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1, INTRODUCTION

Our aim is to give an introduction to Markov additive processes in
an informal setting, and discuss their more important properties and appli-
cations.

Some of the motivaticn for studving Markov additive processes comes

from modelling real-life cumulative prccesses whose probability laws de-
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pend on 2 randomly changing enviromment. Th2 folleowing zre two such di-

rect applications.

(1.1) EXAMFLE., TLet Xt be the velocity of a vehicle at time t, and let

Y dencte the amount of fuel ccnsumed by that vshicle during the time in-
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sumption depends, in addition to velocity and acceleration, on such things
as temperature, humidity, etc. Therefore, Y will not -e a simple additive
functional of X in genzr2l. Instead, it seems chat the increment Yt+s--Yt
would have the probability law of a process with independent increments

with the parameters of that law depending on Xu, t<us t+s. Then, tha

pair (X, Y) is a Markov additive process.

(1.2) EXAMPLE. This problem comes up in optical communications in which
photon counters are used as detectors. Thz photon counting process is a
non-stationary Poisson process. The intensicy functicon is the sum of two
functions: one is the deterministic compcnent carrying the message, the
other is the stochastic component caused by the presence of heat, turbu-

lence, stc., The problem is to estimate the deterministic cemponent Zrom

e

the counting data. For instance, if the randomna2ss is due cnly to heat,
one may reasonably take X_ to denote the amount of heat present &t t, and
[

- .12 .
then, the intensity of emissicn due to heat will be lktl at t. If X is

a Markov process and Y _ is the number of particles emitted due to heat

I

during [0, t], then (X, Y) is a Markov additive proces

Another, more dotzilad, =-

Xt will s*tand for "tha time £ year and the

sclute time t' and Yt will be the cirmulative iapuat i0fo a watar resarvoir

. i 3
during {9, *j.
Such epnlicstiszses t- real thznoma2nd ars not the only re=2:ons o1 the

interest in Markev additive processes

.

applications o the thedxy of ~oniioucus

thecry, The agplicazicme o the drurndary
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random time changes of stochastic processes. More will b ¢n these
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n
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later.

The organization 2f the paper is as follows. 1In the next secticn we
will give a fairly precise definition of Markov add:itive processes, and
will list several of their more important structural properties. In Sec-
tion 3 we will discuss two special cases in some detail; ic is hoped that
this will clarify the otherwise complex looking structure of our processes.
In Section 4 we will point out the m=nner in which Markov additive pro-
cesses arise in such theoretical applications zs random time changes of
Markov processes, semi-Markov processes, and the thecry of continuous re-
generation.

Section 5 will introduce an important zZnal

A

the infinitesimal behavicr cf a Markcev additive procass: that tool is
+ ¢ Fed < . -
provided by Levy svstems for such prccesses. Iu Section 5 we show the
interrelationships between those Lévy systems zand the infinitecimal gen-
erators and resolvent. 1In particular, ve derive thers a remarlbabls re-
solvent equation which alsc aricss in the generaiized Dirizhlet problem.
Many of the applications we mention are not yet realiz=d in sufficient

depth. It i3 hoped, tharefore, that this psper gensvatres more interest ia

i
)

y

such preblems. This is a yeuwrg z2rea, and i: in need c¢f the talents of
many more people.

We end this intrcducsricn with a2 few words .o aotatizcns and z2vmincl-

=

cgy to bz employed in *the remaindsr of this rav=w.

Our notations and termi=nolozy wiil, ia general, fcllcw those of

H

particulars. We write E}



By£+, R, ... we dencte the set of all Borel subsets of IR+, R,...
Throughcut the paper L will be a locally compact space with a countable

base, and E will dencte the o-algebra generated by its open subsets.

If (F, F) and (G, G) are measurable spaces, then the wmapping

(G, G) provided that x — N(x, A) is F-measurable for each iixed A in G
and A — N(x, A) is a g-finite measurs on g for each fixed x in F.

If ) is a sample space and M is aog-algebra on ft;, then by a history
on (0, E) we mean an increasing family of sub-v-algebras of M. A histery

(ﬂt) is said to be right continuous if

H = 0 &
- >

for every t Gﬁg: If (gt) is a history, by H we denote the g-algebra
generated by all the H . A history (gt) will bz said to be complete
with respect to a family of measures z on M provided that H be complate
wrt P and that EO (and therefeore every Et) contain alli the negligitle

sets of H.



2. MARKOV ADDITIVE PROCESSES

In this s2cticn, we ghall define Markev zdditive processes and

. . . A e
concentrate on their deccmposition along the lines of Lévy'

w

decomposition

of additive processes,Tlnis. is 8 Summary ol Sections 4 and 2 c'{ 3],

Let ({1, M) be a measurable space, (gt) a history -a (7, M), (Gt) a

family of shift operators on {{i, M), (Xt) a stochastic process taking valiues

in EA =E U {A} where % is a point 72t in B, (¥ ) a stocha
—

193]

tic process
taking values in R = (-®, =), and (P) a family of protability meas-

ures on M.

