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1. Introduction

We study a dynamic game of voluntary contribution to a public project. The game
consists of a number of rounds in which individuals may contribute to the capital stock of
a public project that generates a flow of public benefits. The game is a stylized model, for
example, of a campaign to raise funds for public television or university buildings. A key
feature is that individuals may contribute whenever, however much, and as often as they
wish. The project may gencrate partial benefits even before it is completed, as is typical
of ongoing projects for building a road network, park system, or library.

We show that if the public is kept abreast of the progress made towards achieving a
contribution goal, then equilibria which reach the goal exist if the number of periods in
which contributions are allowed is large, and discounting is low or the period length
small. The only necessary inefficiency caused by free riding is a delay in the completion
of the project. Even this inefficiency may be inconsequential, as the delay vanishes as the
period length shrinks to zero. Thus, the results indicate that dynamic considerations can
alleviate the free riding inefficiencies exhibited by static voluntary contribution games.!

This positive result must of course be tempered by the obscrvation that our game
has multiple equilibria, some of which are not efficient. On the other hand, our positive
result is surprising in view of an intuition for why allowing players to contribute
repetitively might increase the incentive to free ride: it effectively creates more players
(future ones) upon which current players can free ride. Fershiman and Nitzan (1991)
obtain a negative result based on this logic; our results differ because we consider a
discrete rather than a continuous time game, and a broader class of equilibria. Admati and
Perry (1991) also reach a negative conclusion; our results differ mostly because we allow
any player to contribute in any period, rather than requiring them to contribute in
alternate periods. These and other related papers are discussed later in Section 7.

We consider for simplicity a public benefit function that is linear in the aggregate

cumulative contribution until it reaches a “provision point” that completes the project.

I Static games are studied, e.g., by Andrconi (1988), Bergstrom, et al. (1986), Bernheim
(1986), Cornes and Sandler (1996), Palfrey and Rosenthal (1984), and Varian (1994).



Benefits may jump upwards at the provision point. A familiar polar case 1s a binary
project which generates no benefits until it is completed, like a bridge that cannot be used
until the last girder is in place. A more general example is the construction of a road
network. Marginal benefits prior to completion are positive because each new road can be
used immediately, but benefits rise discontinuously at completion because the linking
road increases benefits disproportionately. Another source of a benefit jump occurs if the
provision point is the goal set for a fund-raising campaign, and a third party has
committed to contributing a “challenge bonus” if the goal is met. If the benefit jump is
positive, equilibria are obtained that complete the project in finite time: otherwise,
equilibria are obtained that complete the project asymptotically in the sense that the
aggregate cumulative contribution converges to the provision point.

A complication arises because each player obscrves only the aggregate of the past
contributions of the others. In the literature such imperfect observability is typically
circumvented by restricting attention to Markov perfect strategies, which in this paper arc
strategies that require a player’s contribution to depend only on the aggregate cumulative
contribution to date. But this restriction impedes the ability to punish free riders. We
accordingly focus first on the broader class of perfect Bayesian equilibria, so that a
player’s contributions can depend on his inferences about past individual contributions.

This imperfect observability aggravates a perfection problem caused when benefits
jump at completion. In this case, once contributions have risen enough so that only a
small contribution is needed to reach the provision point, every continuation equilibrium
must complete the project. Deviators then cannot be punished by “grim’™ strategies that
call for all players to never again contribute. However, if the deviator can be identified,
the most punishing continuation equilibrium still requires the deviator to complete the
project on his own. We show that unilateral deviators can effectively be identified, and so
always be punished by the others withholding all future contributions. Consequently,

every Nash equilibrium outcome is also a perfect Bayesian equilibrium outcome.?

2 We give the formal argument only for symmetric outcomes, but it will be clear that it
holds also for asymmetric outcomes. See Remark 2 in Section 4.



The paper proceeds with a description of the dynamic environment in Section 2. In
Section 3 the game is defined and its symmetric Nash equilibrium outcomes are
characterized. They are shown to be perfect Bayesian equilibrium outcomes in Section 4.
In Section 5 are presented existence conditions and descriptions of equilibria which
complete, or asymptotically complete, the project. This section also contains “Coase
conjecture” results showing that as the period length shrinks, the completion delay
disappears. In Section 6 are considered Markov perfect equilibria that are characterized
by a sequence of increasing “goals”; in each period contributions raise the aggregate
cumulative contribution to the smallest goal so far unachieved, until the project is
completed. Symmetric equilibria of this form exist only under more parameter restrictions
than are required for complction by perfect Bayesian equilibria. However, this is not true
of asymmetric Markov perfect equilibria. Related literature is discussed in Section 7, and

conclusions appear in Section 8. Proofs for Section 4 (6) arc in Appendix A (B).

2. Environment
The set of players is N ={l,...,n}, with n>2. Player i contributes z;(r) 20 of a private
good to a public project in periods ¢ = 0,1,.... Contributions become the non-depreciating
capital the project uses to create a public good or service consumed cach period, and they
are nonrefundable. If the aggregate cumulative contribution reaches the provision point,
X >0, the project is complete and benefits are constant in the remaining periods.

Let z(t) =(z(1),...,z,(1), Z(1) = Zjesz(t), and Z;(t)= Z(t)—z;(1). At the end of
period ¢, the individual and aggregate cumulative contributions are, respectively,’

x; (1) = Zzi(f) and X(¢) = Z,\‘j(r).

<t JjeN
For the sake of brevity, we sometimes refer to X(¢) simply as the cumulation.
Each player’s discount factor is § = e €(0,1], where r=0 is the discount rate

and £ >0 is the period length, i.e., the minimum time required between contributions.

3 Set x;(-1)=0.



The players have the same quasilinear preferences. A player’s valuation of the
public good is given by a benefit function f, where f(X) is the player’s discounted
present value of the benefit flow from the public goods that would be generated if the
capital of the project were to equal X in all periods. Thus, in period ¢ the public good
generated by X(¢) yields a benefit of (1-98)f(X(1)). Given a contribution sequence

{z} = {z(1)};Zq, player i’s payoff is

Uiz = 361 - 8) /(X)) - 7,(0)]. 2D
t=0

It will be useful to rewrite this as

U;({zh) =(1-6) %5’[f(X(r))—x,(1)]. (2.2)
1=

One special case is the static situation in which contributions can be made only in
period 0. Then the expressions above reduce to U; = (1 — 5)(f(X(O)) - .\‘,(O)). Modulo the
constant 1—4, this is the payoff function of the familiar static game in which cach
person’s strategy is a single contribution. Another special case is that of no discounting.
Taking & — 1 yields U; = lim[f(X(t))—.ri(t)], which is appropriate for modeling short
fund drives at the end of w[h_i)co;l all costs and benefits are borne. The & <1 case is more

appropriate for projects that take time to complete and generate benefits along the way.

Remark 1. Expressions (2.1) and (2.2) yield different interpretations. According o a flow
interpretation, each player receives a private good income cach period, and can bank at
the interest rate 1/0 — 1. In period ¢ player i consumes ¢;(f) and contributes z,(1) of his
income, and consumes a public bencfit of (1-9)f(X(1)). His budget constraint is
Zzoé'(ci(t)+zi(t)) =w, where w is the present value of his income. Substituting this
into the expression U; = 27';05'((1 -0 f(X())+ c,-(r)), and dropping w, yields (2.1).

On the other hand, expression (2.2) corresponds to a stock interpretation, according
to which each player starts with a stock w of an indestructible good. In period t player {
chooses how much to contribute from the amount he then has of this stock. At the end of
the period his remaining stock, w - x;(f), generates a private benefit on a one-to-one

basis, and the aggregate cumulative amount contributed to the project, X(f), generates a



public benefit of f(X(t)). The player’s utility in period  is f(X(1))+w— x,(1).
Normalizing by 1— 4§, and dropping w, the discounted sum of these utilities is (2.2).
Though they generate the same payoff function, the two interpretations imply
different constraints. According to the stock interpretation, a player’s contribution should
satisfy z;(1)<w—x;(f—1). According to the flow interpretation, Z2¢8'z;(1)<w is
required (assuming consumption is nonnegative). These are different constraints unless
5 =1. However, if w> X then it is feasible for each player to fund the project alone, and

these constraints do not bind and can be ignored. We do ignore them.

We assume a specific form for the benefit function:
X forX<X

f(X)= . (2.3)
% forX=2X .

i AW

/bza——— - —

Figure 1

The personal marginal benefit of a contribution prior to completion is A, and the benefit

from a completed project is V. The possible benefit jump at completion is
b=V-2X". (2.4)

We assume A >0 and b >0, which together are the same as

0<i<—~. (2.5)
p%

The per-capita contribution required for completion is a = X*/n. We assume
a<V<X' (2.6)

The first inequality insures that the project is worthwhile; the second insures that no
player is willing to fund it alone. Assumptions (2.5) and (2.6) together imply A <1: the

personal marginal benefit of a non-completing contribution is less than its marginal cost.



One polar case of (2.5) is A =0, a binary project yiclding a positive benefit of
b=V if and only if it is completed. The other polar case is A = V/X*, so that b=0; In
this case benefits rise linearly and continuously to their maximum.

A positive benefit jump is a form of strong increasing returns at completion.® It can
be due to a technological convexity, such as the linking road that completes a network, or
it may be due to design. For example, consider a fund drive producing a public good
equal to A times the dollars contributed. Suppose some party has publicly committed to
contributing a “challenge bonus” of b/A dollars if contributions reach the goal X —b/A.
The public good level then jumps by A(b/A)=b when this goal is met. Given the
upcoming result that a positive jump can allow the project to be completed in finite time,
a campaign organizer may well want to persuade a donor to commit to such a bonus.

Payoffs can now be written in a way useful for dynamic programming. Let the
completion date T be the smallest t for which X(¢) 2 X", and set T =co if the project is
never completed. Refer to the contribution sequence as wasteless if X(t) < X" for all 1.

For a wasteless contribution sequence, (2.1) and (2.2) are equivalent to the following:5

T oo
Ui({zh) = X' [AZ(1) — (0] + X 8'[(1-6)b]
=0 =T (2.7)

M~

§'[AZ() - 7]+ 87b.

=0

The first line of (2.7) views the payoff as a discounted sum of benefits and costs that are

each borne in just one period; it is as though AZ(r) - z;(r) is received in each period prior

to completion, and (1 —&)b is received in the completion and each subsequent period.®
Given the maintained assumptions, Pareto efficiency requires the project to be

completed wastelessly, and to be completed without delay if o < 1.

4 The results for b>0 would be similar if the benefit function were continuous
everywhere, but sufficiently convex on a small interval (X -A X"

SFor T=coand 8 =1,let 7 =0.

6 If h =0, (2.7) seems to be time separable, like a repeatcd game payoff. The difference
is that here the completion date 7" is endogenously determined, and a player’s set of
undominated actions, [O,X* — X(t —1)], depends on the contribution history.



