major sequence in {A,} 5= Thatis,

lim log(P(A_|nT))/n = lim max log(P(y,|nt))/n.

N n-e Yy €A

Proof. For any negative number v, define the set S(v,n) such that
(v = KEZO)| Yoo T, W)/ (T, (0) < V.
Our first claim is that limsup,__, log(P(S(v,n)|nt,))/n is not greater than v.
To prove this claim, we cover S(v,n) by #C+1 subsets. (Here #C denotes the number of
actions in the set C.) For any action ¢ in C, let S (v,n) be the set such that
S.(v.n) = {xeS(v,n)| x(c) > n(2 - v)}.
Also. let S*(v,n) be the set such that
S*(v,n) = {xeS(v,n)| x(c) <n(2 - v), VceC}.
Thus, S(v,n) € S*(v.n) U (U e Sy(v.n)).
Let 0 denote the next integer larger than n(2-v). By (6.1), the inequality 6 > n(2-v)
implies that
1,(0) Y(8/(n7,(c)) < T,(e)(2 ~6/(nT,(c)) < 2t,(c) - (2~ V) < v.

So the probability that exactly 6 players choose c satisfies

e nT () YO/ (nT ()
p(Bn,(c)) =
1(0)y27m0 +7/3

Our set S (v.n) is a subset of the event that at least 0 players choose action ¢. So by Lemma 2.

P(S (v,n)|nt,) < e™ [ n2-v) ) <em (2_‘1) ,

n(2-v)-nt (c) 1-v
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The set S*(v,n) contains at most (n(2- v))*C points, each of which has a probability less
than ™. So
P(S*(v.n)|nt,) < e (n(2-v))*C.
Thus we get
(6.2) P(S(v,n)|nt,) < (n(2-v))¥C + #C(2-v)/(1-V))e™,
which proves our first claim.
Now suppose that {A_}7_, is a sequence of events that has at least one major sequence of

points, and let p denote the magnitude of such a major sequence in {A_} that is,

=1’
w o= lim_ max log(P(y|nT ))/n.

Let € be any strictly positive number. Then for all sufficiently large n, the set A, must be a

subset of S(u+e,n). So for all suftficiently large n, we get
P(A,[n1,) < (n@2-p-£)*C + #C(2-p-€)/(1-p-g))e "o < elh2e)
because e"® > n(2-p-€))*C +#C(2-u-g)/(1-u-¢€) whennislarge. Thus,
limsup, ., log(P(A,|nt,)/n < p+ 2, Ve>0,
which in turn implies that
limsup, _,, log(P(A,|nt,)/n < .
But the assumption that a major sequence {X,},-; in {A_}_; has magnitude p also implies that
liminf, _, log(P(A,|nt,))/n > lim_, log(P(x,[nT,))/n=p,
because each x, isin A_. Thus we conclude
lim_, log(P(A|nt,))/n=p.

That is, if there is a major sequence in {A}}_;. then its magnitude is equal to the magnitude



of {A }h=1-
Now suppose that the sequence of events {A_}7_, has a magnitude p. Obviously, no

subsequence of points in {A_}7_; can have a magnitude greater than p, and so
i > limsup max log(P(y |nT))/n.
n-—e yn€An

If the liminf _ max log(P(y_Int ))/n were strictly less than p, then we could choose an

Y A,

infinite subsequence in which the numbers max_

. log(P(y,|nt ))/n converge to this

limit-infimum. But along this subsequence, a major sequence of points would exist, and so (as

just shown) the limit of max, log(P(y_|nT ))/n would be equal to the limit of

cA
log(P(A, Int,)/n, which equals u. Thus, lim___ max log(P(y,|nT ))/n must exist and must

® Y.€A

equal . Q.E.D.

Corollary 1. Suppose that {A_}7_, is a sequence of events that has a finite magnitude.

