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Abstract

People procrastinate. Psychological research and common intuition suggest that this propensity reflects a time incon-
sistency: People often put off unpleasant tasks because they pursue immediate gratification in a way that their long-run
selves do not appreciate. This paper examines the implications of procrastination for the design of temporal incentive
schemes. where an agent is rewarded according to when he completes some task. A risk-neutral agent is hired by a
risk-neutral principal to complete some task. Delay in completion of the task is costly to the principal. but the agent
faces a stochastic cost of completing the task, so that it is efficient to wait when the task cost is high. We assume the
principal designs temporal incentive schemes to avoid inefficient delay. We mainly consider an environment where the
incremental cost of delay is constant over time. When the principal knows the distribution of task costs. she can always
design a stationary incentive scheme that achieves first-best efficiency. However. while for time-consistent agents this
scheme will reflect the true delay cost, for procrastinators this scheme must punish delay more severely to counteract
procrastination. When the agent is privately informed about the task-cost distribution, again a stationary scheme can
induce efficiency for time-consistent agents. But for procrastinators. different task-cost distributions imply different
propensities for procrastination. so the first-best may be no longer achievable. Furthermore, second-best optimal in-
centive schemes will typically not be a stationary scheme, but rather a sort of generalized deadline contract: Delay will
be punished moderately at first. but after some time it will be punished severely. Such schemes encourage those with
little propensity to procrastinate to wait until the cost of completing the task is low, while deadlines assure that those
with a severe propensity to procrastinate don’t delay toe long.
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1. Introduction

While the standard economics model assumes that the desire to delay an unpleasant task must be time-consistent,
people tend to procrastinate — connoting a time-inconsistent preference for delay. Today we feel we should write a
referee report tomorrow, but tomorrow we tend to delay again. A small set of economists and psychologists have over
the vears proposed formal models of time-inconsistent preferences and self-control problems, where people have a
tendency to pursue their immediate well-being in a way that their ~long-run selves”™ do not appreciate. O’Donoghue
and Rabin (1996) build from this prior research and show that, when a person is unaware of the time inconsistency,
such preferences lead a person to procrastinate in completing an unpleasant task.’

In this paper. we examine the implications of time-inconsistent procrastination for the design of temporal incentive
schemes, which reward an agent based on when he completes some task. Temporal incentive schemes are a central
aspect to organizational design and many tvpes of contracts. People face punishments for delay. sometimes explicitly
in the form of decreased compensation, and more often implicitly in the form of admonitions from supervisors and
decay in reputation. Such incentives are needed when an agent finds a task unpleasant and does not intrinsically value
its timely completion.

We first show that if principals designing contracts wish to induce agents to behave efficiently, they will make in-
centives “steeper™ than if the agent did not procrastinate: Whereas for time-consistent agents optimal incentives would
exact]y reflect the principal’s true cost of delay. to counteract procrastination the principal must punish procrastinators
more severely than the true cost of delay. But our main conclusion concerns a prevalent feature of temporal incentive
schemes: They often involve deaclines, which we define broadly as dates after which the incremental punishment for
delay in completing a task becomes more severe than it was before that date. We show that deadlines can be (second-
best) optimal given time inconsistency, even in stationary environments where they would never be optimal with time
consistency. While we suspect there are other significant explanations for the prevalence of deadlines, we teel that the
logic behind our results suggests that deadlines arise in part to battle procrastination.

In Section 2. we formalize a simplified version of time-inconsistent preferences: A person always values her well-
being #ow more than in any future moment, and values her well-being at all future moments cqually. In Section 3.
we introduce our model of temporal incentive schemes. We suppose a risk-neutral principal hires a risk-neutral agent
to complete some task. Because the principal faces a delay cost. she prefers that the task be done sooner rather than
Jater. But because the agent faces a stochastic fask cost, it may be better for him to defay when the task-cost realization
is particularly high. Efficient behavior then will minimize the sum of expected delay costs and expected task costs.
Because the principal cannot observe task-cost realizations. she must compensate the agent based solely on observed
delay. yet she does not know whether observed delay is an efficient response to a high task-cost realization, or inefficient
procrastination. In addition, the principal is limited to the temporal incentive schemes discussed above. We explore

whether temporal incentive schemes can induce efficient behavior. and. if not. what temporal incentive schemes are

' This finding replicates and extends a similar example of procrastination by Akerlof (1991}, who motivates a math-
ematically similar model of choice behavior by emphasizing how the costs of doing a task are more salient when they
are immediate than when they are delayved.



second-best optimal.

Time-consisient agents do not procrastinate, and therefore the optimal incentive scheme is straightforward: 1f
the incremental punishment for delay exactly mirrors the principal’s delay costs, then the agent will internalize those
delay costs, balance them against his task costs, and behave efficiently. Importantly. the optimal incentive scheme is
independent of the probability distribution of the agent's task costs. Time-inconsistent agents procrastinate, so things
are more complicated. Incentive schemes must deter inefficient procrastination, yet still encourage efficient delay
when the task-cost realization is high. Nonetheless, we show that as long as the principal knows the distribution of task
costs. she can exactly counteract the agent’s tendency 1o procrastinate with incentives that punish delay by more than
the actual delay cost. Despite the agent’s propensity to procrastinate, therefore. a fully efficient incentive scheme can be
implemented. However, this (first-best) optimal incentive scheme for time-inconsistent agents very much depends on
the distribution of task costs. Specifically, higher task costs (on average) make the agent more prone to procrastinate,
in which case the principal must impose a more severe punishment for delay to counteract procrastination.

In Sections 4 and 3. we assume the agent has private information about the distribution of task costs, and investigate
the nature of incentive schemes when the principal’s incremental cost of delay is stationary. For time-consistent agents.
a stationary delay cost implies that a stationary incentive scheme can induce first-best efficiency even with uncertainty
over the distribution of task costs. Furthermore, if the principal could observe the distribution of task costs, then station-
arv incentive schemes could induce first-best efficiency for time-inconsistent agents as well. But when the principal
is uncertain about a time-inconsistent agent's task-cost distribution. she is uncertain about the agent’s propensity to
procrastinate, creating a problem: Punishment for delay that is harsh enough to prevent excessive procrastination by
severe procrastinators may be so harsh that moderate procrastinators complete the task when it would be more efficient
to wait, As a result, first-best optimality tvpically will not be feasible.

In Section 4. we consider the case where task-cost distributions differ oniy in their means, with the same probability
distribution around this mean. We show that second-best optimal incentive schemes typically will not be stationary. but
rather will be a deadline scheme: Incremental delay will be punished moderately early on, but after some ~deadline”
it will be punished more scverely. Such a scheme early on encourages those with little propensity to procrastinate to
wait until it is efficient to do the task, while the deadline assures that severe procrastinators do not delay too long. Put
differently. the fonger an agent delays completing a task. the more likely the delay is because of procrastination rather
than efficient waiting; it is therefore optimal for the principal to punish incremental delay more severely as time goes
by. In Section 5, we relax the assumption that the distribution of task costs around the mean is the same for all task-cost
distributions. We show that for the more natural case — where agents with lower average task costs also have lower
variance - the “deadline result™ from Section 4 holds.

An important issue in modeling time-inconsistent preferences is downplayed in all the discusston above: How aware
are people that they might behave in the future against their current preferences? In our context: Do people predict
their tendency to procrastinate? In Section 2, we discuss two extreme assumiptions that have appeared in the literature
— that people are fully aware of their future self-control problems. and that they are completely unaware of their future

self-control problems. O Donoghue and Rabin (1996) compare the two assumptions. We show that while self-contro}
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problems lead unambiguously to procrastination when an agent is naive about his tendency to procrastinate, an agent
who is sophisticated about his tendency to procrastinate may do a task eariier than a more patient, time-consistent
agent would. Because we feel that naivete is often the more realistic assumption — and because it is far more tractable
than the sophistication assumption — our formal model assumes naivete.”

The assumption that people are naive about their self-control problem gives rise to an important additional issue:
Since naive people overestimate their pavoft from an incentive scheme (because they don't realize that they'1l get low
wages due to procrastination). principals aware of this procrastination might hire people merely to bilk them of money
rather than to efficiently complete a task. We discuss in Section 3 how reputational pressures and other factors might
lead a principal to care only about efficiency. as assumed in the discussion above. and most of our analysis in the
paper assumes that the principal prefers to induce efficient behavior. Even so. in Section 3 we examine the alternative
assumption that the principal wishes to bilk the agent. We show that she can always do so with an incentive scheme
that is sufficient}y lenient in punishing delay so that the agent is lulled into severe and costly procrastination,

We conclude in Section 6 with a discussion of some caveats and possible extensions to the model of this paper. and

a discussion of some other implications of procrastination for organizational design.

2. Presently Preferences

0" Donoghue and Rabin (1996) coined the term “presently preferences™ for the class of time-inconsistent preferences
where a person puts greater and greater weight on his well-being at an earlier moment rather than a later moment as the
earlier moment gets closer. Variants of such preferences have been studied by many researchers.® Consider the choice
between doing 7 hours of an unpleasant task on April 1 versus spending 8 hours to complete the same task on April 15.
The task could be completing vour taxes - on April 13 you would have to take the extra time to go to the post office o
mail your returns, whereas on April 1 you could simply mail it without hassle on your way to work the next day.
[fasked to commit on February 1 to one or the other, most people would prefer to do less work in April, and therefore
choose 7 hours on April 1. If they must choose on April 1. however, most people are inclined to put off the task two

weeks rather than doing it right away. When April 1 arrives, people have a preference for immediate gratification -

2 Economists examining self-control issues seem to be inclined to assume sophistication, well beyond what we feel
behavioral evidence supports. In part this inclination derives from a desire to depart from familiar economic assump-
tions one step at a time - naivete is two steps away by simultaneously assuming time-inconsistent preferences and
-irrational expectations™ about those preferences. Indeed. the analysis in this paper to some extent reinforces this
worny: Many of the issues to which naivete gives rise are unfamiliar and problematic for economic analysis, Yet, in
this and related research, we have discovered a pattern: In many models. naivete is far more tractable than sophis-
tication in terms of the practical logistics of formal models. We fear, therefore, that a conservative weddedness to
the sophistication assumption may not only be tenuous behaviorally, but hamper the incorporation of self-control and
time-incensistency issues into economics.

3 Casual observation, introspection, and psyvchological research all indicate such time inconsistency. See Chung
and Herrnstein (1967). Ainslie (1974, 1975, 1987, 1992). Ainslie and Herrnstein (1981). Thaler (1991}, Funder and
Block (1989). Hoch and Loewenstein (1991). Ainslie and Haslam (1992a. 1992b}, Loewenstein and Prelec (1992),
and Kirby and Herrnstein (1993). For early cconomics papers focusing on time-inconsistent discounting, see Strotz
(1953). Koopmans { 1960). Phelps and Pollak (1968). Pollak (1968). and Goldman (1979.1980).
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not doing the unpleasant task today — with which their long-run selves disagree.

Phelps and Pollak (1968) put forward an elegant model (later employed by Laibson {1994)) which can be used
to capture this time-inconsistent taste for immediate pratification. They proposed a simple two-parameter model that
slightly modifies exponential discounting. Let u; be the instantaneous utility a person gets in period ¢. Then her

intertemporal preferences at time ¢, {"', can be represented by the following utility function:
-
Forall#, UM (uy uypq.ouy) = Sy, + 3 Z T
T={+1

The parameter ¢ represents ~time-consistent”™ impatience. so for .7 = 1 these preferences are simply (the discrete
version of) exponential discounting. But for .3 < 1. these preferences parsimoniously capture the time-inconsistent
preference for immediate gratification. Since we shall focus in this paper on relatively short horizons. we assume ¢ = 1
_ 50 there is no time-consistent discounting. Hence. the intertemporal utility function is

”

Forallt., UM, tyey oug) = wuy + 3 Z Unr.