3. Equilibrium Contributions
The dynamic contribution game is defined by the above payoff function, a (contributing)
horizon T <o, and the following extensive form:

(i) contributions can be made only in periods 1 =0, 1, ..., T';

(i1) the players contribute simultaneously each period; and

(iii) at the start of period ¢, player i observes only his own and aggregate past

contributions: {zi(z'),Z(T)}',;lO.
We consider finite as well as infinite contributing horizons or order to consider whether it
is beneficial for the players to (somehow) credibly commit to a deadline. (It is not.)
In this section we characterize the symmetric Nash equilibrium outcomes, starting

with the benchmark static game in which T =0.

The Static Game

Player i’s strategy in the static game is a single contribution. We write it now as g,
dropping the time argument. A strategy profile z results in an aggregate contribution Z,
and a payoff of f(Z)- z; for player i.

The incentive to free ride in the static game increases with A. To see this, observe
that the best reply of player i to a contribution Z, <X by the others is cither to
contribute nothing, or to complete the project by contributing z; = X - Z;. (Intermediate
contributions are inferior because A < 1.) The marginal benefit of completing the project,
fX-f(Z)y=V- AZ;, decreases with A. The marginal cost of completing the project is
= X - Z;. Thus, the player completes the project if A <1-— (X - V)/Zi, and does not
contribute if this inequality is reversed.

Summarizing, the reaction function is

0 it X" =Z>c0)
G(Z) =4 X (3.1)
X -7, if X -2Z,<c0),

where

c(0) = 1 = (3.2)



(The “0” in ¢(0) 1s explained later.) A player wants to complete the project if and only if
the required contribution does not exceed ¢(0). We accordingly refer to ¢(0) as the
maximal static contribution.

In the polar case A = V/X*, each player’s unique dominant strategy is z; =0, since
c(0)=b=0. In the polar case A=0, profile (a,...,a) is an equilibrium, since

¢(0)=b=V and V > a. Theorem O summarizes (its proof is left to the reader).

Theorem 0. One equilibrium of the static game is always (0, ...,0). Any z € R} is an
op . . 3 oy * ~ . gy . . s
equilibrium if and only if Z=X and each z; < ¢(0). Lfficient equilibria exist if and only

if ¢(0) 2 a, and this is the case if and only if (a, ..., a) is an equilibriuni.

If A is large, free riding prevents the existence of efficient equilibria. To see this,

write the condition for an efficient equilibrium not to exist, ¢(0) < a, as
An=NDa>V-a. (3.3)

The left side of (3.3) is a player’s payoff if he contributes zero when the others each
contribute a. The right side is the player’s payoff if he joins them by contributing a. So if
(3.3) holds, a player who believes the others are contributing their share of the project’s

cost should still not contribute.

The Dynamic Game

Turning now to the case T =0, we restrict attention to pure-strategy symmetric
equilibrium outcomes. In such an outcome, each player’s contribution sequence is the
same, say g ={g(f)},~o. The project is completed once the sum of these contributions

reaches a. Let T(g) be the completion period, as defined by

T(g)~1 T(g)
> gh<as Y g (3.4)
=0 =0

If the project is not completed, set T(g) = .

A necessary condition for g to be a symmetric equilibrium outcome is that no

contributions occur after 7;

gt)y=0forall t>T. (3.5)



Another requirement is that if the project is completed, it is completed wastelessly, since
otherwise a player could gain by reducing his contribution in period T(g) or later. So
another necessary condition 1s
T
T(g)<eo = Y g()=aforall T>T(g). (3.6)
=0
Refer to a sequence g = {g(1) )i~y of individual contributions as a candidate outcome if 1t
is nonnegative and satisfies (3.5) and (3.0).

A candidate outcome g is a Nash equilibrium outcome if and only if no player
wishes to unilaterally deviate from it when doing so is met by a maximal feasible
punishment. A strategy profile in which all the other players never contribute imposes the
maximal conceivable punishment on a unilateral deviator. This punishment is also
feasible, since it is imposed by the grim-g strategy profile, defined to be the profile in
which g is played every period unless an event of the form Z(7) # ng(7) is witnessed, 1n
which case no player ever contributes again. The grim-g profile is feasible because 1t is
bascd only on observations of aggregate contributions. Thus, g is a Nash cquilibrium
outcome if and only if the grim-g profile is a Nash equilibrium.

This observation is used below in Theorem 1 to characterize equilibrium outcomes.
We shall see that the sct of completing equilibrium outcomes enlarges as the contributing
horizon and the discount factor increase. We pause now Lo give an intuition for this.

Recall that (a, ...,a) is not an equilibrium of the static game if
An=hHa>V—-a. (3.3)

In fact, for any T >0, (a,...,a) is not a first-period equilibrium contribution vector. To
seec why, assume each player j# i contributes a in the first period. Then the left side of
(3.3) is a lower bound on player i’s payoff from deviating in the first period by not
contributing, since it would be his payoff if the deviation caused every player never (o
contribute again. The right side is the player’s payoff from not deviating. So (3.3) implics
that the player will deviate in the first period from any profile specifying 2(0)y=(a,...,a).

Suppose now that g is a candidate outcome which completes the project, with g(0)

positive but so small that inequality (3.3) is reversed when g(0) replaces a:
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A(n—-1)g0)<V —a. (3.7)

Under the grim-g profile, the left side of (3.7) is a player’s payoff if he contributes zero n
the first period. This deviation payoff is lower than the deviation payoff shown on the left
of (3.3) because the others are now contributing less: a player’s incentive to free ride in a
period is diminished by reducing the contributions of the others in that period.
Contributions in one period can be reduced without preventing completion, so long as
later contributions can be increased. The resulting completion delay is of little matter to a
patient player — his payoff is still nearly V—a. So (3.7) shows that if § =1, a player
who believes g will be played after period zero will not deviate in the first period. In the
no-discounting case, (3.7) puts an upper bound of (V—a)/(A(n—1)) on the set of
symmetric equilibrium first-period contributions. A similar argument puts an upper
bound on each g(r), and the satisfaction of these bounds is a necessary and sufficient
condition for a candidate outcome to be an equilibrium.”

Since it applies to the general case 6 <1, the proof of Theorem 1 takes a slightly
different tack. Two sets of constraints on g are required for it to be an equilibrium
outcome. The first constraints are needed, by an argument like that above, to deter
downward deviations (free riding). It bounds the contributions from above, and we refer

to them as the under-contributing constraints:

1\ T
g(t)S5T(g)"c(O)+(”1/1_ ]j 3 8T g(r) for 1 <T(g). (3.8)
T=t+]

The second set of constraints bound from below each remaining amount required to

complete the project, X" —2...,8(1). These constraints are needed to deter impatient

<t

players from contributing too much in order to complete the project prematurely. We

refer to them as the over-contributing constraints:

* ! T(g)—t nA -1 T T—1
X —n)g(ty2(1-56""¢ )C(O)—[ ) Y 6 g(r) for t<T(g)—1. (3.9)
=0 -2 T=1+1

7 The extension of (3.7) to period  is (nA - l)zrqg(r) +(n—=DAg(t)y<V —a.



Theorem 1. A candidate outcome g is a svmmetric Nash equilibrium outcome if and only
if it satisfies the under- and over-contributing constraints, (3.8) and (3.9).
Proof. Let g be a candidate outcome and T = T(g). The grim-g profile gives the payoff
T
U=(nA-1) 6"g(r)+8"b (3.10)
=0
to each player. Three kinds of deviation must be considered. The first is for a player to
contribute in some period a wrong amount that does not complete the project, and then to
never contribute again. If this deviation is z; # g(1) at 1 < T, it yields payoff
-1
Uz = (nA =) Y, 67g(1) + 8" [ A~ Dg(r) = (1 - 1)z, ). (3.11)
=0
As A<1 and z 20, we see that U‘“(z,-,t)S U‘“(O,I). A player is thus deterred from
these deviations if and only if U7 > U9"(0,r) forall <7
The second kind of deviation a player could make, at a datc <7 —1, is to

over-contribute exactly enough to immediately complete the project, i.c., to contribute

=g+ X —n Y g(1).
=0

Since no further contributions will be made, the player’s payoff from this deviation is

Uty = U 0,0+ 8'[b-(1- bz (3.12)

A player is deterred from these deviations if and only if U > U (1) forall r<T—1.
The final kind of deviation to consider is for a player to contribute a non-completing
amount z; # g(1) in some period 1 <7 -1, and also to contribute later. It is easy to show
that any such deviation is dominated by a deviation of one of the previous two kinds. If
b <(1-A)z(r), the deviation is dominated by contributing zero in period ¢ and all
subsequent periods. If b > (1-A4)Z(r), the deviation is dominated by completing the
project immediately by contributing Z() in period r. Thus, U > U (0.1) for 1 <7, and
U >U% (1) for t<T~1, are jointly necessary and sufficient for g to be an equilibrium

outcome. Rearranging these inequalities yields (3.8) and (3.9), respectively. W
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If the under-contributing constraints hold and the per-capita amount left to be
contributed is not less than the maximal static contribution ¢(0), the over-contributing

constraints must be satisfied. This observation is the proof of the following corollary.

Corollary 1. Let g be a candidate outcome satisfying (3.8), and let T=T(g). If
(i) ¢(0)=0, (ii) T=0, or (iii) T<e and g(T=1)+ng(T)=c(0), then g is a Nash

equilibrivm outcome.

Proof. If any of the conditions (i) - (iii) hold, then

T
g +n Y g(r)2c(0) for r<T—1. (3.13)

T=r+
Theorem 1 therefore implies the result once we show that (3.8) and (3.13) imply (3.9).
Given (3.8), the right side of (3.9) is no greater than ¢(0)— g(r). The left side of (3.9) is
no less than nZLH]g(T). Thus, (3.8) and (3.13) indeed imply (3.9). &

4. Perfect Bayesian Equilibrium
We now show that all symmetric Nash equilibrium outcomes are perfect Bayesian
equilibrium outcomes. The perfection issue arises because the grim strategies used to
prove Theorem | are not sequentially rational if the benefit jump b, and hence the
maximal static contribution ¢(0), is positive. For, suppose the cumulation X is so large
that less than ¢(0) is needed to complete the project. Then a player would complete it
alone if the others were expected never again to contribute. The grim strategies are thus
not sequentially rational if at this X they require each player to never contribute.
Furthermore, they cannot be made sequentially rational here by, say, altering them so that
each player contributes (X* - X)/n to complete the project. Given this alteration, if in
some period no player is ever supposed to contribute and the cumulation is slightly less
than X~ —¢(0), a player would prefer to contribute the small amount required to put the
cumulation over X —¢(0) and hence induce completion in the next period.