Suppose that {B,}7_, is a sequence of events such that

limsup max ), T (c) 1]1[ Y(©) ] <lim max ) T(c) IIJ( %) ]

n-— y,€B, ¢€C nfn(c) n-e x €A ceC nrn(c)

P(A,B,[nT)
" P(A_|ntT) """ P(A |nT) '

Proof. Let pt denote the magnitude of {A_}7_,. If the corollary failed then we could find
some infinite subsequence along which P(B, |nt,)/P(A,|nt,) is bounded below by some positive

number g, and so
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0 > liminf, _, log(P(B,/nt;))/n > lim, _,, (log(q) + log(P(An)nrn)))/n
=lim,_,, log(P(A,|nt,))/n=p.
So this subsequence could also be chosen so that the {B,} subsequence has a magnitude and
lim__, log(P(B,[nt,))/n > u.
By Theorem 1, we could then select points y,, in B, such that, along this subsequence,
lim,_,, log(P(y,|nt,))/n > p,

and then Lemma 1 would imply

lim, .. Yeee TOW(Y,(e)/(1T,(0)) 2 p.

But this result would contradict the strict inequality that was assumed in the corollary. Q.ED.

Theorem 2. Let w be any vector in R such that each component w(c) is an integer. For
each action ¢ such that w(c) # 0, suppose that lim,_, nt,(c) = +e, and suppose that some number

a(c) is the limit of major c-offsets in the sequence of events {A}7_,. Then

' P(An—w\nrn) o)
lim  —m = [eec a(e)™.
P(A_|nT)

Proof. Let € be any positive number. Let D (e) be the set of all x in A such that

a(c)-e < XO WO oy X [WEOL oy
nt (c) nt (c)

for every ¢ such that w(c) # 0. Because w(c)/(nt,(c)) converges to 0 and a(c) is the limit of
major c-offsets in {A}7_; for each such c, any major sequence in {A,} ;=1 must have at most

finitely many points outside of D (g). So by Corollary 1,
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POD,®n7) _
P(A_|nT ) '

lim

n-—o

Let u denote the magnitude of {A_}7_,. Because all major sequences in {A }}_, are
eventually in {D,(€)}5_, we know that y is also the magnitude of {D (e)} ;. If {x,~w}{_,is
any sequence of points in {(A -w)\ (D (e)-w)}7_, then

x (c)-w(c)

limsup___ ), . T.(c)
Z‘C v nl‘n(c)

i y X,(¢)
- T <
imsup___ ) .. T.(c) Y a0 i,

because ¥ is continuous and nt (c) ~ +e whenever w(c) # 0. So by Corollary 1,

P((A,~w)\(D (&)-w)[nT)
e P(D (¢)|nT )

0.

lim

Thus,

P(An—wln‘tn) i P(An‘w‘ntn) i P(Dn(s)*w}ntn)
_ = —— =1 .

lim im__
P(A_|nT) " P(D (8)|nT) P(D (2)|nT )

n-—=

n-ee

Now consider any point x-w in D, (€)-w and the corresponding point x in D, (¢). The
ratio of the probabilities of these two points is

P(x-w|nT,) e "t () O/ (x(c)-w(o))!

= HCEC

P(x[nT) e "t ()9/x(c)!

=11 [ x(C)!/(X(C)—w(c))!)
ceC .

(nT_(c)*©

If w(c) > 0 then x(c)!/(x(c)-w(c))! is the product of w(c) factors between x(c) and x(c)-w(c).
Similarly, if w(c) < 0 then (x(c)-w(c))!/x(c)! is the product of - w(c) factors between x(c) and
x(c)-w(c). Applying the definition of D (€), we then get

P(x-w 1ntn)

[L.c (a(c)-&)" <
P(x|nT)

< JLoe (a(e)+e)*©.