T=i+1

Consider again the above example. Assume that your instantaneous disutility from doing work s simply the number
of hours of work, so that 1,{7) = —7 and «,(8) = —8 for all /. Suppose also that .3 = 8 You are willing to forego a
given loss in utility in the future for a gain in utility now that is only 80% as large. Consider your decision on February
I. Because on February 1 you discount both dates by 3. you will choose to work 7 hours on April | rather than §
hours on April 15, Contrast this with what your decision would be on April 1. You can experience a utility of ~7 by
working today. or experience a discounted utility of .8(—8} = ~ 6.4 by delaying the work until 2 weeks from now. You
will, therefore, delav work. Hence, for the exact same problem. your choice on April 1 is different than your choice
on February 1. [rrespective of its specific prediction, expenential discounting would predict that your choice would be
the same whether vou made that choice on February 1 or April 1.

To examine dynamic choice given time-inconsistent preferences, researchers have convergedena simple modeling
strategy: For each point in time. a person is modeled as a separate ~agent™ who chooses her current behavior to
maximize her current preferences. predicting how her future selves will behave. In such a framework, an important
issuc arises: What are a person’s beliefs about how her future selves will behave? Of course the answer to this guestion
depends on a vast array of beliefs about future selves™ preferences and beliefs about future selves’ beliefs. Two extreme
assumptions have appeared in the literature to deal with the issue of beliefs about future behavior. Sophisticated people
are fully aware of their future self-control problems and therefore know exactly how their future selves will behave.

Nuive people are fully wraware of their future self-control problems and therefore believe their future selves will

behave exactly as they currently would like them to behave.*

1 Strotz {1955) and Pollak (1968) carefully tay out these two assumptions (and develop the labels). but do not much
consider the implications of assuming one versus the other. More recent papers have either assumed one or the other,
without attempting te justifs the choice with behavioral evidence. For instance. Akerlof (1991) assumes naive beliefs,
while Laibson ( 1994.1995) assumes sophisticated beliefs. O'Donoghue and Rabin (1996} consider both, and explicitly
contrast the two. but likewise do not provide behavioral evidence for either.



There seems Lo be elements of both sophistication and naivete in people. Some degree of sophistication 1s implied
by the fact that people often pay to commit themselves to smaller choice sets (e.g.. joining fat farms or Christmas clubs.
or buying small rather than large packages of enticing goods). A naive person would never worry that her tomorrow
self might choose an option that she doesn’t like today, and therefore would find committing herself unattractive. On
the other hand. people do seem to overestimate the degree to which they will abide by their current preferences for
future self-control. For example. people will repeatedly not have the ~will power” 1o forego tempting foods or quit
smoking while predicting that tomorrow they will have this will power.

O Donoghue and Rabin (1996) examine the implications of assuming sophistication versus naivete. One of their
conclusions is that sophistication often leads ta complicated behavior. For the context of this paper. small changes in
incentive schemes can lead to dramatic changes in behavior. and incentive schemes that yield stationary behavior for
both time-consistent agents and naive time-inconsistent agents can yield highly nonstationary behavior for sophisticated
agents. This makes the search for optimal incentive schemes a much more difficult exercise. In part to avoid getting
lost in such difficulties. we shall focus mostly in this paper on the case of naive beliefs. While extreme, we do not
velieve aur focus on naive beliefs is without behavioral foundation, We believe that much day-to-day procrastination
is characterized by a large degree of naivete: We procrastinate today believing we will complete some task tomorrow,
but tomorrow we decide to delay again. Importantly, even when we are aware of a general tendency to procrastinate
we seem capable of underestimating this tendency on a case-by-case basis. We return in Section 6 to comment brietly

on how sophistication might affect our results.

3. A Model of Temporal Incentive Schemes

Suppose a principal hires an agent to complete some task. They sign a contract specitying how the principal will
compensate the agent, where wages can be contingent only on information available to both parties. In contrast to the
standard principal-agent paradigm. we assume that there is no uncertainty about whether an action has been taken, nor
about the level of effort by the agent. so that there is no moral hazard of the traditional sort. Rather, we focus on the
problem of when the agent completes the task if there is day-to-day uncertainty over the cost to the agent of completing
the task. For example, on any given day the agent may be sick or may have more pressing projects to complete.
Efficiency may require that the agent wait on days with a high task cost, and do it when the task cost is low. Moral
hazard can arise if the principat cannot observe the task-cost realizations. We explore the role of remporal incentive
schemes — contracts where wages are contingent on when the agent completes the task — in such an environment.*
The trade-off tvpically studied in principal-agent models is between incentives and insurance. In our context.
creating incentives not to delay can impose risk on the agent, since he will get low wages if he has unusually bad luck
in completing the task early on. Because we wish to focus solely on the procrastination issue, we will assume the agent

is risk-neutral, so insurance is not an 1Ssue.

> Although incentive schemes have been studied extensively in organizational and mechanism-design literatures, to
our knowledge this literature has not examined temporal incentive schemes.



Suppose a task can be completed in any period t € {1.2..... T}, where T can be finite or infinite. The principal
prefers to have the task done sooner because she faces a cost of delay. The principal’s exogenously-determined gross
pavoft schedule is X = (V. Xo..... X7}, where she gets payoff X, if the agent completes the task in period ¢. The
marginal delay cost is captured by 7 = Xy - X,.; > Oforall# Inthe case of T = >, we assume the principal’s
pay oft if the agent never completes the task is less than X, for all +.° We often assume a stationary delay cost =,
where 1" = ~ and »7* = = forall .

Although the principal prefers ta have the task done sooner. there can be benefits to delay if it yields a lower task
cost to the agent: lowering the agent’s expected task cost allows the principal to pay a smaller expected wage (i.c.. it
will be easier to satisfi the agent's participation constraint). In period f, the tusk cost to the agent. ¢, is drawn from a
stationan distribution ' with support [¢. 7l ¢ > (1. and cumulative density function F(¢;). In this section, to simplify
the arguments we assume F{c) = 0, but the results all hold if we relax this assumption.. The task cost is meant to
capture any disutility to the agent for completing the task. including opportunity cost. Importantly. we assume the
task costs are “salient™ to time-inconsistent agents. causing the agents to give the costs exaggerated weight in their
decisions. and hence causing procrastination. In other words. our model examines tasks which invelve long-term gains
and short-term costs.

The agent’s behavior can be described by a strategy that is a vecter of cutoff costs s = (5. 5. ... 7). where

the agent completes the task in period ¢ if and only if ¢ <~ € . 7% Before considering incentive schemes. we

characterize first-best efficient behavior for a given X and €. Efficient behavior 47 = (~7.+5. ...~ ] will minimize

the sum of expected task costs and expected delay costs.” Throughout we will denote a generic strategy by s and specific
strategies (i.e.. the efficient strategy and ~equilibrium ™ strategies) by +y's. Tosolve for ", we need some notation. First.
we define a hazard function /:{7 | f.s ), which represents the probability that the agent has not completed the task before
period 7 conditional on not completing the task before period # < . given the strategy . Then

1 ifr =t

fifvit.s) = -1
H(l — Fis))  if7 >t

1=t

5 We can think of this as the principal receiving X in period 1, and paying 3 in each period + that the task is

delaved. This interpretation implies that the principal cannot avoid losses relative to X'y by inducing the agent never
to complete the task.

7 This assumption implies that “completing the task when ¢; < ¢ is equivalent to “waiting”™ - not doing the task for
sure. Without this assumption, we have to define an action to represent waiting (as we do in Sections 4 and 5).

¥ By defining the strategy this way. we are restricting the set of possible strategies that the agent could employ.
More generally, each action «, could be a function of the history of task costs (¢. ¢2..... ¢,_y). This simplification is
unrestrictive. however. Since we assume throughout that the agent knows the expected distribution of task costs C',
continuation pavofts are independent of past task costs,

% Le.. by efficiency we mean minimizing the sum of all ex ante costs incurred by either party. Therefore. given the
structure of ex ante negotiations and the “reputation constraint™ (both to be discussed shortly). the efficient strategy
will be equivalent to the strategy that would maximize the principal's payoff if she could observe task-cost realizations.
We assume throughout the paper that ~™ exists and is {as we define it below) “unique™ in the sense that all efficient
strategies will vield equivalent behavior. These conditions hold in all cases we've considered, and we suspect that this
holds without loss of generality, but have not proven any such results.



Let 1 '(s) be the expected delay cost from waiting in period ¢ given the strategy s (so the expected gross payoft to the
principal if the agent waits in period # is X, — 2 /(s)). Then
"
Vis) = Z f(r i—=1.s)a> .
T=f-1
Let J'{s) be the expected task cost from waiting in period ¢ given the strategy s. Then,
-
sy = 3 BT t-Ls) Fis) Eie o<,

T=1+1

where E(c ¢ < s) = ‘,..ﬂl_\_l _f:f\ e dF (el

Efficient behavior minimizes the sum of the expected delav cost and the expected task cost. In other words. In
cach period # the agent should complete the 1ask if the task cost ¢, is less than the total expected costs for delay, so v~

satisfies foreach f < T
-t

VY + S b ety = JyT) <E
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We next describe temporal incentive schemes. We shall always assume that the agent can observe ¢, in period
before choosing whether or not to perform the task. The principal never observes the task costs. As discussed above.
this is the source of moral hazard: The principal would like to require the agent to complete the task in period ¢ if and
onlvife, < ~7. Butsince the principal cannot observe «;. the contract cannot specify a wage contingent on the task cost.
but only on when the agent completes the task. We denote a temporal incentive scheme by W= (W7 015, 1)L
where the agent receives wage 1175 if he completes the task in period f. The incremental wage wr™ is defined by
wit = 1, - 1,.,. The principal is assumed to be risk-neutral. so her overall pavolff from a contract under which the
agent follows strategy s will be Zi:l (rilos) Flso) Ao - L

The agent has presently preferences, as described in Section 2. with ¢ = 1. We consider two types of agents.
TCs have .3 = 1. so thev have standard time-consistent preferences. (7 stands for time consistency.) Naifs have
3 < 1. but they are naive so they believe they will behave like TCs beginning next period. We examine the behavior
of TCs mostly as a benchmark against which to compare behavior for people with presently preferences and because
TC behavior represents naifs’ perceived future behavior. Naifs are time-inconsistent. and are unaware of this time
inconsistency. They are also more impatient than TCs. It will become clear that the main results are driven by the
combination of time-inconsistency and naivete. and no¢ the relative impatience.

To analyze an agent’s reaction to an incentive scheme. we must convert wages and task costs into instantaneous
utilities. Because we assume the task cost is incurred immediately. while the wage is received at some future date. the
agent’s utilities for completing the task in period f are givenby u; = —cj.u;_, = Wiandu, = Otorallt & [t 41100

The assumption that the task cost is incurred immediately while the wage is delayed is crucial because it implies that

10 We assume for simplicity that the wage is received in period  — 1. This means that the wage is not salient — the
agent does not have an extra incentive to do the task 1o get the wage now as opposed to sometime in the future. Because
we have assumed no time-consistent discounting, the agent does not care when in the future he receives the wage.



naifs have a rendency to procrastinate. ™

Before considering ex ante negotiations, we first discuss how the agent will behave given an incentive scheme
W. We use the concept of perception-perfect strategics introduced by O°Donoghue and Rabin (1996). Rather than
give the general definition. we describe the implications for the two types of agents in the model here. For TCs
a perception-perfect strategy is the standard. simple decision-theoretic prediction: At all times TCs maximize their
expected utility given their current information. so they complete the task now if the utility from doing so is higher
than the expected utility from waiting. Naifs similarly compare their utility’ from completing the task now to their
perceived expected utility from waiting: but because naifs think they will behave like TCs in the future, their perceived
utility is svstematically wrong (and. in particular. overoptimistic). That is. naifs misperceive their future behavior and
consequently their future utility from waiting.

Let4 = (% ,.%,.....%) be a perception-perfect strategy for TCs. The period-# expected utility from waiting for
TCs will depend on the expected task cost from waiting as well as the expected lost wages from waiting. The expected
tash cost from waiting for TCs is (' (%), Let p'(s) be the expected wage cost from waiting in period t when the agent
perceives he will follow strategy s in the future (so the expected wage if the agent waits in period # is 117 — p'(s)).

Then

In period . TCs compare the utility from completing the task now 117 — ¢, to the expected utility from waiting 117 —
2% - (A0, and therefore complete the task if and only if e, < pi(%) - JHAY. Then & = (4.4, ... 4 satisfles

toreacht < T

Py = )i el

o= Qe it P15~ ) <
g it pA — S >
Let v = (~,.74..... =} be a perception-perfect strategy for naifs. Naifs believe they will behave like TCs in

the future, so their perceived expected task cost from waiting is J'(%). and their percened expected wage cost from

waiting is ' (%). Then vy = (=,.~4. ... 7o) satisfies for each t < T.""