However, the maximal conceivable punishment of a unilateral deviator consists of
the other players never contributing again — the deviator himself should play a best

reply. If the identity of the deviator is known, scquentially rational strategies imposing



the maximal punishment are feasible. Just alter a grim-g equilibrium so that in any period
in which the players are not supposed to contribute, if a unilateral deviation raises the
cumulation enough to put it for the first time into the interval
C=[X" ~c(0), X ),

the strategies call for the deviator to complete the project alone in the next period. This
makes the deviation unprofitable, as it causes the deviator to complete the project alone
by contributing more than ¢(0) (over two periods). If n =2, so that the identity of a
unilateral deviator is common knowledge, this argument shows that every Nash
equilibrium outcome g is a subgame perfect equilibrium outcome.

If n>2, we must consider a player’s beliefs about who deviated. We use the
concept of a perfect Bayesian equilibrium (PBE): a belief-strategy combination that
satisfies Bayes’ rule whenever possible, and sequential rationality always.® An argument
in Appendix A shows that given any Nash equilibrium outcome, strategics and beliefs

can be found that support it as a PBE outcome. This yields the result of this section.
Theorem 2. Every symmetric Nash equilibrium outcome is a PBE outcome.

In the remainder of this section we introduce material used to prove this result in
Appendix A, and give some intuition for it. First, we find it convenient to view a strategy
as a “machine” that is in one of several possible “states” each period.? The strategy of
player i specifies a contribution each period as a function of his machine’s state and
public information, and the next state of his machine as a function of its current state and
the (z[(t),Z(t)) he observes. A machine’s current state is private information to its owner
if n>2.

The set of possible machine states is {qo,qoo,qm,qlo}. If the player’s machine is in

state ¢;(f) in period t, he contributes z;(1) = s(g,;(1), X(t — 1),1), where s is the contribution

8 Fudenberg and Tirole (1991) define perfect Bayesian equilibrium concepts.

? See, e.g., Osborne and Rubinstein (1994), Ch. 8



14

rule. In terms of the Nash equilibrium outcome g that the PBE is to generale, the

contribution rule is defined, for X < X and t<T,by,

gty g =q"

s(g;, X, 1) = 0 if g; :qoo,qOl 4.1
na—-X ifqg; = qlo.

For X 2 X" ort> T, set s(g;, X, 1) =0.

The structure of the equilibrium is the following. If no player deviates, all machines
stay at qo, the normal state. They all move to qoo’ the grim state, if a deviation occurs
and afterwards the cumulation is less than X - c(0). If a deviation occurs and afterwards
XeC, every machine moves to qu or qm, and at least one moves (o qm. If it is a
unilateral deviation that causes the cumulation to enter C, the machines of the
non-deviators move to (101, the innocent state, and the deviator’s machine moves to qm,
the guilty state. A player whose machine is in the guilty state immediately contributes
enough to complete the project alone, and players whose machines are in the innocent
state do not contribute.

These properties are obtained by appropriately specifying for each player a
transition function F; that determines the next state of the player’s machine as a function

of his private and public information at the end of the current period:

The pair (s, F;) is a strategy for player i.

Beliefs for each player about past contributions are represented as a probability
distribution that depends on his machine’s state and the aggregate contribution of the
others. In period ¢, if ¢;(1)=gq; and Z,(t) = Z;, player i considers the contribution vector
z_;(1) to be a random variable Z_; e‘){i_] having a probability mecasure F(-1¢;.Z;,1).
The desired PBE is then the assessment ((s,F,»),P,-),.EA,.

The transition and belief functions are crafted so that any player whose machine is
in the guilty state believes the machines of all the other players are in the innocent state.
This is why it is a best reply for such a player to contribute immediately enough to

complete the project. as he believes the others will not contribute and he is thus willing to



complete it alonc (as X € C). Conversely, a player whose machine is in the innocent
state believes that at least one of the machines of the other players is in the guilty state.
This is why such a player is willing not to contribute, as he belicves another player (or

more) will complete the project without his help.

Remark 2. The proof of Theorem 2 is complex because the identity of a unilateral
deviator from a symmetric equilibrium path is not generally common knowledge. If the
outcome is asymmetric, detecting the identity of a unilateral deviator is easier. For
example, if only player 1 is supposed to contribute at some date, and the observed
aggregate contribution is less than his equilibrium contribution, all players will know that
he deviated. Thus, though we have not given a formal argument, Theorem 2 clearly holds
for asymmetric as well as symmetric outcomes: every Nash equilibrium outcome is a

PBE outcome.

5. Completing the Project
We now show that if the discount factor and contributing horizon are large, equilibria
exist that essentially complete the project. If 5> 0, the project can be actually completed:
X(T)= X" for some T <oo. If b=0, it can be asymptotically completed: X (1) — X" as
t — oo. In either case the necessary completion delay and the cfficiency loss vanish as the
period length shrinks to zero.

We put the results in terms of the private marginal bencfit of a non-completing
contribution, A €[0, V/X*]. By Theorem 0, the static game has cquilibria in which

contributions are made if and only if,

1< V—a
T (m=Da’

In this section we show that for any A €0, V/X*) (and so for b > 0), equilibria exist that
complete the project for all large 6 and T. The closer A is to V/X* (the closer b is to
zero), the more periods it takes to complete, and hence the larger T must be. For
A= V/X* (b =0), the project can only be completed asymptotically. However, even in

this case project can be completed almost instantly as the period length shrinks to zero.
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Completing Equilibria

We first construct a completing equilibrium in the case A < V/X* (b>0). The idea
is straightforward. As the maximal static contribution ¢(0) is positive, the project can be
completed immediately if less than nc(0) is required to do so. To keep the players
contributing until this is true, the threat of halting all contributions deters free riding.
However, this deters a player from free riding in the early periods only if the
contributions of the others are small, as we discussed in Section 3, and the player does
not discount the future too much. The larger is A, the less the others can contribute if one
of them is not to free ride, and hence the more periods are required.

Let T be the completion date, as determined below. At t =T, inequality (3.8) is
2(T) < ¢(0). If this binds, then (3.8) at r =T —1 gives an uppcr bound for g(7 1), which
we denote as ¢(l). Proceeding inductively, making the under-contributing constraints

(3.8) bind this way defines a sequence {c(k)};., where

k=1
c(k) = 8% c(0) + ( ”1/1 _/11 ) > 84 ce(x) for k> 0. (5.1)

k=0
Quantity c(k) is the maximal contribution each player can make, in a symmetric
equilibrium, at period t =7 -k if in each period 7 > ¢, each player contributes (1 - 7).

Using the definition of ¢(0) in (3.2), the solution of (5.1) 1s

k
(11—1)/15) ( b )
(k) = for k20. 5.2
<) ( —x =) o2
The completion date 7" must satisfy
T-1 T
Y ctky<a< Y k). (5.3)
k=0 k=0

It is easily verified that when b >0, a finite 7, which we refer to as 7", is defined by

(5.3) if and only if 8 > 8., where

no
*:(l—l)a—b_l V—-a

= S A 5.4
" (n-DAa (n-1Aa. (2.4)

Because V >a (by (2.6)), &, <.
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Proposition 1. Suppose b >0, 56(5:,1], and T >T . Then (5.5) below defines an

equilibrium outcome, and it completes the project at the finite date T :

“‘Zm* c(k) fort=0 |
¢*()={ T =1 for0<r<T (5.5)
0 fort>T .

Proof. By construction, g * is a candidate outcome that satisfies (3.8) and completes the
project at the finite date T°. Because T =0 or g*(T*):c(O), etther (11) or (iii) in

Corollary 1 holds, and the proposition is proved. Il

In the equilibrium of Proposition 1, The number of periods to completion, T +1,
decreases in 6, since (5.2) implies that each ¢(x) increases in &. Thus, the project is

completed nearly instantly if the period length is nearly zero:

Corollary 2. Under the conditions of Proposition 1, with 6 = e~ if the equilibrium
outcome g * is plaved, then (1) the project is finished nearly instantaneously if ¢ is nearly

zero, and (i) the efficiency loss is nearly zero if either r or ¢ is nearly zero.

Asymptotically Completing Equilibria

We turn now to the case A = V/X* (b =0), showing that then the project can be
asymptotically completed if T =< and & is large. This result is a special case of
Proposition 2 below, which treats the broader case A > 1/n.10 The proposition concludes
that if T = and & is large, then for any ae[O,a—%c(O)], an equilibrium exists in
which each player’s cumulative contribution converges to a. The condition A 21/n is
needed so that a player’s utility, (A1 —1)x;(r), increases as x;(f) increases with time.
Otherwise, since the completion benefit & is never received. a player would be better off
never contributing. If A = V/X*, the limiting per-capita cumulative contribution can be

chosen to be @ = a (since ¢(0)=0), which yields the asymptotic completion result.

01f 2 =V/X" then A>1/n.since V>a=1X".



The proof is again constructive. Each player’s contribution sequence is the

following geometric sequence defined in terms of a parameter

!
g(r,0) = (%) (%—Qja for 120, (5.6)
where
1-A
o= ) 5.7
~ (n—-hHA -7

If §> &, the partial sums of g(-,) converge to a. Note that § <1 if and only if A >1/n.
This g(-,@) is obtained by converting the inequalities in (3.8) to equalities, and
solving the resulting system subject to zzog(t):a. This insures that the under-
contributing constraints are satisfied with equality.!! As the proof below indicates, the
over-contributing constraints are also satisfied if the cumulation does not grow too large.
If it ever exceeds X —c(0), no player can be prevented from over-contributing to

complete the project. This is why nor < X" = ¢(0) is required.

Proposition 2. Suppose T =oo and A 2 1/n. Then (5.6) defines an equilibrium outcome if

S e (6,1 and a €[0,a —c(0)/n].

Proof. Observe that .., 8 ¢(T,@) = 5'g(r,(x)/(l ~ ). Hence, for >0,
T21

glr,a) = (”1':5—@] S8 () = (”1’1__/11] 36T g(r.a). (5.8)

r=1+1 =1+l

Because the project is not completed when each player’s contribution sequence is g(-, o)
(as a < a), T(g(,00))=eo. So (5.8) implies that (3.8) holds with equality. Condition (3.9)
is also satisfied by g(, &), since

nA -1

! T
X —n S e(t,00) 2 n(a—a) =2 c(0)2c(0) - (—) 36 e(t,a),
=0 -4 T=1+1

using & < a—c(0)/n and A > 1/n. Now the result follows from Theorem 1. W

11 We actually do not need to make the under-contributing constraints bind. We could
instead multiply the right side of (3.8) by a fraction f €(0,1) before solving (3.8) as a
system of equalities. This procedure would yield a similar equilibrium in which,
conditional on any history, each player’s strategy is a strict best reply.



If A= V/X*, we can choose « = a in Proposition 2, since ¢(0) = 0. This proves the
existence of equilibria in which players contribute according to the geometric sequence
g(-.a). thereby completing the project asymptotically. Even though the project is never

completed, the efficiency loss due to delay vanishes as 6 — 1. as we now show.