Now there are two cases to consider. First, consider the case where, for all sufficiently
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large n, for every point x in D, (¢), the point x-w has all nonnegative components and so is in
Z(C). Then for all sufficiently large n, P(D (e)-w|nt,) and P(D,(¢)|nt,) are sums of point
probabilities that can be put in a one-to-one correspondence where each corresponding pair has a
ratio between | l..c (2(©)-)" and [L.c (a(c)+&)*©. So we get

P(D (8)-w|nT)
P(D (¢)|nT )

[leec (@0)-8)" < R IO R M

Because these inequalities hold for all €, we can conclude

P(A_-w/|nT )

lim g T & a(c)w(c)
" P(A_|nT) Heee

which proves the theorem for this case.

Now consider the alternative case where there exist arbitrarily large n such that, for some
point x in D, (), the point X-w has some negative components and so is not in Z(C). In this
case, the argument in the preceding paragraph fails only because there may be some extra terms

in P(D,(¢)|nt,) that do not correspond to any terms in P(D,(e)-w|nt,). Thus, we can only claim

P(D (8)-w|nt )
P(D (¢){nT)

< Lo (o) +&)™.

Because this condition holds for any positive €, we get

P(A_-w|nT)
0<lim  —=" "

)
< Lo 2(e)¥@.

—

P(A_|nT)

But notice that this case can occur only if there is some action ¢ such that w(c) > 0 and a(c) = 0,
because otherwise the condition x € D, (€) would force x(c) to be larger than w(c) for all

sufficiently large n. So in this case we can also conclude that

P(A_-w|nT)
"™ P(A_|nT)

lim

= L.c &c)*®@ =0. Q.ED.
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Theorem 3. Suppose that T, =T for every n, and t(c) > 0 forall cin C. Lety be the
vector that maximizes ¥ .. T(€)¥(y(c)/T(c)) subject to the constraint that y € H*(wy,....wy).
Let M be the JxJ matrix such that the (i,j) entry is

Mj; = Ycec WileIwj(€)/y(e)-

Then

P(H(W ,.w,)|nT) J @y

lim__ = .
T puHe2 eLecc MEOVGO/ T det(M) HC€C(2 Ty(c))

Proof. First we verify that the vector y in the theorem is well defined. The feasible set
H*(w,.....w)) is a closed convex subset of RC. The objective ) . t(©)Y(y(c)/t(c)) is strictly

concave in 'y, goes to -« if any y(c) goes to +e, and has partial derivatives 9/dy(c) that go to +
when any y(c) goes to 0. Thus, there is a unique vector y that maximizes this objective within
this feasible set, and the components of this vector y are all strictly positive. At this point y, the
first-order conditions of the optimization problem give us

0="Y .o w(c) logly(©)/T(c)), Vie{l,..]},

or equivalently

w,(e)
(6.3) 1. ( %) -1
The vector y can be written in the form Zjizl ¥;w;, where each v, is a real number. For
each n, let y be a vector in H(w/,...,w;) that is as close as possible to ny. Such a vector y, can be
written in the form Zji:] &i’nwi where each §i,n is an integer that differs from ny; by less than 1.
Thus, the quantities |y (c)-ny(c)|+1 are bounded, uniformly over all n and ¢, by some upper
bound which we may denote by D.

These points {y,} -, form a major sequence of points in H(w,....w), because they
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approximate the vectors ny which maximize ) . t(c){(x(c)/(nt(c))) over all X in the larger set
H*(w,.,...,w;). Because y is the unique solution to this strictly concave maximization, the ratio
y(c)/7(c) is the limit of major c-offsets, for each ¢ in C. That is, a sequence {x,}}_; in
H(wy,...,w;) will have strictly smaller magnitude unless, for each c, the ratios x,(c)/(ny(c)) and
X,(€)/y,(c) converge to 1 as n—ce.

For any small positive number 0, let
A (©)= {er(wl,...,wJ)‘ (1-0) max{y,(c).ny(c)} <x(c) <(1+8) min{y (c).ny(c)} - 1, VeeC}.

and let B (8) = H(w.....w)\A(8). Then by Corollary 1,

P(A,(0)[n7T)

lim =
P(H(W ,...,w))|nT)

n—oo

for any strictly positive 0.