(2.1) DEFINITION. he object

X, YY) = O, M, M,2 X ¥ ,P)
To= =t t C t

is said to be a standard Markov additive preccess with stat2z space E x R

provided that the fellowing hold.

b)Y Almost suraly, the mappirg € = Y_ Jz right continucus, has
left-hand limits, satisfies 7. = ¢ =221 Y = Y. for £ =7 = inf {5 : X
3 . ] - L -
~ z L~ S
) For =2zch &t Y is ¥ _-wessurablsz.
C =L
d) For 2ach tands in R, , Y =Y +7Y o 2 zlmcst surely.
5 = s a
e) For 2ach ¢ “ R, . 4 £E,. B AR, th=



is E-measurable.

f) For each t, s GﬁR+, x £ EA’ A € E,; 2 ER ,
X - BRI ON 5 I -
(2.2) P {xs o B, €4, Y o 8 6Blb=4t} P {x_ €4, Y €8]

Condition (2.la) contains a rnumber of requirements: (yt) is a

. X .
right continuous and complete history; P {X, = x} = 1; t ~X_  is almost
surely right continuous, end has left-hand limits; (Xt) is progressively

measurable, strong Markov, and quasi-left-centiaous cn [O,Q) .

Condition (2.1b) is a regularity conditicn on the paths of (Yt);
we may and do assume that the stated properties ara true for all ) (imstead
of almost all).

Condition (2.1c) meakss (Yt) adopted to (ﬁt}, znd tv the right

continuity of (Yt)’ (Yt) is progressively measuvstls with respect to (Mt}

In view of this condition, the Markcv property of X is stronger than the

usual cases where Mt is merely the o-algebra generated by (X_, s < ) alcna.

Condition (2.1d) makes (Yt) additive by reguirsiag that the increment

Y*+s - Yt depend cn 'the hist-ry between t end t + s''.
[

Condition {2.12) s=ts ur the stage for (2.1f) kv z:z2ing to it the2t

the right-hand side of (2.2) is mszsurable yith respect teo M,
-

Finzlly, (2.1%) ii3:3 the mocst imporzant zondition: the futura
of (X, Y) is conditionzlly iadzpandznt ¢f the past Et ziven I:‘ I~ parti-
cular, this implies that {X_, Y ) iz e Marbcw ;vocecs, but, heve tihe future
of (Yt) is conditionaily indsgardernt of the past oncz the present value of

(Xt) is knowm.



The definition abeve is slightly restrictive: in GINLAR [2], a
most general definition is given which allows (Xt) to be an arbitrary Markov
process and (Yt) cai, z:xe values in R". 1In [3]. {Xt) is as in here, but
(Y.) is allowed to take values in R". The defiritions of EZHOV and SKOROKHOD
[8] and JACOD [9] are closer to that of GINLAR [3].

In working with Markov additive processes., the point of view
adopted is that the Markov process (Xt) is well known and that we are
interested in the structure of the second component (Yt) conditioned on
that of (Xt). To make such statements precisc, we first define the follow-
ing. We let (Et) denote the canonical history generated by (Xt); that is,
(Et) is the minimal right continuous and complete history such that
5t :)o(XS; s < t) for every t. Similarly, lat {;t) denote the cenconical

history generated by X Yt). Recall that

-
W

=

K, L=

. %
t

=

=V
t
t

and . C

Then, K C L C .

n=
e

cM for every t.

t

The following proposition states that, roughly speaking, condi-

m

tional upon the knowiedge of K, the process (Y,, has independent increments.
- -
We will make this more pracise ir Theorem (2.7} by cheosing & proper version

of "the conditional probability given K'.

(2.3) PROPOSITION. For anmv s. t € R and B < ik,
X _ IR S
(2.4) P'{Y o8 €B \ M, VE} = P{Y_ e 6 €3 |K]

Moreover, there exists a K -measurable randem variable W such that

T



X
A = 8
(2.5) P {YS LN €B ‘ E} W oo A
Eviderntly, " is a 'mice" version cf the conditional probability
Py{YS €B \ 55} which is further independent of y. Putting (2.5) into (2.4),

we see that, given K, Y - Yt is indepzndent of the past M , and further,

t+s LA

depends only on the path of (X ) during [t, t+s].