In the case of T = ~. we assume (as we did for the principal) that never completing the task carries consequences
for the agent, and in particular if the agent never completes the task his payoff is below 117 for all {. An interpretation
is that from time to time the agent must “settle up™ incurred wage costs.

1 Even if the agent gets his wages immediately. they are not salient if he cannot enjoy the benefits of those wages
immediately: wages will therefore be salient only if the agent can both consume the wages immediately and does not
have liquid wealth that is alrcady available to consume. We discuss the use of salient rewards such as breaks or parties
in the concluding section.

7% and ~ as defined in the text are unique. but there could be other strategies that would yicld identical observed
behavior (and would be perception-perfect strategies under a more general definition). Throughout. we refer to % and
~ as the perception-perfect strategies. For 7 = ~. under some W 4 and'or v may not exist: but for atll W we consider
they do exist.
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The final component of the model is the ex ante negotiation and participation constraint. We assume the principal
proposes a contract which the agent can accept or reject. 1fthe agent accepts, the agent will be compensated according
to the incentive scheme. [f the agent rejects. then there is no contract, We assume the agent gets utility £ = 0 if he
rejects the contract. What contracts will the agent accept?

For TCs. the answer is clear. Given an incentive scheme W, TCs correctly predict their future behavior (i.e., ).

so the utility to TCs from accepting the contract is the ex ante expected wage minus the ex ante expected task cost.

Given our definition of O’ " represents the ex ante expected task cost. We can denote the ex ante expected wage given
strategy s by W 9s) = 117 — (1= F(~1))p'(s). Hence, TCs accept the contract if and only if 117051 JU(5) > T — 0.
so the participation constraint for TCs is T19(%] > J"(5).

For naifs, several issues arise. Since naifs have time-inconsistent preferences. it matters whether the contract is
signed in period 1 or prior to period 1. We assume ex ante negotiations occur prior to period 1. so the agent’s ~long-run
utilitn ™ is relevant when signing the contracl. In our model. we can interpret this as ex ante negotiations occurring in
period 0. where the agent's preferences are described by UV

More importantly, we must determine the right perspective from which to consider pavoffs. Naifs incorrectly
perceive future behavior — they believe they will behave like TCs, Consequently. they will generally be overoptimistic
about their utility from signing a contract. Should the participation constraint for naifs be based on the utility naifs
perceive at the time they sign. or on the expected utility they actually get from the contract? In other words, should we
use utility from an ev e view (“perceived utility ™) or an ev past view (“experienced utilitny7)?

Throughout our analysis, we assume that the principal knows about the agent’s procrastination. We primarily take
the point of view that the participation constraint for naifs should be based on experienced utility of the agent. But
we first consider the perceived-utility perspective. When using perceived utility, naifs could be exploited as a “money
pump™: You could hire a naif to do some task and get the naif to pay vour a large sum of money (i.c., a large negative

wage) 1o do the task. Consider the following example:

Example 1

Suppose there is some task that is "meaningless™ to the principal (i.c.. X, = 0 for alt #). Suppose further that the
distribution of task costs for the agent has support ‘c. 7 . with mean L. and satisfies _%r_‘ > T

Consider an incentive scheme W = (E. Fe —w. ... Ee- —{T — 1)pwywithe — Eo- < v < %g — E¢. Since
7 < Ee¢ — . TCs will complete the task for sure in period . Hence, naifs” ex ante utility from the contract is
I, — E. =0 = T . so naifs would be willing to sign the contract. However. since ¢ > J(F - w). in fact naifs

procrastinate until period T. Hence. the principal could use this “meaningless™ task to bilk an arbitrarily large amount

of money from the agent. since my_ Wy = —x.



In Example 1. it is possible for the principal to offer a contract that the agent will accept under the premise that
he will complete the task immediately, when in fact he will for sure procrastinate until the very end. By proposing a
contract with T arbitrarily large, the principal can guarantee an arbitrarily large negative wage. This example assumes
the support of the task-cost distribution is small (relative to 7). and for general task-cost distributions creating such a
stark contrast between beliefs and behavior will not be possible. Nonetheless, the following lemma establishes that the
principal can bilk arbitrarily large sums of money from naifs as long as the task cost is bounded away from zero.
Lemma 1 Suppose there exists a tusk such that ¢ > 0. Then for any W < Dand anv 3 < 1 there exists a contract
W that nuifs perceive o vield expected wiline UF > 0, but the actual realized wage is less than 11

All proofs are in the Appendix. The intuition for Lemma | is similar to the reasoning in Example |. For any cost
distribution, the principal can create an incentive scheme such that naifs believe they will complete the activity with
positive probability in all periods (not necessarily with probability one). but in fact procrastinate until period I'. For T
sufficiently large. naifs believe thev will complete the task Jong before period T, so they will accept a contract with a
farge negative wage in period 7"

Lemma 1. taken literally, savs that principals can become arbitrarily rich by hiring naive agents not to produce any
useful function but rather to exploit their overoptimism. While it iv plausible that finms take some advantage of such
bilking opportunities, we think studving efficiency-oriented temporal incentive schemes is probably more important
than studving bilking-oriented schemes. There are several reasons for this perspective. For one thing, because suc-
cesstul bilking requires delay in the agent completing the task. a principal who wishes Aoth to bilk the agent and to
uet a task efficiently completed would need to separately offer ~bilking contracts™ and ~efticieney contracts,”

Furthermore. there are likely to be reputational pressures that induce firms to offer incentive contracts that are ex
post acceptable to agents. which will also imply that firms wish to induce efficient behavior. A firm (i.c.. the principal)
will ikely have many tasks that it needs completed. To maintain a pool of willing agents, the firm might need to develop
a reputation of making agents on average ex post pleased with the outcomes, which means the expected expericiced
utility for the agent must be at least £ Such a “reputation constraint™ for principals would imply that. effectively, the
participation constraint for naifs is based on experienced utility. If working at a firm involves completing, say. 100 tasks
over the course of a vear. and the most important ~participation constraint™ by emplovees is not whether they wish 1o
take a job but whether they wish to change jobs. then the experienced-utility perspective is clearly more appropriate.

Another reason to downplay the principal’s bilking opportunities is somewhat more subtle, and somewhat slippery
10 model formaily, but seems psychologically realistic. A pattern for many psychological biases is the coexistence
of day-to-day errors with a “meta-awareness™ of these errors. In terms of procrastination, people seem to be “meta-
sophisticated™ about their tendency to procrastinate. and vet exhibit day-to-dayv naivete. With this conceptualization.
considering ex post efficiency may not be a bad approximation: Agents may sign contracts aware of their tendency to
procrastinate, but they are not sophisticated enough to overcome procrastination on a dav-to-day basis. This concep-
tualization also accords well with our assumption that the principal is aware of the procrastination problem. because it
allows that the principal 1s no more aware than the agent himself. only that they are both meta-aware.

Finally. the often invoked (1f rarely formalized) presumption that efficient institutions and production schemes tend

10



to survive over time. even if people are not aware of why they work. may be used to suggest that we should focus on
efficiency contracts rather than bilking contracts. Principals may use deadline contracts and employees may tend to
accept such contracts even if neither party knows why they work. In any event, for the rest of this paper. we assume
the participation constraint for naifs is based on experienced utility. so the participation constraint uses actual behavior
~ and is therefore .3 [110(y) = J(y)] = 30 = 0 or W0y) 2 Oty).

We conclude this section by asking whether temporal incentive schemes can induce efficient behavior when the
principal has complete information about the agent. In other words. the principal knows the agent's infierent propensity
to procrastinate .7, as well as the agent’s distributton of task costs.

Since TCs are time-consistent, TC behavior minimizes the sum of the expected task cost and the expected wage cost.
Efficient behavior minimizes the sum of the expected task cost and the expected delay cost. Hence. TCs will behave
efticiently if the expected wage cost is identical to the expected delay cost — i.e.. if the incentive scheme internalizes
the principal’s payofT schedule. With a stationary delay cost. this means a stationary incentive scheme that reflects the
true delay cost. We formalize this intuition in Proposition 1:

Propoesition 1 7Cy hehave efficiently wunder any incentive scheme W satisfyving wit = oy forall ¢ and if X has a
stutionary delay cost o= TCs behave efficienth under any stationary incentive scheme with = =,

Proposition | implies TCs behave efficiently if the incentive scheme internalizes the principal’s preferences. For
naifs, however. it wages merelv reflected true delay costs. in each period the cutoff cost weuld be lower than the
efficient cutoff ~; because naifs overweigh current costs. When the principal has complete information about the
agent, however, she can in fact induce efficient behavier for naifs with an incentive scheme that exactly counteracts
the tendency to procrastinate. With a stationary delay cost. this means a stationary incentive scheme reflecting a delay
cost larger than the true delay cost. We formalize this intuition in Proposition 2:

Propoesition 2 Forevery X Cand 3 < 1,
(1) There exists an incentive scheme W such that naifs behave efficiently. and

(liy If = < T for all t. then any such W satisfies wi > op for all ¢ < 1 and if X has u stationary delay cost =

there exists a stationary incentive scheme Wowith w= > = such that naifs behave efficiently:

The following example demonstrates the intuition for Propositions | and 2. and alse illustrates that a "steeper”
incentive scheme for naifs relative to TCs implies that the initial wage for naifs must be larger in order to satisfy the

participation constraint. Since both types are induced to behave efficiently. they face the same expected task cost.

Example 2
Suppose T — ., = = ﬁ and ' is distributed uniformly on .o 1. so Fle)=¢ —cfore € coc+ 1.

Efficicncy: Clearly. the efficient cutoff cost will be stationary. Let 4~ = (~7.~"....) denote the efficient strategy.

B . [N 1 A 1 t e o e o=t - L | 1 n
Foreach f\"(v") = gomt™ = smopand J(y7) = Elce < »7) = = Hence. »% = oo 57 ~ =5
implying =™ = ¢~ Ll

TCs: Proposition 1 establishes that a stationary incentive scheme with incremental wage S = o = % will

induce efficient behavior. The principal will offer an incentive contract such that the agent behaves efficiently and



the expected wage equals the expected task cost. Hence, the incentive scheme must satisfy ;,'U(Py") = H'”('y’“ b=

Wi--(1 = Fi~ )y pty™). Wehavepl (™) = W_I”E_u'-\‘ = de2and Py ) =25 = e bso 1) = G e— L =
o é Hence. the first-best comtract for TCs is W = (¢ — % - %.g— ﬁ o+ ;—‘_, N

[\4

Nuifs : Suppose .3 = 1 Praposition 2 establishes that a stationary incentive scheme can induce efficient behavior for

naifs. We search for the incremental wage = that will induce efficient behavior. Given w=. % will clearly be stationary

(i.e..cutoff < inall periods) and satisfies & = —ow= 2 or = 0= V20 (as longas = <L L5074 < e - 1) In
general. 4 satisfies ~, — 3%, forall f.so~, = ~~ forall 7if ~* = 3 ((_' \’2:14) oru™ =4 (e~ 1) (and > < 1

aslongasc < %), As for TCs. the incentive scheme must satistv 11y — (1 — F(~"j1p' (57} O I Ty <-

So for any ¢ < 1. the first-best contract for naifs is described by 117 = ¢ — % + 3= and o= = é (¢~ %)

The contracts used to induce efficiency in Example 2 vary according to ¢. which determines how high the average
task cost is. Figure 1 iliustrates the incentive schemes that will be chosen for both naifs and TCs. for twa different values
of . alow cost of ¢ = 0 and a high cost of ¢ = %.” For cach task-cost distribution. the optimal incentive scheme
is steeper for naifs than for TCs: therefore naifs must have a larger intercept to satisfy the participation constraint.
Another feature of Figure 1 is crucial for the intuition of the next section: For TCs changing the task-cost distribution
changes the intercept {i.c.. the participation constraint} but sior the slope. In contrast, for naifs changing the task-cost
distribution changes both the intercept and the slope. Intuitively. higher average task costs imply a greater propensity to
procrastinate. so steeper incentives are required to overcome procrastination. This difference, that changing the average
task cost affects the optimal incentives for naifs but not for TCs. implies a qualitative difterence in how principals deal
with uncertainty over average task costs for the two tvpes of agents.

