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EXPLAINING POSITIONAL VOTING PARADOXES I; THE SIMPLE
CASE

DONALD G. SAARI

ABSTRACT. A theory is developed to explain all possible (single profile) positional voting
paradoxes. This includes all pairwise voting cycles. problems with agendas. conflict between
the Borda and Condorcet winners. and differences amoung positional ontcomes (such as the
plurality and antiplurality methods). I show how to construct profiles to illustrate all of
these paradoxes. Among the new conclusions contradicting accepted belief is that rather
than being a standard for the field. the Condoreet winner has serions flaws. This paper
discusses three candidates: the companion paper [25] handles n > 3 candidates.

1. INTRODUCTION

Over the last two centuries considerable attention has focussed on the properties of po-
sitional voting procedures. These commonly used approaches are where points are assigned
to candidates according to how each voter positions them. The standard plurality method,
for instance, assigns one point to a voter’s top-ranked candidate and zero to all others while
the Borda Count (BC) assigns n —1, n — 2, ..., n —n = 0 points, respectively, to a voter’s
first. second, ..., nth ranked candidate. While the importance of these procedures derives
from their wide usage, their appeal comes from their mysterious paradoxes (i.e., counterintu-
itive conclusions) demonstrating complex outcomes. Indeed, by introducing doubt about the
meaning of election outcomes these paradoxes raise the legitimate concern that, inadvertently,
we can choose badly.

As these methods serve as prototypes for procedures which aggregate agents’ preferences,
they identify potential issues for economics and other areas. This is illustrated by the connec-
tion between the manipulation of decision procedures and the subsequent incentive literature.
Another example is the connection between types of voting paradoxes (Saari [16]) and the
extension of the Sonnenschein [32, 33], Mantel [9], Debreu [4] aggregate excess demand result
from their limited setting of the single set of n commodities to all subsets of two or more
commodities (Saari [17, 18]).

Not only are positional methods interesting in their own right, but their outcomes are
needed for other choice procedures. A runoff, for instance, is held among the top-ranked
candidates from a first election. An agenda, a tournament, the Copeland Method ([26, 10])
and Kemeny’s rule ([8, 27]} are among the many procedures using pairwise voting outcomes.
Other methods, such as the controversial Approval Voting [3] and the enigmatic rules of figure
skating, use positional outcomes in complicated ways. There even is a connection between
positional methods and nonparametric statistics (Haunsperger [6]).

1.1. Complexity of analysis. Although important, positional procedures have proved to
be formidable to analyze. This severe difficulty is manifested by the fact (Saari [21]) that by
using different ways to tally the ballots, a single ten-candidate profile can generate over 84
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2 DOXNALD G. SAARI

million different election rankings. The voters do not change their opinions, but varying the
choice of positional methods leads to millions upon millions of contradictory outcomes where
each candidate wins with some procedures but is bottom-ranked with others. All of these
conflicting outcomes cannot reflect the voters’ true opinions, so which is the correct one?

A consequence of this complexity, which severely limits what we knew about positional
methods, is a resigned attitude aptly captured by Riker's assertion [15] that “[t]he choice
of a positional voting method is subjective.” Even stronger are recent comments by another
acknowledged expert who stressed the importance of soctal choice — where we only consider
thie winner of an election — over the derivation of a social ordering of the candidates. He
argues that “[g]iven all the logical barriers that have to be scaled to even come close to
making a coherent social choice, demanding a full ordering is a tall order.” He confesses that
trying to find a full ordering is “something that most of us long ago gave up on as impossible
and/or incoherent.” His thoughts probably reflect the general sense of the choice community

No longer is this true. Rather than being an impossible dream, this paper and its com-
panion provide ways to understand and choose among the different winners, rankings, and
positional voting procedures.! By emphasizing an analytic (rather than a normative) argu-
ment and by removing the technical complexity, objective criteria for the choice of procedures
eImerge.

