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EXPLAINING POSITIONAL VOTING PARADOXES II; THE GENERAL
CASE

DONALD G. SAARI

ABSTRACT. A theory is developed to explain all possible positional voting paradoxes coming
from a single but arbitrarily chosen profile. This includes all pairwise voting cycles. all conflict
between Borda and Condorcet winners and rankings. all disagreement in outcomes among
positional procedures. and all discrepancies among rankings for any positional procedure as
candidates are dropped or added. The theory explains why each of the possible paradoxes
occurs while describing how to construct illustrating profiles. It is shown how to use this
approach to derive properties of other procedures based on positional voting methods. The
three candidate results of the companion paper [19] are extended to an arbitrary number of
candidates.

1. INTRODUCTION

In this and a companion paper (Saari [19]), [ explain all possible positional voting paradoxes
that can be generated by a single but arbitrarily chosen profile. Positional procedures are the
commonly used methods where points are assigned to candidates according to how each voter
positions them on the ballot. Familiar choices are the plurality vote where a single point is
assigned to a voter’s top-ranked candidate and zero to all others, and the Borda Count (BC)
wheren—1,n—2,...,n—n = 0 points are assigned, respectively, to a voter’s first, second, ...,
nth ranked candidate. This paper extends the (Saari [19]) results from three to any number
of candidates.

Among the problems caused by considering more candidates are to further complicate
traditional choice theory issues and to introduce new concerns. For instance, extra candidates
exasperate problems with cyclic and nontransitive pairwise outcomes, the conflict between
the BC and Condorcet winners, and differences in positional election outcomes. New issues
include understanding why the same sincere voters’ societal rankings of different subsets of
candidates can differ so radically. As an illustration, paralleling the pairwise voting cycles are
cycles of the three-candidate positional rankings. Explanations for all of this behavior, and
for anything else that can occur, follow from the approach introduced here.

1.1. Problems of the BC. One longstanding choice theory theme emphasizes the BC’s
notoriety to radically change the societal ranking when candidates are added or dropped.
Brams [3] nicely captures this with an example where the BC ranking is C > B > A, but once
X joins the race it becomes A > B > C > X. Brams reflects a widely held belief with his
comment that the BC behavior allowing A to vault to top place “when ‘irrelevant’ candidate
X is introduced [illustrates] the extreme sensitivity of the Borda count to apparently irrelevant
alternatives.”

The actual situation is much worse. To create far more perplexing BC behavior, consider
the nested subsets of candidates {c1,co,...,cn}, {c1,¢2,...,¢n-1}, ..., {c1,c2} obtained by
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2 DONALD G. SAARI

dropping one candidate at each stage. Choose a ranking for each subset; these rankings can be
selected randomly or even in a perverse manner to create a particularly disturbing example.
As proved in (Saari [11]), there are voters’ preferences where their sincere BC ranking of each
set is the chosen one. This, for instance, ensures a profile with the ten-candidate BC ranking
Co > C3 > cq > -+ > c1p > 1 even though the profile’s BC rankings of the other eight subsets
agree with c¢; > ¢a > ¢3 > --+ > ¢g. The rankings of the subsets strongly support ¢; as the
candidate of choice, but once the “essentially irrelevant candidate” ¢y is admitted, c; falls
to the bottom. Brams’ troubling example, then, only hints at the actual level of perversity
admitted by the BC.

This [11] result also extends other aspects of the BC’s so-called notoriety that were identified
by Arrow and Raynaud [2]. Arrow and Raynaud formalized appealing “sequential axioms”
which, essentially, impose conditions on the relative ranking of certain candidates when can-
didates are added or dropped. For instance, instead of insisting that the same two candidates
always are top-ranked, we might merely require their relative ranking to remain fixed as other
candidates are dropped from competition. As both Arrow and Raynaud and my [11] result
prove, the BC fails to satisfy their conditions.

To derive stronger assertions, relax the Arrow-Raynaud conditions so that the relative
ranking does not change “too much.” No matter what definition is used to quantify “too
much,” it must impose some restriction. Consequently, the [11] assertion proves that the BC
cannot satisfy even these more forgiving axioms.

1.2. Explanations. These seemingly devastating conclusions appear to indict the BC. But
before rendering judgement, we must understand whether these difficulties are peculiar to the
BC, or suffered by all positional procedures. If the latter, why? Which procedures are more
prone to these problems? Is this random appearing behavior restricted to nested subsets of
candidates, or is it a general phenomenon? What causes these behaviors? As a radical counter
suggestion, is this behavior sufficiently natural to signal that procedures may be flawed if they
always avoid these seemingly chaotic outcomes?

These and a host of other questions reflecting central concerns of choice theory finally
can be resolved with the approach developed here; many of the surprising answers counter
accepted beliefs. As described in [19], the approach divides profiles' into component parts.
Each component captures a particular election behavior. By describing a profile in terms of
its components, it now is possible to determine all of its paradoxical or positive behavior.
Central to this division is what I call the basic profile component; this is where all positional
procedures and the pairwise vote share the same election ranking and (normalized) election
tally over all subsets of candidates. In other words, no conflict of any kind occurs on the basic
portion.

The profile portions orthogonal to the space of basic profiles create what I call “profile
noise.” These are the profile components where, arguably, the outcome should be a complete
tie. Yet, subtle peculiarities of positional procedures deny this natural conclusion. So, by
understanding how different procedures behave on different components of profile noise, we
can explain all possible paradoxical behavior and create illustrating examples. Of particular
interest, we now can determine the subtle costs and tradeoffs involved in using any procedure
based on pairwise and positional outcomes.

Although these introductory comments paint a dreary picture where no procedure is reliable,
this is not the case. A fundamental conclusion of this paper is that the BC outcome for all
n candidates is the unique ranking to be trusted. In light of my recitation of disturbing BC

YA profile specifies the preferences of each voter.
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behavior, this surprising assertion requires explanation. Support for this claim comes from
the fact developed here that the BC outcome for n candidates is strictly determined by the
basic profile; this is where the rankings of all procedures over all subsets of candidates agree.
Consequently, all differences in the election rankings of other procedures and other subsets of
candidates are caused by forms of profile noise which do not affect the BC ranking of all n
candidates.

This assertion mandates that a particular type of profile noise generates the behavior of
[11] where the BC rankings can change with the subsets of candidates. This is correct, and
this noise requires the election rankings and tallies of all positional methods over all subsets
to agree with that of the BC. Thus, rather than being specific to the BC, all procedures suffer
this same disturbing behavior with the same profiles. Moreover, the theory explains that
this paradoxical behavior occurs because this particular profile noise emasculates the crucial
assumption that voters have transitive preferences. Namely, the contrary BC rankings of the
subsets of candidates manifest the dismissal of information about individual rationality. Notice
how this analysis surprisingly contradicts Brams’ generally accepted argument. It is the BC
ranking of four candidates which should be trusted because (as shown later) the conflicting
BC ranking obtained by dropping X manifests a weakening of the assumption of individual
rationality.

The BC rankings are immune to all remaining types of profile noise. But as this noise alters
the outcomes for non-BC positional methods, all remaining positional procedures admit more
kinds of paradoxical difficulties than the BC. In fact, rather than being viewed as “notorious,”
the surprising conclusion is that only the BC provides stability and consistency in outcomes.
As illustrated in Sect. 6.3 with the Arrow-Raynaud procedure [2], an unexpected corollary
is that this BC variation of rankings of subsets is sufficiently natural to cause worry about
choice procedures which do not exhibit similar variations in rankings as candidates are added or
dropped. (The theory identifies the source of the problem.) This assertion not only contradicts
widely accepted previous beliefs, but even contradicts a central research objective.

To extend results from [19], I use this profile decomposition to analyze criteria such the
Condorcet Principle for any number of candidates. Although the Condorcet Principle, “which
asserts that a candidate that has a simple majority over every other candidate should be the
social choice, has been accepted almost without question by a number of writers” (page 79,
Fishburn and Gehrlein [5]), we discover that it is highly flawed. This surprising conclusion
relies upon the fact that the pairwise vote dismisses valuable information concerning the
individual rationality of voters. But this dismissal of a crucial assumption forces the pairwise
and Condorcet outcomes to be suspect. (A closely related argument explains all cycles and
other non-transitive pairwise rankings.) If the measuring stick of the Condorcet Principle is
warped, how can we trust its measurements? In other words, if a procedure fails the Condorcet
Principle, is the procedure, the pairwise conclusion, or both flawed?

2. PRELIMINARIES

The notation is essentially the same as in my earlier papers. List, in any manner, the

n! possible transitive ways to strictly rank the n > 3 candidates {c1,c2,...,¢cn}. A profile
specifies the number of voters of the jth type, j = 1,...,n! The n candidates define 2" — (n+1)
subsets of two or more candidates; list them in some manner as Si1, S2,...,Son_(s41) Where

|S;j| denotes the number of candidates in S;. To represent the S; election tally as a vector in
a |S;j|-dimensional space, assign each axis to a candidate from S; in increasing order of the
subscripts. So, for S; = {c2,c4,¢5}, the (4,23,13) vector tally defines the ranking cq > c5 > c2
with the 23:13:4 tally.
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Denote a positional voting method for S; by voting vector w¥ = (wy,wo,... WS, = 0)
where wy =1, wj > w;y1 > 0 for j =1,...,]S;] — 1. This normalized choice (of w; =1 and
w|s;| = 0) simplifies the comparisons of procedures and results. Converting a voting vector
into its normalized form is trivial; e.g., if a four-candidate subset is tallied with (7,3,2,0),
the normalized version is (%, %, %, 0). Similarly, if the plurality method is used with {c1,¢3,¢4}
and the BC with {c2,c3,c4,c5}, then the normalized voting vectors are, respective, (1,0,0)
and (1, %—, %,O). In tallying ballots with w®7, w; points are assigned to a voter’s jth ranked

candidate, j = 1,...,|S;|, and the candidates are ranked according to the sum of assigned
points.
The system voting vector, W" = (wSl,...,wSZ"*““’) specifies that w is used to tally

the S; election, j =1,...,2" — (n+1). Let F(p,W") and F(p, W") be, respectively, the
lists of election tallies and election rankings over all subsets of candidates defined by profile
p with system vector W™, To illustrate with S; = {c1,¢2}, So = {c1,¢3}, S3 = {c2,¢3}, S4 =
{e1,¢2,c3}, the system vector W? = [(1,0), (1,0), (1,0), (1,0, 0)] requires the pairs to be tallied
with the majority rule (the voting vectors (1,0)) and the triplet with the plurality vote (voting
vector (1,0,0)). The fifty-voter profile p where three voters have preferences ¢; > ¢o > c3, 24
voters have ¢3 > ¢1 > c2, and 23 voters have ¢y > ¢ > c3 defines the election rankings

F(p,Ws) =[c1 > ¢, €1 > €3, 00 > €3, €3 > C2 > C1] (2.1)

Notice the conflict between the pairwise and plurality rankings. All of these inconsistencies
are characterized and explained. Also, I show which W™ choices minimize inconsistencies.

2.1. Words. The numbers and kinds of admissible election inconsistencies — paradoxes —
are staggering. To illustrate, Eq. 2.1 lists the election ranking for each subset of candidates
coming from the specified profile — I call such a listing a word. Different profiles can define
different plurality words so the number and kinds of different words measures the complexity
and randomness of a procedure. It turns out that the plurality procedure admits 351 different
words for n = 3 candidates and over a billion different words (1,041,048,450) for n = 4
candidates. This means there are over a billion different ways to list rankings for the six
pairs, four triplets, and the set of all four candidates, and each listing is the sincere plurality
election outcome for some profile. These numbers overwhelm any naive belief that the election
rankings of the pairs and triplets must agree with the election ranking of the four candidates.
(If this naive wish were true, only 50 plurality words could occur. Of these, 4! = 24 have no
ties, the rest have at least one tie vote.) The following assertion about all subsets of candidates
(not just the nested sets considered in [11]) demonstrates the severity of the problem.

Theorem 1. (Saar: [16]) For n > 3 candidates, suppose all subsets of candidates are tallied
with the plurality method. For each subset, choose a ranking. As these rankings can be selected
randomly, there need not be a relationship among any of them. There exists a profile so that
the voters’ sincere plurality ranking of each subset of candidates is the selected one.”

According to this theorem, there is a profile where its plurality rankings of all subsets with
an even number of candidates match ¢; > ca > ¢3 > -+ > ¢,, but its plurality rankings
of subsets with an odd number of these candidates reverse the ranking. A more disturbing
conclusion is that we could use a random number generator to select the ranking of each subset,
and {according to Thm. 1) there is a profile where the voters’ sincere plurality election ranking

*To use this result to compute the number of four candidate plurality words. notice that there are three
ways to rank a pair (including ties). thirteen ways to rank a triplet. and 50 ways to rank four candidates. Thus.
the total number of words is 3° x (13)* x 50. Similarly. the number of plurality words — election paradoxes -
for five candidates escalates over ten million billion fold to 3'° x {13)° x (50)* x 630 = 3.21 x 10%°.
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of each set agrees with the randomly generated rankings. This is not a ringing endorsement
for our standard tool of democracy.

2.2. Other procedures. This electoral nightmare caused by the plurality method is shared
by most methods. The next result uses the fact that W™ is a vector in a v(n) = 2" }(n
4) 4+ n + 2 dimensional Euclidean space. (The derivation of v(n) is in Sect. 10.) In R*™) an
algebraic set is a lower dimensional subset representing the zeros of a particular collection of
algebraic equations.

Theorem 2. (Saari, [16]) With the ezception of an algebraic set a™ C R¥™ | all other system
vectors in R*(") have the same property as described for the plurality vote in Theorem 1.

Only the highly exceptional W™ tallying procedures in ' offer any consistency in outcomes
with election relationships. The o' entries and election relationships are described.

3. DIVISION OF VOTING VECTORS

As it will be shown, all paradoxes manifest the ways positional procedures treat different
kinds of profile noise. In a natural manner each subspace of profile noise defines an associated
subspace of positional procedures; these are the procedures which react to this particular
kind of noise. Thus, accompanying the decomposition of profiles is a dual decomposition
of positional methods. To develop this duality, I exploit the linearity of F(p, W") in both
variables. This technical description is fundamental for the profile decomposition which starts
in the next section.