We conclude this section with another example illustrating that in nonstationary environments where the princi-

pal faces an absolute deadline. an agent’s propensity to procrastinate can induce the principal to impose incremental

punishments for delay even before the deadline.

Example 3

Suppose the principal taces a pure deadline: X, = A > Oforallt < DN, = 0 forallt > D. For TCs. the
optimal incentive scheme will clearly punish the agent by A if and only if he delays past period D (ie., wp — 0 for
allt < Dand wp = K fort = [3). For naifs, however, the optimal incentive scheme may punish delay even before
the deadline (i.e.. w;> > 0 fort < D). That is. the principal must ~falsely™ punish the agent for delay if she wants to

induce efficient behavior,

The point is that to induce efficient behavior a principal may need to punish delav even if she does not care at all
directlv about delav. Even if a professor feels that it is only important for a student to understand the material by exam
time. she may still want to grade problem sets throughout the semester. Although such a policy may punish a few
students who would successfully lTearn the material at the last moment, it benefits the many students who would put

off learning the material until it becomes so late that they cannot adequately do so.

' For ¢ = 0, the first-best contract is W = (5. 5. 5. ..} for TCsand W = (.2, 2. ) for naifs; for ¢ = . the
first-best contract is W = (':j "—:; "—_) ...) for TCS and W = = \‘ ) (: <o) for naifs.
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‘Optimal scheme for naifs when ¢ = 1/2

Optimal scheme for TCs when¢ = 1/2

. \\
Optimal scheme for naifs wheng =0
632 - o
Tt — e Optimal scheme for TCs when¢ =0
0 . e
] 2 3 4 3 6 7 8
-6/32

Figure 1: Optimal Incentive Schemes for Example 2



4. Heterogeneous Propensities to Procrastinate

In this section we relax the assumption that the principal has complete informatieon about the agent. so that the principal
is uncertain about the agent’s propensity to procrastinate. Specifically. we suppose there is uncertainty regarding the
task-cost distribution (", We assume (" is unknown to both parties in period () when the contract is signed, but is revealed
to the agent but not to the principal sometime before period 1. The specific € realized determines an agent’s “type.”
As before. all tvpes of the agent face a stochastic task cost. but now we assume that some lypes may average a larger
task cost than other tvpes. This difference is important because high-cost types are more prone to procrastinate.' We
assume in this section that there are two types of agents who differ only in their mean task costs. and have the exact
same distribution of task costs around the mean. Perhaps the best interpretation of this situatton is that the principal
{and. ex ante. the agent) is unsure how hard the agent will find the task. but that she has a rough sense of the day-to-day
variance in the opportunity cost for the agent to do the task. In the next section we consider what happens in the case
where not only the mean of the task costs may differ, but also the distribution around the mean.

In the previous section, we found that we can induce efticiency for both TCs and naifs if there is complete informa-
tion about task costs. Private information about task costs does not cause a problem for TCs: TCs behave efficiently
no matter the distribution of task costs as long as the incentive scheme internalizes the principal’s preferences. As
illustrated by Example 2 and Figure 1. the slope of the optimal incentive scheme for TCs does not depend on the
task-cost distribution . For naifs. on the other hand. a problem arises, Unlike TCs. the optimal incentive scheme for
naifs depends on the distribution of task costs. As illustrated by Example 2 and Figure 1. agents with higher average
task costs (who are more prone to procrastinate) require a “steeper” incentive scheme. Hence. when the propensity
to procrastinate is unknown, incentives must be steep to prevent high-cost types from procrastinating too much. while
still shallow enough 10 induce low-cost types to wait when waiting is efficient.!”

[n this section and the next section, we consider the case in which the principal’s incremental cost of delay is
stationan: Ny — X, = o= forall f, with T = ~.. Our focus on stationary environments allows us to highlight

an interesting non-stationarity result. Proposition | establishes that the optimal incentive scheme for TCs will be

M QOur assumption of uncertainty about the agent's task-cost distribution creates uncertainty about the agent’s induced

propensity to procrastinate. Qur model would be essentially the same if we assumed that all agents had identical task-
cost distributions but differed in their inficrent propensity to procrastinate .3. We prefer the former for a couple reasons.
First, we consider it a result of direct interest that a disparity between efficient waiting and inefficient procrastination
can arise purely as a function of the environment, rather than solely as a function of an agent’s inherent procrastinatory
tendencies. Second. we suspect that for long-emploved agents. uncertainty over the environment can persist in the long
run while uncertainty over the inherent propensity to procrastinate may not, Consider a single emplovee who is given
many tasks over time to complete. Eventually his supervisor may figure cut his inherent propensity to procrastinate .7,
But if an agent will have 1o perform a long series of idiosyvneratic tasks of uncertain difficulty, then uncertainty over
the propensity to procrastinate can remain in the leng run,
> We do not consider direct mechanisms — contracts where the agent reveals his type to the principal and the incentive
scheme is then type-dependent. In the model of'this section. the two tvpes can never strictly prefer to reveal themselves
because for any incentive scheme they perceive the same behavior Moreover, direct mechanisms seem unreasonable
in this environment. Our analysis may be most applicable to situations where an agent is hired to complete many
1asks over time. or when many agents in an organization are given the same incentive schemes. In such environment,
renegotiation of each incentive scheme to take account of case-specific information seems unrealistic.
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stationary. and Proposition 2 establishes that the optimal ~full-information™ incentive scheme for naifs will also be
stationary. We show. however. that if the agent has private information about the distribution of task costs. then the
second-best optimal incentive scheme for naifs will generally not be stationary. Rather. it will often be a ~deadline
scheme™: An agent is initially punished only moderately for delay. but there is a date after which punishment for delay
becomes more severe. By deadline schemes, therefore, we do not mean imposing an absolute deadline, in the sense
of an infinite punishment for not meeting the deadline. In practical terms we doubt there are many absolute deadlines.
Modeling deadlines as jumps in how severely one is punished for delay seems a more natural interpretation. However.
amore general model than the simple one we present would not generate deadline schemes even by this interpretation:
This section’s prediction of a unique date when there is a shift in the severity of punishment is an artifact of our simple
model. Our qualitative result, therefore, is that second-best optimal incentive schemes will involve increasingly severe
punishments over time, with no special role for simple deadline schemes of the sort commonty observed. We discuss
the relationship between our model and such simple deadlines in the coneluding section.

For tractability reasons, we consider a highly simplified model where there are two types of agent and each type
faces twe possible costs. Let i € { L. H} denote an agent’s tvpe. and let = denote the ex ante probability that the agent
istype I (so 1 — = is the ex anle probability that the agent is type H). The cost distribution ', for each i € {L. H} is

==k with probability

i =

|-

=N with probability

ro—

where ¢y > ¢; and & > 0. Hence. the {f agent has a higher average task cost than the L agent. and therefore the H
agent is more prone 1o procrastinate. In this 2 x 2 model. the agent could be a high-cost type or a low-cost tvpe, and
cach type can have a high-cost realization or a low-cost realization. To clarify our discussion. we use the following

terminology to describe the three possible plans that the agent might employ in any given period.'

Terminology Action

do it for sure (d): complete task if ¢ = ¢, or ¢ =7,
be selective (s): complete task only if ¢ = ¢,
wait for sure (w: do not complete task

We redefine strategies in terms of these three plans. A strategy is therefore s = (s;. &y, ...) suchthat ~, € {d. = w}
for all r. Since X and W are the same for both (ypes. we can define h(7  f.s}, 1 (s). and p'{s) exactly as in Section
3. where F(d) = 1. F{s) = % and £(w) = (0. Since the two tvpes face different task-cost distributions, however, the
expected task cost is type-dependent. Let CH(s) be identical to ' (s) except that E;{cic < s, ) replaces E(clc < = ).

where we define F;{c ¢ < &) as

¢, its; =d
Fie o< s) = v, — if s =«
0 if-‘*; =i,

Given X. let ¥™¢ = (57, +3% ...) be the efficient strategy for type i € {L. H}. Simitarly, given W let §' =
(#1450 and v = (3].75....) be, respectively. the perception-perfect strategies for TCs and naifs of type 7 €

{L. H}. Then. forall t. v . 4" and 4" satisfy:"’

I The fourth possible plan, complete the task only if ¢ — ¢,. would obviously be neither optimal nor chosen.
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The assumption that task-cost distributions differ in only the means is important for two reasons. First, efficient
behavior depends on the distribution of task costs but nor the mean, so efficient behavior will be the same for both
tvpes (Le. v " = 471 = ~*). Second, TC behavior also depends on the distribution of task costs but #ot the mean.
so TC behavior will be the same for both types (i.e.. 4" = 3" = %), This second result has an important implication:
Naifs perceive that they will behave like TCs in the future. so L's and /1's perceive the same continuation strategies.
Hence. for any incentive schente. we have for all t. pf (%) - (%) — ¢ = pH{5) — I (%) - er. Thatis. both types
of the agent have the exact same perceptions of how delaving will affect their net gain or loss in expected cost.

Efficient behavior weighs the cost of delay against the value of perhaps getting a lower task cost in the future.
Since there is a stationary delay cost .=, efficient behavior will call for ¢ither doing it for sure in all periods or being
selective in all periods (l.e.. v™ = (d.d....)or " = (5. <. ...)). Analysis of the first case is trivial. since efficiency
can be achieved simply with a verv steep incentive scheme in the first period. We focus instead on the case where
efticiency calls for being selective in all periods. which holds as long as & > =,

We now ask what incentive schemes can induce efficiency for a naif of given type. We begin by considering
stationary incentive schemes, and Lemma 2 establishes that naive behavior is straightforward: For small incremental
wages. naifs wait for sure in all periods: for moderate incremental wages. naifs are selective in all periods: and for large
incremental wages. naifs do it for sure in all periods.

Lemma 2 Suppose there is a stationary incentive scheme with ineremental wage w= Then Jor agent i £ { L. HY:

N e e, ifand only ifwt <,

Nt = {sos ) ifand only if w; < e
Nt dod, L) ifand only ifw = T

1/

where w, and W, are given by

1—J 17, o b4 d )
; 3 Cl_j'L {J{(zf lf‘f’l‘

W, = l—j‘—('! - %A' and i, =
' ' 1-3 . 1—.35. o 1+.9 .
ST o A :/rzg_lﬂ,i.‘

" Notice that these definitions do not specify what the agent should do if she 1s indifferent between twoactions. Hence.
unlike the previous sectien there could be multiple perception-perfect strategies. Here. we follow the incentive-design
literature by assuming that when indifferent the agent behaves as the principal would like her to behave.
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Lemma 2 establishes that for type i a range of stationary incentive schemes can induce efficient behavior v =
{~.«....). Giventhe discrete nature of the model. it is not surprising that multipte incentive schemes can induce efficient

. . . ' . . 1+3 . .
behavior. The equation for i, depends critically on the relationship between ¢, and =54 because this determines

. L i0e e H 20—y i ~ontions &' — - eattl SN e o b

whether w, implies perceptions §° = (. ~....1 or perceptions §' = (.. ..} Fore; < {75k wehave u, < A
. . . o - . .

s0 = — iy ”“p]lBS perceptions ¥ = [s.x .1 and for ¢, > lTj,l!\ we have u, > k. s0 s = wr, must ]n]pl_\'

%4 — (¢ e, ...V, In contrast. for anv 3 < 1 we must have w; > & so w= = ; implies ' — (d.d. ). Intuitively. ;
7 } 3 phes 7y ) 3

represents the cutoft between the agent being selective always and the agent doing it for sure always. and naifs do it
for sure only if TCs do it for sure.