The following is the first step in meking (2.3) more precise:

‘(2.6) PROPOSITION. There is a transition probability P from (Q, K)
into (Q, E) such that, for any x € EA’ K €K, and L €L,

J P (dw) P(w,1) = PY® N1L)

K

In other words, P is a regular versicn of the conditional przba-

bility Px{o\ 5} for all x. Wow, fix wy < 0 ard write P,(L) fer P(u,,L).
Consider the probability space (Q, L, P,), and consider the stcchastic
process (Yt) on that probability space. Propositicn (2.3) implies the

following important

(2.7) THEOREM. Considered as a stochastic process on the probability

space (0, L, Py), (Yt)“ has independent increments.
- [

R,

+

We may now appeal to the theory of processes with independent
increments given, say, ia DOCB's book in Chapt:r VIII. Recalling that
independence with respect to Py is the szme as "'ccnditional independence

. X .
given K with respect tec P” for all x,'

we obtain the following main result.
This is the equivalent of Lévy-~Khimchine decomposition for processes with

independent increments.



(2.8) THEOREM. We may decompose Y as

(2.9) Yy=a+yl 4y 4 e

where (At), (Yi), (Yi), (Yi) are conditionally independent given K with

X
respect to P° for all x, and where the compcnents satisfy the following:

(2.10) a) (At) is an additive functional of X.

b) (Yt) is a purely discontinuous process whose jump times are
fixed by X; (X, Yf) is a Markov additive process; there is a sequence (Tn)
of stopping times of (Et) which exhausts the jumps of (Yi); if for some

f
T YéLis K-measurable, then Z = 0

stopping time T of (Et) the value Z = Y
almost surely.

c) (Yz) is a continuous process; (X,YC) is a Markov additive

processs
dy . . . . .
d) (Yt) is conditionally stochastically continuous; ia fact,
. . d d d, .
if T is K-measurable, then Y, = YT almest surely; (Yt) is a compensated

sum of jumps; (X, Yd) is a Markov additive process.

The following is the analytic version of the preceding rasult.

Let

(2.11) M= EX[exe (1 2 Y) | K]

(2.12) COROLLARY. For each t €R _, A € R, w < 0,
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N _ Y ‘ '
(2.13) Mt(w) = {IJ:I Fj(u) 1[0,t](Tj(”m
. . .2
»fewpli A At(w) - 5 A\ Ct(w)
\ iAx 3 kx 1+ x2
+ } (e -1 - 7) 5 Bt(w, dx) |}
R 1+ x X
where

a) for each j, Tj is a stopping time of (gt), and F% is a char-

acteristic function in )\ and is K-measurable for fixed X;

b) (At) is an additive functional of X;

c) (Ct) is a continuous increasing additive functional of X;

d) for each t and w, A - Bt(w, A) is a finite measure on R\{0};

and for fixed A € 2}, (Bt(A))t - H& is a continuous increasing additive

functional of X.

This corollary was obtained by EZHOV and SKOROKHOD [8] by direct

analytical techniques under the assumption of continuity for t ~l4t.-rken,

in (243), the first factor disappears, and L>AL must be conlinuous.
We end this section with several remarks on the further properties

of (Yt). As all the results above, these can be found in [3]

Suppose that (Yt) is increasing. Then, the component Y€ vanishes

and each one of the remaining components is increasing. The additive func-

tional A may be further decomposed as

(2.14) A =A% + AP + ¢

where A~ is a continucus additive functional of X, &P is a purely discontinuous
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3

d iskpurely discontinuous

predictable additive functional of X, and A
quasi-left-continuous additive functional of X.

A similar fvrehar decomposition can be given for Yf:
(2.15) vt = yfP 4 yfd

where the jump times of Yfp are exhausted by a family of predictable stopping
times of (§t), and those of qu are by a family of totally inaccessible
stopping times.

In some situations it is convenient o represent Y (we are still

assuming that Y is increasing) as

(2.16) v = 4 + vP 4 y9 4 v©
by defining
(2.17) vP = AP 4 yIP v = a9 + yfa

Then, AC is continuous; each one of Yp, Yq, Yd is purely discontinuous. The
jump times of YP and Y9 are fixed by X, the jump times of Yd are not fixed
by X. Yp jumps only when X is continuous; Yq jumps only when X jumps. Y
is conditionally stochastically continuous given X.

The behavior of Yd is of greater interest. In the case when X
has only one state, it is well known that Yd is the limit of a sequence of
compound Poisson processes. A similar result hoids in general, and one is
able to give a decomposition for Yd along the lines of ITO's decomposition

for additive processes,w‘i V‘e-cer te Sections & and 5 9-‘; [3] {ior

results.
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3. TWO SPECIAL CASES

In this section we discuss two special cases in some detail.
First, we consider a Markov additive process (X, Y) where X is a Markov
process with only two states. This example essentially covers all pro-
cesses (X, Y) where X is a regular step process. Secondly, we give an
example where X is essentially continuous; in this example we are interested

in pointing out an interesting model of seasonal behavior.

3a. MARKOV ADDITIVE PROCESSES WITH E = f{a, b}. Suppose that the state
space of X is E = {a, b}, and further suppose that the lifetime is infi-
nite (so that A does not enter the picture). Such a process alternates
between the two states. Sojourn times are independent random variables,
have exponential distributions, with means depending on the state being

occupied.