Corollary 3. Assume h=0, T =, and 6= e " >8. Then g(,a) is an equilibrium
outcome that asymptotically completes the project. In this equilibrium, (1) after any fixed,
positive amount of time has passed, the contribution needed to complete the project is

nearly zero if ¢ is nearly zero; (1) the efficiency loss is nearly zero if r or I is nearly zero.

Proof. Given Proposition 2, we need prove only (i) and (ii). Let ¥ > 0. Time Y is reached
in no less than 1(Y/() periods, where 1(Y/() is the integer part of Y//{. A player’s

cumulative contribution at time Y is thus no less than
wy/n AUYO+]
Zg(f,a):(l—(ée'/) ja.
=0

This converges to a as ¢ — 0, proving (i). To prove (ii), note that a player’s payofTf.

_ (nA—1)(6 - 0)a
(1-85

U(g(-.a))=(nA— I)ZSTg(T,a)

=0

converges to its upper bound, i.e., U(g(-,a)) > mA-NHa=V—-a,as 6 > 1.1

Non-Completing Equilibria
We end this section by considering non-completing equilibria. Proposition 3 lists

several results; some are roughly converses to Propositions | and 2.

Proposition 3. (i) Equilibria exist in which no player contributes. (ii) If T <o and
A= V/X:x (b=0), no contributions are made in any equilibrium. (iii) If T = and
A= V/X* (b=0), the project is not completed in any equilibrium. (iv) If T <oo, 0r (V) if

A < 1/n, then in no equilibrium do plavers contribute without completion occurring.

Proof. To prove (i) we apply Theorem 1 by showing that g(-) = 0 satisfies (3.8) and (3.9).
Trivially, (3.8) is satisfied. To show (3.9), note that the definition of ¢(0) in (3.2), and the
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parameter restrictions in (2.5) and (2.6), together imply X" >¢(0). Thus, since (3.9)
reduces to X~ > c(0) for g(-) =0, (3.9) is satisfied.

To prove (ii) — (iv). assume one is false. Then an equilibrium exists such that for
some T < oo, the cumulative contribution at the end of period 7'is X(7T) >0, some player
i contributes z,(7)>0 in period 7. and no contributions are made thereafter. The worst
that can happen to player / if he deviates to zero in period 7 is also that no contributions
are made thereafter. Since b =0 (cases (ii) and (iii)) or X(T)<X* (case (1v)), this
deviation yields a continuation payoff no less than X(X(T)—z,»(T))—(x,v(T)—z,-(T)). If
the player does not deviate, his continuation payoff is AX(T)—x;(T). As A <1, the player
strictly prefers to deviate, contradicting the equilibrium assumption.

To prove (v), consider an equilibrium which gives rise to a sequence {z(1)}_, of
contribution vectors. Assume some contributions are positive. but the project is not
completed. Then, setting 7 = o in (2.7) and summing over i yields

Y U0 =~ DY 871 <0,

i= 1=0
where the inequality follows from A < 1/n and Z(t) >0 for some t. This contradicts the
fact that each player’s equilibrium payoff must be nonnegative, since a player can obtain

a nonnegative payoff by never contributing.

6. Markov Perfect Equilibria

The cumulation X(r—1) is a natural state variable observed by all players in the game
with an infinite contributing horizon. A popular equilibrium refinement is thus Markov
perfect equilibrium (MPE), which can be defined here as a PBE in which strategies are
Markovian, so that each player’s contribution in any period 7 depends only on X(r—-1). A
player’s beliefs about the past individual contributions of the others are then irrelevant: if
the others use Markovian strategies, a player’s payoff depends on their contributions only
via the observed aggregate. Markov perfect equilibria are arguably plausible and/or
tractable (Fudenberg and Tirole, 1991; Maskin and Tirole, 1994). Other work on dynamic

voluntary contribution has focused on them (Fershtman and Nitzan, 1991, Wirl, 1996).



In this section we restrict attention to the game with an infinite contributing horizon.
and study completing and asymptotically completing Markov perfect equilibria. The
equilibria are characterized by a sequence of contribution goals: equilibrium play in any
period raises the cumulation to the smallest goal so far unachieved. Punishments are
highly forgiving: a player who free rides in one period delays the achievement of the

current and subsequent goals by just one period.

Svmmetric Markov Perfect Equilibria
We first consider symmetric equilibria: starting from anywhere, each player makes
the same contribution. We start with the case »>0. The goals then form a decreasing
sequence {X,}; o, starting with X, = X If Xe [ Xy .1, X, ), the current goal is X; and
each player contributes an equal share of the amount required to reach it. A player’s
Markov strategy z;(t) = w(X(t — 1)) thus takes the form
(DX, —X) for X e[Xp,,.X;)

p(X) = (6.1)
0 for X=X .

The goals are defined by

) k
X, =X —KbY(8O) for k=0, (6.2)
xk=0
where
(1-0)n
K= > 6.3
I-(1-8)A-8(hH (-
and

(1-8)n—DA+8("1)
>

C=l+(A-DK=
" I-(1-8)A-8(1)

(6.4)

This equilibrium is derived by backwards induction: given X, , we define X, to

be the smallest X < X, such that a player is willing to contribute ,l—I(X,\, — X) rather than

n—1

zero, assuming the others collectively contribute

(X, —X). A value function 1s
derived jointly with the goals, using (2.7). For example, if a contribution sequence {z}
results in X(r—-1)=X< X", and it is an equilibrium contribution sequence in periods

7 >t the value V(X) is the continuation payoff satisfying
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-1
U:({z) = 387 [AZ(1) - 5(1)]+ 8'V(X). (6.5)
=0

The first step of the induction is to let X = X", and to define V(X) for X2 X . In
this region, no contributions occur in equilibrium. Viewing the completion benefit b as

though it were paid out in increments of (1—-6)b each period upon completion (see

(2.7)). we obtain V(X)=3Y __ 8" '(1-8)b=b.

T2t

Now suppose that for some k=0, a decreasing sequence {Xx}kkzo has been

*

defined. The value function is defined on [X,X ) by

VX)) = (A= DX = X))+ BX ) =8)b + 8V(X,) for X € [Xe . X0, (6.6)
where
0 ifY<X
BY) = ) (6.7)
1 ifY>Xx.

Expression (6.6) is the equilibrium continuation payoff when X, is the current goal: it
can be viewed as the current benefit from the current aggregate contribution,
MX — X)+ B(X)(1=08)b, less the player’s own contribution, %(XK —X), plus the
discounted future value, éV(X,).

We now define X, ., and extend V to [X,,.X}). The latter is immediate: when
X < X, and the goal is X, a player’s equilibrium continuation payoff is as shown in
(6.6), with K = k. So (6.6) also defines V on [ X, X, ). Now, when the goal is X, .buta

player makes a one-shot deviation by contributing zero, the cumulation is raised only to

X+ (”:1 )X, — X) < X;. The deviator’s continuation payoff is

!

V4X) = (DX - X)+ SVIX + (DX, - X1, (6.8)

For yto be a MPE, V(X) =2 va(x) is required. We let X, be the smallest X for which
this inequality holds, which is the X that makes it an equality. This procedure results in
the following difference equations. which are easily solved to yield (6.2):

V(X)) = C[OV(X) + (1= 8)BX)b), (6.9)

Xps1 = X = K[V (X)) + (1= 8)B(X,)b]. (6.10)
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Note that strategy y is defined for all X >0 if and only if X_ <0, where
X, = lim X,. In this case the project is completed in finite time when the players use y.
LemmAa_)Bml in Appendix B shows that X, <0 is sufficient as well as necessary for y to
be a symmetric MPE.

When is X_ <07? One requirement is »>0: the project cannot be completed in
finite time if b =0. (Note that X, = X" for all k>0 if b=0.) Also required is §<1.
since 0 =1 implies that X, = X" for all k>0. Thus, unlike in Propositions 1 and 2,
discounting is required. The reason is clear: a player who free rides in a finite number of
periods, but plays w otherwise, does not change the ultimate aggregate cumulation (it is
still X7), but he does lower his own ultimate contribution. If § =1, the player’s payoff
depends only on the limits of X(¢) and x;(1), and so this free riding is beneficial.!?

Further conditions for X_ <0 are given in Lemma B2 in Appendix B, which

immediately implies the following theorem.

Theorem 3. Assume b >0 and T = oo. Then:
(i) For ¢(0)>a: &, €(0,1] exists such that yw is a MPE if and only if 6 €(0.6,).
Furthermore, 8y =1 if and only if V> (2 - %)a.
(ity For O0<c(0)<a: If VS(Z—}—I)a, then y is not a MPE for any 6 (0.1). If
V>2- ’—ll)a, then 8 €[0,1) exists such that w is a MPE if and only if 8 € (6;,1).

Theorem 3 (i) refers to those cases in which the static game has equilibria that
complete the project, such as when A =0. In these cases y is an equilibrium of the
dynamic game if and only if the discount factor is low. (The sufficiency of a small 6 is
not surprising, as the dynamic game is very much like the static game if players discount
the future heavily.)

Theorem 3 (ii) refers to the case in which the static game does not have completing
equilibria. Now y is an equilibrium only if the discount factor is high enough, and only if

the per-capita value of the project, V =Ana +b, exceeds (2 - ’l—l)a. In fact, V> (2 - )—l)a

12 Any equilibrium of the game with d =1 in which the project is completed even after
free riding occurs must induce the free rider to make up his contribution shortfall.



is needed in both cases (i) and (ii) in order for y to be an equilibrium for all discount
factors near one. This is in contrast to Propositions 1 and 2, which establish the existence
of completing equilibria, for all large discount factors, given any V greater than a.
Assuming V > (2 —"—I)a, so that ¥ is a MPE for high discount factors, we can ask
whether the Coase conjecture holds. It does not — the following corollary is proved in

Appendix B.

Corollary 4. Assume V > (2 - "—l)a, h>0, and T =oo. Then as ( — 0, the time the MPE

defined by (6.1) — (6.4) takes to complete the project converges to

) a(ﬂ)[ln(v —(2- %)a) — ln(b)]

L = r[V—(2—%)a—b] >0. (6.11)

If b=0, a result similar to Theorem 3 holds. Specifically, if and only if
V>(2- ;17)(1 and ¢ is sufficiently large, a similar construction yields a sequence of goals
{X,;}i-0. which now increase and converge to X", and a symmetric MPE strategy v that
requires a player to contribute (,1—1)(X,\,+1 —X) in any period in which X e[X,, X, ).
Because of space limitations, we spare the reader the derivation.!3 This equilibrium
completes the project asymptotically. However, as in Corollary 4, even an asymptotic
version of the Coase conjecture is false: for any 8 € (0,1), the time required for these
equilibria to raise the aggregate cumulation to ox” converges to a positive number L; as

§ — 1. Again we leave the details to the reader.!