The values i, and @, represent the minimum and maximum stationary incremental wages that induce the agent to

be selective in all periods. With non-stationary incentive schemes. however, there may exist f such that ~] = ~ even

A

though > £ w,. 7, . For instance. with a stationary incremental wage w,. « - @, implies ~} = ~ (rather than

:

-1 = ) because the agent perceives he will complete the task for sure in period ¢ + 1 (i.e., the future looks bad). But
with a non-stationary scheme under which the agent perceives he witl be selective in period f — 1. the future looks
better. the agent is less willing to complete the task in period t. and therefore we can have ~ = ~ even if u'* > w,.
Similarly. with a stationary incremental wage w,. wp — w, implies -, — « {rather than ~! — ) when the agem
perceives he will be selective in all future periods (1.e.. the future looks good). But with a non-stationary scheme under
which the agent perceives he will do it for sure in period + — 1. the future looks worse. the agent is more willing te
complete the task in period f. and therefore we can have ~j = s evenif u;* < w',.

While Lemima 2 implies that a stationary incentive scheme that induces efficiency for tvpe 7/ must have imcremental
N

wage «w= in the range .77 . the previous paragraph suggests that a non-stationary incentive scheme can induce

efficiency for type / even if there are periods where w™ <2 i, or w7 > w,. However. the following lemma establishes

that for anv incentive scheme that induces efficiency for tvpe /. the “average™ incremental wage must be in the range

e, Intuitively. an agent will be selective rather than do it tor sure when w7 > w0, only if there are future periods

where the incremental wage 1s much smaller than @, (1.c.. we nust make the future look better); similarly, the agent
B T A . B : inde whe 1 A que i

will be selective rather than wait when w;™ < wu, only if there are future periods where the incremental wage is much

larger than 1, (i.c.. we must make the future look worse). Noting that a constant incremental wage of ¢ implies that

A

the ex ante expected wage cost of a selective agent is 2=, we have the following lemma formalizing the claim that

optimal incentive schemes must “on average™ reflect the incentives of stationary incentive schemes:
: , ‘ ; . -1 e
Lemma 3 /f wrincentive scheme W oinduces ~; = s for all £ then 2w, <57~ (%) wp <2,

Lemma 2 and Lemma 3 characterize the tvpes of incentive schemes that can induce efficiency for a given type. We
now ask when can we induce efficiency for both types. In fact. it follows directly from Lemma 2 and Lemma 3 that
either a stationary incentive scheme can induce efhiciency for both types (when w;, < ;). or no incentive scheme
can induce efficiency for both tvpes (when w;; > @ ). Which case holds depends on how big is the difference in the

mean task costs for the two agents:



. J— IV - Iy e g . . . .
Proposition 3 1w, < 1wy {fandonlyifey - ey < % Hence, if ey —cp < % there exists a stationary incentive

. A - - . v 2
scheme under which both tvpes behave efficiently (by betng sclective every periody, and if ey — ¢ > 1'—“; then no

ineeneive scheme can induce botl tvpes to behave efficiently (by being selective every period).

As discussed above, each 1vpe will behave efficiently for a range of stationary incentive schemes. [fthe types are not
sufficiently differentiated. these ranges will overlap. so a stationary incentive scheme can induce efficient behavior for
both types.'® And LLemma 3 establishes that any non-stationary incentive scheme that induces efficiency for a given
tvpe must have an “average™ incremental wage in the same range as the stationary incremental wages that induce
efficiency for that tvpe. Hence, if the ranges do not overlap for stationary incentive schemes, then they do not overlap
for non-stationary incentive schemes either.

Given we cannot induce first-best efticiency for both types when ¢y — ¢ > 1'% we search for sccond-best
optimal incentive schemes. We are particularly interested in the use of ~deadline schemes™:

Definition 1 A deadline scheme with deadline D > 1 is un incentive scheme such that there exists w™ such that
wpt < w forall t < Dand wp > et forallt > D,

Definition 2 1 (. wit)-deadline scheme is u deadline scheme inwhich wit = ws forall t < Dand wp = wy
Jorallt = D for some uﬁ < u‘,—;‘.

A deadline scheme is an incentive scheme where the incremental wage before some period D is everyvwhere smailer
than the incremental wage after period D. A (13 wp) deadline scheme is a two-part linear incentive scheme where
w and u'fg are the respective slopes. We interpret these two-part incentive schemes as deadline incentive schemes
because agents are punished relatively lightly for delay up to some date D (the ~deadline™), after which further delay
leads 1o more severe punishment.

To give some intuition as to the advantages of a deadline scheme. we first consider what happens under stationary
incentive schemes when ¢y — ¢ > %‘i Since efficiency calls for both L's and s to be selective in all periods,
¢learly the best stationary incentive scheme should induce either L's or s to be selective each period. Butif Ls are
selective every period then H's never complete the task (which occurs when w2, < w= < wy < wy)and if Hs are
selective every period, the L's complete the task tmmediately (which occurs when w; < w; < w= < W) Hence.
a stationary incentive scheme has the limitation that citfier H's procrastinate forever ar L’s get no efficiency value of
waiting. Deadline schemes can prevent either of these from happening. The initial small incremental wage gives L's
some efficiency value of waiting. while the eventual large incremental wage prevents f1's from procrastinating forever.

Might other non-deadline. non-statienary incentive schemes be second-best optimal? For instance. one might imag-
ine an incentive scheme that alternates between a large incremental wage and a small incremental wage such that Ls

are selective alwavs (i.e., behave efficiently) and A's are selective whenever the incremental wage is large. Lemma 4

rules out such possibilities:

15

Clearly. this result is an artifact of having a discrete cost distribution. For full-support cost distributions and ~in-
terior™ efficient behavior. we cannot achieve efficiency for both tyvpes for any differentiation (assuming .7 < 1): the
analogue to Proposition 3 in a more continuous model would be a convergence result that we get closer to efficiency
as the distribution of types becomes less dispersed.



Lemma 4 Supposecy — o > l—zf—i Then for amc 1. ".,” = w implies ~ f =

i ﬁf"‘ = % and

Lemma < follows from the intuition discussed earlier that for amy incentive scheme we have 5
theretore for all £, pH(F) = S (3) — e = /() = Jh (%) — ;. This property guarantees that if we can induce both
types to be selective in amy period. then we can do 5o in every period by adjusting the incremental wages appropriately.
Lemma 4 implies the second-best optimality of deadline incentive schemes. because it implies that the choice for a
principal in any period is either to have L’s be selective and have 11's for sure not do it. or to get L's to do it for sure
and have 1's be selective, The first option is more attractive it and only ifit is likely that the agent is an L. This vields
the second-best optimality of deadline schemes: At the beginning. when it is likely that the agent1s an L the principal
wishes to induce selectivity by L’s. tolerating the fact that H s are behaving inefficiently by waiting. As the likelihood
that the agent is an L becomes smaller. however, it is eventually more efficient to make Ls (inefficiently) do it for sure,
and start getting £1s to be selective. That point is the deadline. To summarize:

Proposition 4 Suppose ¢y - ¢ > f_" 380 o incentive scheme can induce efficiency for both tvpes. Then:

tiy There exisis D7 > 1 such that the (651 5 )- deadline scheme with deadline D™ is second-best optimal. This
incentive schenre witl imdnee ~ ,f = & ahd ‘v;'] = wforall t < D" and ~ ;’ =duand~1f = sforallt > D And D7 is

one of the two integers sutisfving o — 1< D" <o~ Twhere

() e e () < )

In?2

N 3 . . . .
(i ifep = h k. then all second-best oprimal incentive schemes are deadline schemes.

a = 1

Part (i) of Proposition 4 establishes that a (77, . 7y )—deadline scheme is always second-best optimal. While there
can be other incentive schemes that are second-best optimal. they all induce exacily the same behavior except tor
knife-edge parameter values. While part (ii) of Proposition 4 establishes that sometimes all second-best optimal incen-

tive schemes are deadline schemes, when ¢; < :—;§L second-best behavior can be induced with some non-deadline
schemes." Inwitively. before the ~deadline™ there can be a period with a large mcremental wage if it is followed by
at least one period with a small incremental wage (note that this implies the incremental wage in peried 7 - 1 must
always be smaller than the ~post-deadline™ incremental wages). In general. the principal can mimic the outcome of the
simple deadline scheme in Proposition 4 part (i} with bizarre schemes. but the principal would never have an incentive
to depart from this scheme.

The optimal incentive scheme in Proposition 4 implies the following observed pattern of behavior: A number of
people complete the task immediately (halfthe L’s). and another large group completes the task in period I7, just before
the more severe punishment kicks in (the remaining L’s and half'the f77s). In between. we would observe smaller (and
decreasing) numbers of agents doing it. In other words. people less prone to procrastinate complete the task at the first
convenient time. or just before the deadline if no comvenient time arises. People more prone to procrastinate wait until
the deadline (and often bevond) before completing the task.

Also implied by Proposition 4 are some comparative statics for the parameter values that reflect the intuition of

why these schemes are attractive. Note that the optimal deadline is independent of ¢,. ¢y and .3 except insofar as

M Even so. a result analogous to Lemma 3 could be formalized - the ~average™ incremental wage before the deadling

must be less than the ~average™ incremental wage after the deadline.
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they determine whether we can achieve efficiency. That is. if oy — ¢p < % then a stationary incentive scheme
is optimal: otherwise. a deadline scheme is optimal. But once those cases are determined. the optimal D" does not
depend on ¢7. ¢;; and .3. Rather. the optimal deadline depends on the relative likelihood of L's vs. H's. and on the
relative benefits of discouraging delay vs. encouraging selective performance. As = approaches 1. D” approaches
~. and as = approaches (). D" approaches 1. If the population is predominantly L’s. then 1t is optimal to give them
more opportunities to get a low-cost realization. Alternatively. if the population i1s predominantiy If's. it is optimal
10 have no delav before they are selective. Finallv, consider comparative statics on the term (LTT’AJ maintaining
Cppo 0L > % As A becomes large relative to the delay cost #=. D7 approaches .. In other words. as task-cost
considerations swamp delay-cost considerations. we first give L's a very long time te find a small cost. and we can sull
get H's to eventually find a small cost.

This section has shown in a simple model how deadline schemes can be second-best optimal for time-in consistent
agents in a way they would not be for time-consistent agents. We have worked out some generalizations of our model as
well. For instance, we have considered full-support task-cost distributions rather than discrete task-cost distributions,
and we have considered what happens if there are more than two tvpes. In both cascs, the optimal incentive scheimes
for naifs need not be the simple two-part linear schemes described above: they will, hewever, be concave, so they can
be seen as a “generalized deadline scheme™ where the punishment for delay gets increasingly harsh. Beyond indicating

the specialness of our two-part linear scheme. these generalizations vield no qualitatively different results or insights, so

we have omitted them from the paper. In the next section. however, we turn to a qualitatively-different generalization.

5. Different Task-Cost Distributions

In this section we generalize the model of Section 4 to allow different ty pes of agents to face different variances to their

task-cost distributions. Consider a model identical to that in Section 4 except that the 1ask-cost distribution is

o — & with probability ;

o+ Ay with probability
for tvpe i © {L. [} where ¢; < ¢y Weassume by < ¢ and by < ¢y, guaranteeing that the task cost is always
positive. While we consider both &y > &,y and Ay > Ay we feel that kg > ky is probably the more natural case (so
a higher mean task cost is associated with increased day-to-day variance).=" For the majority of this section. we also
assume &, > o~ and ky; > o= so that, as in Section 4, efficiency calls for both types to be selective in all periods.
We briefly comment at the end of this section on the cases Ay > = >k and by > o = kg
The goal of this section is to examine the robustness of our results in Section 4 when we relax the special assumption
that task-cost distributions differ only in their means. As such, this section has two main points. First, we will show that

for the case k; > kyr our deadline result no longer holds: In Example 4 below, we show that non-deadline schemes can

20 For example. suppose we take our task-difficulty interpretation literally (i.c.. that the task is more difficult for H's

than for L’s). and assume that the stochastic opportunity costs for each hour of the day are identically and independently
distributed with a mean of one. If we then interpret « 5 and ¢ as the number of hours required to complete the task.
then /s face a higher variance.



be superior to all deadline schemes. Second. we will show that for the more natural case of &y > k; . our main result
does hold: Propositions 6 and 7 below establish that whenever a stationary incentive scheme cannot induce efficiency
for both tvpes. deadline schemes are second-best optimal. Since much of the aralysis here is exactly analogous to that
in Section 4. we do not provide as much detail here.