To illustrate F’s linearity with respect to the voting vector, suppose a four-candidate elec-
tion is tallied with both (5,2,1,0) and (2,1,0,0). Because (9,4,1,0) = 2(2,1,0,0)+(5,2,1,0),
the (9,4,1,0) election tally is the same as adding twice each candidate’s tally from the
second election to her tally from the first one. In normalized form, the computation is
(1, %, %, 0) = %(1, %, %, 0) + (1, %,O 0). Implications of the horizontal decomposition follow.
3.1. Horizontal decomposition. A n-candidate voting vector is a convex combination of

the (n — 1) votmg vectors {v"}” ! where vi’s first j components are ones and the rest are
zeros. (So, v} represents those n Candldate electlons where we vote for j candidates.) Clearly,

the convex hull defined by {v}'}"7; ! includes all possible (normalized) voting vectors for n
candidates. Denote this n- candzdate pyramad of voting vectors by

n—1 n—1

P = {w" ZA VA >0 2/\ =1}. (3.1)

The P™ dimension of (n — 2) reflects the n — 2 weights needed to define a n-candidate voting

vector. The BC voting vector b" = nil i llv" is at the P™ barycenter.
To illustrate with the ten-voter profile
Number Preference Number Preference
1 A-~B»>C»>D 1 D>~A>B>A (3.2)
2 B>~A>C>D 3 D>~C>B>A '
3 C>A>B>D

the vi = (1,0,0,0), vi = (1,1,0,0), and v} = (1,1,1,0) respective tallies are (1,2,3,4),
(7,3,6,4), and (7,10,9,4). A P* voting vector is expressed as Z )\]v], so its election tally
for the profile is A1(1,2,3,4)+A2(7,3,6,4)+X3(7,10,9,4). All electlon tallies are in the triangle

(called the procedure hull, Saari [15]) with vertices defined by the three {v?}?zl election tallies.
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The b* outcome is at the barycenter (where all A; = %) and elementary algebra proves that
this profile allows each candidate to win when appropriate positional voting procedures are
used. Similarly, there is a ten candidate profile p where its procedure hull — the F(p, —) image
of P10 — has over 84 million different election rankings as the choice of a tallying procedure
changes (Saari [15]). This significantly extends earlier results (e.g., Fishburn [4]) limited to
asserting only that there are profiles which admit two different outcomes.

3.2. Vertical connection. Accompanying the horizontal procedure hull connection is a ver-
tical relationship (Saari, [17]) relating election tallies for all k-candidate subsets with certain
election tallies for subsets with more candidates. To illustrate with n = 3 and k = 2, a voter
with preferences c1 > c2 = c3 votes in the following manner in the three pairwise elections.

Candidates | {c1} | {c2} | {e3}
{Cl,CQ} 1 0 -

{c1,¢3} 1 — 0 (3.3)
{025 CS} - 1 0
Total 2 1 0

The sum of votes this voter gives a candidate over all pairs equals what he assigns her in a
BC election. Thus (along with neutrality and the fact that each pair is tallied with the same
voting vector) a candidate’s BC election tally is the sum of her two pairwise election tallies
from contests against candidates in the same subset; the normalized b? tally is half this.

As the Eq. 3.3 summation property extends to define the BC vector for n candidates,
the normalized b™ outcome is the sums of pairwise outcomes divided by (n — 1). To il-
lustrate, the pairwise tallies of Eq. 3.2 for {4, B}, {A,C}, {4,D}, {B,C}, {B,D}, {C,D}
are, respectively 5:5, 4:6, 6:4, 4:6, 6:4, 6:4, so the BC vector tallies for all candidates are
(5+4+6,5+4+6,646+6,4+4+4) with a b* vector tally (5,5,6,4). Similarly, the b>
vector tally for {4, B,C} is %(5 +4,5+4,6+6).

An identical Eq. 3.3 summation argument shows that when the same k-candidate voting
vector w¥ is used with all k-candidate subsets, it defines voting vectors for subsets with more
candidates. In this way, for instance, the plurality election outcomes over all three-candidate
subsets uniquely determine the (3,1,0,0) four-candidate outcome, while (1,1,0) determines
the (3,3,2,0) election rankings. (To show this compute the number of points a voter with
preferences A = B » C > D assigns each candidate over the four three-candidate elections.)
This summation approach, then, naturally associates the three-candidate plurality vector
v} with the four-candidate voting vector %(3,1,0,0) = (1,%,0,0) and v3 = (1,1,0) with
(1,1, %,0). To illustrate, the plurality tallies of Eq. 3.2 for {4, B,C}, {4, B, D}, {4,C, D},
{B,C, D} are, respectively, (2,2,8), (4,2,4), (3,3,4), (3,3,4), so the (3,1,0,0) tally of (2 +
4+3,2+2+3,6+3+3,44+4+4) is obtained by adding each candidate’s tallies from her
three three-candidate plurality elections.

The summation approach defines a mapping

g :PFL PR k=3, ,n. (3.4)

which expresses a class of (k — 1)-candidate voting vectors as

k-2 k-2
W= " NavED, Yo =1 (3.5)
i=1 j=1

(Function gy, is defined over one copy of P*~! because the same voting vector is used over all
(k — 1)-candidate subsets. Technical extensions are reported elsewhere.)
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The only restriction imposed on the scalars {}; ]L;% in Eq. 3.5 is that they define a voting
vector. In turn, the election outcomes of the Eq. 3.5 voting vectors are uniquely determined
by the {}; };‘;% values and the {v;?"1 ;”;:12 election tallies. These dependencies define valuable
ordering and consistency properties.

Definition 1. The derived set of voting vectors in P*, denoted by D*, consists of all voting
vectors that can be expressed in the form of Eq. 3.5

The following theorem (which is proved in Sect. 10) collects useful structural properties of
the derived set D* and the pyramid P*.

Theorem 3. For k > 3, the voting pyramid P* is the convex hull of the k-candidate voting
vectors {vjk};‘;% The BC wvoting vector, b*, is at the barycenter of P*.

The vectors defining the derived set D* are
1
T k-1
where the j value is in the (j + 1) coordinate position. D* is a (k — 3)-dimensional subspace

which includes the BC voting vector b*. A normal vector for the D* affine space in P*, called
the deviation vector, s

at = (0, (k . 1),—(’“ 5 1),...,(—1)“1(: 3 ;) 0) (3.7)

Figure 1 shows the structure of derived set within P". The deviation vector points into the
portion of the pyramid which does not contain the plurality vector.

uj:gk(v]!"l) (k—1,...,k=1,7,0,...,0), j=1,...,k—2, (3.6)

Derived sets

4
V3

4 4
Vi Va

n=4
Fig. 1. Voting Pyramids P

3.3. Election relationships. Notice how Thm. 3 relieves the previous need to individually
compute the outcomes of each procedure for a given profile.

Corollary 1. For a gwen n-candidate profile p, all possible positional election rankings for
all subsets of candidates are uniquely determined by the pairwise election outcomes and the
deviation vector d'%! outcomes for each S;.

The induction proof is immediate. First, the pairwise outcomes define all b'%il outcomes.
Next, all three-candidate voting vectors can be expressed as w3 = b3 4 ud3, so the election
outcome for a set is the b3 tally plus p times the deviation d? tally. This determines all

{V?}?:l tallies, which, in turn, determines the u? outcomes. These u‘} tallies, along with the

deviation vector d* outcomes, determine all four-candidate tallies. By induction, all possible
outcomes are found.

To illustrate Cor. 1 with the Eq. 3.2 profile, we already have shown how the pairwise
elections determine all b" tallies. The d® = (0,2,0) tallies of a three candidate subset is twice
the number of times each candidate is in second place, while the d* = (0,3, —3,0) outcome is
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three times the difference between how often a candidate is in second and third place. So, the
deviation vector d” tallies of {4, B,C}, {A, B,C, D} for Eq. 3.2 are, respectively, 2(5,5,0)
and 3(6 — 0,1 — 7,3 —3,0).

The next step is to note from Thm. 3 that D3 = {b3}. Thus, Cor. 1 ensures that all
positional outcomes are weighted sums of the d® and b? tallies. For instance, because

Loy~ L0,2,00=1,0,0), (3.8)
2 4

the plurality tally of {A, B,C} for Eq. 3.2 is (4.5,4.5,6) — i(lO, 10,0) = (2,2,6). More gener-
ally, w3 = (1,s,0) = b3 + %(s — %)d3, so the w3 outcome is (2 + 55,2 + 5s,6).

The same elementary computations handles the outcomes for four candidates. Because
vi = (1,1,0,0) = b* + 1d* = (1,%,3,0) + 5(0,3,-3,0), the v§ outcome for Eq. 3.2 is
(5,5,6,4) + %(18, —-18,0,0) = (7,3,6,4). All remaining four-candidate outcomes come from
the computation 9f the u? vertices which are determined from the three candidate tallies.

An immediate Cor. 1 consequence is that only the BC outcomes are related to the pairwise
tallies — the tallies of all other procedures are distanced from the pairwise outcomes through
the tallies of deviation d* terms. This structure provides a new explanation for the known
result that the BC outcomes must be related to the pairwise ranking, but the rankings of any
other procedure need not be related in any manner! (The first part is due to Nanson [9]; the
second part was found, in a very different manner, by Saari [16]. Sieberg [24] also noted and
used this separation effect with a statistical interpretation.)

With Thm. 3, we can identify certain o™ system voting vectors which enjoy the following
election relationships.

1
b? — Zd?’ = (1,

Corollary 2. For k satisfying 2 < k < n, let w* be a voting vector. When all k-candidate
elections are tallied with w* and all (k + 1)-candidate elections with gj1(w"), the election
outcomes satisfy the following relationshaps.

1. A candidate who is top-ranked in all w* elections cannot be bottom-ranked in the (k+1)-
candidate election tallied with g1 (w").

2. A candidate who is bottom-ranked in all w* elections cannot be top-ranked in the gj,1(w")
election. Also, this candidate is g1 (W*) strictly ranked below a candidate who always
is w* top-ranked.

3. If all w* outcomes end in a complete tie, than the gi.1(W*) outcome also is a complete
tie.

As an illustration of Cor. 2, if a candidate wins all three candidate plurality elections, then
she cannot be bottom ranked in the g4(v3) = uf = %(3,1,0,0) election. Similarly, if all
three candidate antiplurality elections are tied (using v3 = (1,1,0)), then the four candidate
election also is tied when tallied with g4(v3) = ui = %(3,3,2,0). However, the plurality, or

the u} outcomes need not be tied.

Proof. The proof of this important result, which significantly extends similar BC assertions,
is trivial. A candidate who always is w* top-ranked receives more than the average number of
total votes cast over all k-candidate elections; consequently, she cannot be gy (w*) bottom-
ranked. The proof of the second assertion is similar. The third assertion requires the same
number of points to be added for each candidate. O

A natural way to avoid inconsistencies and election paradoxes, then, is to avoid deviation
vector, d¥, effects. To do so, tally all k-candidate elections with w¥, the (k + 1)-candidate
elections with gi.1(w*), the (k + 2)-candidate elections with ggyo(gri1(w*)), .... It now
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follows that the fewest paradoxes along with the ultimate consistency and the largest number
of election relationships require starting this string of voting vectors with the smallest value
of k = 2. This is the Borda Count; this explains why the BC admits more consistency in
election outcomesand more election relationships than any other positional procedure.

3.4. Paradoxes and examples. Theorem 3 and its corollaries provide unlimited opportu-
nities to generate new paradoxes while explaining why they occur. For instance, a proce-
dure which rewards a voter’s top-ranked candidate but penalizes his bottom-ranked can-
didate is the five-candidate voting vector v; + v4 = (2 1,1,1,0). TIts normalized form
wo (1,;, ;, %,0) = 2 u — 1u2 + u3 ensures that w® € D° Thus (from Eq. 3.6), the
w?® outcomes are umquely determmed by the three scalars and the election tallies of the
four-candidate procedures vi, vi, vg.

While the inclusion w° € D guarantees election relationships, the negative scalar (—%)
ensures that not all of them are “positive.” This is because the vi = (1,1,0,0) tallies are
subtracted from the sum of the two other four-candidate elections. Causing further doubt about
w? is that Egs. 3.5, 3. 4 allow the w9 outcomes to be treated as the sums of each candidate’s
four-candidate %v"l1 - —VQ - 3v3 = (1, %, %, 0) tallies. But, this is not a voting vector because
this perverse procedure assigns twice as many points to a third-place candidate as to a second
ranked one. Thus one of the promised (2,1,1,1,,0) relationships is to penalize a candidate
who often is second ranked in four candidate subsets over a candidate who is consistently
third-ranked! Consequently, a candidate who always is the v% = (1,1,0,0) winner over the
four-candidate subsets by virtue of often being a voter’s second choice could do poorly in the
five-candidate (2,1,1,1,0) election outcome.

For other w® relationships, note that gs((1, %, %,0)) = g5(%(1,0,0,0)+%(1, 1,1,0)) = —é—(u‘;’%—
ug) is a procedure which rewards a candidate when a voter has her top-ranked in four-candidate
elections and penalizes her if she is bottom-ranked. To add perversity, modify this procedure
by penalizing a candidate who does well in pairwise elections. As b® is the sum of pairwise
votes, a choice is (1, s %, %,0) = u‘;’ +ug —b®. But as this returns us to w°, another disturbing
w® € aP election relationship is that w® punishes candidates who do well in pairwise elections.
Namely, w° rewards the Condorcet loser while hurting the Condorcet winner. The derivation
of this surprising assertion is not restricted to w®; once the D* dimension at least unity (so
k > 4), any D* voting vector which is not b* can be expressed in a sum where the Borda
point is subtracted off. This allows an argument resembling the one for w° to be fashioned
for any non-BC D* voting vector; i.e., the election relationships promised by Thm. 3 can be
negative.

Corollary 3. For a non-BC votmg vector wF in D¥ k > 4, there exists a (k — 1) candidate
voting procedure wh~1
rewarding positive W

so that w* penalizes a strong pairwise performance at the expense of
k=1 outcomes.