1.2. Profile decomposition. To understand positional procedures and their derivative
methods, a first step is to characterize all possible paradoxes that can occur with a sin-
gle profile. {A profile lists each voter’s ranking of the candidates.) This is done, and the
results (see Saari [16] and its references) prove that positional procedures admit significantly
more paradoxes and more kinds of them than previously suspected. The next steps, to ex-
plain each and every paradox and to construct illustrating examples, are described in these
two papers. Fortunately, but unexpectedly, the answers for these two-century old challenges
are surprisingly natural and simple with the profile decomposition introduced here.

My profile decomposition mimics standard data problems of “noise” where, to obtain
accurate outcomes, all contaminating noise is separated from the informative portion of the
data. While profiles are not troubled by “noise” in the traditional sense of extraneous signals
coming from unrelated sources, a decomposition still applies. Here, “profile noise” is the
portion of a profile which should not affect the final outcome. It is convenient to identify the
noise with profile portions which should generate a neutral, completely tied outcome; e.g.,
it could be where voters’ votes should cancel. So, adding or dropping noise from a profile
should not affect the candidates’ ordinal ranking — but it does with certain procedures.

Once all noise is removed from a profile, what remains is the “basic portion.” If my as-
sertions about profile noise are correct, then all procedures should agree on the basic profile.
They do; as shown, the rankings and the tallies of all positional methods and the pairwise
electrons agree on the basic profile. An immediate corollary is that all paradores and difficul-
ties of election procedures are completely caused and explained by the profile noise. So, the
long-standing goals of explaining all possible paradoxes while constructing illustrating exam-
ples are attained by characterizing all profile noise and the concomitant reaction of positional
procedures.

My approach differs from the literature in that [ emphasize profiles rather than procedures.
But, all properties and peculiarities of all possible positional procedures and all derivative
procedures (e.g., runoffs, figure skating, etc.) quickly follow from this profile division. This
is because the profile decomposition defines a dual decomposition of positional procedures.

'T introdunce the approach with three candidate elections: the case of n > 3 candidates is in (Saari [23]).
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Namely, each noise direction (in profile space) defines an associated direction of positional
procedures which react to this particular noise. By understanding both decompositions and
their interactions, all basic properties are determined. In this manner answers to historical
and contemporary concerns from social choice are found. This includes the issues central to
the Borda and Condorcet debates of the 1780s which inaugurated this field of social choice.

1.3. Borda—Condorcet debates and basic conclusion. To provide a flavor of the kinds
of results which follow from this decomposition, I preview the Sect. 4.4 conclusions about
the Borda-Condorcet debate; a debate which introduced and continues to shape the social
choice area. To review, the academic study of voting started in 1770 (see [12, 13] for details)
when Borda constructed a profile to cast doubt on the wisdom of using the plurality vote. He
then showed how the BC avoids this particular difficulty. About 15 years later, Condorcet
introduced a competing method where his Condorcet Winner is the candidate who wins all
pairwise elections. Arrow [1], 165 years later, developed his “binary independence” conditions
and impossibility theorem which significantly extend Condorcet’s notions.

With its natural, intuitive appeal, Condorcet’s method quickly became the widely accepted
standard for choice theory. Condorcet distinguished his approach by creating profiles where
all positional methods fail to elect the Condorcet winner. An accompanying corollary, as-
serting that the Condorcet winner need not be top-ranked in a Borda election, continues to
be cited as a fatal BC flaw.

By examining these historically important examples with the profile decomposition, the
surprising conclusion is that for any conflict between the BC and Condorcet rankings, all
eramples support Borda's approach while raising serious doubts about Condorcet’s method —
the standard of the field. As shown, the conflict resides in failings of the pairwise vote —
not the BC. This conclusion, which contradicts what has been accepted for two centuries,
completely reverses what Condorcet intended.