Thus, when we estimate P(H(w/....,w))|n7) for large n, we only need to consider points x
in A (0). where 0 is positive but arbitrarily close to 0. So let x be any such point in A(0).
Lemma 3 gives us

P(x|nt) _ nt(c) XN e«x(c)fyn(c))z/(zn(c))
cC
P(y |nT) ¢ y (c)+&(c)

for some numbers g(c) between 0 and 1, and n(c) between y, (c)+e(c) and x(c)*+e(c). Notice

nt(c) x(€)-y,(¢) ~ nt(c) x(e)-y,(¢) ny(c) X(€)-¥,(0)
Hcgc - HCEC ’

ya(©) € (c) ny(c) ya(c) +€(c)

But

ny(c)
by equation (6.3), because the vector x-y,, is a linear combination of the w; vectors. Applying

I'IT(C) x(c)-y,(c) _
HCEC ) o 1

the upper bound D for the quantities |y (c)-ny(c)|+e(c) and using the inequality
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Oy, (c) > |x(c)-y,(c)|, we also get

x(¢)-y,(¢)
1-6D < [[.. _y©) <1
y (¢) +&(c) 1-0D

Having x(c)+€(c) and y (c)+€(c) both between (1-6)ny(c) and (1+0)ny(c), we also get

- - 2 _ - _ 2
e (x(¢) ~y,(e))*/(2(1-O)ny(c)) < e (x(e) -y, (e))*/(2n(e)) <

e*(X(C) ¥, ())?/2(1+6)ny(c))

Thus, by choosing 0 arbitrarily close to 0 and n large, we can guarantee that

P(A(0)|nt)/P(y,|n7) is arbitrarily close to

(6.4) Zxa\n(e) ¢ Lesc (x(e)-y,(e)*/2ny(e)
Any point x in A (8) < H(wy,...,w)) can be written in the form
x(c) = yn+i k.w., where ky,....k; are all integers.
il
When we make this substitution, formula (6.4) becomes

y.¥ efEcgc (X1 K wi(e)?/@ny(e)) _ Y. ¥ e—ELl Y Mykik,/(2n)

k, k, k

where Mj; = Y. wile)w;(c)/y(©).

k

1 J

Substituting h, = k./ J/n into the above formulas and dividing by n'/? we get

=Yy Y e

n’? P(y_|nT) n’2 P(y [nT) h

/n

where the summation is over vectors (h,.....h;) where the components are integer multiples of

J

P(H(W,...,w))[nT) 3 P(A (0)|nT) YT Myhh 2 ( 1 )J

1/y/n such that y_ +Zi\/r_1hiwi isin A (0). (Recall that the approximate-equality symbol "=" is
used here to indicate quantities whose ratio goes to 1 as n~e.) But for any vector (h,,...,h;)
whose components are integer multiples of 1/y/n, the vector y, * Ei\/r_mhiwi will be in A_(B) for

all sufficiently large n, because
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Y. Vnhw () 0

ny(c)

lim

n-—co

So the definition of Riemann integration gives us

lim, P(H(fvl""’wl)lm) - f f e DL M2 g gn
n'/? P(ynﬂnt)

1 I

- -

Multiplying the above integrand by y/det(M)/(2 n)""? yields a multivariate normal probability
density with mean 0 and covariance matrix M~ !, and the integral of such a density is 1. Thus,

P(H(w,,...,w,)|nT) _ (27?2

n—oo )

n’? P(y_|n7) Jdet(M)

To complete the proof of the theorem, we can use equation (3.1), together with the

lim

first-order conditions of the optimization that defines y, to show that

i, PO e 2E© PO, Tlee V2TV

n-e eLEC n(e) P(y, (c)/(nT(c))) o Yocc nT(e)(y(e)/t(e))

€
Q.ED.
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Figure 1. Graph of the Psi Function.
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