Proof. For such a w* € DF, there is a w*™1 so that gi(w*~1) is in the interior of the line
segment with vertices w* and b*. Thus there is a u € (0,1) so that ub* + (1 — p)w* =
gr(WF=1). The conclusion follows by solving for w¥. O

Even more disturbing outcomes are generated by using the voting vectors off of the derived
set D™. This is because the deviation vector d™ can modify the election outcomes for these
positional procedures in any manner without regard for the election outcomes of the subsets.
So, the outcomes of a non-BC procedure in D™ can be thought of as subtracting each candi-
date’s pairwise tallies from the tallies of other procedures, while the d* component ignores
the outcomes of other procedures.
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To elaborate while developing an important tool for what follows, notice that the plurality
vector and the other {v;”};”;% never are in D*. But the derived set D* is only a dimension

lower than the voting pyramid P*, so the normal vector d* can be expressed as a linear
combination of vectors from DF and the plurality v¥. (See, for instance, Eq. 3.8.) In turn, a
profile’s deviation d* outcome needed for Cor. 1 is obtained from the same linear combmatlon
of this profile’s plurahty tally and the tallies of the specified u " methods. But the u] outcomes

are determined by the outcomes of d*~! and entries of ’D’" 1 In turn, the deviation d*~!
outcome can be determined from the (k — 1) candidate plurality outcomes and those from
D*=1 Tracing this induction argument to its base, we discover that all election tallies can
be obtained from the pairwise and plurality tallies. Consequently all pathologies of election
outcomes are reflected by the commonly used plurality vote.

Corollary 4. For n > 3 candidates and a given profile, all possible election tallies for all
positional methods over all subsets of candidates are linear expressions of the tallies of the (g)
pairs of candidates and the plurality tallies of all subsets with three or more candidates.

3.5. Positive behavior. Corollary 4, along with Thm. 1, motivates the following assertion.

Corollary 5. For n > 3, a necessary condition for a system vector W™ to be in o is that
at least one of the voting vectors in W™ is in a derived set.

This assertion specifies that the only way to ensure relationships among election rankings
of a profile is through the summation process motivated by Eq. 3.3. This is not a sufficient
condition. For instance, no relationships among the W* rankings occur if the four-candidate
election is tallied with (3,1,0,0) € D* while each of the four triplets is tallied with one of
(1,0,0), (1, }1,0) (1, 3,0) (1,1,0). On the other hand, should even three of the triplets be
tallied with the same voting vector, then some restrictions are imposed upon the rankings of
the sole candidate who is in these three subsets. For instance, if this common voting vector
is on the plurality side of the BC, and if this candidate is top-ranked in all two and three
candidate elections, then she cannot be bottom ranked in the full four-candidate election.

As a partial summary, we have established and explained the following:

1. The Borda Count offers more consistency of election outcomes over all subsets of candi-
dates than any other positional procedure.

2. Election relationships among rankings require using voting vectors from the various D*
sets.

These comments mean that only the BC is spared a negative Cor. 8 conclusion.

4. PROFILES

As demonstrated, much more goes wrong with voting outcomes than previously suspected.
This perverse behavior is captured by the following profile decomposition. As this decomposi-
tion uses the differences between profiles with the same number of voters, it allows a negative
number of votes to have certain preferences. This, however, creates no problems in computing
election outcomes.

Definition 2. A profile differential is the difference between two profiles involving the same
number of voters. FEquivalently, a listing of the number of voters of each type is a profile
differential if and only if the sum of voters is zero.

The profile differentials are divided into classes determined by whether they have no effect
on outcomes, compromise the assumption that voters have transitive preferences, exhibit
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various biases, etc. In the decomposition, I occasionally need the space of normalized profiles
where, instead of specifying the number of voters of a particular type, the fraction of all voters
is used. This space is identified with the n! — 1 dimensional simplex

n!

Sz(n') = {X = (.’171,. .. ,.’11”[) S Rn! | ij = 1, Ty Z O} (41)
7=1

4.1. Universal Kernel. The first part of my characterization is to describe those profiles
with no effect upon pairwise or positional election rankings — all elections end in a complete
tie. An obvious example is the profile, K", with one voter for each of the n! types. But,
there are many more such profiles. This follows from Thm. 2 which requires F(—, W") to
have maximum rank for almost all W™ choices, so the linearity of I with respect to profiles
(and the dimension of F’s image space) ensures that the Si(n!) kernel of F/(—,W™") is a
nl — 2" 1(n — 2) — 2 dimensional subspace. By definition, the profiles in the kernel cannot
affect the W™ election ranking of any subset. Our analysis would be hindered if this kernel
changed with W™. It does not; Cor. 4 requires the kernel of the plurality and pairwise
outcomes to be in the kernel of all other procedures.

Theorem 4. For n > 3, there exists a n! — 2" 1(n — 2) — 2 dimensional subspace UK" of
the profile space Si(n!), called the universal kernel, so that if p € UK", then its word for all
choices of W™ is a complete tie for each subset of candidates.

For n = 3, UK? has dimension zero; it is the barycentric point %K?’. However, the UK"
dimension grows rapidly; for n = 4 it is 6, and for n = 5 it is 70. In fact, a simple computation
proves that the kernel constitutes the largest portion of profiles once n > 5 (i.e., its dimension is
over half that of the profile space Si(n!)) and that the ratio of the /K™ and Si(n!) dimensions
rapidly approaches unity as n — co. (So, with enough candidates, most of profile space is
consumed by profiles with no effect on pairwise or positional outcomes.) While it is important
to characterize UK", these dimensions prove for n > 5 that the analysis would dominate the
discussion. Thus, I provide a complete description of UK" for n = 4 and a nearly complete
one for n > 5.

4.2. Kernel profiles. To create YK™" entries, take the difference between two profiles with
identical tallies for each subset of candidates. To illustrate, start with a profile differential
where 1 voter has the ranking (C > D) » (A > B) and —1 have (C > D) » (B > A). The
cancelling effect of the —1 term forces all plurality tallies in the four candidate subset and the
four triplets to be zero; only the A > B pairwise outcome (with tally 1:-1) avoids a complete
zero tally. According to Cor. 4, these tallies determine all possible positional tallies over all
subsets of candidates.

The same argument with identical tallies occurs by replacing the (C > D) portion of
both rankings with (D > C). The difference between these profiles defines the UK* profile
differential

Number Ranking Number Ranking
1 C>~D>A>B -1 C>D>B>A (4.2)
-1 D-C»A>B 1 D>-C>B»A

By changing the identity of the candidates in each pair, we obtain (‘21) = 6 versions of Eq. 4.2.

To extend this argument to n > 4 candidates, partition the n candidates into two sets
G1, G2, where each G; has at least two candidates. Let r; be a strict ranking of the G;
candidates, 7 = 1,2. Let o(r) be a ranking which permutes the ranking of r, and let p(r) be
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the special permutation which reverses the ranking r. (So, p(A > B > C > D) =D > C >
B > A;one o choiceisc(A>B»>=C»>D)=D > A> B> C.)

Choose non-identity permutations o; for the candidates in G;, j = 1,2. The plurality and
pairwise tally of any subset for a candidate in G; is zero with the profile differential where 1
voter has the preference 71 > 7o and —1 have r1 > o2(r2). The plurality and pairwise tallies
for a G5 candidate depend upon whether a subset has any G; candidates and the choice
of oo. Whatever these tallies, identical pairwise and plurality tallies arise with the profile
differential where 1 voter has o1(r;) > 72 and —1 have o1(r;) > o2(r2). According to Cor.
4, the difference hetween these profile differentials has a zero tally for all candidates in all
subsets. The difference, the symmetry changing profile differential,

Number Ranking Number | Ranking
1 Ty > T -1 r1 > o(re) (4.3)
1 o1(r1) > oa(ra) —1 o1(r1) > o

is in UK"™. The special case (and only choice for n = 4) where o; = p is called the double
reversal profile differential.

Theorem 5. A basis for UK* is given by the siz double reversal profile differentials. Thus,
all kernel vectors are weighted sums of double reversal profile differentials and K*.
For n > 5, all symmetry changing profile differentials are in UK".

Proof. It remains to prove that the six vectors described for n = 4 are linearly independent. As
each entry of each vector involves a Si(4!) component not in any other vector, the conclusion
is immediate. O

The more general assertion for n > 5 requires showing that the symmetry changing profile
differentials span UK™. This is not overly difficult for n = 5, but the combinatorics become
messy for n > 6. Of more importance, because the UK" profiles have no effect on election
outcomes for any subset, the smaller dimensional orthogonal subspace, the space of effective
profiles EP™, totally determines all election outcomes of all subsets of candidates for all posi-
tional procedures. The £P™ dimension of 2"~ (n — 2) — 1 agrees with the sum of dimensions
of the 2" — (n 4 1) subspaces of normalized outcomes. The huge UK"™ dimension, however, is
mischief in waiting; when other procedures recognize these profiles, they generate paradoxes.3

5. REPRESENTATION TETRAHEDRONS AND SIMPLICES

As a convenient way to display profiles, 1 use simplices with vertices equal distance from
each other. (This equilateral simplex is in R"~1. For n = 3, it is the equilateral triangle
of [19].) Associate each of the n > 2 candidates {c1,c2,...,¢,} with a vertex, and assign a
ranking to a simplex point according to its distance from each vertex where “closer is better.”
The resulting division of the simplex into “ranking regions” is the “representation simplex.”

The n = 4 simplex is an equilateral tetrahedron where each of its four faces is an equilateral
triangle. When this “representation tetrahedron” is “opened” by cutting down along the edges
from the D vertex, we obtain the figure depicted in Fig. 2. Each face is defined by three
candidates, so the missing candidate corresponds to the vertex in the tetrahedron vertex that
is most distant from the face; she is bottom ranked. Thus the Fig. 2 ranking region with a
“o” in the B-C-D face corresponds to C » B > D > A.

Represent a profile by listing the number of voters with each ranking in the appropriate
ranking region. To compute election tallies, notice that A is top-ranked in those regions with

*The new paradoxes occur because the new procedure has a non-tied outcome on the profile portion where
all pairwise and positional methods are completely tied.
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A as a vertex. Thus, the sum of terms in the lightly shaded region of Fig. 2 determine A’s
four-candidate plurality ranking. When only candidates {4, B,C} are considered, A also
receives the votes from voters who have A second-ranked and D top-ranked, so A’s tally is
augmented by the values of the two more heavily shaded regions. (A similar description holds
for A’s tally for the other two three-candidate subsets.) This change in tallying an outcome
already explains why rankings differ as candidates are added or dropped.

D D C D

D
Fig. 2. Representation tetrahedron

In the {A, B} pairwise election, A’s tally is the sum of numbers to the left of the middle
A ~ B line; B’s tally is the sum of numbers to the right. This line connects the D vertex at
the bottom of the figure to the C vertex in the middle of the top line. A similar description
holds for all other pairwise elections which do not involve D. In the {A, D} pairwise election,
however, the A ~ D line is not straight because of how the tetrahedron is opened. Here, A’s
tally is the sum of points in the square where two edges are the A ~ D lines in the {4, B, D}

and the {A,C, D} faces. The last edge connects vertices B and C; it separates two faces of
t}]l§ tetrahedrog.

D D D
1 1 1 1
1 { i /il {

1 1 1 - -1
A L A g

1

1

1 11

D
a. Kernel Profile b. D-Basic profile

Fig. 3. A kernel and a basic profile

Applying these counts to the profile in Fig. 3-a, we find that all plurality and pairwise
outcomes are zero; it is a UK* profile. The arrows show that the double reversal profile
differential (a voter for each preference (A > C) > (D > B), (C = A) > (B = D) and
—1 voters for each of (A >~ C) > (B » D), (C » A) = (D » B)) has the geometric
interpretation of symmetrically moving voters across an edge to an adjacent face. All double
reversal profiles admit this geometric description. Indeed, each of the six edges defines a
double reversal profile moving preferences among the four adjacent ranking regions. By use
of this geometric representation, it is easy to show that by adding certain double reversal
differentials vectors to K*, we obtain twice the profile of Fig. 3a. To further illustrate this
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geometric tallying approach, the rankings of all subsets for the profile differential of Fig. 3b
are compatible with D = A ~ B ~ C.

6. PAIRWISE AND BC OUTCOMES

The first EP" effective profiles that I describe are those that determine all pairwise and all
BC outcomes. The first of two parts is the basic profile where the tallies of all procedures
agree. The second is the Condorcet portion; this profile subspace is responsible for all cyclic
and non-transitive pairwise outcomes as well as the conflicting BC outcomes over different
subsets of candidates. The Condorcet portion, then, has critical importance because it causes
all conflict between the pairwise and BC rankings, as well as all paradoxes and difficulties of

all other procedures based on pairwise rankings including those introduced by Copeland [20],
[8], Kemeny [7], [21], and Arrow and Raynaud [2].

6.1. Basic profiles. The definition of the basic profiles and a statement indicating their
fundamental importance follows. The proof is in Sect. 10.

Theorem 6. A n-candidate basic profile differential for candidate c;, denoted by B’gj, has
a voter for each ranking where c; is top-ranked and —1 voters for each ranking where c; is
bottom-ranked. For each subset of candidates, the B?] tallies of all normalized positional voting
procedures agree. In particular, for k > 2, if ¢; is in a k-candidate subset of candidates, she
receives (n — 1)! points and each of the other candidates receives — (7;;11)! points. If c¢j is not
in a k-candidate subset, then all candidates receive zero points.

The basic profile differentials satisfy the equation

n

> Br =0 (6.1)

=1

The B% basic profile is displayed in Fig. 3-b. A word of caution; the n basic profiles define
a (n — 1) dimensional linear subspace of profiles. As true with any (portion of a) vector
space, this convex set admits a variety of choices of spanning vectors; different choices involve
different tradeoffs. My choice of the basic profiles emphasizes simplicity of form and efficiency
of use in understanding election properties. The cost of using profiles that are not orthogonal,
as guaranteed by Eq. 6.1, is to slightly complicate finding the basic profile components for a
specified profile.

To appreciate the power of the basic profiles, recall how much of choice theory has been
devoted toward understanding why procedures have different conclusions. As all procedures
totally agree on the basic profile for all subsets of candidates, no such difficulty occurs here.
Consequently the basic profile finally captures the long sought after state of rationality for
choice theory.