(3.1) ADDITIVE FUNCTIONALS. Any continuous additive functional of X

has the form

(3.2)

@)
il

( t

r J f(XS) ds ,
0

where f(a) and f(b) are any two numbers in R.

Any purely discontinuous additive functional of X has the form

(3.3) B, = 2 g(XS_, XS) I{X C2x )
s<t s s

where g is any function on E X E. Note that £ jumps only finitely often
(almost surely) in [O,t]; therefore, the sum in (3.3) has in fact finitely

many terms. In words, t - Bt jumps only when t - Xt does. If X jumps from
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a to b at time t, for instance, then B jumps from Bt— to Bt = Bt + g(a,b).

The most general additive functional of X has the form
(3.4) A=B+C
where B has the form (3.3) and C has the form (3.2).

f
(3.5) COMPONENT Y . For a process X of the present type, the component

f f
y'P in the decomposition (2.15) vanishes. So, we have that Yf = qu. Y 4

jumps only when X does; in this regard it is similar to B given by (3.3).
f £

However, the magnitude of the jump of Y = Y0 is a random variable whose

distribution depends on the left-hand and right-hand values of X at the

f
instant of that jump. More precisely, if T is a jump time of Y , T is also

a jump time of X and

f

x. £
(3.6) P {YT - Y

on {X =i, XT = _']‘} . Here, F(i)j,')a i, J € E, are arbitrary
T-

f
distributions on IR. This is the most general Y possible in the present

case.

(3.7 COMPONENT Y©. The most general form of it is
C =

(3.8) Y. Z(Ct)

where Z(t) is a Brownian motion independent of X, and where (Ct) is an
increasing continuous additive functional of X. 1If (Ct) is represented as

in (3.2), we may explain (3.8) as follows. While X is in state a, ¥ behaves
as a Gaussian process with stationary and independent increments with
covariance function f(a)t. Similarly, while X is in state b, YC has s.i.i.

with covariance function f(b)t.
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d
(3.9) COMPONENT Y . 1Its most general form is as follows. Let v? and

b
Y be two processes which are independent of each other and of X. Suppose

a . e s . a . . .
Y 1is an additive process (that is, Y has stationary and independent incre-

ments), such that

(3.10)  Ef[exp (i X YD)]

. 2
idx ) 1+ x y(a, dx))

1+ x2 x2

= exp {t J (eikx -1-
R

where v(a,s) is a finite measure on R\{0}. Similarly for yP with v(b, ).

Define

t t

a _ . b _ .

(3.11) Lt = f la(Xs) ds ; Lt g lb(XS) ds
0

a b
that is, Lt and Lt are the amounts of time spent respectively in a and b

during {0,t] by X. Finally, define

d _ a a b, b
(3.12) Yt =Y (Lt) +Y (Lt)

This is the most general from of Y .

d
In other words, while X is in state a, Y behaves as Ya; while

X is in state b, Yd behaves as Yb.

Finally we consider a slight rearrangement of the terms. We may

write
(3.13) v = 4% + %+ 759y 4 ¢ 4 ¢

c .
where A~ is the continuous component of A; (recall that A

P -0 and vIP - 0.
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The component vd = A% 4 qu jumps only when X does. We now concentrate

d
on the remaining three terms AC, Y, Y . Suppose

t

(3.14) NG f h(X ) ds ;
t o S
0
and suppose v© is as in (3.8) and Yd is as in (3.12) . Let Za be an addi-
tive process with
2
(3.15) E[lexp (i ) Zi)] = exp {i)t h(a) - % f(a) A" t
. . 2
+ ot Y (e1Xx -1 - iAx 2) 1 +2x via, dx)} ,

J
1 + x X

and suppose Zb is an additive process with a Fourier transform as in (3.15)
but with drift term h(b), variance term f(b), and "Lévy measure" v(b,:)

) b
Suppose z® and Z are independent of each other and of X. Define 12 and

Lb as before by (3.11). Put

c _ a, a b,.b
(3.16) Zt = 2 (Lt) + Z (Lt)

Then, ZC is the most general form of AS +Y° + Yd.

*ok %

3b. ADDITIVE PROCESSES IN RANDOM ENVIRONMENTS. This is to illustrate the
case where X has a continuous state space, and also to provide an example
of a rather interesting practical application. The Markov additive process
to be described now was proposed in GINLAR [4] as a model for the input into
a water reservoir in the presence of yearly cyclicity and seasonal varia-

i

tions. Here Xt is to stand for "environmental conditions at time t," and
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Y, will be the cumulative irput during [0,t].

Since Y i¢ increasing, we shall use the decomposition (2.16) for it.

