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ABSTRACT

Information theory offers a coherent perspective on model selection. As in Rissanen’s
original application of information theory to model selection, our perspective arises from
viewing a model as a component of a compressed representation of data in a two-part code.
The first part of such a code is an explicit representation of the model used to compress the
data. Simpler models have shorter representations. The second part is the encoded data
itself. Models which fit better compress the data into shorter sequences. The objective is
to choose the model which produces the shortest total message length, requiring an explicit
trade-off of model complexity (length of the first part) versus goodness-of-fit. (length of second
part). In addition to Rissanen’s MDL criterion, this perspective illuminates the properties of
numerous model selection criteria, including AIC, C,, BIC, RIC, and EBIC. We show that
each corresponds to a specific way of coding the model parameters. By selecting the model
that minimizes the total message length, our representations of these criteria reproduce their

more familiar definitions. Examples from wavelets illustrate the use of these methods.
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1 INTRODUCTION

Given the increasing prevalence of large data sets with numerous predictors, statistical model
building faces new challenges. The use of traditional variable selection methods leads to
overfitting, characterized by overly complex models that capitalize on chance variation. We
attack this problem by using information theory to construct a common framework which
encompasses the latest developments in statistical model identification.

All of the currently popular model selection criteria used in regression-type models can be
viewed as methods of data compression. From this viewpoint, each criterion is seen to choose
the model which minimizes the length of a compressed version of the observed data which
we call a ‘message’. Each such message is a sequence of bits that unambiguously represents
n observed values of a dependent variable Y1, Ya,...,Y,. In order to obtain a short message
in a regression context, each criterion selects covariates from a collection of potentially useful
factors. The better the fit of the model, the shorter the compressed data become. The use
of covariates incurs a penalty, however, as the message must identify which covariates have
been chosen and describe the associated coefficients. These two tasks distinguish the various
criteria: (1) how the message identifies the relevant covariates, and (2) how the message
represents the associated coefficients.

The selection criteria discussed here have a long history with a wide range of motivations
and behaviours. Each provides an explicit way to capture the principle of parsimony via
a penalty for model complexity. Though different in origin, each implies a threshold for
including variables in a stepwise regression (Miller 1990). AIC originated as a method
to minimize the expected Kullback-Leibler distance of the fitted model to the true model
(Akaike 1973), and is equivalent in Gaussian regression to C, (Mallows 1973). AIC selects
the mode] which maximizes a penalized log-likelihood, log L(6,) — p, with the penalty term p
denoting the number of fitted parameters. In a regression model with orthogonal regressors,
AICand C, select predictors whose z-score exceed a threshold of v/2 in absolute value. A flaw
of these criteria is that when presented with data generated by a finite dimensional model,
they have a non-vanishing probability of overfitting. Unlike AIC, the SIC/BIC criteria are
consistent in this sense. These select the model which maximizes an approximation to the

Bayes posterior probability of one of a collection of models being correct (Schwarz 1978, Kass
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& Raftery 1995). Here again the criterion chooses a model which maximizes a penalized log-
likelihood, but the penalty term is larger and grows with the sample size n, % log no. Similarly,
in the orthogonal regression problem, the threshold for inclusion of a covariate grows to
|z] > Togn. The resulting models are more parsimonious than those selected by AIC.
With an eye toward problems such as wavelet regression with as many {or more) predictors
than observations, recent criteria set a threshold based upon the number of predictors m
being considered. Hard thresholding (Donoho & Johnstone 1994) and RIC (Foster & George
1994) set the threshold for inclusion at /2logm. The resulting model has certain optimal
risk properties, predicting as well as a model which fit the right set of predictors (within
a term of order O(logn)). Research in multiple comparisons (e.g., Benjamini & Hochberg
1995) implies an adaptive modification of hard thresholding and RIC, lowering the barrier
to entry as more variables appear useful. Once p — 1 predictors have been selected, EBI C
(Foster & George 1996) lowers the threshold for adding the next to \/m.

Though information theory underlies Akaike’s motivation for AIC, its role in the devel-
opment of selection criteria is rather limited. An exception, however, is the work of Rissanen
(1983, 1989) who explicitly used the notion of coding efficiency for model selection. His
minimum description length criterion MDL selects the model which is best able to compress
the observed data. For an orthogonal Gaussian regression with p covariates chosen from a
collection of m predictors, the message length in bits is

MDL(p) = m + £ logyn + 7 log, RSS(p) +a(n) ¢

where RSS(p) is the residual sum of squares from the fit and g(n) depends only on sample
size and does not affect the comparison. The first two summands in this expression count the
number of bits required to identify the chosen covariates and represent the slope estimates.
The remaining summands count the number of bits required to encode the data. Thus, MDL
selects the model which maximizes a penalized likelihood and its penalty term is that of BIC.