The source of this surprising assertion is that the BC ignores a profile noise that distorts
the pairwise election outcomes; it forces the pairwise vote to lose the critical assumption that
voters have transitive preferences. This same phenomenon explains Arrow’s impossibility
theorem; it turns out that binary independence devalues all information about individual
rationality. (See Saari [24].) So, Arrow’s result and the problems of pairwise voting just
reflect the obvious fact that distorted outcomes must be expected from procedures that
ignore the rationality of voters. An equally surprising assertion is that rather than serving
as a standard, the Condorcet winner must be held in suspect.?

This preview of the Borda-Condorcet analysis indicates how new conclusions follow from
this approach. Voting paradoxes manifest the behavior of procedures on the noise portions
of profiles. By identifying consequences of the noise (e.g., for the pairwise vote, it is the loss
of individual rationality). paradoxes can be explained, procedures compared, and illustrating
profiles constructed.

1.4. Removing bias. The noise bias is not an anomaly; it is nearly an omnipresent difficulty.
As I show, ¢t s more likely to have a completely tied plurality election than to avoid biased
election tallies. Thus, while we must counter the profile noise difficulties, the traditional
“profile restriction™ approach is useless because it imposes restrictions so severe that only
highly unlikely settings remain.

2 . . . . .

“Ohserve the implications for the large literature comparing procedures in terms of the Condorcet standard.
If the “standard” ignores the rationality of voters. then maybe the standard  not the compared procedure
is at fanlt when there is a disagreement.
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A more feasible approach is to remove the distorting noise components from a profile before
computing outcomes. This allows the outconie to be determined by the “basic profile” terms
alluded to earlier where all disagreement and conflict disappear. In this desired harmonious
state, any procedure can be used because they all agree. In turn, this underscores an impor-
tant conclusion of these two papers; the BC 1s the only positional procedure which ignores all
profile noise. But as the BC tally of the original profile is what other procedures obtain only
after the laborious process of removing all profile noise, it follows that using the BC with the
original profile is an efficient, pragmatic way to remove all bias.

2. NOTATION AND DIVISION OF PROCEDURES

I introduce the profile decomposition with the important setting of three candidates {4, B, C}.
The 3! = 6 voter types are

Type Ranking Type Ranking

1 A»B»>C 4 C»B»A (2.1)
2 A-C B 5 B»C»A -
3 C»A>B 6 B~ AxC

2.1. Terminclogy and voting vectors. A profile specifies the number of voters of each
type. Using the labeling of Table 2.1, the integer profile (0,5,0,3,4,0) has five voters of
type-two (A = C > B), four of type-five (B > C > A), and three of type-four (C > B > A).

A three-candidate positional election is defined by wvoting vector w3 = (uw; = 1wy =
s,w3 = 0) where s is a specified value satisfying 0 < s < 1. In tallying a ballot, w; points are
assigned to the voter's jth ranked candidate, 7 = 1,2, 3. To illustrate with the {0,5,0,3,4,0)
profile, its plurality voting procedure wj outcome is 4 » B > C supported by the 5:4 :3
plurality tally. The w3 vector tally is (7,(A), 7(B), 7{C)) where 7.(K) is K’s tally. So, the
ranking associated with vector (70,20,90) is C » A > B.

My normalization of voting vectors requires the top-ranked candidate to receive one point.
Thus the BC, given by B® = (2,1,0}, has the normalized form b? = %B‘B = (1,%,0).
Similarly, an election tallied by assigning six, five, and zero points, respectively, to a voter’s
top. second, and bottom ranked candidate has the normalized form (%, %,O).

An important relationship {(probably due to Borda but definitely known by Nanson [14])
between the pairwise and the BC tallies can be described by computing how a voter with

preferences A > B = C votes in pairwise elections.

Candidates {4} {B} {C}
1 0

{A*B} -
{A,C} 1 - 0 (2.2)
{B.C} - 0
Total 2 0

The sum of points this voter provides a candidate over all pairwise elections equals what he
would assign her in a BC election. This means (along with neutrality? and the fact that each
pair is tallied with the same voting vector) that a candidate’s BC election tally is the sum
of her pairwise tallies. (See Saari [20].) Thus the pairwise tallies 31:29 for A > B, 30:20
for A > C, and 40:20 for B » C define the BC outcome B » A4 » C with the BC tally
(40 +29) : (304 31) : (20 + 20). The normalized b® vector tally is %(61, 69, 40).