(3.17) THE PROCESS X. Take a circle of unit circumference and let A,
B, C, D be four points on it ordered clockwise. Let the arc ABCD be painted
green and the arc CDAB yellow; note that the green and yellow overlap over
the arcs AB and CD. Let E be the union of the green and the yellow points
(with colors preserved) with the natural topology they bring; (the result
is a compact space). Consider now the position and color of a chameleon
moving on the circle clockwise with unit speed; if it started at a green
point, it stays on the green arc for a while and then, somewhere between
C and D, crosses over to the yellow arc; it stays on the yellow arc for
a while and then, somewhere between A and B, crosses over to the green arc;
and so on. The probability law of the motion is described by two distribu-
tion functions: one for the additional random time which the chameleon
stays on the green arc after reaching C, and one for the additional time
it stays on the yellow arc after reaching A. The resulting position-~color
process is a Markov process. (We omit the formal construction of X but
only mention that the state space we described cannot be made simpler: it
is tempting to take E to be the Cartesian product of a circle with the set
{1,2}, but then there is no way of defining the measures P* for all x and
still have a normal Markov process.)

For this environment process, the colors may be thought as the
two seasons which alternate almost deterministically except that the
changes of seasons are allowed to take place at random times (which, how-

ever, are restricted to certain intervals).
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By the essential cyclicity of the process, it is sufficient to

describe Yt for 0 <t <s1.

(3.18) CONTINUOUS ADDITIVE FUNCTIONAL Ac. Let ay and ag be two func-
tions defined on the yellow and green arcs, respectively. If at instant t

the environmental process is at position x and color green, then

d Az = ag(x) dt; similarly on the yellow arc. That is,
c re
(3.19) At = ] f(XS) ds
0
where f(g,x) = ag(x) and f(y,x) = ay(x)
(3.20)  PREDICTABLE COMPONENT Y'. Let %/, %, + - . be predetermined

points on the circle. For each j, let Wj be a random variable with distri-

bution mj . Then,

o <
(3.21) Yt [,wj I[O’t] (xj) R 0<tc<l

j
is an example of the predictable component. Here, we may think of Yz as

the cumulative input cduring [0, t] which have been scheduled at the times

Xy X . during the year.

25

(3.22) COMPONENT Yq. Let U and V be two random variables independent

of each other and of X. Let S be the time X crosses from vellow to green,
time

and let T be theAX crosses from green to yellow. Then,
q . + VI <

(3.23) Yt UI{SSt} VL{TSt}, 0 <t 1,

o}
is the general shape of Yq. In other words, Y is the cumulative input

due to rains accompanying the chargings of seasons.
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d
(3.24) COMPONENT Y . This is the limit of a sequence of increasing
compound Poisson processes. 1Its conditional probability law is described

by a kernel H from (E, g) into (R, £§)) satisfying

f E(z, dy)(y A 1) < = .
R,
The interpretation for H(z, A) is tha following:
Consider a small time interval (t, t + dt) and suppose the value
of the environment at t is Xt = z. Then, H(z, A} is the rate (per unit

time) at t with which inputs having some magnitude y in A arrive. So,
oo
X d t -y
EX[exp (-) v | K] = exp [- f ds[H(X_, dy) (1L - e ™)]
0



-19-

4. RANDOM TIME CHANGES, SEMI-MARKOV PROCESSES, AND THE THEORY OF

CONTINUOUS REGENERATION

In this section we shall discuss the manner in which Markov

additive processes arise in theoretical investigations.

4a, RANDOM TIME CHANGES. Let (Zt) be a Hunt process with state space F,
and let (At) be an increasing continuous additive functional of Z. Define

the random time associated with A by

4.1) Yt = inf {s : AS >t} ,

and let (Xt) be the time-changed process:

(4.2) X =12

Then, MAISONNEUVE [13] has shown that the process (X,, Y,) is a Markov
additive process. This observation should enable one to cbtain a finer
analysis of the '"time change' involved.

In particular, if E is a compact subset of F, and if (At) is

defined by

4.3) A

lE(ZS) ds

O,

then the time changed process (Xt) has the state cpace E. TIn the litera-
ture, when studying the boundary behavior of Mzrkov processes (Zt), this
case is made use of in the following manner. First, a "“simple" set E 1is
chosen, on which the process (Zt) behaves ''micely'. Then, A is defined

by (4.3) and (Xt) by (4.2) and (4.1). The resulting process (Xt) is in
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general easier to work with than (Zt)' The transition semi-group of (Xt),
and/or the resolvent of (Xt), are then obtained. Finally, these results
are used to obtain an 'approximate picture' of the process (Zt) by noting
that, if E C F is close enough to F, then (Xt) should be close to (Zt).
The first one to make use of this idea was NEVEU [16], [17].

He took F to be a countable set with the discrete topology, and let E be

a finite subset of F. Then, choosing a sequence En increasing to F, one
obtains a sequence of simple Markov processes (X:) which converges to the

original process (Zt).