Asvmmetric Markov Perfect Equilibria
In contrast to the PBE outcomes discussed in Section 5. the completing Markov
perfect equilibria in the previous subsection exist for small period lengths only if

V>(2- ’l—l)a, and the time they take to complete the project is bounded away from zero

13 The procedure is to first reverse the subscripts k+1 and & in the difference equations
(6.9) and (6.10), and then solve them in terms of V(0). Then V(0) is set so that
X, = X" This yields X, = (1-(50)"")Xx".

4 The formula is L; =, [a(%)ln(l - 6)]/[(2 - ,‘7)(1 - V].
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as the period length shrinks. It appears that symmetry is a serious impediment to the
efficiency of Markov perfect equilibria.l®

Markov perfection is not the culprit per se. For all V >a, asymmetric Markov
perfect equilibria do exist that complete (asymptotically, if b=0) the project if & is
sufficiently large. and the time they take to complete (approximately complete, if 5=0)
vanishes as the period length shrinks to zero. We prove this here for the case h =0. (The
arguments are similar but messier when 5 >0.)

The equilibrium is characterized by a sequence of goals, {}A(k}f:(), which start at
)A(O =0, increase in k, and converge to X" Only one player contributes each period. If the
current X is in the interval [)A(,\,_l,}A(k), then the current goal is )?,\., and only player k (mod
n) is responsible for raising X to }A(k. The Markov strategy of player i is thus

X, -X for Xe[X, . X)andi=, k
6.(X)= (6.12)
0 otherwise,
where i=, k is shorthand for i = k (mod n).1¢ The goals are specified in terms of the
unique positive root of the polynomial

! 1-4

n=2
+[) +"'+[7—T.

Jip)=p"”
Denote this root as ¥, and observe that y € (0,1).17 The goals are defined for k >0 by

sz(1—(§>k)x*. (6.13)
These goals are positive provided 0 >y, and this is sufficient for o to be a MPE that

asymptotically completes the project:

Theorem 4. Assume b=0 and T =oo. Then (6.12) and (6.13) define a MPE provided

0 € (y.11. This equilibrium asymptotically completes the project.

15 We suspect that (i) no symmetric MPE completes (or, if b =0, asymptotically
completes the project) if V <(2- ']—z)a and 6 is large, and (ii) no symmetric MPE nearly
completes the project nearly instantaneously when the period length is arbitrarily short.

16 That is, i =, k provided that k is equal to i plus a multiple of n.
17 This is because J(0) < 0 < J(1). which is true because b =0 implies A = V/na € (+.1).



We prove Theorem 4 in Appendix B, but here we derive the equilibrium.
LetZ, = )2,\. - )A(,\,_l. For k=1, denote by H, the equilibrium continuation payoff of
player /=, k starting from X = )A(,\ which in equilibrium is the period after this player
raises the cumulation to )2,\.. In the subsequent n—1 periods. each of the other players
j#i in turn contribute Z;,,Z;.,...»Zpn_;» and in the nth period, player i contributes

Z,.,. His continuation payoff starting in the (n+1)th subsequent period is H, ,,. Thus,
k+n—1
Ho=AY "z +A-108""2,.,+8"H,.,. (6.14)
K=k+1
We let V/(X) be the equilibrium value function of player i. Thus, Vl-()A(,\.) =H if
i=, k. V(X)=0for X=X, and for X [X,_|.X,),
(A-1)(X, - X)+OH, ifi=,k
V(X)= A . (6.15)
AX, —X)+oVi(Xy) ifi#, k.
Since a player has the option of contributing zero forever to obtain a zero continuation
payoff, Vl-()A(,\,) >0 forall k=0. Now suppose k=land i=, k+1.1If X= }A(k_l, player i
is supposed to let another player contribute Z, in the current period before he contributes
Z,.,, in the next period. His equilibrium continuation payoff from this strategy must be

no less than what he would get from “jumping the gun” by contributing Z, ., in the

current period, at the same time as Z; is contributed. Thus,

Vi Xy )2 AZ, +(A=1Z . +SH,.,.
Applying (6.15) to each side, we obtain AZ, +5VI-()A(,\.)ZAZ,\, +V,-()A(,\.). This implies
Vi(X,) < 0. We conclude that

Vi(X,)=0forall k>1and i=, k+1. (6.16)

In equilibrium, a player who contributes in period >0 contributes so much that his
continuation payoff (before he contributes) is zero — otherwise he would have wanted to
make the contribution earlier. If (6.16) holds also for & =0, then the same 1s true of the
contributor (player 1) at r =0, and his equilibrium payoff is zero. This is the equilibrium
we construct.

So, using (6.15) and (6.16) for k20, we have
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H,=6"'1-1)Z forall k>1. (6.17)
We solve the system consisting of (6.14), (6.17), and

Y7, =X . (6.18)

Using (6.17) to remove H, and H,_, from (6.14). and letting p; = 5kZ,\., yields a linear

homogeneous difference equation:
2 k+n-1
—(T)Pk + 2P =0.
K=k+l
Since J(y) =0, this difference equation has a solution of the form p, = Cyk, or rather,
Z, = C(%)k. Then (6.18) fixes the constant at C= X (8 — v)/7y. and requires 6 > 7. This

yields Z; = (g)k_l(l - g)X*, and (6.13) comes from }A(k = Zizl Z,..

The asymmetric MPE of Theorem 4 exists for all large discount factors, even when
the symmetric MPE of Theorem 3 does not, i.e.. even when V < (2—%)41. The reason 1s
that in the symmetric MPE, a free rider gains from the contributions made by the other
players in the period in which the free-rider withholds his. This gain to free riding is
small only if the equilibrium contributions in each period are small. If § is large, the gain
to free riding must be made small in this way, since the only cost to free riding is the
completion delay it causes. The delay cost is lower the lower is the net gain from
completion, which is V —a if all players contribute a. Thus, if V is sufficiently close to a,
the delay cost is so small that if the contributions each period are small enough to deter
free riding, then the contribution rate is too small to reach X"

The incentive to free ride is lower in the asymmetric MPE of Theorem 4. A player
who contributes too little in a period in which he is supposed to contribute, and who then
plays according to the equilibrium, makes up the shortfall himself next period. The only
gain to the free rider is to shift a contribution into the discounted future. as opposed to
lowering his total contribution. Thus, now the gain as well as the delay cost of free riding
shrink as o increases. The result is that the contributions each period do not become
arbitrarily small as 6 — 1. In fact, )A(,\. = (1 - (%)k)X*, the equilibrium cumulation at the

end of period k +1, increases with 6, and the strategy is an MPE even if 6 =1.
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It is now clear that the asymptotic version of the Coase conjecture holds for the

asymmetric equilibrium of Theorem 4.

Corollary 5. Assume b=0 and T =, and let 6 € (0,1). Then the equilibrium defined
by (6.12) and (6.13) raises the aggregate cumulation to 60X~ in a number of periods that
converges, as { — 0, to within one of In(1-6)/In(y). A fortiori. the time taken to achieve

6X converges to zero as { — 0.

Proof. The equilibrium raises the cumulation to 6X" in a number of periods equal to the
first k for which X, >6X . By (6.13), this is within one of the 7 defined by 1-(£)" =#6.
Hence, since 6 = 1 as £ =0,

In(1 —-9) In(1-0)
T= -
In(y)—In(d) In(y)

as > 0.1

Remark 3. As the number of players increases, each player contributes less frequently in
the equilibrium of Theorem 4. The limiting strategies are an equilibrium of the game in
which the set of players is N ={l1,2,...}. In this equilibrium each player contributes once
only, doing so in order to induce the higher-indexed players to contribute later. The
strategies have the same form as (6.12), except that i =, k is replaced by i=k. When
i1 = oo, the root of J(p) is ¥ =1- A. Substituting this into Z, =(5)* '(1-5)X" yields

=AY (S+a-1)-
X, = X 6.19
Yio ( 5 j ( 5 ) ( )

as the contribution of player k when it is his turn to contribute. Provided 6 >1- A. this
defines an equilibrium of the n=oo (and »=0 and T = o) game which asymptotically
completes the project. The analog of Corollary 5 holds. so that efficiency is obtained in
the limit as the period length vanishes.

This equilibrium roughly approximates what occurs in real fund drives that last a
short time, such as a week-long public radio or television drive. Contributors in such
drives tend to contribute only once during the drive. Potential contributors tend to be kept
abreast of the progress made towards the drive’s goal, which suggests that the level of

previous contributions is an important determinant of when an individual contributes.
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Whether later contributions tend to be smaller than earlier ones, as they are in the
equilibrium, is unknown to us. In any case, assuming an infinite number of potential
contributors seems to appropriately capture how each participant in a fund drive in a

sizable city views the number of potential contributors.

7. Related Literature

Voluntary contribution in a dynamic, complete information setting has been studied
in three related works.18 Like us. Fershtman and Nitzan (1991) and Admati and Perry
(1991) study private provision, i.e.. descriptive models of project funding that do not
utilize a third party (center, government) with coercive or commitment capabilities.
Unlike us, they reach the negative conclusion that allowing contributions to be made over
time aggravates free riding. Bagnoli and Lipman (1989) reach a more positive conclusion,
but their focus is on the normative issue of designing a mechanism to be run by an entity
with some coercive/commitment capabilities.

Fershtman and Nitzan (1991) consider a continuous-time differential game in which
contributions at each date become the capital a project uses to generate a flow of public
benefits. The open-loop equilibrium is analogous to the equilibrium of a static
contribution game, and it accordingly yields low contributions. Surprisingly.
contributions are no higher, and they are often lower, in the symmetric linear closed-loop
equilibrium. In this equilibrium a player's contribution decreases with the level of the
cumulation. This creates a negative feedback which increases free riding. since a decrease
in one player’s current contribution is partially offset by an increase in all players’ future

contributions. The dynamics allow current players to free ride not only on each other, but

18 | ess related are the following. A repeated game with a voluntary contribution stage
game is studied in McMillan (1979); repeated game folk theorems apply. Dynamic
contribution games in incomplete information settings with discrete public good and
contribution levels are studied in Bliss and Nalebuff (1984), Gradstein (1992), and
Vega-Redondo (1995). Delay is caused in these games by the incentive to wait for low-
cost types to contribute first, as in wars of attrition.
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also on their future incarnations. The authors conclude that free riding inefficiencies are
aggravated in a dynamic context.

The model of Fershtman and Nitzan (1991) differs in several ways from ours: e.g.,
contributions decay over time rather than last forever, and payoffs are quadratic rather
than linear up to a provision point. They also examine only symmetric and linear
closed-loop equilibria.!® However, we believe the key difference is that theirs is a
continuous-time differential game, rather than a discrete-time dynamic game. Our game
has, for a range of parameter values, symmetric Markov perfect equilibria in which
contributions are made, even in the limit as the period length shrinks to zero (see the
discussion following Corollary 4). The differential game of Fershtman and Nitzan (1991),
with similar parameter values, has a unique closed-loop equilibrium, and in it no
contributions are made (cf. fn. 19). This is not a contradiction, as the strategies of our
MPE do not converge to well-behaved strategies as the discrete time is made continuous.