A mr f . . . . . . .
Neutrality is where interchanging the names of the candidates interchanges the election tallies.
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The three-candidate division of voting vectors is simple. It consists of the {1,0) methods
used to tally pairwise elections which, as described above, define the b? tally. All remaining

w2 methods are represented as a sum of b3 and the derived vector d3 = (0,1,0).4

Theorem 1. Al three candidate voting vectors can be expressed as

1
w3:(1,3,0):b3+(s—§)d3 0<s<1 (2.3)

s
Proof. This is a simple algebraic relationship O

Let F(p.w32) represent the w2 election tally for profile p. To describe the linearity of
F in the w3 variable, suppose the B® = (2,1,0) tally of an election is (20,40,30) and the
plurality tally is (9,8,13). Because (7,2,0) = 2B®+3(1,0,0), the (7,2,0) tally for these same
voters is 2(20, 40, 30) + 3(9,8,13) = (67,104,99) with a B » C > A ranking. The following

assertion extends this statement to normalized voting vectors. (The proof is an immediate
consequence of Eq. 2.3 and the linearity of F.)

Theorem 2. The w2 election tally can be expressed as
1

F(}lwg) - F(p‘bs) + (3 - §)F(psd3) (24)

The line of election outcomes defined by Eq. 2.4 is called the procedure line. (Saari, [19, 20].)

2.2. Geometry. To obtain a geometric representation for rankings and profiles, assign each
candidate a vertex of an equilateral triangle. (See Saari [19, 20].) The ordinal ranking of a
point in the triangle comes from its distances to the vertices where “closer is better.” Points
equidistant between two vertices represent indifference. In this manner, the “representation
triangle” is divided into “ranking regions.” {(The numbers in the left triangle of Fig. 1 identify
the region’s Eq. 2.1 voter type.) Represent a profile by placing the number of voters of each
type in its ranking region as illustrated on the right in Fig. 1.

C C [42]

= B A
[33]

Fig. 1 Representation triangle

The representation triangle geometry makes it easy to compute the plurality, BC, pairwise,
d3, and (with Eq. 2.4) w2 tallies. (I recommend using this method to understand the profile
decomposition and to compute tallies for the examples.) To tally the pairwise elections notice
that the central vertical line is equidistant between the A and B vertices; it is the A ~ B
indifference line. Thus, the {A, B} pairwise tally is the sum of voters on each side of the line;
e.g., in the left triangle of Fig. 1, B’s tally is the sum of the profile entries in the darker shaded
region, With the profile on the right in Fig. 1, A beats B by 25+33 =58 to 17+ 14425 = 56.
The tallies for the other pairs, listed next to the appropriate edges of the triangle, crown A
as the Condorcet winner.

*Sicherg [31] nses d? to capture a statistical “variance™ in election outcomes.
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A candidate’s BC tally is the sum of her pairwise tallies, so the b? vector tally (58,64,49)
defines the BC ranking B » A > C which conflicts with the pairwise rankings. In particular,
A, the Condorcet winner, is not BC top-ranked.

A candidate’s plurality tally is the number of voters who have her top-ranked, so it is the
sum of the profile entries in the two ranking regions sharing the candidate’s vertex. In the
left triangle of Fig. 1, A’s tally is the sum of entries in the lightly shaded region. These tallies
for the profile in the right triangle, given by the bracketed numbers near the vertices, define
the plurality ranking ¢’ = B = A. For this profile 4 is the Condorcet winner, B is the BC
winner, and C is the plurality winner; who is the voters’ true top-choice?