As a preliminary step. we first establish the conditions under which we can induce efficiency for both types. Recall
that Lemma 2 and Lemma 3 characterize the types of incentive schemes that can induce type / to be selective in all
periods. These lemmas remain intact for this section. except that in the equations for w; and W, we must replace &
with &;. In other words. for type / there exists w; and 7, such that i’s are selective in all periods for any stationary
incremental wage «= £ w,. 7, . and am’ incentive scheme that induces /s to be selective in all periods must have an
~average” incremental wage in the same range. Hence. we have a result in Proposition 5 below that is analogous to

that in Propesition 3: Fither a stationary incentive scheme can induce efficiency for both tvpes (when o, < wy) or

no incentive scheme can induce efficiency for both tvpes (when 1w, > %)%
Propositiont 3 First-hest efficiency can be induced if and ondy if it can be induced with a stationary incentive scheme.

Next, we supposc ', > ;. 5o no incentive scheme can induce efficiency, and ask whether deadline schemes will
be second-best optimal. As foreshadowed above. the answer may be no when k> by Given by > kyp.owe can have
periods where £/'s perceive they will do it next period (ic.. ~ f = dywhile L's perceive they will be selective next
period (1.0, ~ f‘__l — &), As aresult, L's may be more optimistic about the benefits of waiting, and therefore L’s may
be selective even if the incremental wage w7 is large enough to induce /17s not to wait. Hence, we can have (non-

deadline) incentive schemes under which L’s are selective always and yvet H's do nor procrastinate forever. Example

4 illustrates two such schemes, and in this example deadline schemes are never second-best optimal.

Example 4
Suppose .~ oep =80k =6oey =22k = 5o S0 S and
b . 2~ 0L L - oy 3 = AR o o
Both &; > = and by > = so efficiency calls for both to be selective in all periods. We have wr, — 1w, = 20,
W, = 21 and Wy = 23, Hence. u; << I, < iy < Wy 50 Proposition 5 implies we cannot induce efficiency for
H L H P p 3
both tyvpes. Consider the following two non-stationary incentive schemes, neither of which is a deadline scheme:
o Scheme A: «® = 22fort € {1.3.5. .}and wp = Tfort € {2.4.6...}. Then " = (<« s .)and v/ =
(= .« w0, so L's behave efticiently and H's are selective every other perioed.
e Scheme B: wp = 2tand wp — 1fort € {2.3.h ..} Then~* = (ssyand v = {dow w.w. ). s0 L’
behave efficiently and H's (inefficiently) complete the task immediately.

It is straightforward to show that for any o= < {0. %) scheme A is better than any deadline scheme. And in fact

scheme B is better than scheme A for o= & (2. 1)

PN

Example 4 shows that our deadline result does not hoid when /oy > &y;. We now consider the more natural case of

by = kyp. As discussed above. the crucial intition for Example 4 is that there can be periods where :r”q = d while

21 In this model. however, there is no simple condition in terms underlying parameters for when we can induce

efficiency.



':.f;! — «sothat L's can be more optimistic than H's about the benefits of waiting. But for ky; > &, we can have
f.fil = donly if?fj, | = d. Hence. schemes like those in Example 4 will not be useful, and deadline schemes will again

T - 1= [ =3 _
e second-best optimal. However. we musl separate out 1wo cases, ¢y > 5~y and ¢y < —5k;. Lemma3 below

establishes that when ¢y > }—;—_;A'”, a result identical to Lemma < holds. and therefore a deadline result identical to

Proposition 4 holds (except &y replaces / in the equation for o because only L’s can incur cost ¢, + h; under a deadline

scheme).

Lemma >  Suppose by = bp but wy, = Wy, so no incentive scheme can induce efficiency for both types.
7 H Wy i ol L i

. 1~ . . .
Ifey > f:.i.‘”, then for any . “.,” = implics ﬂf’ =

Proposition 6 Suppase by > ko but g, > W0 so no incentive scheme can induce efficiency for both tvpes. {f
[T i—:—:—jf\‘”, then:

tiy There exists 1D = 1 such thar the (@ wi—deadline scheme with deadline D™ is second-best optimal. This
incentive scheme will induce ~ 1 = s and ~F = w for allt < D™ and < = dand <[ = sforall t > D And D™ is

one of the two integers satisfiing o — 1< D™ <o + 1 where

I (14::> - i (M;—’A) - An{ln2)

n?2

. - —9 - . .
Giplfer = %A'L_ then all second-best optimal incentive schemes are deadline schemes.

o = 1

For egp < %:A'”. we do not get the strong result that for v individual period 11 L's are selective {or wait} in
period f then H's must wait in period (. However, we do have a slightly weaker result, Lemma 6: If L’s are selective
(or wait) in «/f periods then H's must wait in afl periods. And even though Lemma 6 is weaker than Lemmas 4 and 5.
it is still sufficient to estabiish the second-best optimality of deadlines: Proposition 7 shows that there must be some
period [ (which is the “deadline™) in which Ls complete the task for sure because otherwise /17s wait forever (which
implies infinite delay costs).

Lemma 6 Suppose kyp = kg but wy, > Ty so no incentive scheme can induce efficiency for hoth types.
- 1.3 - C g -
ey < =5k thenif ~ L d for all t, then ~ 11 = w for all 1.
Proposition 7 Suppose by > by but wy > W so no incentive scheme can induce cfficiency for both ivpes. If
TR —{,HH then:
(i) There evists D™ = | such that the (07 0y )—deadiine scheme with deadline D™ is second-best optimal. This

incentive scheme will induce ~F = s fort < D, ~F = d fort > D™ S = wfort < DT —doand [T = s for
t D7 —d where
- L3 1 1Y’
= ] P 2 P - R _ T, f
d=min ¢ne{0.1.2..} 3 Cr _j'('” >k Z(:J 5 (i — kpr)
j=

wid 77 = miax {D‘. id 1} cwhere D iy defined in Proposition 6.

g w1 , , : .
i lfer = Tj:! 1. then all second-kest oprimal incentive schemes are deudling schemes.

Hence. we have established that for the case ky; > A, our main result holds: If w-;; > @, so no incentive scheme
can induce efficient behavior for both types. then there is always a second-best optimal (.. iy )-deadline scheme.

We note. however, that behavier under second-best optimal deadline schemes can be slightly different {and ~better™)
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than in the basic model. Given a deadline D, L’s behave the same as they do in the basic model — they are selective
betore the deadiine and do it at the deadline. In contrast. H's can behave ditterently: 1 /; is large enough. then the
impending deadline can induce H's to sometimes be selective, in the i periods just prior to the deadline where dis
defined in Proposition 7.--

Throughout this section, we have assumed that efficiency requires both types to be selective in all periods. as in
Section . In fact. when A; = Ay there are two other interesting cases for efficient behavior: k> ek so Ls
should complete the task and H's should be selective in all periods: and &, > = > kyposo Ls should be selective
and I1’'s should complete the task in all periods. We conclude this section by briefly discussing these cases.

It turnis out that the case kj; > = > by is not very interesting because we can always induce first-best efficiency:
ko> kg oimplies that @y > Wy, (and we always have w, < ;) efficiency will be induced with any stationary
incremental wage ™ € ‘wax{w, .y, b min{ ¥ . T} The inwition is straightforward: The problem is that getting
H's to be selective makes L’s complete the task for sure. so the solution 1s gasy if that behavior is efficient.

The case &, > o= > Ly is more interesting. {Of course. like Example 4 this case violates the more natural

assumption that &y > A} First, since &y > Ay it is possible to have W'y > . in which case efficiency can
be achieved with any stationary incremental wage = .y, W, < Wy a stationary incentive scheme
cannot induce efficiency. However. it may be possible to induce efficiency with a non-stationary incentive scheme:
In Example 4 above, scheme B induces efficiency when #= £ {1.6)." Even so. for some parameter values where
no incentive scheme can induce etficiency. stationany incentive schemes can sometimes be second-best optimal (under
which both tvpes are selective always) and deadline schemes can sometimes be second-best optimal (under which H's

complete the task tor sure at the deadline).

6. Discussion and Conclusion

We conclude by discussing various aspects of incentives for procrastinators that are not incorporated into our specific
model. QOur analvsis is all based on agents that are naive about their time inconsistency. How might sophistication
affect the results presented in this paper?™ Just as with naifs. when the principal has complete information about a
sophisticated agent. she can always induce efficient behavior with an incentive scheme that exactly counteracts the
tendency to procrastinate. And also as with naifs, if the principal faces uncertainty over the distribution of task costs

and therefore uncertainty over the propensity to procrastinate. first-best opimality typically cannot be achieved.

22 In Proposition 7. the optimal deadline 17 = max{ D" d + 1} because d does not affect the marginal cost/benefits
of changing the deadline unless the deadline is less than d—1. Hence. the optimal deadline D™ will be equal to D™ as
long as D™ > d. For D* < d. the optimal deadline is 7" = o + 1: A deadline of d + 1 implies that H's are selective
alwavs and Ls are selective for the first « periods. so any deadline less than o — 1 is ¢learly inferior because H's are
unaftfected but s are sefective for fewer periods

*4 That non-stationary schemes can induce efficiency when stationary schemes cannot is not too surprising since this
is case where warr plavers to behave differently.

#1 Sophisticates. like naifs. tend to procrastinate unpleasant tasks. although this tendency is nor universal. and is al-
way's less pronounced for sophisticates than for naifs - because sophisticates correctly predict the costs of procrastination.



Sophistication. however, complicates the nature of second-best-optimal incentive schemes.” In particular. the
strong deadline result no longer holds: Although deadline schemes are sometimes second-best optimal, there are ex-
amples where deadline schemes are not optimal. For example. consider a stationary incentive scheme that induces
efficient behavior for L's (i.e.. I's are selective in all periods). For naifs. such an incentive scheme would induce
H's to procrastinate forever. Sophisticates. on the other hand. know how they will behave in the future and will
never procrastinate forever if incremental wages are positive. Instead, such an incentive scheme will induce a cyclical
perception-perfect strategy for sophisticates of the sort “be selective in periods 1. 1 +m, 1 — 2. .. wait for sure in
all other periods.™ If the length of the cycle 11 is short enough, this stationary incentive scheme will be better than the
best deadline scheme.

For a variety of reasons, we feel that the potentially different predictions for sophisticated agents is not too damning
for the relevance of our model. Mostly, we think that. of the two extremes. naivete is the more realistic assumption.
Moreover, recall our discussion following Lemma 1. Our model is best interpreted as assuming that people are “meta-
sophisticated™ - aware of their general propensity to procrastinate. 1t is “moment-by-moment sophistication” — where
the full costs of delay resonate with the agent at each moment — that might negate our basic results. Note that, in any
event, if an agent were expremely sophisticated. then procrastination would not be a severe problem. =

Even maintaining the assumption of naivete. several important issues are ignored in our analysis. One is the de-
livery date of rewards. We assume that the reward the principal offers the agent for completing the task is not salient
to the agent. which seems realistic in most contexts — especially if the reward is moncey. But the principal might offer
in addition some sort of immediate non-monetary reward. such as breaks or parties once a 1ask is completed. Such
-salient” rewards may be a cheap way for the principal to overcome procrastination: The same preference for imme-
diate gratification that tempts the agent to put off incurring the task cost will tempt him to grab this reward. Of course,
such salient rewards will be inefficient in the sense that the agent does not value them from a long-run perspective as
much as norn-salient rewards. such as income. We arc therefore skeptical that such rewards will be used merely as a
way for principals to extract surplus from agents, for the same reason that we make the ex post break-even assumption
throughout the paper: [n the long run, agents will find a job unsatisfying if they are getting mostly short-run rewards
thev do not value highly in the long run.

But salient rewards can potentially be efficiency-enhancing as well. because they can be used to align incentives
for heterogeneous agents. Suppose — unlike the model in Section 4 — that agents difter in their innate preference for
immediate gratification. as measured by the parameter 3. As in our mode!. punishments for delay harsh enough to
induce efficient behavior for those with large self-control problems (i.e.. small .5) may be so harsh that those with

small self-control problems (i.e.. large .3) complete the task when waiting is efficient. If there is some salient reward.

29

This discussion refers to a model analogous to that in Section 4, where there is a stationary delay cost = and
T = ~. There is a slight complication because an infinite horizon can imply multiple perception-perfect strategies for
sophisticates which yield different observed behavior. This discussion assumes that in such cases the agent will follow
the principal’s desired perception-perfect strategy.