Going beyond providing compatible ordinal rankings, the tallies of the basic profile satisfy
a strong cardinal transitivity that holds both in the horizontal (over subsets of the same size)
and vertical (over subsets of different size) directions. To explain, the ultimate transitivity is
attained if the tallies share the additive properties of points z1,z3,...,z; on the line given
by the equality

(1 —x2) + (zo—z3)+ -+ (Tp_1 — T}) = T1 — T4 (6.2)

Not only is the powerful Eq. 6.2 cardinality condition normally missing from election tallies,
but even the much weaker ordinal ranking conditions need not be satisfied. However, the
basic profile tallies of all positional procedures satisfy an Eq. 6.2 condition.
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Corollary 6. For a basic profile E?:l a;BZ, if both c; and c; are in the same subset of
k-candidates, then the difference between their common positional tally 1s
k (n—1)!
T (Ci,C]‘) = (al—a])[(n—l)‘— Uc——l)'] (63)
In particular, the election tallies from any combination of k candidate subsets satisfy the
equality

™*(c1,¢0) + 7 (ca, e3) + . .. Tk(c]-_l,cj) = Tk(cl,Cj) (6.4)
Proof. This is an immediate consequence of Thm. 6. O

Because Cor. 6 holds for any positional method, we can choose the relative tallies of pairs
from different subsets involving different positional methods. To illustrate with

9B> + 7B + 2B + B!

c4?

the {c1,c3} relative plurality tally from {c1,co,c3} plus the {c3,cp} relative antiplurality v3
tally from {c2,c3,c5} determines, say, the {c1,c2} relative BC tally for {ci,c2,cq}. A slight
modification of Eq. 6.3 even tells how the relative basic profile tallies of a pair of any k-
candidate subset uniquely determines the two candidates’ relative tally for all subsets and all
positional procedures. For instance, it is easy to find from Eq. 6.3 the appropriate multiples
pa, ps so that pg times the {c1,ca} relative plurality tally from {c1,c2,¢3,c5} plus the ps
multiple of the {ca,cs} relative BC tally from all five candidates equals the {c,cq} relative
(1, g,O) tally from the {c1,cq,c5} election.*

6.2. Condorcet profiles. Not all profiles have the desirable Eq. 6.4 property. For instance,
with the one person profile A = B > C » D, we have 72(A, B) = 72(4,C) = 7%(B,C), so
72(A, B)+712%(B,C) # 7%(A, C). This fact implies that there are profile differentials other than
the basic ones which influence the pairwise outcomes. Indeed, when Thm. 1, which asserts that
all possible pairwise rankings can occur, is expressed in a geometric setting (e.g., see Saari [14])
the pairwise outcomes span a space of dimension (g) Consequently the profiles supporting
all pairwise outcomes span an (g) dimensional subspace of Si(n!). Thus we still need (’2‘) —

(n—-1) = (”;1) additional spanning profile vectors to handle all pairwise outcomes. The
importance of these new profile components is that they define the crucial profile noise which
completely explains all possible pairwise election problems including those of the Condorcet
winner, agendas, any procedure using pairwise rankings such as Copeland’s method, Kemeny’s
rule, and the Arrow-Raynaud procedure.

The building blocks for these profile differentials are the Condorcet n-tuples. To construct
one, attach to a fixed background a disk that rotates about its center. Equally spaced along
its circular boundary place the ranking numbers 1,2,... ,n. To represent a ranking r of the
candidates, place each candidate’s name on the fixed background next to the appropriate
ranking number. Rotate the disk in a fixed direction until the number 1 points to the next
candidate; the numbers define a second ranking. Continue this process until n rankings are
defined. Notice how a Condorcet n-tuple is uniquely defined by any of these n rankings. (The
reader who knows group theory will recognize this as the Z,, orbit of r.)

It is arguable that the election outcome for a Condorcet n-tuple should be a complete tie
because each candidate is ranked in each position precisely once. But this natural outcome
does not hold for the pairwise vote. Instead the outcome of each pair depends upon their
relative positions in r. For instance, if ¢; is ranked immediately above c¢s in r, then one of the

*For instance. py = [4! — 41/21]/[4! — 41/3!].
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rankings from the tuple has c3 and cj, respectively, top and bottom ranked. In the remaining
n — 1 rankings c¢; is ranked above cy. Thus, ¢ beats ¢y with a n — 1 : 1 tally. Using the
same argument, if some ranking of the n-tuple has, say, c3 ranked s < 5 candidates above cy,
then c3 beats ¢ in the pairwise vote with a n — s : s tally. The symmetry of the Condorcet
n-tuple ensures that if ¢; is ranked s candidates above a specified candidate in some term of
the Condorcet n-iuple, then she is ranked s candidates below another candidate in another
Condorcet term. This proves the following.

Proposition 1. In a Condorcet n-tuple defined by r, the sum of each candidate’s tallies over
the n — 1 pairwise elections all agree. If c; is ranked s candidates above c; in a ranking of the
n-tuple, then the {c;,c;} election tally isn —s:s.

The following profile differential uses the reversal ranking p(r) from Thm. 5.

Definition 3. The Condorcet profile differential defined by r is where there is one voter for
each ranking in the Condorcet n-tuple defined by r and —1 wvoters for each ranking in the
Condorcet n-tuple defined by p(r).

The next statement (proofin Sect. 10) describes the role of the Condorcet profile differentials
in pairwise voting.

Theorem 7. The Condorcet profile differential defined by a ranking r of the n > 4 candidates
satisfies the following:

1. If ¢; is ranked s candidates above cj in any ranking of the Condorcet n-tuple defined by
r, then the {c;,c;} election tally of the Condorcet profile differential 1s n — 2s : 25 —n.
Consequently, the sum of a candidate’s pairwise tallies over all possible opponents is
zero.

2. Ifp is a profile differential orthogonal to the space spanned by the basic and the Condorcet
profile differentials, then all pairwise tallies of p are zero. Consequently, all admissible
pairwise election tallies coming from rational voters are obtained with the weighted sum
of kernel vectors, basic vectors, and Condorcet profile differentials; all remaining profile
components have no effect upon pairwise or BC outcomes.

3. For any n-candidate positional method, the tally of the Condorcet profile differential
assigns zero to all candidates.

4. The Condorcet profile differential is orthogonal to all basic profiles and it is orthogonal
to all double reversal profile differentials.

5. The Condorcet profile differentials span a space of dimension %(n — 1)

6. When a Condorcet profile differential is restricted to a k-candidate subset for an odd
integer value of k, or for k = n, the deviation d* tally is zero. However, if k < n has an
even integer value, then the deviation d* tally need not be zero.

With respect to our goal to simplify the analysis of voting procedures, the good news (part
2) is that all concerns about pairwise voting can be completely analyzed with the basic and
Condorcet profile differentials; the other profile differentials are superfluous for this analysis
as they have no effect on the outcome. Moreover, we learn from part 4 that the effects of the
Condorcet profile differentials on the pairwise outcomes differs significantly from that of the
basic profile; this difference is that (part 1) the Condorcet portion creates a cyclic effect.

More good news (part 3) is that the Condorcet profile differentials does not effect the
positional tallies of all n candidates. Consequently, the only linkage between pairwise rankings
and the positional procedures ranking of all n candidates comes from the basic profile portion.
Because the basic portion uniquely determines the BC outcome (of all n candidates) and
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because the outcomes of all other procedures are altered by deviation d* effects, we find
further support for the integrity of the BC outcome.

Part 6 identifies a problem that arises with n > 5 candidates. It asserts that the Condorcet
profile differentials can have a non-zero deviation vector tally. This difficulty, where the profile
differential influences more than just the pairwise tallies, is resolved in Sect. 7. For a preview
why this occurs with £ = 4 and n = 5, consider the Condorcet profile differential defined by
r=A%> B> C % D> E. With the Condorcet five-tuple defined by r, the absence of E in
the subset {A, B, C, D} places B in second place twice and third place once, while in p(r), she
is in second place once and third place twice to give B a positive d* tally. Notice, however,
that part 6 does not assert that the tally must be non-zero. An example with a zero tally is
where r = ¢; > c2 > ... > cg and the subset is {c2,cq,c6,c8}.°

The Condorcet profile differential defines all sorts of cycles. To illustrate with r = ¢1 >
¢y > -+ > cg, accompanying the cycle where ¢; > ¢a,¢c2 > ¢3,...,c8 > cg,c9 > c1 is the
cycle involving every other candidate where ¢ > ¢3,¢3 > ¢5,¢5 > c7,¢7 > c9,C9 > c2,C2 >
c4,Ccq4 > Cg,C6 > Ccg,Cg > c1, three cycles obtained by considering every third candidate to
obtain ¢; > c4,cq4 > c7,c7 > c1 with similar cycles starting with ¢ and with ¢3. The final
cycle has every fourth candidate to derive ¢; > ¢5,¢5 > ¢g,¢9 > ¢3,.... Notice that the cycles
obtained by skipping a larger number of candidates have a closer (common) election tally. As
a way to describe the general behavior, let the subscript for ¢; represent j if j < n, or the
remainder obtained when n is divided into j for 7 > n.

Corollary 7. The Condorcet profile differential defined by r = ¢; > c2 > -+ > ¢, defines
the following cycles. The primary cycle is where ¢j > c;11, j = 1,... ,n. The sth level cycle,
1<s< 3, iswherec; > cjrs, J=1,...,n. = 15 the integer «, then there are s different
s level cycles containing o candidates. If % is not an integer, then there s a unique sth level
cycle that involves all candidates.’

By using these cycles as building blocks, a wide variety of behavior emerges. For instance,
the above nine candidate example also admits ¢y > ¢3 > ¢4 > cg > ¢1. For this cycle, however,
the tally between successive terms varies while it remains fixed with the values from Thm. 7
for the sth level cycles.

6.3. Three and four candidates. Part 5 tells us that the subspace dimension of Condorcet
profile differentials is %(n — 1)! while we only need a subspace of dimension (";1) These
dimensions agree for n = 3, 4, so nothing further needs to be done. But once n > 5, the
inequality %(n -1 > (g) suggests that the Condorcet profile differentials have effects other
than influencing pairwise tallies. As indicated, they do; this is described separately.

So, for three and four candidates, we have completely identified all profiles differentials
with any impact on the pairwise election outcomes. For three candidates, the dimension of
the space of Condorcet differential is %(3 —1)! =1, so this space is spanned by the Condorcet
profile differential C3 defined by A > B > C. All three candidate pairwise concerns are
completely determined by this Condorcet profile differential and the three basic profiles; this
is described in (Saari [19]).

The four candidate Condorcet subspace dimension is %(4 —1)! = 3. To find a defining basis

start with any ranking of the four candidates, say 11 = A > B > C' > D, and compute the

®The reader comfortable with algebraic group theory will recognize that this result is due to a subgroup
structure of the Zs orbit. This observation generalizes and leads to assertions such as “if n is not a multiple of
k. then the deviation vector tally is not zero.”

® Again. the reader familiar with abstract algebra will find here, and in most results. statements that follow
immediately from group theory.
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associated Condorcet profile differential. Call it Cfl. Next, choose a ranking which differs
from the eight rankings that appear in the r; profile differential, say ro = A > C > B > D,
and compute its Condorcet profile differential sz. Sixteen of the 24 possible rankings are

used, so the last Condorcet profile differential, Cﬁa, is determined by a remaining ranking, say
rs=A>B>D>C.

Corollary 8. The three Condorcet profile differentials {Cf.] }?:1 are mutually orthogonal.

The proof of this assertion follows from the construction which places each ranking into a
unique Condorcet’ Cf} term. Contrast this assertion with the non-orthogonality property of
basic profiles. As shown later, this technical difference makes it easier to find the Condorcet
components of a specified profile.

6.4. Arrow-Raynaud procedure. To illustrate the importance of this Condorcet subspace
I use it to analyze the Arrow-Raynaud [2] procedure for multicriterion decision making and
pairwise voting. This procedure uses the outranking matriz A = [a;;] where a;j is ¢;’s pairwise
vote in a {¢;,c;} contest. A ranking of the candidates is obtained with their primal algorithm
where they first identify the maximum in each row. (The maximum in the ith row identifies
c;’s largest pairwise election outcome; the column identifies her competitor.) The candidate
associated with the smallest of these values is designated as bottom-ranked. Next, delete the
row and column of this candidate, and repeat the process with the reduced outranking matrix
to identify the candidate second from the bottom.” Continue until all candidates are ranked.
To illustrate, applying this procedure to the matrix

— 40 62 48
36 — 76 62
14 0 - 40 (6.5)
28 14 36 -—

defines the ranking A > B > C > D. Because the sum of the entries in row j defines
¢;'s BC score, we find that the Arrow-Raynaud ranking conflicts with the BC ranking of
B>~A»D>»C.

To analyze the Arrow-Raynaud procedure, let a;; = a(B)i; + a(r1)ij + a(r2)ij + a(ra)q;
be given, respectively, by the basic, C‘r‘l, sz, and Cﬁa portions of a profile. According to
Thm. 7, only these profile portions have any effect upon the pairwise outcomes. So, profile
2?21 a]-B? + E?:l 'ijf] defines matrix A = Ap + Z?:l vj Ay, where the Ap term is the
outreach matrix defined by the basic profile and the other three matrices are defined by the
indicated Cf}. For instance, with coeflicients a9 = 5,a1 = 4,a4 = 1,a3 =0

— a1 —a» ay—az ai— a4 - -6 24 18
_ as — ay - ar—a3z az —ag | _ 6 — 30 24

Ap =6 a3 —ai az— ag - az—as| | -24 -30 — -6 (6.6)
a4 —ay a4 —a2 a4 —ag - —18 —24 6 -

It is clear from Eq. 6.6 that Ap ranking completely agrees with the ranking of the a;
scalars. In turn (Cor. 6) this requires the Ap ranking B = A > D > C to agree with that
of all positional methods over all subsets of candidates. (For instance, the plurality and BC
ranking of this profile for {B,C, D} must be B > D > C.) To modify the profile to change the
outcome, notice that the direction of the cycle attached to a Condorcet portion is determined
by the defining r ranking. So, to have a new tally favoring A over B and C over D, let

"In case of ties. candidates are selected randomly.
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r1 = (A > B) = (C » D). Adding a v;C} component to the basic profile changes the
outreach matrix to

- —6 + 2’)/1 24 18 — 2’)/1

6 — 2v; - 30+ 2y 24 (6.7)
—24 —-30 — 27 - —6 + 27 ’
—184+2v; —24 6 — 27 -

where 71 = 4 creates the new outcome A > B > C > D. By adding 38 to each entry to
eliminate the negative signs (i.e., by adding an appropriate multiple of K* to the profile),
the resulting 76 voter profile changes Matrix 6.7 into the initia] Matrix 6.5. In other words,
the reason the Arrow-Raynaud ranking of Matrix 6.5 differs from the BC ranking is that the
Arrow-Raynaud method must reflect any bias introduced by the Condorcet portion. According
to Thm. 7, this Condorcet profile portion has no effect upon the BC ranking of all four
candidates; the BC ranking only reflects the profile’s basic portion. The following summarizes
the general situation; the proof is immediate from the profile decomposition.