4b. SEMI-MARKOV PROCESSES. These are processes (Zt) which are not Markovian,
but they enjoy the strong Markov property at those stopping times T whose
graphs are contained in the set of discontinuities of (Zt), i.e., for almost
all w, T(w) is a time of discontinuity for t = Zt(w). Such processes were
introduced by LEVY [12] and still are far from being understood in suffi-
cient detail. (See also SMITH [18] for the same notion.)

Let (Xt, Yt) be a Markov additive process. We now think of Yt

as the real time at a local time t. Define

(4.4) L. = inf {s : vo> t]

as the corresponding local time: that is, when the real time is t, the
local time is Lt; when the local time is s, the rzal time is YS. Consider

now the process (Xt) in real time: this is the process (Zt) Jefined by

(4.5) Z =X

The process (Zt) is in general not a Markov process. But, suppose T is a
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stopping time of (Zt> such that
(4.6) T(w) = (s : Yt(m) = s for some t}

For almost all w in {T < «} . Then, by the strong Markov property of (Xt, Yt),
the process (Zt) enjoys the strong Markov property at T. Now, (%.5) holds for
any stopping time T which is a time of discontinuity. Hence, (Zt) is a semi-
Markov process.

There is a nice converse to this, due to JACOD [11], which shows
that essentially all right-continuous semi-Markov processes which are constant
over their intervals of continuity are obtained in the above manner. We now
sketch the main lines of JACOD's result.

Let (Zt) be g right continuous stochastic process with state

space E; and let Rt be the time of first discontinuity to the right of t

.7 R = inf s>t : u - Z  1is discontinuous at s}

For each t, Rt is a stopping time of the process (Z ). Define
>
%.7) Mmo= foJucu [RD]
>0
where [T] denotes the graph of t : [T] = {{t,w) : T{w) = t} . For each w, the

section M(w) of M at w is some subszat of & Its complement H{F\M(w) is a

4
countable union of intervals of ferm [ ) or ( ): these intervals are said
to be contiguous to M(w).

Suppose that, for almost all w,

(4.8) a) M(w) is a perfect zet {(that is, it has no isolated points);

b) t —~ Zt(w) is copstant cover sach centigucus interval;
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c) for any contiguous interval [a,b), t - Zt(&) is cortinuous at a.
The net effect of these axjoms is that the process (Zt) is speci-
fied by its values on M. We now suppose that we are given a family of

e X
probabilities (P )XGE such that
(4.9) PX{Z =x} =1, X € E;

and that (Zt) has the strong Markov property at any steopping time

T such that [T] < M.

The process (Zt) satisfying all these is said to be a semi-Markowv
process without branching points and without isolated discontinuities. This
is the proper generalization of Lévy's notion of semi-Markov processes to
the present case of arbitrary state spaces. It is worth pointing out, how-
ever, that in the case where E is countable, LEVY [12] had envisioned pro-
cesses which are not right continuous. In that case, there are complexities
quite beyond anything which is encountered in the present case. For an
introduction to Lévy's thinking (corrected and brought up to data) we refer
the reader to QINLAR [6].

Going back to the semi-Markov process (Zt) introduced above, we

now list JACOD's thecrem, relating it to Markov additive processes.

(4.10) THEOREM. Let (Zt) be a right continuous sami-Markov process
without isolated discontinuities and without brasching peints. Further,

suppose that, for any seguerce (Tr> of stopping zimes of (Z ), if (Tn)

1 -

increases to T, then (RT ) increases to R,. Then, there is an increasing

Il

continuous process (Lt) whose suppcrt is the set M; morecver, if

&1

(4.11) Y, = inf {s : L, > t], X =2,
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then (Xt, Yt) is a Markov additive process.

In view of the fact that (Zt) is hard to investigate because of
the lack of Markov property, this theorem is of great significance. Based
on it, studying a semi-Markov process is reduced to studying a Markov addi-
tive process and then changing times to infer back. However, a detailed

examination of this program of study has not been done yet.

4c. THEORY OF CONTINUOUS REGENERATION

We start by describing the simpler case of complete regeneration.
Consider a process (Zt) and a random set M. Suppose that the future

o @

%+S; s = 0) and the past o(ZS; s £ T) are completely independent for any

stopping time T such that [T] © M. Then, (Zt) is said to be a regenerative

process and M is called its regeneration set.

The simplest case is obtained when

(4.12) Zt(10 = lM(w)(t)

The most fundamental result concerning regeneration sets is the one due to
MAISONNEUVE [13] which he had obtained earlier (see his paper in Séminaire
de Probabilitéds V (1970), Lecture Notes in Mathematics vol. 191). Here is

his result.

(4.13) THEOREM. Every regeneration set M is the image of an increasing

additive process.

In other words, for every regeneration set M, there exists an
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increasing additive process Y (i.e., an increasing process Y with station-

ary and independent increments ana with right continuous paths and YO = 0)
such that
(4.14) M(w) = {t : Ys(w) =t for some s} ,

for almost all w.