In what follows, we show that other criteria share a similar characterization but rep-
resent the model differently. These differences offer another way to interpret the various
regression thresholds. Rissanen’s choice of a representation of a regression model leads to

a coding method which is equivalent to selecting a model using BIC. Other representations
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lead to different selection criteria. Information theory offers some appreciation for the rel-
ative advantages of these alternatives. Our analysis also suggests methods for developing
model selection criteria which are customized for specific problems or are adaptive over a
wide range of conditions. Finally, although our characterization suggests some criteria are
less desirable than others, we emphasize that each criterion is best within a certain class of
problems. For example, the total least squares fit which ignores selection issues obtains the
shortest message length when all of the covariates have substantial predictive power.
Following a very brief summary of the needed terminology and results from information
theory in §2, we begin our discussion of the coding perspective on model selection with a
hypothesis testing problem in §3. Then, in §4, we add covariates to this problem. We offer
some illustrative simulations in §5 which contrast the criteria in the selection of coefficients
for wavelet reconstructions of simulated data generated by models motivated from stochastic

volatility. We close with some concluding remarks in §6.

2 INFORMATION THEORY AND DATA COMPRESSION

Portions of information theory describe how to compress n symbols from some countable
alphabet A into a binary sequence of the shortest expected length. These results underlie
file compression tools such as the Unix utility program ‘compress’. For our purposes, it is
sufficient to consider the case in which the symbols to be sent are realizations of n independent
random variables Y1, ..., Y, taking values in .4 with common density p(y). Let £(Y1,...,Yn)
denote the length of the binary message. Then (e.g. Cover & Thomas 1991)

nH(Y,) <min E{Y1,...,Ya) <14+ nH(Yy),
where the entropy H is defined (on a bit scale) as
H(Y:) = —E{log, p(Yi)} = = 3_ p(y) logs p(y) -
yEA
In the fortuitous case in which the density has the form p(y) = 277 for integers j,, one can
see that a code which devotes j, bits to Y = y; obtains the entropy bound. The idea is to

assign few bits to symbols with high probability, reserving long codes for symbols that are

relatively rare. It also implies that the choice of a coding scheme which devotes k bits to
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the symbol a € A implies that one believes p(a) = 2-k. a coding scheme implies a density
function and vice-versa.

For other random variables whose density is not of this convenient form, the ability to
compress is less obvious but nonetheless remains. For example, suppose the Y; are Boolean
with common probability 7 = pr(¥; = 1) = 1 — pr(Y¥; = 0). Then no compression method
which treats the symbols separately can compress the data even though nH(Y;) < n when
7 # 1/2. Coded separately, each Y; requires at least one bit, just as in the maximum
entropy case with 7 = 1/2. In such cases, one can group Yj,..., Y, and consider codes for
the resulting collection. For example, if n is large and nm = 1, we might consider a code
which sends the indices {i : ¥; = 1}. This can be done by appending a ‘continuation bit’
onto each index, with a 1 indicating more indices and 0 indicating that the last index has
been received. This strategy amounts to sending the number of indices using the geometric

(or unary) code S, shown in the following table:

i 5,(1)

0 0

1 10

2 110

g 1...10
i-1

The expected total number of bits required to compress the data in this way is just the
length of an index plus the continuation bits. Withn = 2%, a Poisson approximation implies
that the expected length is about k + 2 bits. In the limit, this simple code is slightly longer

on average than the optimal code, but comes within a bit of the lower bound:

lim n H(Y;) = ’}i_'r{.lon{—vrlogzrr — (1 =m)log,(1 —m)}

n—o0
1

= kt+—=k+144.
+10g2 +

We term this method of coding using a sequence of indices a ‘Poisson code’, naming the code
after the associated distribution for which it is optimal. In general, algorithms based upon a

technique known as arithmetic coding are able to come within one bit of optimal compression
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without requiring a special, ad hoc analysis of each problem (Bell, Witten, & Cleary 1990).
Indeed, given a probabilistic model which assigns probability m, to the observed sequernce
Y1, .., Yn, arithmetic coding can compress this realization into 1 — log, 7 bits. Thus, given
the generating model, the code length of a given realization i, ..., ¥, is within one bit of
the log-likelihood (base 2). The problem is thus the choice of this model.

The relevance of message coding for model selection emerges in the Boolean case when
is unknown. In this case, the use of compression requires that the sender transmit the value
for = which was used to encode the compressed bits that complete the message. Without
common knowledge of this parameter, the receiver cannot ‘undo’ the compression and recover
the original data. To send this parameter, the sender could begin by choosing to encode the
message using the value that offers the most compression of the data at hand, namely the
maximum likelihood estimator # = Y Y;/n. If 7 is close to 1/2, however, the gain from
compression (about n(l — H(#)) bits) can be less than the cost of sending 7 (about log,n
bits to code 3" VYi). In this case, one obtains a shorter message by sending the raw data
instead. The decision of whether or not to code the parameter as part of the message leads
naturally to problems in model selection. Further details of this discrete example appear in
Rissanen (1989, Examples 5 and 14, p. 57, 117). In the following section we consider the
similar case when coding continuous, Gaussian data.

Before moving on, we note that a message comprised of parameters that define the
compression algorithm followed by the compressed data is known as a two-part code. These
are most natural for model selection. Other methods for compression, such as those like
‘compress’ which rely upon variants of the Lempel-Ziv algorithm, are one-part codes that
are not associated with an explicit statistical model. Although one-part codes typically
achieve slightly higher compression than two-part codes (Rissanen 1989, Chapter 3), the

absence of an explicit model makes them less useful for statistical model selection.