2 O'Donoghue and Rabin (1996) formalize an argument that naive agents might procrastinate even for very mild
self-control problems while sophisticated agents must have large self-conirol problems before they will significantly
procrastinate.



however. then exactly those agents with large self-control problems will react most to this incentive. Hence. the use of
salient rewards may provide a second-best mechanism for aligning incentives for heterogeneous agents, and could in
some cases be more efficient than the deadline schemes analyzed in our model.

This focus on the nature of the rewards brings us to important issue: We have spoken throughout this paper as if the
reward schemes used are monetany incentives. vel agents in organizations are rarely given explicit monetary incentives
to complete specific tasks early. More often. an emplovee’s basic incentive scheme is that he is either fired or not fired.
or his promotion in a firm is dependant vaguely on his performance. Whatever the “unit of account™ by which we keep
track of whether an employee has been successful or not. we feel that our model has something to tell us: The essential
prediction is that organizations will wish to induce a sense of more and more severe marginal incentives to completc a
task as completion is delaved further and further”

Clearly, there are many reasons for deadlines other than combatting procrastination. A major one. intuitively, is
coordination among agents — it is useful for others in an organization te know a date at which a project will (almost)
surely be done. A sccond potential reason for deadlines is their simplicity: It may be easier to monitor whether some-
body met or missed a deadline, rather than to monitor exactly when a project was completed. 1f an organization needs
to have simple rules of operation. then deadlines may be natural. Qur analysis does not plausibly predict simpie dead-
line schemes — that simple deadline schemes were sufticient in Sections 4 and 5 was clearly an artifact of our stylized
model - so we suspect simplicity considerations are important in explaining the use of deadlines. But we think that
these reasons for deadlines complement rather than contradict the message of this paper. [mposing “lumpy ™ deadlines
in environments where the actual marginal cost of delay is relatively constant over time might be a necessary evil
because of organizational and transactions-costs explanations. But even if the ideal incentive contract according to
our model is to have a smoothly concave incentive scheme. the concavity implies that, among simple schemes, simple
deadlines may be Aetter than simple linear schemes.

Finaily, there is a subtext to this paper which we suspect might generate some of the paper’s interest 1o many readers:
Not only might the paper shed light on how ~principals”™ cope with the procrastination of “agents™, but it might also
help address how individuals cope with their own procrastination. In other words, we can interpret the “principal”
as our current self and the ~agent™ as our future self.”® Many people who procrastinate only moderately do so not
because of intrinsic self-control. but because they have developed schemes to overcome procrastination. Some such
schemes may use external comntitment devices: People commit to giving a seminar in the hopes that this will force
them 10 finish a paper. Other such schemes are internal: People try to fool themselves into believing in false deadlines.
exaggerating to themselves ahead of time how crucial it is that they adhere to some timetable. It is somewhat subtle to

conceptualize self-incentives. but we hope the analysis of this paper might be useful in this regards.

¥

27 Of course. monetary incentives are not often used in many of the contexts considered by formal principal-agent
models. Insofar as we are not invoking risk aversion to drive our resuits. perhaps our model sufters less from inap-
plicability to non-monetary incentives than standard principal-agent problems.

= Implicit in this interpretation is an issuc we have discussed previously: A person may be “meta-sophisticated”

and aware of her general propensity to procrastinate. but naive about day-to-day procrastination. We can think of the

~meta-sophisticated™ person as setting self-incentives to overcome future day-to-day naivete.

[£]
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Appendix: Proofs

Proof of Lemma 1: If L > 7. then the result foilows from Example |. Suppose 4¢ < 7. and consider W with Wy =
~. (sothe agent must complete the task in or before period T'), wp | = _—lg_(_'—F:(‘. and = F(%g) [%(_ — Flcie < %g)

forall t = {1.2.....T — 2} How would TCs behave? Clearly, 5 = 7. Then

=T A) TN R = o Eee A
ey =l ) - = :1'-75‘7;2* F(%f_}E(( ¢ < %L)— (] - F(%g}) P)J -1(,})+§’1'_1(’?)} _y
Top :})V‘I 5(:7' "-'—‘3(:7]:{(‘% :;—F{%LJL(( (<'I§L) (171(%(_)) {131_1(’3)*&!7“}('&)} :%L

c. 7). For naifs, we must have =, = ¢and ~, = 3%, forallt < T,

wl—

Comtinuing this logic., we have % — (_%g‘ *l;f,
s0y = (¢, ¢.¢). Hence, under W naifs complete the task in period T, while TCs complete the task with positive
probability in all periods.

When naifs sign the contract, they believe they will behave like TCs. Hence. naifs perceive {7 > 0 if and
onlv if Wy = (1 - F(Z 0 p %) - 953, Consider the contract where this holds with equality. Since JFy =

FUAE(e o < 50— (1= R0 ()L we have
W= FaEle e < o= (1= Fo) [ =3 () = FUa e < 4o = (1= Pl ] Ao and
Wy =18, — (L~ 2)F{1e) {lr# E(c e < gg] - {_%g— E(} = (T = }F{40) Hgf Elce< %g]} - Ee,

Naifs do the task in period " for wage 117, and the result follows from limyr_— 5y = — . L]

Proof of Proposition 1: Fflicient behavior satisfies for each . ~; = \'{v") ~ )L TC behavior satisfies for each

R P A 1w o o foreach £ then p/ (s) = \'(s) for cach f and s. The result follows. U

Proof of Proposition 2: (i) Consider 7" < ».. The proofis straightforward: Use backwards-induction logic. noting that

~ _is independent of w;® forall + < 7. Set w3 veny large so ~, = 7. Then set wp_ | appropriately s0 v, _; = 73_ .

then set w3 _., appropriately so ©4_, = ~5_,. and so on.

-1

Consider T = ~. Given the definition of 4. 4 = v™ ifand only if p'(§) — S (%) = 47 forall . Given the

definition of 5. p' (5) — J (%) = f—f,}‘ for all ¢ implies ~, = 11in {%"?-T‘} for all ¢.

1=

Suppose 47| = ©so %, = ¢ and therefore p (%) — (A = wp ~ Ee. Then pf(4) +— (%) = 4~ ifand
onlvif up = &~ — JE¢,

Supposc % [ 0805, = i;-;‘_ | and therefore

p’tﬁ'w;’lﬁ:ru'ﬁ—/ CedFley = (1= Fla ) [ A -

‘7'\,1 5 1 i l )
= u'f = /r ed Fie) — (1 - F —i*.,___l‘)) 3".,4

Then p(5) ~ J'(4) = 4+ ifand only if w7 = 4 lp-,,“ - .i‘];_"ﬂ"-" cdFic) - (l - F[.—‘p;‘l)) T 1],

-

26



Hence, v — =~ it and only if W satisfies for atl ¢

L el . _
5 . ),E( lfjf.‘*i 2’

H',_\‘: o (A-1)
3 [f = AT edFe) (1 - F(%ﬂ;l)) ﬂ,:l} il <%

~

(i} If ~7 < 7 forall £ then ~7 = (71 = JTiy7) for all #. Given this. we show that w7 from equation {A-1) is
; ' q

strictly greater than 7 forall t < 77 where ~5 — F forthe 77 <~ case. Forall 1 < I’ we have

e = = / cdFle) = (1= F(x] 4020,

Qr J‘{A = - / N cdF ey — {1 - F(A';+1)) ST

Suppose .i""‘,l < ¢. Then ]( cdFey = (1= F(=; )~ > j_}f‘“"’" cdEF{e) + (1 — F(_—L-.;‘_l)) ~i

implies wi > . We can rewrite this inequality as

T . [ " . 2
!! (% ,+l] F(H;*I)J _‘f-' |~ (]_ - ﬂ[" (’(]F(('} - \\.I(-‘S HON ('(f[‘((‘) — L o F(I,F( "l

> 0.

We have 3 [ [ 77 cdF(e) — [T c-dF({»)] = B iR < [F(lij.;‘,._l‘)fF(ﬁ,,‘H)] -=_,. 50 the above
inequality holds.

Suppose L-; | > 7. Then Ij cdFey - {1 F{~7 1~ = S Fe s FEe implies a7 > o7, We can
rewrite this inequality as {1 F(~7 1), ~ (__ ]r edFley - (f |:_ffr'r1'F((') - I: ('(U’((‘)} = ().
U cdFlei - [W rr!]"(f;!ﬁi - — ]( ed ey < (1 — Fi=7_ 1) ~]_;. so the above inequality

We h

holds.
Finallv, we must show w™ , — w; for all # when X has a stationary delay cost.=. A stationany delay cost implies

~; = ~;_, forall . Using the equation for w;> above, the result follows. ]

T

Proof of Lemma 2: First. suppose w= < k. w= < kimplics %' = (s, . ...l.so forall # wemusthave (3 = ¢ &
p ples Hely

and p'{4"y — 2w Then forany f. =) — Jitfand only if o; — & < S(e, - & - 2w but w= < & implies
co= k> 3, b2 so w < himplies -l = d Forany £ = wifandenly if e; — & > 3o, — k- 2w or
< ];;(‘, f and 4 57 (, — lg;fl. < Iifand onlv it ¢; < i;jﬂ Hence. if ¢; = %7—315 then v = {w.w. )
for any w= < . and ife; < ﬁ!, then ' = (~. 5. ... forany f{z — 12—;1 << kandy' = (w.ow. ... for any
< E_;_:‘(_i -- l,_,__)l‘;ﬁc.

Second. suppose w= > b= > kimplies¥' = («. .. 1.so forall # we must have (%) = cand pf (5] — w=.

. , N C \ 1—.1 ; - .
Then forany 7. ~¢ == d ifand ondy if ¢, ~ & < (e, = w=1or a= > i —2!\ Foranyv ¢, ~} = w if and only i

oy i . e —3 .
o = ks e - w2 or w < -lfr’(‘l- — %!. and %c-, - %J« > b ifand only if ¢; > % L Hence il e, > H L

then v* = (w1, ) foramy b < ™ < %‘j(; — 15/ ~t = {~.~....) forany 1-‘_;.&{_1 - %L' < e 1_;;1(;1 - %A and
~t = (d.d. ..} forany w e 1A If e, %ji\ then 4! = (s.=....) forany & < < 1?—};‘5(75 - %A and
~ = {d.d. .y foramy w > 'ﬁ—ir, - —A.

Combining the cases w=* < & and = > & the result follows. i



- « . . - o . .
Proof of Lemma 3: We first show ~; — « for all ¢ implles S8y T e £ 2w By Lemma 20 0f w1 for

-

, . . : —1_ —  u o
all  then = — ~ for all ¢, in which case 3>, (1) ”r =5 (3) W = 2%, We now prove that if for any

V.."I-—-

t T f—r . .
wit e S (L W', from which the
i =7 L2

o=

7w >, then there exists jo = {7 — L7 — 2.} such that 377 (-

result follows. We prove this by construction. Let ;1 = min{t > + 37, = d} if this exists, otherwise let g = .