Finally, A’s d3 tally is the sum of the entries of the two ranking regions midway from the
A vertex to the opposing edge; it is the sum of the entries in regions 3 and 6. Thus the A,
B, C tallies with d® are, respectively, 25 + 25 = 50, 17 + 33 = 50, 0 + 14 = 14. According to
Eq. 2.4 and the b3 tally, the w? election tally is

1
F(p,w3) = (58,64,49) + (s — 5)(50,50,14)

= (33 + 508,39 + 505,42 + 14s), s € [0, 1]. (2.5)

3. PROFILE DECOMPOSITION

For a quick analysis of a three-candidate profile, I recommend the approach described in
(Saari [20]). But this earlier approach, designed to offer new insight into voting problems
using only elementary tools, fails to address many issues. The following profile decomposition
offers an accurate analysis for all profiles.

3.1. Profile differential. The profile decomposition uses the difference between profiles.

Definition 1. A profile differential s the difference between two profiles involving the same
number of voters. Fquivalently, a listing of the number of voters of each type is a profile
differential if and only if the sum s zero.

Profile differentials define the basis for various subspaces of profiles. For two of the sub-
spaces, | specify three vectors even though any two suffice. As a profile differential involves
negative numbers of voters, we can convert it into an “actual” profile (which requires a
non-negative number of voters of each type} by adding a “neutral” profile. So, with pro-
file differential pgq = (1,0,-2,0,1,0}, add {2,2,2.2,2,2) (a profile forcing completely tied
elections) to obtain the profile (3,2,0,2,3,2).

3.2. Decomposition. The profile decomposition has four components. The kernel portion
has no effect on any procedure. The Condorcet portion is the profile noise which affects only
pairwise votes; e.g., it explains all differences between the pairwise and BC outcomes, The
reversal portion is the profile noise causing all differences in positional outcomes. The basic
portion is where all procedures agree.

Definition 2. The three-candidate profile decomposition s defined by the following basis
vectors for the different subspaces.

1. The kernel is spanned by the kernel vector K* = (1,1,...,1).

2. The Condorcet space is defined by Con® = (1,—1,1, 1,1, —1).

3. The reversal vector for candidate K, K = A, B,C, 1s the profile differential with one
voter for each type where K is top-ranked, one voter for each type where K is bottom-
ranked, and —2 voters for the remaining two voter types (where K is middle-ranked).
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The basis vectors for the reversal subspace are
Ry=1(1,1,-2,1,1,-2). Ry = (-2,1,1,-2,1,1), Rp = (1,-2,1,1,-2,1).
{3.1)
4. The basic vector for candidate K, K = A, B,C, is the profile differential with one voter

for each type where K is top-ranked and —1 volers where she s bottom-ranked. The
basis vectors for the basic subspace are

BA = (11-071_1O)~ BB = (0.—1,—1,0,1,1), BC = (_110313140371)

(3.2)
The symmetry of these profile differentials is apparent from Fig. 2.
C C C
1 —2\ 1|1
A B A B A B
A-Basic A-Reversal Condorcet

Fig. 2 Profile decomposition

3.3. Impact of Decomposition. The value of the decomposition derives {from the way
voting procedures react to the different subspaces.

Theorem 3. All profiles can be expressed as

P =Pk +PB+Pr+ PC (3.3)

where the profile differentials on the right-hand side come from, respectively, the kernel, the
basic, the reversal, and the Condorcet subspaces. The four subspaces are mutually orthogonal.
The properties of these profile differentials are as follows.
1. All pairwise and positional rankings of K3 are complete ties. The tallies can differ.
2. All normalized positional methods have the identical tally for a vector from the basic
subspace. The common tally for apB 4 + bpBp + cpBe s

(2ap —bp —cp,2bg —ap — cp,2cp —ap — bp). (3.4)

The pairwise rankings of a basic profile always agree with the common ranking of the
positional methods. ForapBa+bBp +cgBe, the {A, B}, {B,C}, {A,C} tallies are,
respectively,

(2ap — 2bp)(1, 1), (2bp — 2cp)(1, -1}, (2ap — 2ep)(1, - 1). (3.5)

3. For Con®, all positional methods assign a zero tally to each candidate but the pairwise
outcomes define the cycle A ~ B, B » C,( = A with identical 1 : —1 tallies.