3 CODING AND THE (GAUSSIAN SHIFT PROBLEM

We now turn to problems in which one is compressing n independent Gaussian observations.
Anticipating the coming of fees for the use of the Internet, the goal is to transmit Y3, ..., ¥, ~

N(p,1) to a receiver using as few bits as possible for the message. The first part of the
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message identifies an estimate /i, and the second part consists of the data compressed using
this estimate. To compress such continuous random variables, we assume that the responses
have been rounded to ¢ bits to the right of the binary ‘decimal’ point (as indeed all observed
data are rounded). The greater the retained precision, the longer the message becomes. As
in the discrete case, the log (base 2) of the likelihood determines the minimum number of

bits required to send the data compressed using a given parameter value,
E(Yly---ayn;.a) = _logQL(er"' )Yn;la) +ng,

where L is the likelihood. Clearly, the minimumn length of this part of the code is obtained
with i = Y. Although Y gives the best compression of the data, it does not however produce
the shortest overall message because sending Y precisely makes the first part of the message
unnecessarily long. Rissanen (1983, 1989) showed that the minimum overall message length
is obtained when Y is rounded to order 1/4/n, that is, rounded to a standard error scale.
Rounding to this order reduces the length of the first part of the code with a negligible
increase on the second part of the code. In general, the increased number of bits required to
send Yj, ..., Y, when the data are coded using some estimator i rather than Y is given by
the log likelihood ratio, or relative entropy,
R(p,Y) = (N, Yo i) — €1, .., YY)

n(i— V)’
2log2

Let |z] denote the integer nearest z and let
Zp = vnY

denote the number of standard errors separating Y from zero. If Y is rounded to the nearest
j/v/m as i = | z,]/+/7, then the data compressed with ji require less than one bit more than
the minimum,

R(i1,Y) <

8log2 (3)

The use of such a code requires an explicit method for representing /7 in the first part of
the message. To implement this approach, Rissanen (e.g., 1989, §3.1) places a grid on a
bounded parameter space with |p| < M/2 for some M > 0. This approach restricts the
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rounded estimator /i to a grid of /7 M possible values which can be coded using § log, nM?

bits. (Here and generally we ignore the distraction of fractional bits.)

Similar to the example of §2, it is possible to obtain a shorter two-part code by using one
bit to represent ji = 0 when Y = 0. The leading bit indicates whether j = 0, and if not the
longer parameter code follows. The lengths of these variations on the first part of the code

are (assuming /n M is n even integer):

Parameter Estimate Length of first part of code

ip=0 1
h=xj/vmi=1,...,vnM|1+3log,nM?
Since the use of a code implies a probability distribution, we call this a ‘spike and slab
code’ because the code assigns probability 1/2 to zero and is uniformly distributed over the
remaining grid locations. The parameter is coded as zero whenever Y is close enough to zero
so that the reduced length of the first part of the code compensates for the increase in the
length of the second part of the code. Thus, coding i # 0 requires

z2

1] M? Y) = s 4
2 Oga T < R(O:'Y) 9 10g2 ) ( )

namely |z,| > lognA?Z. For M = 1, this gives the familiar B/C threshold.

Graphs defined by the codebook associated with a coding method are particularly use-
ful in understanding the estimator i implied by a particular two-part code. A codebook
describes how the parameter is encoded in the first part of the message and is in effect a
dictionary of (value, binary string) pairs. More formally, a codebook C' is a one-to-one re-
lation S defined on a countable set 7 which maps each member of 7 into a binary string,
S:T — {0,1}, 7 = 1,2,.... The set T defines a grid on the parameter space ©; these
are the only values for ji which can be encoded in the message. The map S determines the
sequence of bits which identify the parameter. For the previous encoding of Rissanen, the

codebook C, consists of the grid (again treating v/n M as an even integer)

T = {M/2,...,—1//n,0,1//n,...,M/2}

with
0, t=0,

Be{u(t, T, — {01} t#0,

Sp(t) =
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where k = -,1;10g2 nM?2, Bn(7) is the n bit binary representation of the integer j, and «(¢,T)
is the index of ¢ in the ordered set T. Given a codebook C' = {7, S}, the encoder selects for
the estimator the grid location t € 7 yielding the shortest message. In the Gaussian case,

the total message length is

Qc(Y, i) +logy L{y1, . y; Y) + g, (5)

where
Qc(Y, ) =€{S(W)} + R(a,Y), ReT, (6)

and £(b) denotes the length of the binary string b. The quadratic Qc(Y, it) gives the increase
in total message length caused by using the estimator fi. Hence, the encoder first chooses

to be the value minimizing the varying component of the message length,
hc = &ngféi}ch(?; t) . (7)

The encoder then sends S(jic) as the first part of the code and next uses fic to compress
the data as the second part of the code. In order to decode the message, the receiver must
know the codebook used by the encoder. Given the codebook, the receiver first inverts the
encoding relation to recover fic which is then used to decode the compressed data.