In the case where Y is a compound Poisson process, M is a discrete
set; and, if we define 0 = TO’ Tl’ TZ’ . . . to be the points of M in
increasing order, then the process (Tn) is a renewal process. Thus, the
present theory is an extension of renewal theory.

In general, if Y is not a compound Poisscn process, th2n M has

no isolated points. Examples of this latter cas= are
(4.15) M = {t:2z2_ =0}
where (Zt) is the Brownian motion on IR ;

(4.16) M = Tt : zt = 0}

where (Zt) is a Chung process with state space {0,1,2,...} with 0 instan-

taneous; and
4.17) M o= {t:2 =x}
where (Zt) is a Markov process with state x a holding point.
We now pass on to the gensralization of the concept of regenera-

tion introduced above. ©Note that, above, the fiture and the past were

completely independent at those stopping times T with [T] © M; and note
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again that, then, the regeneration set M is the image of an additive
process Y.

Now we replace tie complete independencs of the past and future
by the strong Markov property: We assume only that the future

o(Z s 2 0) and the past o(Zs; s € T) are conditionally independent

T+s’
given the present o(ZT) for all those stopping times T such that {T] C M.
Then, (Zt) is said to be a semi-regencrative process with regeneration set M.
As should be expected, then, M turns out to be the image of a
process Y for some Markov additive process (X, Y). This is to show the
manner in which Markov additive processes arise in this theory. For a

precise introduction to the notion of semi-regeneration we refer to

MAISONNEUVE [14] .
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5. LEVY SYSTEMS OF MARKOV ADDITIVE PROCESSES

With this section we resume our studies of Markov additive processes
proper. Lévy systems provide us with analytical insights into the infini-
tesimal behaviors of such processes. The following account is a fast
résumé of such results which were obtained in ¢INLAR [5]. Some of these
results were also obtained by JACOD [10] for processes(X, Y) such that
both X and (X, Y) are Markovian., Our treatment will follow [5] and will
concentrate on tying the Lévy systems with the structure outlined in Sec-
tion 2. Our notations, etc. are those of Section 2. Throughout, (X, Y)

is a Markov additive process where Y is increasing.

(5.1) DEFINITION. Let H be an increasing continuous zdditive functional
of (Xt), and let L be a transition kernel from (E, E) into (EXB{F, Ex£§+).
Then, (H, L) is said to be a Lévy system for (X, Y) provided that, for
any positive Borel measurable function f on Exlixm*,

(5.2) Xl ¥ OfX L, X,Y -
S- S S

sst Ys-)I{xs_ # xs} U {YS_ # YS}]

t
X £ . .
= E [;I dHS J L(XS, dx, dY)f(XS, kf Y)]
0

for all x€ E and tEE&:

(5.3) DEFINITION, Let H be an increasing continuous additive functional
of X, and let K be a transition kernel from (&, E) into itself. Then,
(H, K) is said to be a Lévy system for X provided that, for any positive

Borel measurable function on E,



X -
(5.4) | JCHINE L Xs}:]

for all x€ E and tenﬂ:

In intuitive terms, supposing dHS = ds, we see that K(x, dx') is
the rate at which X jumps from x into dx'; similarly, L(x, dx', dy) is
the rate per unit time at which X jumps from x to dx' at the same time
that Y jumps by an amount dy.

The following is the main

(5.5) THEOREM, Suppose X is a Hunt process, and Y is increasing and
quasi-left-continuous. Then, (X, Y) has a Lévy svstem (H, L) which fur-

ther satisfies the following: for any x€E,

(5.6) L(x, {(x, O)}) =0 ;
(5.7) j Lex, {x} xdy)(y A 1) < = .
Ry

Moreover, if K is defined by
(5.8) K(z, ) = Yx, A-{zDxR), x€E, A€E ,
then, (H, K) is a Lé&vy system for (Xt).

To indicate the manner in which (H, L) is related to the parameters
of the process (X, Y) we give the follewing facts: Consider the decompo-

sition
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(5.9) o at+yleyd

where A is a continuous (increasing) additive functicnal of X, Yq is the
purely discontinuous c.asi-left-continuous component with fixed jump times
(fixed by X); and Yd is the purely discontinuous component whose jump
times are not fixed by X. In terms of the Lévy system (d, L) we have the

following:
t

(5.10) A = J a(X_)dH_
4}

for some positive Borel measurable function 3: Zz—>R .
x{ q q A
(5.11) E L'ZD £x , X, Y-y )1 _
ss t s- S s s- {Xs_ # XS}J

t
= X f a J R(X , dx) | F(X, =, dy)E(X, %, v) |
s S, hd ‘) S, >3 S, b J
E
0 E&
where F(x', x, dy) is the distribution of the mazritude of a jump of y4

occurring at an instant when X jumps from x' to x. Moreover,
(5.12) K(x', dx)F(x', x, dy) = L(x', dx, dy)

for x # x'.