The second related paper, Admati and Perry (1991), is like ours in that it too
concerns a dynamic, discrete-time model of contribution to a public project. They restrict
attention to the case of an infinite contributing horizon and a binary technology. Their
game differs from ours in two ways: (i) the (two) players can contribute only in alternate
periods rather than in any periods they wish; and (i) a player’s cost function for
contributing, denoted W(z;), is strictly convex in the contribution z;, rather than being
the identity function.?® This game has an (essentially) unique subgame perfect

equilibrium, and it is generally inefficient. If W is approximated by the identity function

19 Wirl (1996) shows that contributions are larger in some non-linear closed-loop
equilibria. However, if the quadratic payoffs are made linear like ours (with no jump),
the game has a unique closed-loop equilibrium (if each player’s wealth is bounded —
the equilibrium is bang-bang). No contributions are made in this equilibrium, under our
assumption that V < X (e, A= V/X* <1).

20 1f completion occurs in period T >0 and player i contributes z;(0),...,z,(T), his payoff
is U, :5TV—ZIT:05’W(3,(I)), where W is increasing, strictly convex, and satisfies
W(0)=0. This is the same as our payoff function (2.7) when A =0 (andso b=V, if W
is replaced by the identity function.



at small contributions,?! then under our assumption that no player is willing to fund the
project on his own (V < X*), no contributions are made. This is quite different from our

result that if the technology is binary, then our game has a PBE that completes the project

in one period.??

Admati and Perry’s negative result depends on both distinguishing features of their
game, (1) and (if). Assume the project is worth completing (V > a). Then. if (i) is changed
so that each player can contribute in any period, equilibria exist that complete the
project.2¥ Completing equilibria also exist if instead (ii) is changed so that W is the
identity function.?* Of course, Admati and Perry’s results show that these latter equilibria

are not robust to the addition of even a slight amount of strict convexity to W. Thus. the

difference in results should be attributed essentially to the difference (i) in assumptions.?S

The third related paper, Bagnoli and Lipman (1989), considers a mechanism design
problem: a game form is constructed that fully implements, via a refinement of subgame

perfect equilibrium, the core of a public goods economy in which the public good is

M le.if W(0)—1|<e forasmall £>0.
22 proposition 1 implies this: since A =0, ¢(0)=V > a, and so T =0 for any 6 >0.

23 It is easy to check that the equilibria we study, such as those of Proposition 1, are
approximated by equilibria of perturbations of our game in which the identity
cost-of-contributing function is replaced by a nearby but strictly convex W.

24 Let W(z;) = z;. The project should be completed, but neither player is willing to do it
alone. if %X* <V<X . Assuming this, the project cannot be completed in one period,
since the players must alternate in their contributions. But the following is an
equilibrium that completes the project in two periods. Let R = R(r) be the remaining
amount needed to complete the project at the start of period 1 (so R is Admati and Perry’s
X). If R<R =(1-6)V, completing the project by contributing R is the dominant
strategy of the player whose turn it 1s. If it is player 1’s turn, his strategy 1s to contribute
3=Rif R<R, z=01if RR<R<V,and zy =R-V if V<R.Ifitis player 2’s turn,
he contributes z, =R if R<V, and z, =0 if R>V. It is easy to show that for any
5>(X - V)/V, these are MPE strategies. According to them, player | contributes
X" —Vin the first period, and player 2 completes the project by contributing V in the
second period. The equilibrium payoffs are U; =(1+ )V — X" and U, =0.

25 Nonetheless, it is interesting to recall, from Theorem 4, that our game can have simple
equilibria in which the players do take turns contributing, on the equilibrium path.
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available only in discrete levels. The game form resembles a dynamic voluntary
contribution game, but with a central authority required (committed) to halt the process in
any period in which contributions are too small, and to refund in any period contributions
that fall short of the amount needed to increase the public good to the next level. Hence,
their result shows that adding a third party with these relatively small commitment
capabilities can overcome free riding. In contrast, our purpose has been to determine what
happens when a central authority is entirely absent.

The discreteness of the public good in Bagnoli and Lipman (1989) serves to
alleviate free riding: a player has no incentive to under-contribute if he believes the others
are contributing so much that he needs to contribute only a little in order to make the
public good jump to its next level. This is similar to the role played by our benefit jump at
completion, which allows the cumulation to reach a size sufficiently large that the project
can be completed in one period. Our asymptotic completion result for the case b=0,
Proposition 2, is foreshadowed by an unpublished result in the Appendix of Bagnoli and
Lipman (1987), proved there for a strictly concave (and hence non-discrete) public good

production function and two players.

8. Conclusions

We have shown that in a simple, complete information model of voluntary
contribution to a public project, dynamics can allow the alleviation of free-riding
inefficiency. This is despite the fact that creating future contributors upon which to free
ride creates incentives for current individuals to lower their contributions, as previous
authors have observed. In the equilibria we examine, this increased incentive to free ride
is countered by the ability of the future potential contributors to punish past free riders by
lowering their own contributions.

Public institutions often hold fund-raising campaigns over periods of weeks or
months, and often the public is periodically exhorted to contribute by informing it of the
amount that is currently required to meet the campaign goal. This is roughly consistent

with the nature of the equilibria we have studied. Another set of consistent evidence
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arises in experimental work. In particular,?® Dorsey (1992) conducted experiments in
which players could contribute to a public good in each of several periods, with the
current level of the aggregate cumulation posted each period. One of the findings is that
allowing contributions to be made over time increases their ultimate level, especially if
they are nonrefundable and the production function has a “provision point.”

The games we have studied are probably the most obvious simple models of
dynamic contribution to a public project by a sizable number of individuals. The
assumptions that each player can see the aggregate but not the individual contributions,
and that each player can contribute in any period, seem realistic. Less realistic, at least in
some settings, is the assumption that information is complete. However, allowing
preferences to be private information in our dynamic model will make it very
complicated, as then a player’s current contribution will serve the auxiliary role of
signaling his private information. We choose to make no contribution now to this

extension, leaving it instead to future contributors.

26 The general experimental literature on public goods is surveyed by Ledyard (1995).
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Appendix A: Proof of Theorem 2

Given the Nash equilibrium outcome g, the contribution rule s is defined by (4.1). We
now define the transition function F; of player i. His machine starts at ¢,(0) = qO. [t stays

at this state if no publicly detectable deviation from g occurs:
E-(q,»,:l«.Z,X,I)EqO if q,-:q() and Z = ng(r). (al)

It changes from the normal to the grim state if a deviation occurs and subsequently the

cumulation is still less than X - c(0):
F(q°.z.2.X.0)=q% if Z#ng(t) and X <X~ —¢(0). (a2)
It remains in the grim state if the cumulation is less than X - c(0):
Fg™.2.2.X.0=¢% if X<X —c(0). (a3)

Transitions to qu or qlo occur if an aggregate contribution reveals a deviation and
results in X € C. These transitions depend on whether i =1 or i>1. In the latter case,
player i’s machine moves to the guilty state if the aggregate contribution of the others is
what it should be if none of them deviated (and so player / must have deviated). But if
their aggregate contribution proves that one or more of them did deviate, player i’s

machine moves to the innocent state. Thus, for Z # ng(t), X € é‘ and > 1,

01 .
if Z. #(n—-Dg()
q ifZ, =(n—1)g(n,
and for Z # 0, Xeé,andi>l.
00 g"" ifZ;#0
F(g" .. 2.X.H)=1", . (a5)
q ifZ, =0.

In contrast, player 1’s machine state depends directly on his own previous
contribution, not that of the other players. If his machine starts at qoo’ it moves to the
guilty state if he deviated and to the innocent state if he did not: for Z# 0 and X € C.
¢ ifz =0

(a6)
g ifz #0.

Fl(qoo,;,-,Z,X,r)z{
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If player 1’s machine starts at qo. it moves to the innocent state if he did not deviate and
possibly only one of the others did: otherwise, with one knife-edged exception. it moves
to the guilty state: for Z # ng(r) and X € C.

¢"' ifz =g(r)and Z, = (n—2)g(1)

F(q°.z.2.X.0=4¢"" ifzy=(n—Dg(H)and Z; =0 (a7)

qlo otherwise.

The guility and innocent states are sinks:
Figi3.2. X0 =q; if g€ (¢ g% (a8)

For completeness, we set F(g;,z;,Z,.X.1)=¢q; for X 2 X"
Note that in any period #, precisely one of the following holds: (a) ¢;(1) = qo for all

0l
}

ie N, (b) g1 :qoo for all ie N, or (¢) ¢;,(1 e {qlo,q for all ie N. Hence, given

that the transition functions are known, the following statements are true:

(F1) If gq;(1) = qO (g (1) # qo), player i knows q;(t) = q() (q;(1)# qo)f()r all j#1.
(F2) If ¢;(t) = (q,(l) # q ), player i knows q;(t) = (qj(t ¢q )fm all j#1.

We now specify the probability function P(-1¢;,Z;,t) representing player i’s beliefs
about the contribution vector z_;(7) of the other players in period f given that his machine
is in state ¢ () = ¢;, and he observed that the aggregate contribution of the others was
Z,(t) = Z;. The first requirement is needed for structural consistency:

j#i
We next specify that if a player’s machine is at qo. and the player observes the others

contribute Z; = (n—1)g(1), then he believes each of them contributed g(7):

B(3; = g(0)1¢"(n=g(n).1) =1 forall j#i. (a10)

I The middle line of (a7) is the exception. It has a role, and is distinct from the first line,
only if all players j # 1 deviate to zj =0, and player 1 deviates to 7; = (n—1)g(r). (This
needs 1> 2.) In this case players j #1 see Z =(n- l)g(t) and so each one thinks he is
the only deviator. By (a4). their machines move to q . Player 1, realizing this, realizes
that in the next period the others will contribute enough to finish the project, and so he

will not contribute, in accordance with his machine moving to q01
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This is necessary for the beliefs to be Bayesian consistent with the strategies: a player
whose machine is in state qo in period t knows that the other players’ machines are also
in state qo, and hence that each of them is supposed to contribute g(r). If their aggregate
contribution does not prove any of them deviated, player i’s beliefs must put all
probability on each of them having contributed g(t).2 Condition (al0) thus insures that
beliefs are correct on the equilibrium path.