Graphs of quadratics Qe(Y; /1) are particularly useful. Figure 1 shows Qc,(Y;3/v/n)
for 5 = 0,...,10 of the BIC codebook with n = 1024 and M = 4. The horizontal axis
of the figure is scaled to show the standardized mean z,, thereby centering the quadratics
at integers. The quadratic Qc,(Y;0) centered at zero is of particular interest since its
relationship to the others determines whether a nonzero parameter is coded. It indicates
the contribution to the message length caused by coding fi = 0 as a function of Y. If
indeed ¥ = 0, this code contributes one bit to the total message length. As Y moves away
from zero, the impact of ignoring ¥ increases quadratically due to the deteriorating data
compression. The quadratics centered at other integer z-scores show the lengths obtained
by coding jz = j/+/n. The figure also highlights in bold the function mineer Qg, (Y; £) which
traces the bottoms of the minimizing quadratics. Note that four members of Cj are shadowed
by the quadratic centered at zero and would never be used. (The two which are visible in

the figure are dashed.)
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A different parameter code produces a criterion which resembles AIC with a fixed thresh-
old below two. Again, assume that Y is rounded to the grid j/4/n. Rather than use a fixed
number of bits for a nonzero parameter, drop the assumption that || < M/2 and instead

encode the rounded values using the ‘Cauchy code’ S¢(k} illustrated in the following table.

k ko S.(k) Bits with Sign
0 0 0 1
1 1 10+ 3
2 10 1100+ )
3 11 1110+ 5
4 100 110100+ 7
8 1000 11010100+ 9

This code interleaves the binary representation of an integer with a sequence of continuation
bits, with the final zero bit indicating the end of the sequence. A sign bit (shown as the
symbal ‘4’ in the table) follows codes for nonzero integers. The codebook is then C, =
({j/vn:j € Z},5.(4)) with Z denoting the integers. In later asymptotic calculations we
use the approximation £{S.(j)} = 1 + 2log, j. In effect, the leading bit of the Cauchy code
acts as the zero/nonzero choice bit of the previous code. Figure 2 graphs the codebook C,,
again for n = 1024. As seen in the figure, one codes a non-zero value for ft once Y is about

2 standard errors above zero. Specifically, one starts to code i = 1 once
3+ R(1,Y) <1+ R(0,Y), (8)

which occurs at z, = +1.89. Since the encoded estimator i = 1/4/n at this point, the
minimization has introduced a slight amount of shrinkage. This type of parameter coding
resembles the AIC, coding a non-zero parameter as part of the model once Y] is a fixed
distance from zero. In this case, the distance is slightly larger than the usual A/C threshold
of +/2. Unlike the behaviour of the uniform code, the threshold does not increase with n.
As with the previous code, some members of this codebook are never used; these are the
quadratics associated with /nji = 27, 7 = 1,2,... and are highlighted by dashed curves in
Figure 2.
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Whereas the previous code lost a few long codebook members, the effect of the shadowing
for this code is more important since some of the unused parameterizations would make the
first part of the code very short. Figure 2 makes it evident that one can improve this code by
simply moving the shadowed codebook members farther from zero. Referring to Figure 2, we
obtain a uniformly shorter code by sliding the quadratics centered at =1 out to about +1.665,
moving those farther away from zero out by a corresponding amount. This small change also
moves the threshold to code a non-zero parameter to its minimum value |z,| > 1.665 and
closer to the AIC threshold. Continuing, the code is improved at each member by shifting
the quadratic to the right enough so that its minimum is ‘exposed.” A particularly simple
way to obtain this effect is to change the rounding scheme. For example, round z, to a more
coarse grid so that the codebook consists of the pair ({2j/v/n: j € Z}, Sc(7)). The graph
of this codebook appears in Figure 3. The threshold for coding with two standard error
spacing is about |z,| &~ 1.69, almost the minimum possible. Figure 4 compares the minimum
increments to the message lengths obtained by rounding to 1, 2 or 3 standard errors with the
minimum obtained from the BIC codebook Cy with M = 4, chosen arbitrarily to separate
the code lengths in the figure. The codebooks based on various Cauchy codes yield shorter
messages than the previous spike-and-slab code when Y is near zero — values near the
usual null hypothesis. As |Y| increases, the spike and slab code eventually produces shorter
messages as long as |Y| < M/2.

Some terminology is useful for describing codebooks. A perturbation P(C) of a codebook
C = (7,8) is a modification of one of the members of the defining grid set 7, shifting an
associated quadratic. A perturbation of a codebook is a dominating perturbation if when
coding any sequence Yp,...,Y, in a two part code, the perturbed codebook produces a
message of shorter length than the original codebook, £p(cy(Y1,...,Ya) < fe(Y,. .. ,Ya). In
the one-parameter Gaussian shift situation, this condition is equivalent to £p(cy(Y) < £c(Y)
for all Y. Finally, a codebook is dominance siable if there exists no dominating perturbation.
A codebook is dominance stable if for all t € T, Q¢(¢;t) = minger Qc(t;s). In this case,
fi =Y whenever Y € 7. Dominance stable codebooks do not show the degree of shrinkage
obtained, for example, with the codebook C,. Graphically, a codebook is dominance stable if

the minimum of each quadratic is exposed. From Figure 3, the codebook based on rounding
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to two standard errors produces uniformly shorter messages than C, and is dominance stable.
The codebook using three standard error spacing is dominance stable, but does not lead to
uniformly shorter messages. No simple change to the grid locations of either produces a
uniformly shorter message length.