, . d
Finally, concerning the component Y , we have

(5.13) Ex\ exp (-\Y

Q.

IY’_ 1
IR
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6. LEVY SYSTEMS AND INFINITESIMAL GENERATORS

Our purpose here is to skeitch the conneciions hetween the Lévy sys-
tems, infinitesimal generatcers, and resolvents. Cur notations are those
of Sections 2 and 5.

Throughout this section we suppose thiat X iz a regular step proccess
with infinite lifetime; that is, every x€ & is 2 holding pcint, and the
T

successive jump times T of t-*Xt are such that Tn'*w almost

1? Torre-

surely. Furthermore, &as in the preceding secticn, we assume that Y is
increasing.

For such a process X, Y is automatically quasi-left-ccntinuous, and
Theorem (5.5) holds. Moreover, any increasing continuous additive func-

tional C of X can be written in the form
t

: r ;
(6.1) C.= | c®)ds
0

for some positive Borel measurable functicn ¢ on E. It follows that, X

has a Lévy system (H, K) such that

(6.2) d =t

ot

identically. Then, the Lévy kernel K is related to the infinitesimal

generator G of X by

(6.3) GE{x) = -kix)fx) + | K(x, ¢y Ely)

P Sy

where
(6. 4) k(x) = ¥{x, E)

is the parameter of the exponentizl holding time at =
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(6.5) EXAMPLE, Consider the :ase where E = {a, b} as in Section 3a.

Then, the infinitesimal generator G of X is described by a 2 x 2 matrix
-A(a) A(a)

A(b) -A{b)
where \(a) and A(b) are two positive rumbers, and

GE(x) = 2 G(x, y)f(y).
y€ E

In this case, the Lévy kernel K is simply

-

0 A(a)
A(b) 0

n

and the formula (6.3) is obvious.

The following relates the Lévy system of (X, Y) to the infinitesimal
generator of (X, Y). Let (H, L) be the Lévy svstem of (X, Y) having H
satisfying (6.2), and let K be as defined in (5.8). Then, (6.3) holds
for the infinitesimal generator G of X. Consider again the decomposition
(5.9), and in particular note that now the continuous additive functional

A there has the form {gze (3.10) alco)
t
(6.6) A = J a(XS)ds.

~

U

The infinitesimal generator for (X, Y) will be related to the function a
and Lévy kernel L. See (5.11), (5.12}, and (5.12) again for an interpre-

tation.
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Let
(6.7) Q, (x, AxB)='f%XLEA,YtEBL
then,
A — [ [ ] ')\y
(6.8) Q. (x, £) = J Q, (x, dx', dy)f(x')e
ExR
+

Ex[f(Xt) exp (-AY)].
The

LFollowing is the main result.
(6.9) THEOREM. Let f be continuous and bounded. Then,

(6.10) lim L [QM(x, £) - £(x)] = GF(x) - A E (%)
tbo ° 0 F

where G is the infinitesimal generator cf X, and

(6.11) Nxf(x) = J N(x, dx', dy)f(:-’_’)enky
EXHS_
with
(6.12) NCx, AxB) = ¢ (B)a()I(x, A) + I L(x, Ax (s, =) )ds.
P

For a proof we refer to [5]. When A = 0, QA is the transition semi-
group of X; and thus, lim KNX = 0. Hence, Q defines both G and NA, and
Al G
through them, a, K, L, Conversely, given a and L, we may compute K from

L by the formula (5.8) of the preceding secticn, and then we have the in-

finitesimal generater G directly from X by {(6.3). Tinally, ncte that

IS

A . o . .
(Qt)tEIR is a transition semi-grcup. The preceding theorem states that
+

the infinitesimal generator of QK is

(6.13) G' = G- AN,
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Consider finally the poteitial R% corresponding to Qx: let RX be

defined by
=]
(6.14) R ecx) = Jl’ QL £ (x)dt
0
-}
= Exr J £(X) exp(-AY )dt:l
- t Tt )
0

It follows from the well-known relations between ?ctedha‘S and infini-

tesimal generators that

(6.15) R (-G)\) =1I.

Using the formula above for GX we now get

(6.16) R o -pn® OrY - r* R
for all A, p =2 0. Note that this becomes the crdinary resolvent equation

when NA = I for all A\, which is the case where
(6.17) Y o=t

identically. Hence, the usual resolvents in the theory of a Yarkov process
X in effect correspond to the Markov additive procecs (X, Y where Yt = t.
This explains somewhat why, in certain situations in the pasi, some authors
were led to explicitly ccnsider the space-time process (Xt’ t).

This remarkable resolvent equation (6.1%) was first noticed by NEVEU
[16] in the case where E is finite. It has furcher appiicazions in the

theory of generalized Dirichlet pronlazwms,
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