Theorem 8. On basic vectors, the BC and Arrow-Raynaud rankings always agree. Not only
are there profiles where the two rankings disagree, but all such examples are caused and com-
pletely ezplained by how the Arrow-Raynaud procedure treats the Condorcet portion of a profile.

As the example and theorem demonstrate, the Condorcet portion can significantly alter a
procedure’s ranking. Arrow and Raynaud inadvertently underscore this important point in
their book [2] when they contrast their method with competing procedures that also rely upon
pairwise rankings or tallies. By use of Thm. 7, it is easy to prove that all of these procedures
agree on the basi¢ portion of the profile. Consequently, any and all differences among them
are due to how each procedure treats the Condorcet portion. For this reason, we must expect,
and it is the case, that all illustrating profiles in this section of their book [2] exhibit a strong
Condorcet component.® In turn, this means that the only difference among these procedures
is their treatment of the Condorcet portion of a profile — a portion that should have a neutral
outcome. It also means that all of thes procedures admit a conclusion of the Thm. 8 type.

To review the central concern, the natural outcome for the Condorcet portion is a tie vote,
but the pairwise vote twists the conclusion with its cyclic effect. To remove this bias to obtain
a more reliable conclusion, we could either eliminate the Condorcet portion from a profile,
or, more pragmatically, use a procedure which ignores the Condorcet portion. According to
Thm. 7, the sole procedure which does the latter is the BC. To illustrate with Eq. 6.7, recall
that the BC tally for c¢; is the sum of the entries in row ; and notice how this summation
cancels the Condorcet portion leaving only the effects of the basic profile.

6.5. Loss of individual rationality. Any critique of the Arrow-Raynaud procedure, the
Condorcet winner, or any method using pairwise tallies requires providing an interpretation
for the effects of the Condorcet profile differentials on the pairwise tallies. As the argument
extends the one used to describe what occurs for n = 3 (in Saari [19]), I offer only a brief
description using n = 4. All arguments immediately extend to all n > 3.

By construction, in a Condorcet n-tuple no candidate has an advantage over another; each
is in first, second, ..., last place exactly once. With neutrality and anonymity arguments,

8To determine the Condorcet component in a C} direction. add the number of voters with preferences from
the Condorcet four-cycle defined by r and the number with preferences from the Condorcet cycle defined by
p(r). The difference between these sums reflects the strength of the C! component in the profile. So. the
profile does not have a C} component if and only if the sums agree. This computation uses the orthogonality
of the Condorcet profile differentials as promised by Cor. 8. The same simple approach docs not extend to
non-orthogonal profile differentials such as. for instance, basic profiles.
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this suggests that the natural outcome for the n-tuple is a complete tie; this is true for
any n-candidate positional procedure (Thm. 7, Part 3). Therefore, to interpret this profile
differential, we must explain why pairwise cycles replace the natural conclusion.

The argument involves decomposing each ranking from a Condorcet n-tuple into its pairwise
parts as in Table 6.8. Each row is assigned to the voter identified by the ranking in the left
hand column; the other row entries are the associated binary rankings.

Ranking {A,B} | {B,C} | {C,D} | {4,D}
A-B>~C»~D||A>~B | B>~C|C>D|A»D
B~C~D>A|B»-A|B>-C|C»>~D|D>A (6.8)
C-D-A>~B||A>~B|{C~B|C>D|D>A
D-A-B>-C||A~-B|B>C|D>C|Ds>A

By satisfying anonymity, the pairwise vote cannot determine how each voter voted; it cannot
determine whether, say, the voter the first row voted C > B or B = C.9 Consequently the
pairwise vote cannot distinguish the Condorcet four-tuple of individually transitive preferences
from a profile constructed by permuting the entries of each column in any desired manner. But
most of these permutations define profiles of voters with irrational preferences. One choice,
for instance, has three voters with the cyclic preferences A = {4 = B,B > C,C > D, D » A}
while the last voter has the reversed cyclic preferences {B = A,C > B,D > C,A > D}. As
three voters have one (cyclic) belief while the last has the exact opposite opinion, this profile
constitutes a single issue comparison where the “fair” outcome is A by a 3:1 vote. This is the
pairwise tally.l"

The point of this example is that in computing a {c;,ci} pairwise outcome, the procedure
ignores all information about how the voters rank other candidates. But by ignoring how ra-
tional voters sequence pairs in a transitive manner, the pairwise vote dismisses all information
corroborating the individual rationality of voters. Indeed, this feature is precisely why the
pairwise vote can be used with equal ease with rational or irrational voters; it is designed to
fairly (as determined by the majority rule) service either society. This dual service creates
no difficulties with a sufficiently homogeneous rational society. But once a rational society
is sufficiently heterogeneous, as totally captured by the Condorcet profile differentials (Thm.
7), the pairwise vote cannot distinguish between whether the voters are rational or irrational.
Namely, the effect of the Condorcet profile differentials on the pairwise vote s to drop the
cructal assumption of indiwidual rationality.

To summarize, the pairwise votes are completely determined by the basic and the Condorcet
profile differentials. The basic profile retains the rationality of voters for all procedures; the
Condorcet portioﬁ explicitly drops the individual rationality assumption for the pairwise vote.
The stronger the Condorcet portion (relative to the basic part) of a profile, the more the
pairwise outcomes reflects at least a partial loss of the assumption of individual transitivity.

6.6. “Reasonable” procedures. This observation about the role of the Condorcet portion
explains all flaws of all procedures using pairwise rankings. If the procedure does not cancel
the Condorcet profile differential, then the outcome exhibits a bias — the portion of the
outcomes from the Condorcet portion reflects a loss of individually transitive preferences.

® Anonymity requires the procedure either to be incapable of determining this information. or to be equivalent
to a procedure that cannot.

19 Applying this argument to a Condorcet n-tuple generates a profile where n — 1 voters have one cyclic
ranking and the last has the opposite belief.
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Using this observation, it now is easy to construct examples illustrating all possible cycles, or
where the outcomtes of a procedure fail to reflect the voters’ true views. As in the description
of the Arrow-Raynaud procedure, the analysis reduces to simple algebra. To capture this in
a formal statement, we introduce the following terms.

Definition 4. A procedure where its ranking of the candidates is determined by the outcomes
of pairwise comparisons is said to be reasonable if the ranking for a basic profile always agrees
with the ranking of the pairs. The procedure ts said to be monotonic if the top-ranked candidate
with profile p, say c;, remains top-ranked with profile p + p1 where all voters in p; have ¢;
top-ranked.

On the basic profiles, all positional and pairwise outcomes agree. Therefore, a procedure
should be immediately suspected if it gives a contrary outcome on this space of agreement.
Indeed, all pairwise procedures that I know about are “reasonable.” This includes agendas,
tournements, the Arrow-Raynaud method, the Copeland method, the Kemeny method, the
Condorcet ranking, and so forth. However, it also is known that these procedures can have
different outcomes. The reason for this difference is specified in the following theorem.

It also is well known that many of these procedures, such as an agenda, are not monotonic.
The problem with a non-monotonic procedure is that a candidate can lose the election because
more of her supporters arrived to vote. Consequently, this issue of monotonicity is a much
studied topic. But as described in (Saari [13, 14]) and as illustrated in a special case in
(Merlin and Saari [8]) this is just one of several “multiple profile issues,” which includes
strategic voting, etc., which can be analyzed in essentially the same manner. Therefore, the
second part of the following theorem indicates the role this profile decomposition plays in the
analysis of all of these concerns. (A more complete discussion requires the development of a
related tool, so it will appear elsewhere.)

Theorem 9. Forn > 3 candidates, if the ranking of a reasonable procedure disagrees with the
BC ranking, then the difference is completely due to the procedure’s treatment of the Condorcet
portion of the profile. Consequently, the difference is because the procedure allows a partial loss
of the assumption of individual rationality of the voters. Similarly, any difference in ranking
between any two reasonable procedures is completely due to how they treat the Condorcet
portion of a profile.

All reasonable procedures are monotonic on the space of basic profiles. Consequently, if a
reasonable procedure is not monotonic, it is because the procedure admits a partial loss of the
assumption of the individual rationality of the voters.

Proof. The proof is simple; the pairwise outcomes are based solely on the basic and the
Condorcet portions of a profile. As the BC and the reasonable procedures agree on the basic
portion, all disagreement comes from the Condorcet portion. The BC ignores this portion.
So, if a reasonable procedure does not agree with the BC, its outcome must be modified by
this portion of the profile. The remainder of the assertion follows from the analysis of the
Condorcet portion.

To prove the monotonicity assertion, notice that the basic profiles define a vector space;
that is, the sum of two basic profiles is again a basic profile. If p and p; are basic profiles
satisfying the above conditions, then the B coefficient for both profiles is the largest. In
turn, this coefficient also is the largest for the p + p1. Combining this observation with the
definition for “reasonable,” it follows that all reasonable procedures are monotonic on basic
profiles. Therefore, if a reasonable procedure is not monotonic, it is strictly due to how it
treats the Condorcet portion of a profile. The assertion now follows. 0
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Because the Condorcet ranking of candidates is a reasonable procedure, it is subject the
the conclusions of this theorem. This means that rather than serving as a standard for
choice theory, the Condorcet winner is highly suspect. To show this, just add a significantly
strong Condorcet portion to ensure that the Condorcet winner is, say, the same candidate
who is ranked second to the bottom with the basic profile. Because the BC outcome ignores
the Condorcet portion, the BC and Condorcet rankings are in serious conflict. But, as the
analysis proves, it is the Condorcet ranking which is troubling because its difference is cause
by a profile differential which compromises the assumption that voters are rational. Indeed,
the three candidate examples of (Saari [19]) can be extended to create situations with almost
any degree of perversity as long as the Condorcet winner is not BC bottom ranked. In all
cases, the culprit for these differences is the Condorcet profile differential. Because of the
importance of the Condorcet Principle, these comments are repeated in a formal statement.

Theorem 10. Any disagreement between the BC and Condorcet winners, or between the way
any candidate is ranked, is due to the fact that the Condorcet approach does not ignore the
Condorcet portion of a profile. Therefore, the Condorcet outcome is influenced by the partial
loss of the assumption of the individual rationality of the voters. Conversely, profiles can be
constructed to tllustrate any difference between the BC and Condorcet rankings by use of basic
and Condorcet profile differentials.

6.7. Explanation of the BC problems. The BC is partially immune to these criticisms
because with transitive preferences, the BC tallies are equivalent to summing each candidate’s
pairwise tallies over all opponents. As this summation cancels the Condorcet’s cyclic effect over
all n candidates, it immunizes the BC outcome for n-candidates from this loss of individual
transitivity.

This comforting assertion does not extend to the BC ranking for £ < n candidates because
the cancellation fails. This is most easily seen with & = 2,n = 3 where the cancellation
of the A » B ranking from the Condorcet triplet fails because it requires the tallies from
the B > C,C > A rankings. These terms are unavailable because they involve an excluded
candidate C. An identical explanation holds for all k¥ where 3 < k < n. (From a mathematical
perspective and as a computation readily discloses, when the Condorcet n-candidate profile
differential is restricted to a k-candidate subset, it is not orthogonal to the k-candidate basic
profiles. This requires a portion of the Condorcet differential to influence the k-candidate
basic profile, so it alters the BC outcome for this set.) Consequently the Condorcet profile
differentials must affect the BC tallies and rankings for k-candidate subsets. This important
fact completely explains the source of all changes in the BC rankings as candidates are added
or dropped (including those from (Saari [11]). It also identifies new BC election relationships
based on the fact that the terms needed for a cancellation are in other k-candidate subsets.

Theorem 11. Let k satisfy 2 < k < n. For each candidate, the sum of her BC tallies from
a n-candidate Condorcet profile differential over all k candidate subsets is zero.

According to Thm. 11, all distortions among k-candidate BC tallies are caused by the noise
of the Condorcet profile differentials. My earlier observation that this noise causes the pairwise
vote to lose the assumption of individual rationality extends to the BC elections of k-candidate
sets. Thus, again, the Condorcet profile differential seriously erodes a basic assumption from
choice theory.

To explain this important effect, I apply to the setting of &k = 3 subsets with n = 4
candidates an argument almost identical to the one used for pairs. (This argument extends in
a natural manner to all n and k values.) In Table 6.9, the left ranking in a row identifies the
voter from the Condorcet four-tuple; the remaining entries are the rankings for the triplets.
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Ranking {A,B,C} {B,CD} {A,C,D} {A, B, D}
A-B>C>D|A>~B>~C|B>~C»~D|A-C»>DA>»B>»D
B-Cs-Ds>A|B>~C>A|B>-C»D|C»-D»~A|B>D>»A
C-D-A>B\\C>~A>~B|C>~D>B|C>~D>~A|D>A>B (6.9)
D-A-sB>C|A>B>~C|D>B>~C|D»A>C|D»A>C

By mimicking the arguments associated with Eq. 6.8, it follows that when a positional
procedure ranks a three-candidate subset, it ignores all information about how the voters
rank other subsets of candidates. For instance, when a procedure ranks all four triplets (or,
more generally, all (:’) subsets of k candidates), anonymity precludes the procedure from
determining how a voter ranks the candidates from different subsets. But by severing these
connections, the procedure drops information about the individual rationality of voters. In
particular, with the Condorcet profile of Table 6.9, the BC, or any other positional procedure
cannot distinguish the original Condorcet profile from any profile constructed by permuting
the entries of each column in any desired manner.

Most permutations of the entries of Table 6.9 (and its natural extension to any k < n)
define settings where the voters have only k-fold transitivity. Namely, the procedures cannot
distinguish between rational voters, or those voters who can rank subsets of three candidates
in a transitive manner but cannot connect the triplets into a four candidate transitive ranking.
One permutation of Table 6.9, for instance, defines the following table where each row lists a
particular voter’s preferences.

A-B>~C|B>=C>D|{C>D>A|D>A>B
A-B>~C|B~C»>~D|C~D»A|D»>A»B (6.10)
B-C»-A|C>~D>B|D>A-C{A-B>D ‘
C-A-B|D>~B>-C|A-C»>D |B>Dx»A

The imaginary voter of each row has a transitive ranking for each triplet, but the triplets
are not compatible with any four-candidate transitive ranking. So, transitivity going from
the level of three candidates to four is lost. This is particularly demonstrated by, say, the
voter of row one whose rankings of triplets defines a cycle. But because the BC, or any other
procedure, cannot distinguish the rational voter from these partially rational ones, it follows
that a level of individual rationality is dismissed by using the BC on k-candidate subsets.
Notice, the Condorcet and basic terms are the only ones effecting BC outcomes, so these
comments completely explain all BC paradoxes including those from (Saari [11]). Although
the same argument extends to all positional methods, these other methods remain subject to
deviation effects of d’ which further distort the outcomes.