To summarize this section, the following table contrasts these two approaches to hypoth-

esis testing via coding in the mean shift problem:

Attribute Codebook
Chy Ca
Parameter code Spike and slab Cauchy
Parameter space [-M/2, M /2] R
Selection criterion BIC AIC
Parameter threshold | |z,} > vIognM? |z, > 1.89

4 REGRESSION MODEL SELECTION

The coding methods introduced in the Gaussian shift problem generalize to multiparameter
problems and lead to direct characterizations of various model selection criteria in regression.
Each of AIC, BIC, RIC, and EBIC corresponds to a specific way of identifying the relevant
covariates and representing the fitted parameters in the first part of a two-part code. These
codes corresponding to each criterion represent the parameters of the model differently, and
so reach different compromises of model complexity and goodness of fit.

To develop our comparison, we consider the problem of variable selection from a collection
of m potential orthogonal covariates in a regression with Gaussian errors having known
variance ¢2 = 1. Our focus is upon problems with large numbers of covariates, here limited
by orthogonality to m < n as in wavelet regression. In keeping with the previous section,
we adopt the convention that each covariate is normalized so that || X I = n and denote
the least squares estimates associated with a set of p covariates as b(p) = (le, e ,53-1,). As
when fitting a mean, a variable improves the model if the number of bits required to add its

rounded coefficient to the first part of the code is smaller than the gain in data compression

obtained in the second part of the code (so that the overall message length is decreased).
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As in §3, the improvement in data compression offered by adding a variable is proportional
to the change in the log-likelihood. The log-likelihood based on p predictors is (ignoring

constants)
—log L=}y - Y@ = 4TV -2,

where the fitted values are Y (p) = X,,B(p), X, = (Xj,...,X;,)} and the z-score for X;
is z; = /n 3;. Adding another predictor, say Xk, to the fit reduces the residual sum of
squares by zZ, implying that the compressed data require zZ/(2 log 2) fewer bits. We denote
the rounded z-score by |z;] and the rounded estimator by B; = |z;:}/+/n. Once again, the
degradation in data compression from rounding this coefficient is less than one bit as in (3),
R(Bj,f)j) < 1/(8 log2), though in aggregate the cost for rounding can be substantial. If

Y(p)=X pﬁ(p), then the overall loss of compression from rounding is proportional to

Y Y@ =Y - YOI = 1X,{50) - 3" = nllbp) - A" <

B

The two previous codes associated with BIC and AIC adapt easily to orthogonal regres-
sion. The spike-and-slab method introduced in the shift problem represents the regression
model with two components: a prefix of m bits ay,...,an where a; = 1 implies X is in
the fit, followed by codes for the parameters. Fach parameter is represented by coding
the rounded z-score |z;] using 1log,n?M bits (assuming the bound |3;] < M/2). As in
the location problem leading to (4), the threshold for adding a parameter is the BIC rule
|z;| > IognM?. The previous Cauchy code also adapts easily. The explicit m bit pre-
fix used in the BIC format is absorbed by the Cauchy codes for the parameters. That is,
ai,...,am are the first bits of each Cauchy parameter code. For example, if p = 7 and

|z;] = (0,1,0,3,0,0,2), then the model parameters are coded as

The seven underlined bits are a4, . .., a7. (The spaces separating the codes are visually useful
but unnecessary since the Cauchy code is self-delimiting.) This coding implies that the
change in the likelihood and consequent improved data compression is enough to overcome
the addition of a parameter to the first part of the code when Bj is approximately 2 standard

errors away from zero, {z;| > 1.89, as in §3. Again, one can move this threshold by changing
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the rounding grid. This ability to vary the threshold is analogous, and helps interpret, the
effect of changing the penalty from p to, say, 2p in variations on AIC such as those considered
in Bhansali & Downham (1977).

Several more recent model selection criteria may also be characterized as two-part codes.
Hard thresholding (Donoho and Johnstone 1994) and the risk inflation criterion RIC (Foster
and George 1994) include a variable in the model whenever its coefficient satisfies |z;| >
2logm. These criteria are equivalent to choosing the model that minimizes the following
code. Rather than use a prefix of m bits to identify the p included covariates, this code uses
a Poisson code and describes the fitted model using p pairs of the form (j, |z;]) with the
index j coded uniformly in log, m bits and |z;] represented by a Cauchy code. The number
of pairs p is indicated with a geometric code; that is, a continuation bit is added to each
pair to indicate if more pairs follow. With the index explicitly paired with the coefficient,
this code extracts a higher penalty for adding a variable. Comparison to the gain in data
compression implies that one adds a variable whenever

2

Zj
TTog2 > 1+ log,m+ S.(|z]) . (9)

implying the desired asymptotic threshold for large m of |z;] > 2logm. Figure 5 shows a
graph of the codebook C,. based upon this message format with m = n = 1024. For example,
the height of the quadratic Q¢ (1//n, b) at its center 1/y/m is 14: one for the continuation
bit, three for S.(1), and 10 bits for the index of the coeflicient.