We must have 1 > 7. because otherwise ~L — « implies ¢, — &, > ¢, - w)or w < 1%{(',- - %A‘E = ;. So
given yi > ©.o~0 = simplies ¢, - A > 3 l’r'[ =3 (%)F" wit S (%)P" A-,‘ or >4 (%)I"" <
0 ;
S VTR < Z"‘zv (%_)’ "7, where the last incquality follows from &, < @&,

Next, we show +; = « for all f implies 3,7, (%){7i wp > 2w, By Lemma 2. if w = 2, for all ¢ then
~¢ = « for all ¢, in which case 3,7, (%)i_l a =5 (%)J—l w, — 2w, Furthermore, if ¢; > 1=/ then
for amy f ~7 == < onlyv if w;® > .. and the result follows. So suppose ¢, < 1—"3&, i which case &; > w, —
(e, = k) We prove that =) — ~ implies 37, (.—_‘,)Fl wit > 5 {%)!71 w; = 2w, If%) = s forall t > 1.
then ~4 = ~onhy it e, - &, << 4 {f‘, k=S (%),,, u'r\‘ﬁ or Y‘,_l (%},7] w l% — k) = 2w, 0f
g0 smin{t > 17, = dbexistscthen -~ — sonlvife, — Ay <9 ¢, - S;‘_, ( )J”l T“Hl (1) ! u'ﬂ or
Zj‘;ll {%)t I > %j(,! - Lk j‘;j (_%}'71 k. We also ha\-‘é :;, =donlvife, =k < pi(37) - MEY <

: I—7 . . - .
O Z;“ (1 wi*. where the second inequality follows because TCs must do at Jeast as well as they would

)

- . . . -~ . t-r t—7 .
from being selective in all periods. Hence. 5, = o only if T\, (%) wit 2y o= Z,:“ (5) A which we

-1 t— . f—1 — 1 ol
can rewrite as \_‘,7,' (%} wpt =3 (3 'y Using 571 (%) wp > %('1 -l =Y (5
i ~ 14— . ~ Paf=1 g . L ~ Al L 1461, 1— 3 .
and 37,0 (3) ur >3 L (5 Riowehave 317 (5] wp 2 g D I S R
—d .
Li, —k = I-T((-, k) 2w ]

Prooft of Proposition 3: We first prove we can induce efticiency with a stationary scheme itand only if i), <00, . We

can induce efficiency with a stationary incentive scheme if and only it max{ i, . wy, b < min{w, 7w . in which case

any stationary incentive scheme with incremental wage = = max{w, ., b min{® ;. 74} will induce efficiency.
We al\\'a)s have wy; > uy since we have ey > o, wyy — }-%41(’;] - li'[‘ and iy < El;ij(‘[, Given wy > uy .
wyy <y implies wax{ ey ey < min{ Wy Wy b and the result follows.

Next. we prove 1, > T, implies no incentive scheme can induce efficiency. Using Letmma 3.~} = « for alk ¢
only if %, (.,){_ wpt < 2wp.and ~ T = s forall fonlyif 30T (%)F1 wit > 2wy Given wy, > p. the result
follows.

Finalls, we prove that w, << @y ifand only if ¢z — ¢f < 12— Suppose ¢j; — ¢, g % e — ¢ < A;
lmplles (” - 15!. < :(; - _13; =1 soif ey > ::jl‘ thenic,; <w;. Ifey < A thenw;; < b <7y,
Hence. if(‘” — ¢ < ﬁ then e, < W, Suppose ¢y — ¢y > IJ S0 —(_;[ - lil s l—}r; - f/ — . If

— 3 - — 4
i then wy; = L.g-(‘” - STk t_—;r:” —'iﬁ

- — _ C
ST h!a then Wy = 1731('” %A >y, And if opp < %

[ e —
Hence. if ey — ey > I'TL; then w,; > W, . O



Proof of Lemma 4: As discussed in the text, under any incentive scheme we must have = 3" = 5 and

therefore for all #. p! (%1 -~ %) — ey = p{F = 3 (F) — ep. H'sare selective in period t only if ¢y — b <
b (p’ﬁ”: *\';,(ﬁ”)) or ]%gr” — k< P - ) — e L's complete the task for sure in period

tif ¢p — ko< (p’[""yf') - Q;_(*}‘r‘)) or l‘i'fr‘;‘ - li!.' < Pt - ;t!_(ﬁf) Cp.oCcppo—oep > 1-_)_1\-.1 implies

LI S ey - Ll and the result follows. |
1 Ei A

Proof of Proposition 4: (i} First, we argue that Lemma 4 implies that we cannot do better than the following outcome:
There is some period 22 > 1 such that L’s are selective and H's wait for sure in periods ¢ < D and L’s complete the
task tor sure and H's are selective in periods + > 1. Lemma + says that if H's are selective in period # then L’s must
complete the task for sure in period 7. If D is the first period in which H's are selective. clearly we want s to be
selective (i.e.. to behave efficiently) in all periods 1 > [J because the probability of L's reaching period # > I is zero.
By the deftnition of D, H's wait for sure in any period + << D. Clearly. we would like L's to be selective in any period
f< D

Second, we show that for any D this outcome can be achieved with the (377, . 7, }-deadiine scheme with deadline D.

L~
t

_ . — ~ 1 i . N , e s )
Givenoy =y > k.clearlv~, = = dforallt. Henee. foranv?~; = ~ifandonlvife, & < Jut—e,) < ¢~k

[ - [ — o e . 1—4 — B i
or ¢, — k< ot < e - L= w And ey — o > 2 implics wyy o e — A > @ Therefore,
wit — 1wy, fort < Dimplies ~/ — ~and ~[' = wforall t < D.and «7 — @y forallt > D implies ~; = J and
~H = sforallt > D.

Finallv, we solve for the optimal deadline. Given a deadline ). the expected costs are:

Task cost for L's = Liey 1) - Liep =k = (310 =k - (5 ep k) e k= ()7
Delay cost for Ls - 20014103y (407 P 2y 1o o) (%)”} (D 1) {1 (7

lask cost for H's = ¢y — & (because s are selective in all periods + > 1))

Delay cost for Hs = ${D — 1= - %(D)J'_\‘ ) e N N

1
=
Hence, the expected total costs are

-1 {)—1
1 1
= r’f.—ﬂ‘—<—> e |1 <-) = ey — b~ D) = Z(D)

9 9

The only component of the incentive scheme that affects 7 1s the deadline 2. so all second-best incentive schemes will

Tar
A1

» (]_> - n (*‘;jﬁ) I (in 2
argmingn ZiD) = a = 1 - '
in?2

However. the optimal deadhine D™ must be an integer. Since Z is continuous and %1,—)-/- = (). the optimal deadline is

> 0. We have

have the same deadline. Z is continuous, twice-differentiable, and

either the largest integer less than o or the smallest integer greater than a.

en g 1 d s . . .
(i) If ey = 750 then ~ { = sonlyifw > w, >k Hence. any incentive scheme that induces the second-best

optimal outcome (i.e.. ~F - ~and <~/ = wforall? < D*and ~} = dand ]! = «forallf > D) will imply
3{ = *T,” = . Then forany ¢ > D~/ = sonlvifw;y > w,, and forany ¢ < D™ =/ = sonly if wi < wy. By

Proposition 3. ¢y = ¢y > 1—"}; implies w,; > ;. and the result follows. O



Proof of Proposition 5; Essentially identical to proot of Proposition 3. so omitted.

Proof of Lemma 5: Define X} (%) as any perceived reductions in expected future task costs below ¢; net of additional

lost incremental wages. In other words. the period-f continuation pay off from waiting fortype 7 is .4 [u',A — = X5

J

Clearly X (%' > 0.and if o' — min{r >+ 4. = d} then
0 for ji' —= 1
e
SO R N ) e, forgd e {2030

. - . . . - b
Using a revealed preterence argument. we can prove that by > Ay implics X ,”('y

) = ,\',I'(’“y‘" boobeyy > kg clearly
implics _\',”(ﬁ‘f'} > X3 Ly and 517 represents how TCs would behave and therefore maximizes N/ Hence, we

~ L

have X,”i’}'”} > _\'{”HJ-‘J > XEAE").
Foramy .~ 7 donly ifc, ki, > 3 !Llr"—\ s N )j‘ orup < Sl Lh -~ XEAY) = - XERY).
Similarly. for any ¢ ~" = wif ey — by > [UT\‘ - = .\';”{;Y”')J! orup < ey — Sk - XY And

o> t—fjk” implies 1,;, = lf—i'j('u - %A'”. so the inequality becomes w> < wy; — ,\',”('?/H')A Using 14 >y,

and X (5% = X5 the result follows. 0

Proof of Proposition 6: Essentially identical 1o the proof of Proposition 4. so omitted. (Proposition & follows from

Lemma 3 in exactly the same way that Proposition < follows from Lemma 4.)

Proof of Lemma 6: We tirst prove that for anv £, ~/ + o implies ‘.,” = « Define X/(%') as in the proot of

for all £. Forany t. ~] 4 donlvife, — &y >

s —ep — .\',]‘(ﬁf'_) or w < Wy - ,\'f'['”}'f‘ 1. Forany 1. ﬂ” = sty =k ol - oen _\'f”(ﬁ”) or

_ . . . . . g A
Lemma 5. and again ;> by implies X137 > X4

it < by — ,\',”(‘"y”'), cp o<l l?;i!.-,{ implies &y > wy; > wy . which along with X,”(ﬁ“) A ('?/I' ) establishes

that ~ /- = d implies =/ — «
Now suppose ~ [ = « for all 7. so f-;” = «forall . Then for any ¢. ~ {1 £ w only if
- . T , ) ~ Tt 1—.9 : : 1 -
[ */.'” -~ 3 Z_:;_, {j) H"} O !\',l,’; orz (%) ('.("‘,A = _—(('” —!\'”J = _)H'” (SIHCC(‘” < IT.:'I'.”)'

= RLE

. R . . L e 1 o - . —
But the logic of Lemma 3 implies ~} = o forall 7only if 37 (3} w2 < 2%, forall +. Given wy, » T the

result follows. ]

Proof of Proposition 7: (i) Lemma 6 implies there must be some period in which L’s complete the task for sure because
otherwise H's wait forever. Let D = min{# ~/ = d}. We now ask for any given D) what incentive schemes make f1's

most likely not to wait in period — < D,

Foreach = ~ % = wifand only it ey by < (p'{ﬁ” b (;)”)). so we are most likely to have ~ff £

under incentive schemes that maximize p~ (47 — .7, (51 As argued in the proof of Lemma 6. for any ¢ =} # d

implies *-,” = s. Hence, forany = < D we have
-1

1 {—r 1 n - 1 =7 1 -
AT -G =) ()) u (—,) PPET = (;) (e =)~ (,) Sty
2 2 - \2

=



First note that =%, = « implies ~ T, — d (since naifs complete task only if TCs complete task). Given = o dowp

for any ¢ > [) does not atfect the set of incremental wages for which ~[" 3 d forall # < 2. Hence. for any fixed £ it

is optimal to choose «;* for each + > D 1o maximize A A so w2 Wy for each t > D is optimal.
Having maximized p’ (59 = cH (5. we now maximize p™(577) — ;15" 1 by choosing the w7 fort < D1o

maximize 317" (—i}'

ey given ~ 4 = d. Using the same logic as in the proof of Lemma 3 part (i). it is straight-

- s . - - iy 1 W=7
forward to show that if ~1, — dand =~} £ d forall ¢ < D.then forany = < D wemusthave 37;” " (1) wp <
Yo f-7 _ - P . . .

POV Inother words. wp — wFy for each t < 1 maximizes the likelihood that <2 # .

Hence. for each = < [ H's are most likely not to wait in period 7 if w® = @ foreacht < Dand u = 7y for

each t > [, This implies that for any 7 < < D, having «;> = 7, foreach ! < D and v* = wyy foreacht > D
maximizes p’(%/”) Q:.f(:y”) forboth + = ~and 7 = 7. It follows that there alwavs exists a (v . 7y )—deadline

scheme that is second-best optimal.
Now consider behavior under the (ir; .70} deadline scheme with deadline D). It is obvious that ~ ;' — ~fort < D

and ~F — dfort > D. Itis also obvious that ~}" — « forall ¢ > D. Consider ~/' for t < D. In period 1D — n.
. . [ _ ] 1

noE {00120 howe have »T = sifand only if o — Ay < 43T (.—l;)" wr ey -k = 30, (%)J I;”J| or

13

3

R L - T Zy:“ (%}i (w0, — k1. Hence. given the definition of d_ = /! — dfort < D —d and~]! = «
fort > D d.

Finally. consider the optimal deadline. Using the same method as in the proof of Proposition 4. we get the following

equation for expected total costs. which we denote by a function Z
T ((';_ Iw'[, e (%)U 1 f\‘_[ — |1 = (,-_lzk)”_HE J'_\'> i ) (('” - ,I‘-” - (D - rﬂ.rA) for D > (}i -1

ZiD 8
Iy

IA";‘ *él*(%)nii.,f‘A) -1 T}((‘;;—A'H —.i'A) f(‘)[‘D‘({J; -1

ORI

For & < d — 1. Z is increasing in 1. so we must have the optimal deadling D°* > o + 1. For [ > d— 1. itis

straightforward to show that the optimal deadline is 2™ defined in Proposition 6 provided D™ > d — 1. Hence. the
optimal deadline 07" = win{ D=.d - 1},

(i) Essentially identical 1o the proot of Proposition 4 part (1i). so omitted. O
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