Proposition 2. All k-candidate BC rankings which do not completely agree with the n-
candidate BC ranking are caused by the profile’s Condorcet differential portions. These profile
differentials admit the interpretation that they drop portions of the assumption about the vot-
ers’ individual rationality.

To understand how the Condorcet profile differential alters the BC outcomes, notice from
Table 6.10 that each column has a Condorcet triplet and an additional ranking. The Condorcet
triplet defines a tie outcome with all positional methods, so the preference of the remaining
ranking uniquely determines the BC outcome. This ranking, which duplicates another ranking
from the column, is due to the non-cancellation of certain terms of the Condorcet n-tuple.
Also notice how the repeated outcomes create a cycle over the three-candidate subsets. The
same phenomenon extends to all k, 2 < k < n. By exploiting this observation, it now is
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easy to create profiles demonstrating a variety of different paradoxes. For instance, by adding
appropriate multiples of the Condorcet terms to a basic profile, the basic profile determines
the four-candidate BC outcome, while the Condorcet portion twists the pairwise and three-
candidate BC rankings.

These comments about the BC can be illustrated with Brams example 3] from the intro-
ductory section. His seven voter profile has 3 voters with the preferences C' >~ B > A > X,
two with B > A > X > C and two with A > X > C > B. The BC ranking for all four
candidates is A > B > C > X, but when X is dropped it becomes C > B > A. According to
Prop. 2, this occurs only if the profile has a strong Condorcet element to alter the ranking for
the triplet by weakening the assumption that voters are individually rational. This feature
is easy to see because the preferences nearly complete the Condorcet four-tuple generated by
C > B> A> X. (Only the ranking X » C > B > A is missing.) This strong Condorcet por-
tion significantly undermines the assumption of individual rationality of the voters. Indeed,
it turns out that the basic and Condorcet portions are

1 4 4

71 [7B% + 6B} + 5B - 21C%, p, ¢y x }-

The bracketed basic term defines the natural ranking of A > B > C > X while the domi-
nant Condorcet term distorts the BC ranking of the triplet and weakens the assumption of
individual rationality.

6.8. Geometry of the BC and Copeland Method. This discussion allows for a conve-
nient geometric description of the BC in terms of pairwise outcomes. To do so, we deal with
the normalized tally of pair {c;,c;} by defining

zij = 72(cir ;) /v (6.11)

where v is the total number of voters. Notice that z; ; = —z;;. The normalization requires
—1 < z;; <1 where —1, 0, 1 mean, respectively, that ¢; does not receive a single vote, is tied,
wins with a unanimous vote when compared with ¢;. To create a geometric representation,

assign each pair an axis from a (Z) dimensional space. The relevant portion of R(G) is the
orthogonal cube defined by the product of all the —1 < z; ; <1 conditions.

To illustrate, the unanimity profile ¢y > ¢ > + -+ > ¢, requires z; ; = 1 if 1 < j, so it defines
a vertex of the orthogonal cube. More generally, the n! unanimity profiles define n! of the

n

2(3) vertices of the cube. The remaining (and dominant number for n > 4) vertices cannot be
election outcomes as this would require all voters to have nontransitive rankings. Indeed, the
set, of all possible pairwise outcomes is given by the rational points (where all components are
fractions) in the convex hull defined by the unanimity profiles. (For details and motivation,
see Saari [14].) I call this set the representation cube.

A natural coordinate system for the representation (and orthogonal) cube comes from
the fact that all pairwise election outcomes q, are due to the basic and Condorcet profile
differentials. The outcomes from the basic profiles must satisfy the desired properties of

Cor. 6 and Eq. 6.3; this set of points spans what I call the transitivity plane of R(). Bach
Condorcet profile differential defines an associated Condorcet direction of the orthogonal cube

and of R(3). The connections among them are specified next.

Theorem 12. The transitivity plane passes through the center point 0 of the orthogonal cube
and the point where ¢; unanimously beats each of the other candidates, and all other pairwise
elections end in a complete tie; 1 = 1,...,n. Each Condorcet direction is orthogonal to the
transitwity plane. For n = 3,4, the Condorcet directions are orthogonal to each other; this is
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not true for n > 4. All points in the orthogonal or representation cubes can be represented as
the vector sum of points in the transitivity plane and Condorcet directions.

Proof. The assertion about the spanning vectors for the transitivity plane follows by observing
that these points are the election outcomes for the basic profiles. The assertion that these

vectors span R(g), or the orthogonal, or representation cubes, follows from the fact that the

representation cube contains an open subset of R(3) and that all outcomes in the cube can
be obtained from the basic and Condorcet profile differentials.

To prove that each Condorcet direction is orthogonal to the transitivity plane, it suffices
to compute the scalar product of one of them with the ¢;-basic profile outcomes. But (a
multiple of) the c;j-basic profile outcome has the components z;, = 1 for all s # j (¢; wins
unanimously over all candidates) and zero for all others (the remaining outcomes are ties
causing z; s = 0). Thus, the scalar product is equivalent to the sum of ¢;’s pairwise election
tallies over all possible opponents. According to Thm. 7, this is zero.

The proof that the Condorcet directions are orthogonal for n = 3,4, but not so for n > 5
follows from a direction computation using the pairwise values given in Thm. 7. 0

A consequence of this structure is to provide a convenient geometric representation for the
BC and for Copeland’s Method (CM) (see Saari and Merlin [20].) The CM is where instead
of dealing with pairwise tallies, candidate c; receives 1,0, —1 points if, respectively, ¢; wins,
ties, or loses to ¢;. Her CM score is the sum of points received in each comparison. This
means that if q,, is the actual representation cube point representing the tallies of all pairwise
elections, then the corresponding CM point is qcy where each z;;j # 0 is replaced with the
nearest of 1, —1, otherwise it keeps the zero value. Thus, unless there is a tie outcome, qc
is a vertex of the orthogonal cube.

Theorem 13. If q,, represents the pairwise tallies in the representation cube, then the corre-
sponding BC outcome is given by the ranking associated with the unique point in the transitivity
plane which is closest to q,,. The CM outcome s given by the unique point in the transitivity
plane which s closest to qcor-

Proof. Because q,, can be expressed as q, = qr + qcon Where qr and qcon are, respectively,
the transitivity plane and orthogonal component, it suffices (from our derived properties of
the basic profiles) to show that the BC returns a zero value for qgon. According to Thm.
12, this term is given by the Condorcet directions. As each candidate’s BC tally for qcon
comes from summing her tallies in the pairwise elections over all opponents, the conclusion
now follows from Thm, 7. Similarly, qca has a similar decomposition, and each candidate’s
tally also depends on her sum of points over all opponents, so the same argument applies. O

7. MORE CANDIDATES; MORE PROCEDURES

The problem with n > 5 candidates is that the Condorcet profile differentials span a space
with dimension larger than the needed ("51). This suggests that these differentials influence
more than just pairwise and BC outcomes. This is the case; Thm. 7, part 6 asserts that for
certain even values of k, the Condorcet-profile differential is not orthogonal to the deviation
vector d*. Consequently these Condorcet terms go beyond influencing the BC conclusion to
change the plurality, antiplurality, and other positional outcomes. To be specific withn = &8, a
Condorcet profile differential is orthogonal to d* for each triplet (Thm. 7), so this profile has
no additional impact on positional three-candidate outcomes beyond the description given by
Table 6.10. For four candidate subsets, however, the Condorcet differential is not orthogonal
to the deviation vectors d*. So, this profile differential not only changes the BC four-candidate
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tallies, but further alters the plurality outcomes. In turn, these changes influence outcomes of
procedures in the derived five candidate subsets D°. This five candidate distortion is advanced
to the six candidate outcomes; and an added distortion comes from the fact that the Condorcet
differential is not orthogonal to the d° terms.

My next goal, then, is to separate from the Condorcet profile differentials those effects which
influence the pairwise ranking from those which influence the non-BC positional rankings.
A natural resolution is to find an orthogonal basis using standard approaches (such as the
Gram-Schmidt orthonormalization process). For instance, since we do not want the Condorcet
portion to have any component in the deviation vector directions, subtract profile components
in this direction from the Condorcet differential. We could also eliminate all portions of
the Condorcet profile differentials that are in the kernel direction, but this is not necessary
from a practical perspective (because the kernel portion does not effect any positional or
pairwise ranking). Indeed, after computing the resulting differentials, I found that they are
unnecessarily difficult to explain and to use when constructing examples of profiles. Therefore,
the following definition captures the portions of a Condorcet profile differential that effects
only pairwise votes and some terms in the kernel, but has no further effect upon positional
procedures.

Definition 5. For candidates ¢; and cj, the ¢; > ¢; Condorcet profile differential is defined
by using all Condorcet profile differentials determined by rankings r where the top and second
ranked candidates are, respectively, ¢; and c;.

To illustrate, the A > B Condorcet profile differential for four candidates combines the
two Condorcet profile differentials defined by A > B > C > Dand A > B > D > C. The
following theorem asserts the ¢; > c¢; Condorcet profile differentials does not influence the
remaining election outcomes. The tallies associated with the the new differentials are easier
to use because they emphasize two candidates rather than several.

Theorem 14. Assume there are n > 4 candidates.

1. Each ¢; > ¢; Condorcet profile differential is orthogonal to the basic vectors as well as to
all d* vectors for each subset of three or more candidates. As such, the set of all basic
vectors and all ¢; > c¢; Condorcet vectors uniquely determine all pairuise and all BC
outcomes. For each subset of k candidates, a positional outcome based on these profiles
agrees with the BC outcome.

2. A ¢; > ¢; Condorcet profile differential 1s orthogonal to all double reversal profile differ-
entials. There exist, however, symmetry changing profile differentials from UK" which
are not orthogonal to the ¢; > c; Condorcet profile differential.

3. For the c¢; = c¢; Condorcet profile differential, c; beats c; in a pairwise election with the
(n—=2)(n—-2)!: —(n—2)(n —2)! tally. However, c; beats and ¢; loses to all other
candidates with a (n — 2)! : —(n — 2)! tally. The pairwise outcome for any other pair of
candidates 1s a tie where each candidate receives zero votes.

4. For a k-candidate subset, 2 < k < n, the tally of a ¢; > c; Condorcet profile differential
is the same for all positional methods. If both c; and c; are in the set, then c; receives
(n — k)(n — 2)! points, c; receives the negative of this, and all other candidates receive
zero pownts. If ¢; 1s in the set, but c; 1s not, then ¢; receives —(k —1)(n — 2)! points while
each other candidate receives (n — 2)! points. If ¢; is in the set when ¢; is not, then c;
recetves (k — 1)(n — 2)! points and each other candidate receives —(n — 2)! points. For
all other sets, all candidates receive zero points.

The proof of this theorem is in Sect. 10. The use of the theorem to create examples, and
an explanation of the meaning of these profile differentials follows the lead of the discussion
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on Condorcet profile differentials. After all, the ¢; > ¢; Condorcet profile differential is just a
sum of (n - 2)! of the simpler Condorcet profile differentials.

While the ¢; > ¢; Condorcet profile differential is cumbersome, it offers two advantages. The
first reflects the purpose of defining it from the Condorcet profile differentials; the profile does
not introduce added profile noise for positional voting outcomes. (This is part 4.) The second
advantage (part 2) is that the relative tallies for only a limited number of pairs of candidates
are affected. To illustrate, in the introductory section I claimed there is a profile where the BC
ranking is ¢; > ¢3 > -+ > c19 > c¢1 even though the rankings of {ci,c2},...,{c1,¢2,...,c9}
reflect the ¢y > ¢o > -+ > cg ranking. It now is clear how to construct a supporting profile.
Namely, start with a basic profile which gives the indicated ten-candidate BC outcome. Next,
add appropriate multiples of ¢; > ¢; Condorcet profile differentials, ;7 = 2,3,...,10 so that
the desired outcome for the different subsets occurs. Incidentally, all profiles with this same
behavior do so because of their ¢, c; Condorcet components.

8. THE DEVIATION PROFILES

Now that we understand the source of all pairwise and BC outcomes, it remains to find
the profile differentials which cause the outcomes of positional methods to deviate from the
BC and the pairwise conclusions. The initial form of these profiles is easy to determine by
using the deviation vectors. However we encounter a problem similar to the one that arose for
Condorcet profile differentials; these profile differentials also influence the positional rankings
of larger subsets of candidates. Again, the tradeoff is to use the profile differentials in the
relatively simple manner given below, or, to ensure orthogonality, modified them via standard
procedures to remove all extraneous influences. Because the approach is well understood,
I present and describe properties of the “raw profile differentials.” The reader interested in
applying these differentials has two options; either carry out the orthogonal process or adjust
the rankings of the different subsets. I illustrate both approaches with n = 4 candidates.

Definition 6. The ¢; deviation profile differential for the set of all n > 3 candidates, D? is
defined in the following manner. For each possible ranking where c; 1s sth ranked, s =1, .. :,’ n,
assign (—l)s(z:i) voters.

For a subset S of k candidates, 3 < k < n, the ¢; deviated profile differential DZ.S 18 where

the Df.' profile is augmented (n — k)! times by adding all possible rankings of the candidates
not in S as bottom ranked.

It is important to remember that the profile differentials determine the decomposition of
profile space. It would be rare, indeed, for a particular profile to consist completely of these
profile differentials rather than only portions of them. As examples, Fig. 4 shows the Di_s for
S = {A, B,C} and D¥%. So, the unanimity profile A > B > C > D has a profile decomposition
with components in the DBA.{A.B.C} and D‘i directions.

Some of the particularly important properties of these deviation profiles differentials are
introduced in the next theorem.



28 DONALD G. SAARI
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Fig. 4. Deviation profiles

Theorem 15. Assume there are n > 3 candidates and that S 1s a subset of k candidates
where 3 < k < n. The following statements concern the tally of Di"l S1GES.

1. All pairwise tallies end in a complete tie where each candidate receives zero points.
2. If there is at least one candidate in S that is not in S’, then all §' positional tallies of
Df,,s are zero.

3. If w* is a voting vector from the derived set D*¥ C S, then the w* tally of Di“i.s 18 Q
complete tie where all candidates receive zero points.

4. Let S is a proper subset of the set of candidates S’ where the deviation vector for S’ is
d'. The d’ tally of Dg,.s has a positive tally for ¢;, and an equal tally for all remaining
candidates in S. The sum of the tallies equals zero. If S’ has one more candidate than
S, then this candidate has a zero tally. In general, each candidate in S’ — S has the same
tally.