One can also create a codebook which leads to the type of estimators and threshold
given by soft thresholding. Soft thresholding retains the threshold v2logm implied by
RIC, but shrinks nonzero parameter estimates by this amount so that the fitted z score
is 2; = |z; — v/2logm|* (for positive 2;). As noted in §2, shrinkage requires the use of
a codebook which is not dominance stable, so the code shown here is more illustrative
than efficient. The parameters are coded using a signed version of the geometric code S,
introduced in §2, so that 0 is coded with one bit, 1 with three bits, 2 with four bits, and so
forth. Given that the code for the first nonzero parameter is 2 bits longer than that for zero,
the needed shrinkage implies that the first nonzero parameter that is coded is located at

approximately (2log 2)/v/2Togm for large m. Subsequent grid values are spaced at half this
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distance since the relative parameter lengths differ by one bit. When m = 7 as in the wavelet
simulations in §5, this grid is a finer partition of the parameter space than the optimal (in
the sense of message length) 1/4/n spacing used by the other codes discussed here. Figure 6
graphs Q(b,0) and Q(b, (j +1)log 2/+/2Tog m}, (j=1,...,4, and j = 5,10,...,40) from a soft
thresholding codebook with 1 = 1024. The exposed right sections of the shown quadratics
produce an approximately linear function that shrinks b to the respective centers highlighed
by the small dots in the figure. The small vertical line shows the threshold /2Tlog m.
Foster and George (1996) have offered a modification of RIC called EBIC which is mo-
tivated through empirical Bayes. Their methods are related to multiple comparison pro-
cedures discussed in Benjamini and Hochberg (1995). This selection criterion is adaptive,
with a lower barrier to inclusion once several covariates have been included in the fitted
model. Explicitly, the criterion implies that the coefficient for X is added to a model with

p coefficients once

23] > /2log{m/(p + 1)} (10)

An adaptive two-part code gives an asymptotically equivalent criterion. The m bit prefix
ai,...,am included with the spike and slab code or as the first bits of the Cauchy codes is
an efficient code (in the sense of being short) only when this sequence of indicators behaves
as a sequence of independent Bernoulli random variables with probability pr(e; = 1) = 2
That is, this method produces short codes for the indicators only when about half of the
predictors can be expected to be useful. In problems with many covariates, one often expects
few valuable predictors and the resulting code for the m indicators is wasteful. At the other
extreme, the Poisson code implicit in hard thresholding and RIC implies a much smaller
probability for inclusion, pr{a; = 1} = 1/m. If indeed the number of predictors is Poisson
with mean one, then this indexing method is efficient. Either code implicitly assumes @
priors an expected number of predictors. Alternatively, one can compress the indicator bits
efficiently without such an assumption by sending a special prefix consisting of the number
of predictors p = Y. a; and a code that identifies {j : a; = 1}. This prefix requires only
log, m + log, (':) bits and is within about {log, m)/2 of the entropy coding limit since

log, (T;) =mH(p/m) — %10827”_ %10g2(1 —p/m) —logye + O(1),
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where the remainder is less than one bit. This message format compresses the selection of
the predictors within a few bits of the compression achieved by a code which is given p. To
see that this code reproduces the EBIC criterion, the increase in data compression is greater
than the increase in the length of the coded model whenever (assuming p < m/2 so that
log, (':) is increasing in p)

2

z; m—7p '
Fis > g oy HASAD)

or once |z;| =~ /2logm/p, approximately for m >> p. Figure 7 graphs the associated
codebook C, for several values of p/m. When p/m = 1/1024 (Figure 7a), the codebook

resembles that in Figure 5 for the RIC code C,. Coding a single 1 as part of the compression
of aj, ..., a0 costs 10 bits, enough to give the index of the single nonzero coefficient. At
p/m = 1/2, this method behaves just like the AIC code in Figure 2 since the cost for
encoding each a; is one bit. Finally, once most of the variables have been included in the fit,
say p/m > 0.9 (Figure 7b), this procedure will necessarily include the rest of the coefficients
with a nonzero estimate, even if the least squares estimator b = 0. This choice occurs because
the cost of indicating some a; = 0 as part of the compression of ay,...,a1024 €xceeds the
cost of coding the slope b as one. If b; = 0, then it costs —log,(1 — p/m) to code a; = 0,

indicating ﬁj = 0. In contrast, the number of bits to code ¢; = 1 and [3]- ==1is

—logyp/m + 2+ R(1/v/n,0) ,

where 2 = S.(1)—1 since the leading bit of the Cauchy code for 1 is included in the compressed
indicator sequence ay,...,am. When p/m > 1/(1 + 27%™) =~ 0.868, the length for coding
E?j = 0 is longer than the length for coding ﬁj = #*1 even when the least squares estimator
b; = 0. At this point, the EBIC threshold is zero and all of the remaining coefficients are
included in the fit.