4. Fach candidate’s patrwise and BC tally for a vector from the reversal subspace 1s zero.
All non-BC positional procedures have a non-zero tally for each basis vector. The W53
tally for apR a4 + bpRp +crRe is

(2s = 1)(2ap — by — cr,2bg —ap ~— cR,2cg — ap — br). (3.6)
The proof of this theorem is in Sect. 8.

Although Thm. 3 is extensively analyzed in what follows, I preview its impact by construct-
ing a paradoxical example. Suppose we want a profile with the BC ranking ¢ » A » B.
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As Thm. 3, part 2 asserts that the BC outcome is strictly determined by the basic vectors,
choose the coefficients to satisfy cg > ap > bg = 0; e.g., ¢cg = 2, ap = 1 define the pro-
file differential pg = (—1,1,2,1,—1,—2) where, according to Thm. 3, all procedures have
identical tallies. To introduce conflict, make B the plurality winner by adding pr = 3Rg
to obtain (=7,4.5,—5,2,1). Although B is the plurality winner, part 4 ensures that the
BC and pairwise rankings remain untouched. To alter the pairwise rankings, notice that the
Condorcet portion causes a pairwise cyclic effect (part 3) without affecting the positional
rankings. Adding pc = —2Con? creates conflict because pg + pr + pc = (—9,6,3,-3,0,3)
requires the previously middle-ranked A to tie the other candidates in pairwise elections. To
convert the profile differential into a profile, add px = 9K3 to obtain (0,15,12,6,9,12). By
construction, this profile has the BC outcome €' = A > B, the plurality outcome B > C > A
and the pairwise outcomes A ~ B, A~ C, C » B.

3.4. Choice of coefficients. I use non-negative coefficients in the example because if one
coefficient from each set of Egs. 3.4. 3.6 is zero and the other two non-negative, then the
resulting rankings trivially follow from the magnitudes of the coefficients. This choice of
coefficients always is possible.

Corollary 1. The basic and reversal vectors satisfy
By, +Bg+Bec=Ra+Rg+Re=0. (3.7

Consequently, vectors in the basic and reversal subspaces can be represented with two non-
negative coefficients and a zero one.

To illustrate. because Eq. 3.7 requires —B¢c = B4 + Bg, the basic vector pg = —6Ba —
OBc = —6Ba + 9(Bs + Bg) = 3B + 9Bp can be described with bp = 9,ap = 3,ep =0
defining the B = A » C outcome for all pairs and positional methods.

4. PAIRWISE VOTING WITH THE PROFILE DECOMPOSITION

Theorem 3 identifies the basic and Condorcet vectors, pg + pc, as the only portion of a
profile which affects pairwise rankings. Consequently, all differences between BC and pairwise
rankings, all properties of the Condorcet winner, agendas, cycles, etc. are completely and
quickly determined by these profile differentials. This analysis is described here. Combined
with the discussion of Sect. 5, where we exploit the Thm. 3 assertion that only the pg + pr
portion of a profile effect positional rankings, we finally understand why different procedures
have different societal rankings.

4.1. Pairwise rankings. The large pairwise voting literature (see Kelly {7]) considers cycles,
properties of the Condorcet winner and loser, properties of procedures based on pairwise
election outcomes, the Borda — Condorcet conflict, etc. Stronger results about these and other
topics involving a much simpler analysis follow from the Thm. 3 assertion that all properties
of the pairwise rankings and tallies are due to the basic and Condorcet profile differentials.
Indeed, because Thm. 3 ensures there is no conflict among methods with the basic portion,
the previously technically difficult analysis about cyvcles, agendas, Kemeny's rule, Copeland’s
method, the Borda and Condorcet debate, etc., etc. reduces to a quick, simple description
how the pairwise vote treats the one-dimensional space of Condorcet profiles.