5. The S plurality tally for c; has her bottom ranked with —(n — k)!(k — 1)! votes. The tally
for each of the remaining (k — 1) candidates 1s (n — k)!(k — 2)! votes.

6. If d* is the deviation vector for S, then the d* tally of DS.S has ¢; top ranked and all
remaining candidates tied for bottom. As the sum of the votes equals zero, a bottom
ranked candidate’s tally 1s the ﬁ multiple of ¢;’s tally.

7. The deviation profile differentials are not orthogonal; instead they satisfy the relationship

Y DI s=o0. (8.1)
JES

It is easy to argue that the natural election outcome for Dk s should be a completely tied
vote. As a way to see this, start with a two person profile where one preference is given by r
and the other with the exact opposite preferences p(r). Here, it is arguable, that the outcome
should be a complete tie; this is similar to where a husband and wife justify not voting because
their preferences cancel. Indeed, it is a simple exercise to show that this special profile has a
completely tied pairwise vote and (hence) a completely tied BC outcome for each subset of
candidates.

To use this intuition to analyze DY for an odd integer n, notice that D7 is the sum of
two-person profiles of this completely conflicting type. Indeed, if » is one of the rankings
where ¢; is jth ranked, then p(r) is one of the rankings where ¢; is (n — j)th ranked. This
one-to-one relationship and the equal number of voters for each setting completes the proof
of this assertion.

A closely related argument that Di.s should lead to a complete tie comes from parts 1, 2 of

Thm. 15; they assert that Df}_is has no influence on the pairs, on the rankings of any subset,
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or on the rankings of any other subset with the same number of candidates. For instance,
with ten candidates, Dg? has a completely tied tie vote for all sets of pairs, triplets, ... , sets
of nine candidates, and then, in stark contradiction, it suddenly ranks ¢; as the top-ranked
candidate for the set of all ten-candidates. Finding a justification for such a conclusion is not
obvious

9. APPLICATIONS

To indicate implications, I use Thm. 15 in three ways. The first illustrates how to create
profiles with certain desired behavior. The second briefly indicates how to analyze voting
procedures. The third underscores the actual complexity of standard profiles.

9.1. Constructing profiles. Suppose we want to create a four-candidate profile with a com-
plete tie for all pairwise, all BC, and all four-candidate positional rankings. The plurality
rankings of the triplets, however, are to form a cycle where, say, A > B~ C, B >~ C ~ D,
C>D~A, D> A~ B. According to Thm. 15, part 5, the construction starts with

3 3 3 3
p'=-D%apct ~Dripcpy —Deicp.ay — Doip.asn (9.1)
which is illustrated in Fig. 5 a.
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Fig. 5. Profile examples

According to parts 1, 2 of Thm. 15, profile p’ has no impact upon the pairwise or BC votes;
all end in complete ties with zero tallies. Part 2 also asserts that the D134.$ portion for each
triplet § has no effect upon the outcome for any other triplet. Therefore, the plurality triplet
outcomes are as desired. Part 4, on the other hand, warns that p’ might change the positional
outcomes of the larger set of four candidates. The extreme symmetry of this particular
example, however, creates a cancellation leaving the four-candidate plurality ranking in a
complete tie. All of this can be verified from Fig. 5 by using the tallying procedures introduced
in Sect. 5.

(To convert p’ into a profile, add an appropriate YK* profile to make all terms non-negative.
As one choice, notice how the indicated double reversal of Fig. 3a (given by the arrows) changes
the original 4K* profile to another one with unity in the same ranking regions of {A, B,C}
and {A,C, D} with negative entries in Fig. 5a. Adding similar double reversal profiles to the
{A, B, D},{B, C, D} regions creates a twelve voter UK* profile with unity in all regions with a
Fig. 5a negative entry. By doubling each entry and adding the result to the profile differential
of Fig. 5a, we obtain a 24 voter profile with the desired properties.)

To indicate how to handle situations where a four-candidate cancellation does not occur,
change the {A, B, C} ranking of the Fig. 5a example to C > A > B. This occurs by replacing
the —DE;.{A.B.C} portion of profile p’ with %[_D%.{A.B.C} + Di&.{A.B.C}]’ The new profile is in
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Fig. 5b where the difference are in the {4, B,C} triangle. This choice, however, changes the
four candidate plurality ranking from a complete tie to C > A ~ B > D with tally 2:0:0:-2.
To obtain the desired four-candidate complete tie, just add i[D‘é — D4]. As we know from
Thm. 15, this profile differential does not effect the pairwise or triplet rankings, but it returns
the four-candidate ranking to a complete tie.

An alternative approach is to replace the ng.s profiles with a profile that only influences §
rankings. To see how to do this, notice from Fig. 4a that the Dil.{A.B.C} profile has the four
candidate plurality ranking of B ~ C > D > A with the tally 1 :1:0: —2. So, to remove this
influence while retaining the properties of D:}q.{A,B.C}’ add %[——Di + %[D‘}B + D] to cancel
the four-candidate effects. To remove fractions from the resulting profile has fractions, use
4D?4.{A.B.C} - D‘},; + %[D}g + D4C]. This profile differential, given in Fig. 6, has the desired
properties of Thm. 15 plus the added property that it does not change the four candidate
outcomes. (This can be shown by a direct computation of the tallies.) The choices for other
sets and candidates follows from symmetry.

D D
5| 3 -3|-1
3 /3| NOKA
0| 373 0\0 |-
-3|3
A 3_3 1
45

Fig. 6. Profile 4D3 , .~ — D% + 1[D% + D]

The tally for Di.{A.B,C} satisfies the conditions of Part 4 of Thm. 15, and it dictates the
appropriate adjustment term. However with a five candidate setting, a further adjustment
term is needed to capture the added Part 4 assertion that Di&.{A.B.C} also affects the deviation
vector for five candidates. For this reason, when the number of candidates is not specified, if
it is large, and/or if this number is intended to be vague, I prefer using the deviation profiles
as defined. However, for specified n < 5 values, it seems easier to modify the deviation vectors
so they have no terms upon other subsets. This easy modification follows the pattern of Fig.

6.

9.2. Runoffs. The way Thm. 15 is used to analyze other procedures mimics the use of the
basic and Condorcet profiles to analyze procedures based on binary rankings. (See Sect. 6.4.)
Namely, with the basic profile the outcomes over all subsets of candidates agree. Here there
is no disagreement; any reasonable procedure behaves as we might hope. Conflict, then, is
generated only by adding profile noise. As we now know how to alter the rankings of any
subset of candidates, we know how to create examples illustrating all possible flaws of all
procedures.

To illustrate with a five-candidate plurality runoff, start with a basic profile with the uni-
versal ranking A > B » C = D > E. Suppose we want F to be the runoff winner where
the order of candidates being eliminated is A, B, C, D, but all subsets of candidates not being
voted upon have a ranking consistent with the basic profile ranking. (This demonstrates flaws
of the procedure.) If the basic profile has all binaries with a stronger victor margin than in
{D, E} election, then appropriate multiple of the E = D Condorcet profile differential changes
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only the {D, E} outcome to have E beating D. Adding appropriate multiples of D%‘.{C.D.E}

and D%.{C.D.E} ensure the £ > D > C plurality outcome, while all other triplets retain the
basic profile ranking.

The rest of the induction step is clear. First, add appropriate four candidate deviation
profile differentials to return the four candidate outcomes to the basic profile rankings, and
then add appropriate profile differentials to convert the {B,C, D, E} outcome into E > D >
C > B. The same is done for the five-candidate election.

A closely related construction, but using only Condorcet profile differentials can identify
flaws of the Nanson method. This is a runoff where at each stage the BC bottom ranked
candidate is dropped. While the outcome is the Condorcet winner, when one exists, it now
is easy to create examples with explanations showing that this is the wrong candidate. To
illustrate, the development of Chap. 5 from [14] prove that Nanson’s method is not monotonic.
If, however, only basic profiles are being used, the Nanson’s method is monotonic. This flaw,
then, is caused by the Condorcet portion of a profile. In turn, this raises doubts about
Nanson’s approach.

9.3. Unanimity. To conclude, notice that the number of voters needed to support a profile
p is not correlated with its apparent complexity when p is described in terms of its profile
components. To illustrate, the following four-candidate profile differential has components
in the basic, the Condorcet, deviation profiles in each of the four triplet directions and even
deviation profiles for the set of all four candidates.

p = [3B% + 2B} + BE] +3Ch p.cop +
4[D3B.{A.B.C} + D%‘.{B.C.D} + D%‘.{C.D.A} + D%.{A.B.D}] — [D} +2D¢] (9.2)

While p appears to promises all sorts of complications, it is merely the unanimity profile
differential for A > B > C > D. (Elsewhere I describe how to start with a profile and then
compute its component parts.) It remains to add the appropriate kernel term to have a
positive number of voters for the A > B > C > D ranking and zero for all others.

This Eq. 9.2 representation proves that even the unanimity profile has interesting properties.
To illustrate, the first bracketed term of Eq. 9.2 is the important basic profile; it specifies that
the natural ranking for this profile is, indeed, 4 > B > C > D. The Condorcet term, the
second term which introduces a twist to the pairwise rankings, explains why the pairwise
tallies fail to reflect A’s preferred status. (Recall, the pairwise tallies for {4, B} and {A4,C}
agree, but the tally for the basic portion gives A a higher tally in the second election.) The
next bracket of four terms is the portion of the profile which changes the three candidate
plurality outcomes. These terms cause the plurality ranking to be A = B ~ C rather than
the natural A > B > C for {A, B,C}. To explain, the BC outcome remains compatible with
expectations, but the D%.{A.B,C} portion of the unanimity profile reduces B’s basic tally to
obtain the distorted plurality outcome. A similar explanation holds for the four-candidate
elections. Here, the plurality vote changes the basic profile ranking of A = B > C > D to
A > B ~ C ~ D because of the profile’s component of deviation profile noise that appears in
the last bracketed term.

9.4. Summary. In summary, we now can explain all differences in outcomes coming from
any positional procedures and/or from methods based on pairwise and positional outcomes.
The analysis starts with the basic profiles where there is agreement. Any disagreement in
pairwise outcomes can be completely explained by the Condorcet portion of a profile. Any
disagreement in the positional rankings of any other subset is based on deviation profile affects.
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All of these effects have interpretations. An important theme throughout this analysis is
that an important reason election outcomes can appear to be irrational is that the procedures
negate, at different levels, the assumption of individual transitivity. Here there are different
levels; the first comes from the Condorcet terms. However, even the deviation terms create
a similar problem. A way to see this is to apply the earlier arguments developed for the
Condorcet terms to the deviation profile terms for (kK — 1) candidate subsets. Because the
sets are separate and the deviation profiles have no effect on the other subsets, there is
no assumption of rationality. When appropriate procedures are used at the next level of k&
candidates, however, these these irrationality effects are canceled in a manner consistent with
the BC. Namely, the gi(w*~1) outcomes preserve a higher level of rationality than the k wk-1
results. This means that comflicts are caused by the weakening of the assumption of voter
rationality along with the deviation vector and profile affects.

Of equal interest, the profile decomposition allows us to construct examples to illustrate any
admissible behavior. This statement holds for all methods based on positional and pairwise
outcomes.

10. PrROOFS

Proof of Thm. 2. All that remains to be proved in Thm. 2 is the assertion that W™ is a vector
inav(n)= 2”_1(? —4) +n+2 dimensional Euclidean space. To derive this v(n) value, notice
that a j-candidate voting vector has j components where the first is unity and the last is
zero. This leaves j — 2 weights free to be chosen, so the number of free variables in W" is

v(n) =37, (T;) (j — 2). By differentiating the binomial expression
n n )
(1+4z)" :Z(,)aﬂ (10.1)
=0 J
]_
we obtain

n(1+m)"*1:jz::1j<?>mf—1. (10.2)

After setting ¢ = 1 in Egs. 10.1, 10.2 and using some algebra, the expression for v(n) follows.

O

Proof of Thm. 3. To prove that the u]kf vectors have the desired form, it suffices to consider
how many points a voter with preferences c; > co > -+ > ¢; will cast for each candidate when
all (k — 1) candidate elections are tallied with v;“_l. In any of the subsets where candidate ¢;,
t < j, is included, c¢; receives one point. To count the number of these subsets, notice that
each (k — 1)-candidate subset can be characterized in terms of the missing candidate; each
candidate is missing from precisely one set. As this requires ¢; to be in all but one subset
(that is, she is in precisely k — 1 sets), she receives k — 1 points.

Candidate c; 41 receives a point only if one of the top j ranked candidates is not present.
As each candidate is absent from precisely one subset, this means that c¢;;1 receives a point
in j subsets. This means that c;;1 receives j points.

It remains to consider a candidate c; where i > 7 + 1. For ¢; to receive any points, at least
two candidates ranked above her must be missing from a (k — 1) candidate subset. But this

never can occur, so ¢; receives zero points. This proves that the u;”' vectors have the indicated
form.
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To prove that d* is a normal vector for D*, it suffices to prove that d* is orthogonal to
u;-”' — b*. (This is because these vectors span the space D* ) To simplify the form, recall that

B* = (k — 1)b*, so an equivalent problem is to show that

d* - (uf —-b¥)=d* ((k-1)uf -B*) =o0. (10.3)
By use of the equality (']‘) = (ni],), we have that
k=2
k-1
aF . B* = (_1)J< . >]

By comparing this expression with the summation obtained from Eq. 10.2 whenn = k — 1
and z = —1, it follows that
k-2 4 E—1
Bf.d* = Z(—w]‘( , ) =k-1D0-1)*24(k-1)=k-1 (10.4)
i=1 J
It remains to prove that (k — l)ué‘f db =k —1.

The proof that (k — l)u]kf -d* = k — 1 uses induction. Only the second coordinate of both
(k — l)uf and d* are nonzero; they are, respectively 1 and k — 1. It now follows trivially that
(k—Dub-d* =k —1.

Using the induction hypothesis, assume that (k — 1)u;‘f -d¥ =k —1 for j < s. We need to
establish that (k — 1)u¥ . d* = k — 1, or that [(k — 1)u* — (k — 1)u*_;]-d* = 0.