5 SIMULATION

Models of stochastic volatility produce data that exhibit the well-known tendency of financial

time series to show trends in variation. For such series, the variation in one time period can
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be used to predict the variation in nearby periods. A simplified model of this tendency is

represented by the diffusions
dX(t) = #DdW, (1), df(t) = AddWq(t) , (11)

where W1 (t) and W,(t) are two possibly correlated Brownian motions. In applications, one
observes a discrete time series formed by sampling X (¢) and seeks to recover and predict the
instantaneous standard deviation €®®). Further discussion of this model and related ARCH
models appears in the collection of Rossi (1996). Estimation for this model brings compli-
cations outside our interest here, but the model suggests an important class of problems in
which the signal of interest is a very irregular function.

Our simulations consider a stylized version of this problem. The data are simulated from

the classical white noise model used frequently in the study of nonparametric regression,
X = f(t) + oer, 0<t<1,

where €, ~ N(0,1), independently. Unlike many applications in which the signal f{t) is

smooth, for our simulations f{t) is a scaled Brownian bridge,
fO =VBW(t) —tW(1)}, 0<t<1,

with the scale factor chosen so that F{3F, f(i/n)?} = n. The Brownian bridge has the
roughness suggested by 6(t) in (11) as well as the periodicity of the basis functions used
in our wavelet regressions. The data series in the simulation have varying signal to noise
ratios %, obtained varying the signal strength while fixing ¢ = 1. Each data series X; =

(Xj1,...,X;m) consists of n = 1024 observations formed as
X;e=nf;(t/1024) + ¢,  t=1,...,1024, (12)

where the Brownian bridge f; is simulated independently of ¢, for each realization. In the
sense of regression, the best R? for a fit is B?2 = n?/(1 +7?). Given X, 5 f is estimated

from the wavelet coefficients computed as

C; = W4Xj,
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where W, is the n x n orthogonal basis matrix associated with the standard periodic
Daubechies wavelet d4 (e.g., Donoho & Johnstone 1994). Each of the four selection methods
was then applied to the fit ¢;, using the fact that the standard error of ¢; = 1. For the BIC
scheme, we set M = 1 so that the threshold implicit in our implementation is consistent
with the usual definition (1), though our interpretation suggests a larger value.

The graphs in Figures 8, 9, and 10 summarize the mean squared error of the reconstruc-
tions for 4000 simulated series with the square root of the signal to noise ratio ranging over
the interval 0 < 5 < 50. Figure 8 shows the mean squared error of 2000 wavelet reconstruc-
tions based on coding implementations of AIC, BIC, RIC, and EBIC. Of the 2000 simulated
realizations of (12), 1000 series are uniformly distributed over 0 < n < 50, with an additional
1000 in the smaller interval 0 < 5 < 10. Figure 9 shows the relative mean squared error of
these same reconstructions, first over the full range of #’s, and then focussing on < 10.
The relative mean squared error compares the fit of these reconstructions to that obtained
by an optimal threshold. The optimal threshold for each realization is found numerically by
choosing that threshold which minimizes the mean squared error for the given realization,
as though an oracle had give the data analyst the proper threshold. Figure 9 also includes
the reconstruction based on the data itself; that is, a reconstuction using the complete least
squares fit with effective threshold zero. The horizontal line in Figure 8 at y = | summarizes
the least squares fit in this case since ¢ = 1 throughout. In the two figures, a lowess curve
summarizes the accuracy of each estimator. Because this smoother conceals the variation
about the trend and is not reliable near the boundary at zero, we have provided some addi-
tional figures which compare the selection criteria at fixed values of 5. Figure 10 highlights
the differences among the estimators at four smaller values n = 0.25, 1, 2, and 4 (or, R? =
0.06, 0.5, 0.67, and 0.80). The frames of this figure show comparison boxplots of the relative
mean squared error at the given signal to noise ratio. Fach uses a separate simulation of
500 realizations. To help untangle these summaries, Figure 11 shows the proportion of fitted
nonzero coefficients which were coded by the AIC and EBIC procedures, plotted on 7. The
AIC codebook fits more coefficients until 77 = 35, at which point the adaptive behaviour of
the EBIC codebook begins to code more coefficients. For large 5 > 40, this version of EBIC

codes all of the coefficients as nonzero values.
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When 7 is small, few coefficients rise above the noise floor. In this situation, RIC and
EBIC perform the best. Although this is a small part of the range covered in the figures, it
can be argued that this is the most important region to perform well since for a large class
of functions, most of the wavelet coefficients are near zero. Thus, fitting well in this portion
of the figure may be most important for most applications. Because of its bias toward few
coefficients, the mean squared error of RIC reconstructions quickly rises as 7 increases. In
contrast, because it is more adaptive, EBIC reconstrcutions remain competitive until n = 4.
Once 1 = 4, the liberal coding of AIC becomes effective and it chooses models with the
smallest mean squared error until 7 & 35. (For smaller values of n, AIC performs quite poorly
as seen in Figure 9). With such strong signals, the adaptive coding of the EBIC procedure
begins to fit more parameters and it once again obtains relatively better performance. Note
that the plots of the relative mean squared error occasionally show that AIC gives a model
with smaller mean squared error than one which knows the optimal threshold. This seeming
contradiction is explained by noting that the optimal threshold estimator does no rounding

or shrinkage of the estimated coefficients.