If g, € {qo,qOO}, and Z; proves to player i that at least one of the other players

deviated. his beliefs depend on his identity. If i > 1. he believes player 1 deviated:

P(z = ()14°.Z.1) = 0 for Z,# (n—D)g(r) and i> 1, (all)

P(z=016%.2.1)=0 for Z =0 and i>1. (al2)

If i =1, and possibly just one of the others deviated, he believes only player 2 deviated:

Pz, = 801" Z.1) =1 for Z; 2 (n—=2)g(1) and j>2. and (al3)

P(z,=014%.2.t)=1 for j>2. (al4)

The case not covered by (al3) and (al4) is that in which player I learns that two or more
of the other players deviated, which happens if ¢;(1) = qO and Z; <(n-2)g(t). In this

case we require, so long as Z, is positive, that the beliefs of player 1 be atomless:

R(z =alq’.z.1)=0forall @0, j>1.and 0<Z <(n=2)g(0). (al5)

Conditions (a9) and (al0) insure structural consistency and. after histories ending
with each machine being in either the normal or the grim state, Bayesian consistency.
Conditions (all) - (al5) concern beliefs after deviations, for which Bayesian consistency
is not an issue. We have imposed no restrictions on the belief functions after histories
ending with ¢;(1) € {qlo,qm} for all i e N, since a player’s beliefs about the contributions
of the others after such a history are irrelevant (as we shall see). We henceforth let

(A.....P,)) be any belief profile satisfying (a9) - (al$).

2 Similarly, (a9) implies Bayesian consistency at the end of a period 7 in which each
machine is at qoo. For then player i expects the others to contribute zero, and (a9)
requires him to put all probability on this event if indeed Z;(r) = 0.
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If the others use ((s,F;));,,, player i’s optimal action after any history depends only

00
}

JEL
on his beliefs about the current states of their machines. His beliefs if g,(¢) € {qo,q are

given by (FI) and (F2) above. The following lemma establishes them otherwise.

Lemma Al. For all i € N, if plaver i knows that each player j # i uses strategy (s.F;),

and plaver i has beliefs P. satisfving (a9) — (al5), then for all t < T,

(F3) If q,(1) = qlo, player i believes g;(1) = q()l forall j+#1i, and
(F4) If q;(n) = qOI, plaver i believes q;(1)= qm for some j #1.

Proof of (F3). Since qm is a sink, if player i ever believes the machines of the others are
at qm, he will subsequently always believe they are at qm. We can thus let 1 be the first
date at which player i’s machine is at qlo. Thus ¢, (r—1)e {qo,qoo}. Let Z=Z(t-1),
Z,=Z(t-1), and ¢q; =q;(r—1). Also let s=s(q;,X(r—2),r—1) (which is either O or
g(t—1)). By (FI) and (F2), player i knows the states of the other machines are all the
same as his in period r—1. Hence, he knows that both he and each other player was
supposed (in equilibrium) to have contributed s in period r —1. By (a4) — (a7). a deviation
occurred that caused Z #ns, and it put X(r—1)€ C.

Suppose i>1. Then by (a4) or (a5), player i deviated in period t—1. and his
evidence regarding the others., Z; = (n—1)s. is consistent with none of them having
deviated. So by (alO) or (a9), player i believes no other player deviated:
F(Zj=slg;,Z,t1=1)=1 for all j=i. He thus believes that each player j#i saw an
aggregate contribution by the players other than j of ZJ- =z, +(n—=2)s# (n—1)s. This
implies. by (a4) or (a5) if j#1, and by the first row of (a7) (note that
Z, = +(n=2)s2(n—-2)s)orby (a6) if j =1, that player i believes ¢;(r) = ‘101 .

Now suppose =1 and g; :qOO. Then z; #0 by (a6), and so player | knows
Z‘/- # 0 foreach j# 1. Player | thus knows, by (a5), that qj(r) = qu.

Now suppose i =1 and ¢; = qo. Three cases must be considered, depending on Z;.

For the sake of brevity, we continue to use s for g(¢r—1).
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Case 1: Z, =0. In this case player | knows z; =0 for all j#1. and hence that

Z; =z forall j#1.Because Z; =0, the middle line of (a7) implies z; # (n —1)s. Hence
Z; #(n—1)s, and so by (a4), player 1 knows ¢;(1) = qm forall j#1.
Case 2: 0< Z; <(n—2)s.By(al5), foreach j#1,

R|Z, =(n=Dslg. Zt-1|= R[5 =Z-(1-Dslgq,. 2.0 -1]=0.

So by (a4), player | believes with probability one that ¢;(1) = ¢* forall j#1.

Case 3: Z;2(n—2)s. Now z; #5s, by ql(t):qlo and (a7). By (al3), player 1
believes player j > 2 contributed Zj- =y, and so believes Zz =z +m=2)s#(n—-1s1s
what player 2 sees. By (a4), player 1 thus believes ¢, (1) = q()l. He also believes j>?2

sees Z/- =7- Ej =Z7Z-s#(n—1)s, and so by (a4) believes q;(1)= qO] .l

Proof of (F4). As in the proof of (F3), we can assume ¢ is the first date at which player i’s
machine is at qm, and so ¢;(r—1)e {qo,qoo}. We again let Z=Z2Z(1-1), Z, = Z;(t - ).
g; =q;(t=1), and s=1s(q;, X(t—2),1—1). Again player i knows the states of the other
machines are all the same as his in period t —1, and hence that each was supposed to have
contributed s. By (a4) — (a7), a deviation occurred so that Z # ns and X(t—1) € C.

Case 1: i>1 and ¢ :qoo. Now (a5) implies Z; # 0, and so (al2) implies that
player i is sure that Z; # 0. Hence, by (a6), player i believes ¢, (1) = qlo.

Case 2: i>1 and g¢; = qo. (Again we use s instead of g(r—1).) By (a4).
Z; #(n—1)s. So by (all), player i believes with probability one that Z; # 5. Player i also
believes with probability one that % #(n—1)s or Z,#0, for otherwise
Z. =3 +Z -z =3 =(n—1s, acontradiction. So by (a7), player i believes ¢,(f) = g

Case 3: i=1 and ¢; = qoo. By (a6), z; =0. By (al4), player | believes with
probability one that Z;
and so by (a5), believes ¢,(¢) = qm.

=0 for j>2. Hence. player | believes 22 =7 +2j 7.=0,

Z
>27

Case 4: i=1 and g, = qO. By (a7), there are two subcases to consider. The first is

=5 and Z; 2(n—2)s, in which case (al3) implies that player 1 believes Z; = for all

Jj>2. Then player 1 believes 22 =(n—-1)s, and so qz(r):qlO by (a4). The second
subcase is z; =(n—1)s and Z; = 0. In this case player 1 knows Z;= 0, and hence that

Z;=z=(n-Ds, forall j#1.So by (ad). player I knows g ;(t) = qlo forall j=1.1
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We have now defined the assessment ((S’E)’Pi)ieN’ and it satisfies Bayes consistency
(and more) by construction. We complete the proof of Theorem 2 by showing it 1s
sequentially rational. In particular, we show that no player believes he can gain from a
one-shot deviation after any history. We can restrict attention to histories that leave time
to contribute and have not finished the project. (After other histories, not contributing is a

dominant strategy. and this is in accordance with s.) So, let (:,—(T),Z(r)) [ be a history

<
observed by player i with 1< T and X(t—-1)< X . If the subsequent contribution

sequence is (3(7)) and it wastelessly completes the project in period 7T <oo. the

721’

player’s (present value) continuation payoff (see (2.8)) is
T
US = 267"[/12(@ - zf,-(r)] + 8T .
=t
Given a one-shot deviation z,(¢) after this history, the beliefs of player i about (5(7))121
and T depend on his beliefs about the states of the other players’ machines in period 7.
and the publicly known 1, X(r—1), and Z(1). By (F1) - (F4), his beliefs about the

machines of the others depend only on his machine’s state.
: _ 0
Case q;(1)=q".

By (F1), player i knows g;(1) = qo for all j € N. He thus knows that if he does not
deviate. every player’s continuation contribution sequence will be (g(T))rzz and the
project will be completed at T = T(g). This gives the player the same continuation payoff
as in the grim-g equilibrium after 7 — 1 periods. If instead player i unilaterally deviates to
z; (1) # g(1), each j =i will contribute zj(t) = g(t)and observe Zj(t) =z (1) +(n—2)g(r).
Thus, Z(r) # ng(t), Zj(r)i(n—l)g(t), and Z,(r)=(n—2)g(t), This implies, by (a2),
(a4), and (a7), that either g;(r +1) = qoo forall j#i,or g;(t+1)= qm for all j#i.In
cither case. (4.1) implies that the deviation brings to a halt all future contributions by
players j#i. just as it would in the grim-g equilibrium. In period 1 player i knows this
will be the consequence of his deviation, since he knows the machines of the others are
presently at qo. So he must believe the deviation is unprofitable, since it is unprofitable

in the grim-g equilibrium.
Case q,(1)= (100.

By (F2), player i knows g;(1) = qoo for all j € N. So he knows that if he does not

deviate, no more contributions will be made and his continuation payoff will be U; =0.
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A one-shot deviation z;(1)>0 yielding X(r) < X" —¢(0) causes all machines to stay at
q()()’ and no subsequent contributions will be made. Player i, realizing this, knows his
continuation payoff will be (A —1z(t) <0, and so regards the deviation as unprofitable.
If the deviation causes X(r) € C, then (a5) and (a6) imply that ¢;(r +1) = q()l forall j #i.

since every player j #i will contribute z;(r) =0 and see Zj(t) =Z(1y=z(t)# 0. Player

i
then knows his continuation payoff will be (recall that ¢(0)=b/(1—- 1))
U = A=z +8|(A= (X" = 5= Xt =)+ 4
- (- /’L){(l 85N +3(X ™~ e(0) - X(r- 1))} <0,
and so this deviation is unprofitable. Finally, a deviation that yields X(¢#) 2> X~ must be
worse than the smaller contribution that yields X(f)= X" ie., the wastelessly completing

contribution z; = X = X(r-1). Player i/ knows the latter contribution is unprofitable

because he knows it yields a continuation payoff of
Uf =A=D(X = X(r=D)+b

= (1 —A)(x* —(0) - X(1 - 1)) <0.

Case q,-(r):qlo.

By (F3), player i believes ¢;(r) = qOI for all j#i. Since qm is a sink, he believes
no other player will contribute in any period 721. As X(r-1) € C. the amount it takes to
complete the project, X" — X(1—1), does not exceed ¢(0). So by (3.1), player i’s best
reply is to complete the project immediately: s(qu,X(z —.=X —X(r-1).

Cuse g;(1) = qm.

By (F4), player i believes ¢;(1) = qm for some j #1i. So he believes the project will
be completed without his help, and so his best reply is s(qm,X(t -h,=0.1
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Appendix B: Proofs for Section 6

Lemma B1. Expressions (6.1)~(6.4) define a MPE strategy of the game with T = o and
b>0 ifand onlv if X <O0.

Proof. Expressions (6.1)-(6.4) define a Markov strategy if and only if X_ <0. We must
show only that if X_ <0, then y is a MPE, i.e., that starting from any X, a player should
use w if the others do.