The vector in the bracket has non-zero values only in the sth and (s + 1)th position; they
are, respectively, k — s and s. In turn, this means that the scalar product becomes (up to a
sign) (k — s) (::l) — S(k k1 ). Using the binomial expressions, this becomes

—(s+1)
(k- 1)! (k —1)!
k=) =D = =) =198l (10.5)
1 1
= (k- 1)![(k —s-D(s-1)! (k-s—-1)l(s— 1)!] =0
This completes the induction proof. O

Proof of Cor. 4. An outline for the simple induction proof is given. The pairwise tallies de-
termine the BC tallies for all subsets of candidates. For all triplets, the BC and plurality tally
determines all positional tallies. These tallies determine the tallies of the derived set for four
candidates. To obtain all four-candidate tallies, the plurality tally determines the required
deviation d* tally (Cor. 1) for the four-candidate subsets. The obvious induction argument
completes the proof. O

Proof of Thm. 4. The linearity of the tallying procedure ensures there is a kernel. The fact
the universal kernel, determined by the pairwise and plurality votes, is contained in the kernel
of all procedures is a direct consequence of Cor. 4. All that remains is to find the dimension
of the universal kernel. Again from the linearity of the tallying procedure, this value is the
difference between the dimension of the normalized space of profiles (n!—1) and the dimension
of the normalized space of vote tallies.

The normalized space of vote tallies is where instead of election tallies, we compute the
fraction of the total vote received by each candidate. Thus a k candidate election has (k — 1)
degrees of freedom. This means that the dimension of all pairwise elections is (3)(2 — 1), of

2

the triplets is (3)(3—1),.... The total dimension is 3°7_,(j —1) (7) =220 (5) — s (7)--
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It follows from Thm. 1 that this is the dimension of the image space for the plurality vote. To
find the value of this summation and to show that the dimension of the kernel is as specified
in the theorem is a straightforward computation that uses Egs. 10.1, 10.2 in a manner similar
to the derivation of the v(n) value. |

Proof of Thm. 6. In a plurality (or pairwise) tally of Bf. for any subset containing c;, she
receives one point for each ranking where she is top-ranked. There are (n — 1)! of them,
so this gives her tally. All remaining candidates are treated symmetrically, so each receives
the same point total over the subset. Also, B, is a profile differential, so the some of each
candidate’s tally must be zero. This means that in a k-candidate subset with ¢;, each of the
other candidates receives —(’i%ll)! votes. In a set where ¢; is not a candidate, each candidate
receives zero votes.

By use of the summation process defining the b* outcome, it follows that c; in a k candidate
subset receives LTll(k —1)((n = 1)) voters. (The fraction is to normalize the BC outcome,
the (k — 1) term is the number of pairwise elections.) If ¢; is not in a set, then the BC tally
for all candidates is zero. Thus the BC and plurality outcomes for all subsets is as stated.
According to Cor. 4, the normalized tally for all procedures agree.

To prove the summation assertion, notice that in the (n — 1)! terms where ¢; is top-ranked,
(-l (n — 2)! of them, j # ¢. Similarly, in the (n — 1)!

n—1
terms where ¢; is bottom ranked, ¢; is top-ranked in precisely (n — 2)! of them, j # ¢. The

conclusion now follows with a simple computation. O

¢; is bottom-ranked in precisely

Proof of Thm. 7. Part 1. This is a simple computation.

Part 2. Of the several ways to prove this assertion, an easy one involves the dimension of
the set of deviation profiles. The difference between the dimension of P™ and the dimension
of the deviation profiles is ('QL) Because each of these deviation profiles has a zero tally for
any binary election, they have no component in the binary vote direction. Thus, the space
orthogonal to these vectors includes the kernel, the basic, and the ¢; > ¢; Condorcet profile
differentials. In turn, if p is orthogonal to the basic and Condorcet profile differentials, it
must be in the space of deviation profiles. This completes the proof.

Part 3. The total number of points in a positional method w" = (1,ws,...,w, 1,0 is
Z?:ij. Because each candidate is ranked first, second, ..., last precisely once in the

Condorcet n-tuple defined by r, each candidate receives z;l:l w; points. The only change in
this argument for a candidate in the p(r) portion is that each candidate receives — Z?:l w
points. This completes the proof.

Part 4. Let C}' be the Condorcet profile differential defined by r. To show that C}’ is
orthogonal to an arbitrarily chosen basic profile BZ"], notice that the only terms they have in
common is when c; is top and bottom ranked in the Condorcet n-tuple defined by r and the
one defined by p(r). In the r-Condorcet n-tuple, these two rankings have the same number
of voters; in the basic profile, one term has a positive number of voters and the other has a
negative number of these voters. Thus, these terms cancel. The same argument holds for the
p(r) portion.

To prove the statement about the double-reversal profiles, let the kernel profile be where
there is one voter for each of the r{ > ro and p(r1) > p(re) preferences and —1 voters for each
of the r1 > p(r2) and p(r1) > 72 rankings. Now, either C! has no preferences in common
(which means they are orthogonal) with this double-reversal profile, or there is at least one
preference shared by both profiles. Assume without loss of generality that one of the common
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preferences is r = 71 > ro. This means that p(r) = p(r1 = 72) = p(r2) > p(r1). Because the
number of voters with these two preferences agree in the double reversal profile, but differ by
sign in C}, the scalar product of these terms cancel. It is easy to show that if r = ry > ro
is one of the C” rankings, then the rankings r; > p(re) and p(r1) > r2 are not in C}'. This
completes the proof.

Part 5. The proof uses the fact that the Condorcet profile differentials partition the set
of preferences. This partitioning occurs because, by construction, if preferences r1 and r
appear a Condorcet profile differential, then (up to sign of the number of voters with each
preference), the profile differentials are the same. This proves that the sets (the orbits) are
disjoint. That they fill the space is an immediate corollary of the fact that each ranking
defines a Condorcet profile differential. The dimension statement now follows from the fact
that there are n! preferences and each Condorcet profile differential has 2n of them, so there

are %(n — 1)! sets of these profile differentials which do not have any preferences in common.

Part 6. First consider k = n and the deviation vector d™. In the Condorcet n-tuple defined
by 7, each candidate is in each position the same number of times, so each candidate’s d”
tally is the sum of the d™ components. The same argument applies to the Condorcet n-tuple
defined by p(r) except there are a negative number of voters. Consequently, the two sums
cancel.

To handle the setting where k is an odd integer, 2 < k£ < n, let ¢; be a candidate in the
k-candidate subset S. For each ranking r; from C}' the companion ranking p(r1) in this
differential has a negative number of the voters. If ¢; is jth ranked in & with rq, then she is
(k — 7)th ranked in S with p(r;). But, the jth and (k — j)th coefficient of d* are the same.
This means that the difference in sign for the number of voters forces a cancellation in the d*
tally.

The proof for the setting where k is an even integer 2 < k < n only involves creating an
example. This is done following the theorem. O

Proof of Thm. 14. Part 1. Because each Condorcet profile differential is orthogonal to each
basic profile, the ¢; > ¢; profile differential (which is the sum of Condorcet profile differentials)
also is orthogonal to the basic profiles. Similarly, because Thm. 7 asserts that the Condorcet
profile differentials have a zero tally with the deviation vectors d* for odd values of k, the
same conclusion holds for the ¢; > ¢; Condorcet profile differentials.

To prove the assertion about the A > B Condorcet profile differential for k even, let S be a k-
candidate subset. If A and B are not in §, then because we are dealing with a profile differential
where candidates other than {A, B} are treated symmetrically, my standard argument shows
that all candidates receive a zero d* tally. If both candidates are in S, then to determine the
A tally, we need to determine how often A is jth ranked in §. In the A = B Condorcet profile
differentials, the only condition on these rankings is that A is ranked immediately above B;
all such rankings are included. The important point is that the number of rankings with this
property in a A > B Condorcet profile differential is the same for all j satisfying the relevant
values of 2 < 7 < k — 1. (It is not necessary to determine when A is top or bottom ranked in
S because the corresponding d* coefficient is zero.)

To see this, notice that once the slots for the & candidates within the n possible positions are
determined, we need to compute the number of ways to rank the S candidates. Of these, there
are (’J‘:f) ways to select which candidates are ranked above A, and each choice can be ranked
in (7 —1)! ways. The number of ways to rank the candidates below B is (k—2— (5 —1))!. The
product, which gives the total number of such rankings, is (k — 2)!. It remains to determine
how many ways to select the rankings for k& positions within n positions where two slots are
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together in the jth and (j+ 1)th positions (to accommodate the adjacent A, B ranking. Using
standard combinatoric approaches, where the adjacent rankings are treated as one unit, this
is (?:11) Therefore the total number of rankings where A is in jth position is (’Z:})(k - 2)L
Of more value than the actual number is that it does not depend upon j. Consequently, A
is ranked in jth position as often as in (k — j)th position. But, as these d* coefficients differ
only in sign, the terms cancel. A similar argument holds for the p(r) portion of each profile,
and for B. Therefore the A and B tallies with the deviation vector d* are zero. By using my
standard symmetry argument, the same assertion extends to all candidates.

If only one of A or B is in S, then the only minor changes in the above argument show that
the candidate is ranked in jth place as often as she is ranked (k — 7)th place. This gives the

same argument to prove that the d* tally is zero.

Part 2. It is shown in Thm. 7 that a Condorcet profile differential is orthogonal to a double-
reversal profile, so the same assertion holds for the ¢; > ¢; profile differentials. It suffices to
provide an example to prove that there are symmetry changing profile differentials that are
not orthogonal toa A = B Condorcet profile differential. One such example is where r = (C >
D = A) = (B = F) where the other three rankings come from ¢;(C > D > A)=C = A > D.
In this setting, only one of the four rankings in the symmetry changing profile is in the A > B
profile differential, so orthogonality is impossible.

Part 3. This is a simple computation involving the tallies from Thm. 7.

Part 4. This is a direct consequence of parts 1, 2 and the computations from Thm. 7.
Alternatively, because these computations are not difficult for the normalized borda and the
plurality vote, these computations provide an alternative proof for part 1 when k is even. [

Proof of Thm. 15. Part 1. We compute the {c¢;,c;} pairwise tally. If ¢; € S but ¢; is not,
then ¢; > ¢; in each ranking in D 5. As the number of rankings which has ¢; in sth spot
is (k — 1)!(n — k)!, the total number of votes ¢; wins in the pairwise elections is (k — 1)!(n —
k)! Zle(—l)s(lzfi) According to Eq. 10.1 where z = —1, this summation equals zero.

Now suppose both ¢;,¢; € S. Among all of the DY ¢ rankings which has ¢; in sth position,
(k —s)(k—2)Y(n — k)! have ¢; ranked lower. Therefore, the total number of points earned by
ci in the pairwise vote is a (k — 2)!(n — k)! multiple of

k

> (1) (k- s) (’::i) :Zk:(—l)s(k—s) (Z:D (10.6)

s=1 s=1
According to Eq. 10.2 where z = —1, this sum is zero. This completes the proof of this part.

Part 2. According to Cor. 4 and part 1, it suffices to show that the plurality votes for all
candidates in &’ is a tie. If no candidates from &’ are in S, then each candidate is treated
symmetrically. This means that because D, 5 is a profile differential, the sum of the votes
equals zero and each candidate receives the same vote. Thus, each candidate has a zero
plurality tally.

Now suppose there is at least one candidate in S that is not in &’ and that SNS’ # @. The
plurality tally of any &’ candidate not in S is, trivially, zero. If ¢; is in S’NS, then her plurality
tally is determined by the number of rankings where she is top ranked in & or where candidates
in S but not in &’ are ranked above her. Suppose there are s > 1 candidates of this type.
This means ¢y is in top-place in (n — k)!(k — 1)! rankings, second place in (n —k)!(3)1!(k — 2)!
rankings, third place in (n — k)!(5)2!(k — 3)! rankings, ..., (n — k)'(;)]‘(k — 7 — 1)! rankings
in jth place. The plurality vote is determined by the number of voters with each of these
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rankings, so the tally is —(n — k)! times the value

Sy (st s (M) = e (§)an - - o R

j=0 7=0

=(k—1)! s (=1) (S) =(1-1)*=0. (10.7)
=0

J

J

Again, the symmetry for the other voters in S NS’ ensures that their plurality vote is zero.
A similar argument holds for S N &’ # & where ¢; is not in this set.

Part 3. To prove this assertion, it suffices to prove that all u]Lf tallies of DY 5 in S are zero.

Because there are only two non-zero terms in (k — l)uf, its tally is determined by the number
of ways the candidates can be ranked to have ¢; is in first and in second place. Because this
number is the same (it is (k—1)!{(n—k)!), we only need to multiply the number of voters times
the assigned points. All other candidates from & are treated symmetrically. This means that
the tally is (n — k)!(k — DI[((k — 1)(—=1) + (*7")(1)] = 0. As D? g is a profile differential, the
sum of the total vote is zero, and each of the other candidates receives the same tally. Thus,
their tally also is zero.

With the induction hypothesis, assume that the ¢; tally with (k — l)u;”f is zero for j < s.
We now must show that the tally is zero for (k — 1)u¥. But this computation is the same as
that given in Eq. 10.5. (This reflects the duality of the construction.) The same symmetry
argument shows that the tally for the other candidates also is zero.

Part 4. To see that ¢; has a positive tally with d’, notice that the sign of the coefficients of
d’ and the number of voters for each of the admissible ¢; rankings agree. Hence, c¢; receives
a positive vote. All other candidates are treated symmetrically within the groups § — {¢;}
and &' — S, so, within these groups, they receive the same tally. Suppose there are 3 more
candidates in &’ then in §. The tally for each candidate in S’ — S is the sum of the last 3
coefficients of d’. So, if 8 = 1, then this sum is zero. For 3 > 1, the sign of this total depends
upon the parity of |S| and of . Because D! ¢ is a profile differential, the sum of the total
number of points is zero.

Part 5. The § plurality tally for ¢; is determined by the number of times she is top-ranked
in D} 5. But thisis (k — 1)!(n — k)!. As (—1) voters are assigned to each ranking, the tally
is as stated. Each of the other § candidates is treated symmetrically, so each receives the
same plurality tally. But D7 5 is a profile differential, so the sum of the votes equals zero.
Therefore, each of these other candidates receives a (n — k)!(k — 2)! plurality tally.

Part 6. By use of the symmetry argument in the proof of part 5, it suffices to prove that

¢; is d* top-ranked in S with the D7 s profile. But the signs of the jth coefficient of d*

and the number of voters when ¢; is jth ranked agree. Therefore, ¢;’s tally is (k — 1)!(n —
k—1r/k—1y\72

Part 7. This is a direct computation. O
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