6 DISCUSSION

We have not addressed here the matter of how to handle models with correlated parameters.
Such an extension is important for practical regression problems and specialized applications
like smoothing splines. It would also allow us to handle non-nested subset problems in, for
example, time series model selection. Nested models, such as the common comparison of
consecutive order autoregressions, can be addressed with our current results via a simple
orthogonalization implied by the nesting. Our assumption of orthogonality implies an addi-
tivity to the code lengths, making graphs of the univariate codebooks apply in regression as
well.

A second extension of this work is the use of these alternative model selection strategies
in data compression algorithms. This use requires that we modify them to work with adap-
tive Markov models known as context trees. Some of the most successful data compression
algorithms compress a sequence of bits Y; using an arithmetic coder which is supplied con-

ditional probabilities of the form pr{Y¥; = 1|Yi-1,..., Yi—s,} from a statistical model. The
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conditioning information, here Y;_i,..., Y:_,,, is known as a context, and the size s of the
context varies. Bell, Witten and Cleary (1990) provide examples of this algorithm and find
it among the best. The important aspect regarding model selection is the question of how to
“prune” an initial 2™ binary tree using the compression ideas described above. Commonly,
a codebook resembling the BIC codebook Cj, is used. In some preliminary experiments, we
have had some success compressing binary sequences using alternative coding methods, such
as Cauchy parameter codes enhanced with variance stabilizing transformations. A natu-
ral generalization of the binary context tree is to the problem of “dynamic” autoregressive
models, replacing the sequence of bits by continuous random variables. The structure of
the context trees also suggests the opportunity to develop analogous model selection meth-
ods for the various partitioning algorithms used in statistics, particularly CART (Breiman,
Friedman, Olshen, Stone 1984) and MARS (Friedman 1991) which recursively divide the
prediction space into subsets in which a homogeneous model is fit.

Finally, although the paradigm of model selection based on code length can be quite
powerful and lead to important heuristics, it leaves us with an important question: What
are the statistical properties of the resulting estimators? For example, it is well-known that
estimators implied by the MDL criterion are consistent when a “true model” is known to
generate the observed data. We appreciate that many readers may not be persuaded by
simply “counting bits” when choosing a model, and consequently plan to explore the risk
properties of the estimators implied by these models. Although the simulation evidence of
§5 is perhaps compelling for some, we clearly need to address the risk properties implied by
the estimators associated with each codebook and establish the linkage between the length

of a binary message and risk.
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Figure 1. Graph of the BIC equivalent codebook Cj, for n = 1024 with the parameter space

restricted to |p| < 2.
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Figure 2. Graph of the AIC equivalent codebook C; for n = 1024 with one standard error

spacing.
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Figure 3. Graph of the AIC equivalent codebook C, for n = 1024 with two standard error

spacing.
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Figure 4. Comparison of the minimum additional message bits required by the BIC code-

book C, and the AIC codebook C, with varying standard errors (n = 1024 and M = 4).
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Figure 5. Graph of the RIC equivalent codebook C: for n = 1024 with one standard error

spacing.
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Figure 6. Graphs of Q(b,0) and Q(b, (j+1) log 2/+/2Tog p), (j=1,... 4, and j = 5,10,...,40)
from a soft thresholding codebook with p = 1024. The small vertical line at z ~ 3.7 indicates

the threshold /2Tog p.
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Figure 7. Graph of the EBIC equivalent codebook C. for n = 1024 with one standard error
spacing. (a) With p/m = 1/1024. (b) With p/m = 0.90.
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Figure 8. Graph of the ratio of th mean squared error of wavelet reconstructions for square

root of the signal to noise ratio 0 < 1 < 50 (AIC o, BIC +, RIC x, EBIC 2).
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Figure 9. Graph of the ratio of the relative mean squared error of wavelet reconstructions
for signal to noise ratio (a) 0 < < 50 (b) 0 < 5 < 10 (AIC o, BIC +, RIC x, EBIC 2,
data/full least squares -).
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Figure 10. Comparison boxplots of the relative mean squared error of wavelet reconstruc-
tions using AIC, BIC, RIC, and EBICYor varying values of the signal to noise ratio = 0.25,
1,2, 4.

(a) n=10.25 (byn=1
N - <+ A
L _ ]
w e ~ [¥V]
- )
e T b
2 2o T
3 5
in | e —
J- L '; v— )
o = o 4 Ac BC RC EBC
AlC BIC RIC EBIC
(cynp=2 (d)n=4
N _ o
o _ ™~
N T o T
w T L
o 0
= =
g0 - T se -
- =
m s
u ™
o @® | é
- T I 1 - T = T
"o I AlC BIC RIC EBIC o AlC BIC RIC EBIC
o o



Draft for comments, Jan. 1997

32

Figure 11. Plots of the number of fitted nonzero coefficients as coded by the AIC ( o ) and

EBIC ( 2 ) procedures. The shown coordinates are for a sample of 200 of the simulated

1000 replications in each case.
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Figure XX. Comparison boxplots of the relative mean squared error of wavelet recon-
structions using AIC, BIC, RIC, and EBICYor varying values of the signal to noise ratio
n = 10, 40.
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