Let k >0 and suppose X €[X,,,X;). Define

X(X)= X, —(hx, - X). (bl)

If a player contributes z; 20 in the current period. and the other players use v, the
cumulation rises to Y = }A((X)+z,v. We view the player as choosing Y instead of z;,
subject to the constraint ¥ 2 X(X). Choosing Y > X is strictly dominated, and so we can
restrict attention to Ye[)A((X),X*]. If the player chooses Y from this interval, and

subsequently joins the others in playing ¥, his continuation payoff is
WY, X) =AY = X)+ BY)(1=8)b— (Y — X(X)) +8V(Y), (b2)

where V and f are shown in (6.6) and (6.7). According to v, the player should choose
Y = X,. Hence, we must show that ¥ =X, maximizes W(,X) on [)A((X),X*]. This
finishes the proof, as it shows that no one-shot unilateral deviation from y is profitable.

On the intervals [X,..;.X,). V and hence W(.X) are continuous. By (6.6).
V/(Y) =1 — 2 on these intervals. So for ¥ € [ Xy}, X,),

Wy (Y. X)=[(1-8)A+81]-1<0. (b3)

This shows that on [}A((X),X*], W(-.X) has a maximizer, and each of its maximizers is in
the set {X(X). X . X, ... X. Xg =X }.

Using (6.6) and (6.8), we see that W(X,,X)=V(X) and W(X(X),X) = Vd(X). By

construction, V(X,,;) =V (X, ). Forany o€ (X;,1,X;),

Vi -vien=tin-a-6€r-8i1>o0. (b4)

Thus W()Z(X),X) <W(X,,X), and so {X,....,X,} contains a maximizer of W(-, X). For



A9

WX\ X) = WX, X) = (1= D)Xy = X)) — (1= B(X )b
+O0[V( X)) — V(X )]

(b5)
= (1= VK[SV(X) + (1= 8)B(X,)b]

+8[ClOV(X,) + (1= &)B(X)b] - VX)),

using (b2) for the first equality, and (6.9) and (6.10) for the second. From (6.3) and (6.4),
(1= A)K ~=14+Cd =(n—-1)(1-95). Using this in (b5) yields
WX, . X)— WX X) = (n— D(1= 8[SV(X) + (1= ) B(X,)b]

(b6)
>0,

where the inequality follows from b >0 and V(X,)> 0 (the latter follows from (6.9)).

As {X,....,X,} contains a maximizer of W(, X), (b6) shows that X, is a maximizer. B

Lemma B2. Define, for A # %

5"5 (1—/1)(1—1[7 (b7)
(n-1(A-a.
Then if b> 0,
(i) for A > %: X.<0iff 6> 5:6>0 iff c(0)<a, and S<1 iff V> (2—%)(1.
(i) for A<Lt: X_<0iff §<8; §>0iff c(0)>a;and §<1iff V<(2-1ya.
(iii) for A=11 X <0 iff c(0)>a iff V>(Q2-1a.
Proof. From (6.2), X, = — if 6C 21, and otherwise X_ = X" — A(S), where
A5) = K0 nb (b8)

1-8C 1-A-(n-DA-H3’

Hence. X <0 if and only if A(8)<O0 or A(d)> X
If A(O) is finite, signA’(S):sign(l—%). The equation A(d)= X" has a unique

solution. the & given in (b7), if and only if A ;t%. Note that A(0)=nc(0). Figure Al

illustrates, assuming c(0) < a.
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Case A< I/n Case A> |/n
A(9) |
A(0) |
— 4 X*=na X*=naq 4~ — — |
I nc(0) nec(0) |
‘ 5 — o
§ 0 0 5
| A(S)
|
Figure Al |
I

If A(l) is positive, then A(1)>X* if and only if b>(2—"—z)a—n).a, and this last

inequality is the same as V > (2 - ’]—’)a. Each part of the lemma now follows. B
Before proving Corollary 4, we record the following fact:
(1 . 1 —a(
lim n(o) =lim /866 = ( ; ) . (b9)
8- In8C)) s 1/8+%/C ) V-@2-Da-b

The first inequality in (b9) follows from L’Hopital’s rule, justified by the observation that
(6.3) and (6.4) imply 6C > 1 as d > 1.

Proof of Corollary 4. By Theorem 3, we nced only show that the time to completion if y

1s used converges to L. By (6.2), the completion date is the smallest & satisfying

A(a)[l—(SC)"”]z X",

where A(0) is defined in (b8). The completion date is the first integer greater than or
equal to the k for which the above inequality 1s an equality, which is
Infi - X"4®)"]

In(8C) -

(8) = (b10)

(The numerator is well-defined since, by the proof of Lemma B2, cither A(d)< 0 or
A®)> X)) Expressing £ in terms of ¢ yields ((d) = —r ' In(8). The time to completion
is between (T(8) +1)¢(d) and (T(8) + 2)#(d), and hence has the same limit as



All

m[l - X*A(S)“]ln(é)
-rln(SC)r '

L(8) = (u(d) + 1){(d) =

Using (b8) and (b9), we see that

a(®)inf1- X" a()™]
lim L() = |
51 r[V—(2—;)a—b]

n=l — -1 -
a( n )[ln(v (2 ”)(l) ln(b)] = L*. [ |
r[V— (2 —%)“ B b]

Proof of Theorem 4 for 6 (y,1). With 6 <1, we nced to show only that one-shot
deviations are unprofitable. Let the current cumulation be X € [)A(,\,;l,)A(,\,) for some k> 1,

and consider player i e N.
Case i=, k. In this case player i is supposed to unilaterally bring the cumulation up to
Xk. He can raise it to any level Y>2X. As Y 2 X" is strictly dominated, we restrict
attention to Y € [X,X"). Choosing such a Y and then joining the others in playing o gives
the player a continuation payoff of
W Y, X) = (A— DY = X)+6Vi(Y). (bll)
On each interval [XK_I,}A(K.), W'(-,X) is continuous and decrcasing.®* A maximizer of
W'(,X) on [X,X*) 1s thus in {X,)A(k,)%,‘.ﬂ,,..}. We show that Y = )A(k is a maximizer.
Note that W'(X,X)=48V,(X), and W'(X,,X)=V.(X,). Thus, V(X;)=0 implies
Wi(X,X) < VVi()%k,X). This shows that a maximizer of W'(,X) is in {)A(k,)A(,\.H,...}.
For x >k, let A, = W(X,,,,X)—- W(X,.X). Hence,
Ap =(A=1)(Xpyy = X ) +0[Vi(Xyy) = ViK1 (b12)
If i =, x+1,then Vi(}A(K) =0 by (6.16). In this case, using (6.15),
Av = (A= DXy = X) + V(X)) = Vi(X,).
This shows that A, =0 if i =, Kk +1. Now suppose i #, k +1. Then by (6.15),

Vi(/\;r():’l()zxﬂ_)A(K)”Févi()%fwl)' (b13)

a By (6.15), Wi(-X)=(1-8)A—-1)<0 if i=, k, and W(.X)=(1-8)A—-1<0 if
i#, K.



Al2

Substituting this into (b12) yields

Ay = Vi(Re) = [Rny = X + V(X)) (b14)

Note that )A(Hl >)A(K and A=V/nae(0,1), and so, using (bl3), V,v(}A(K)> V,'()A(KH).
Therefore, (b14) and (b13) and imply

Ay < Vi) = [A Ry = K)+ Vi(Xey)| = 0.
We conclude that A, <0 forall Kk 2k, and hence Y = )A(,( maximizes W'(;, X).

Case i #, k. In this case, in the current period, player i is not supposed (o contribute and
some other player raises the cumulation )A(k. If player i contributes, he raises the
cumulation some Y 2 }A(,(. As Y2X s strictly dominated, we restrict attention to
Ye [Xk,X*). Choosing such a Y and then joining the others in playing o gives the player

a continuation payoff of

WY, X)= A(X, = X)+ (A= 1)(Y = X))+ 8Vi(Y)
(b15)

=AX, - X)+ W' (Y. X,),
where W'(-,) is defined in (b11). We must show that ¥ = )A(k maximizes W/"(-,,\A’,\.) on
[)A(k,X*). We just showed that Y = )A(k maximizes W’(-,X) on [X,X*) for any
Xe [)A(,\,_],)A(k). Hence, as W’(Y,X) is continuous in X, Y= )2,\. maximizes W'(-, )A(k) on
[Xk,X*). So (b15) implies that ¥ = }2,\, maximizes W"(-,)%k) on [)A(k,X*). This finishes

the proof for 6 < 1.

Proof of Theorem 4 for d=1. Even though d=1, o is well-defined and yields
)A(k =(1- }/k)X* — X", Each V: is also well-defined, with finite nonnegative values.

Let i e N, and let player i’s and the aggregate current cumulative contributions be
x; and X. We show that conditional on starting from (x;,X), 0; is a best reply to o_,.

If x>Xx", o; agrees with the conditionally dominant strategy of ncver
contributing, and so it is a conditional best reply to o_;. We now assume X < X"

When o is played starting from (x;,X), X(1) = X", Let x; be the corresponding
limit of player i’s cumulative contribution. Hence, conditional on having reached (x;,X)
and then playing o, player i’s payoffis U; = AX ™ — x;".

Let &, be a pure strategy best reply to o_;, conditional on having rcached (x;, X).

Let the sequences of player s and the aggregate cumulative contributions when (6,,0_;)
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is played, starting from (x;,X), be {x;(1)} and {X(7)}. Let the limits of these sequences
be % and %=, 1f X~ > X" then, given the nature of o_;, at some date T player i
contributes more than X - X(T — 1), which is strictly dominated. Hence, X <x.

Suppose X~ = X*. The nature of o_; then implies that starting from (x;,X).
player i contributes no less when he uses &; than when he uses 0,0 X 2x; . His
conditional payoff when he uses &, U = AX~ — X, is thus no greater than it is when he
uses 0;, U; = AX" - x. Hence, 0; is a conditional best reply to 0_;.

Now suppose X~ < X" Then for some k>1, X~ €[X,_;,X,). The nature of 0_,
implies that i =, k, and that 7 <o exists for which X(1)e [)A(,(_l,f(,\,) for all 72 7: only
player i ever contributes after date 7. Now, modify &, to a strategy G, by replacing it
with o, at all dates 7> 7. According to 0;. player i at date 7+ 1 raises the cumulation
from X(%) to }A(k, whereupon it is raised successively to )A(,Hl, )A(,Wz, .... and converges

to X . This gives the player a continuation payoff of Vi()~((€')). and so his payoff

conditional on having reached (x;,X) and then (G;,0_;) being played 1s
U; = M (D)= %(D) + Vi(X(@)
KT - E - AMET - X))+ (57 - (D) + V(X®)
=0+ (1= V(X - X(®) + (XD,

where the last equality uses ¥;” —X;(7) = X~ - X(7). Since Vi(X'(%)) > 0, this shows that
U, > U;. Hence, &; is also a conditional best reply to o_;. The argument of the previous
paragraph can therefore be applied with 0; replacing G;, since the aggregate cumulation
does converge to X" when (G;,0_;) is played after (x;,X) is reached. This finishes the

proof that ¢; is a conditional best reply to o_;. ||