Central to this discussion is the fact that the pairwise election rankings of basic profiles go
beyond defining transitive ordinal rankings to require the tallies to satisfy a strong cardinal
transitivity property. Indeed, as asserted next, the tallies mimic the additive properties of
points along the line where {z) — x2) + (x2 — 23) = (21 — x3).
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Corollary 2. The pairwise rankings of a basic profile are transitive, and the tallies from any
two pairwise elections uniquely determine the tally for the remaining pairwise election. More
specifically, if Tp(X,Y) denotes the difference between X'’s and Y 's basic pairwise tallies,
then

(A, B) + 73(B.C) = 73(4,C) (4.1)

This Eq. 4.1 feature of basic vectors means that the pairwise tallics measure how strongly
one candidate beats another. In an “idealized world,” we expect the pairwise election rankings
of 4 > B and B » C to imply the A > C election outcome. Even stronger, we expect A’s
victory over C to he larger than over B. But these assertions are false in general because
we cannot even ensure ordinal transitivity., This idealized setting, however, holds for basic
vectors because the 73(C, B) plus the 75({B, A) election margins equals the 75((’, 4) margin.
{Clearly, Eq. 4.1 holds when the names of the candidates are interchanged.)

So, going beyond the transitivity of the pairwise rankings, the point totals for basic profiles
capture the intuitive sense that a wider point spread — even for just one pairwise election -
signals a strenger candidate. Theorem 3 places all blame for the failure of these desirable
properties to hold in general on the Condorcet portion of a profile. The basic profile tallies
preserve cardinal transitivity (Eq. 4.1); it is the Condercet portion which disrupts the cardinal
and ordinal transitivity.

Cylic axis

: % " /
A > B> C region A
L — — N
a. Representation cube b. Transitive Plane

Fig. 3. Pairwise outcomes

4.2, Transitivity plane. To represent Eq. 4.1 geometrically, 1 use the representation cube
of (Saari [19, 20]). Here the difference between pairwise tallies (not just the basic terms)
T(X,Y) is replaced with the fraction of voters voting in a particular manner; i.e., with v
voters cxy = 7{X,Y)/v.So, -1 <zyy <land zxy = —2y.x. Point (zap.7pc.2c.4) In
R? defines the marginal outcomes for all pairs. The —1 < rxy < 1 restriction forces these
values into the orthogonal cube centered at the origin. Six of the eight vertices of this cube
correspond to unanimity profiles. For instance, if all voters prefer A > C > B, then the
unanimity outcomes r4.5 = —zp.c = —x¢.4 = 1 defines the vertex (1,—1,—-1}.

The representation cube is the convex hull of the six unanimity vertices. This shaded
region depicted in Fig. 3-a is the set of points in the orthogonal cube between the planes

rap+zpc+Tca= Tl (4.2}
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The importance of the representation cube is that all (rational) points are the pairwise election
outcome for some profile. Conversely, all pairwise election outcomes are in this cube. (See
[19, 20].)

The fransitivity plane passing through the origin is given by

Taptzpectaoa=0 (4.3)

According to Eq. 4.1, this plane, represented in Fig. 3.b, contains all basic pairwise outcomes.
Perpendicular to the plane is the axis connecting the cyclic rankings of the two vertices
+(1,1,1); call this the cyclic axis. An outcome of a Con? term is this direction.

It is immediate that any point in the representation cube — any pairwise election tally —
can be described by its distance along the cyclic axis and in the transitivity plane. I call this
the transitive plane coordinate representation. To connect this coordinate system with the
profile decomposition, notice that the basic profile uniquely determines the transitive plane
coordinate while the Condorcet part uniquely determine the cyclic axis distance. Indeed,
(with algebra) the profile apB4 + bpBp + ~Con® + kK? defines

2 g

— — bp,bp, — +—(1,1,1 44

3k(63 B.bn,—ap) 31.-.(‘ 1) (4.4)
where the first vector is the transitive plane component and the second is the cyclic axis
component. Conversely, if a point in the transitivity plane coordinates is (g7 ,¢2,¢3 ) +
w(1,1,1) (so q? + qg + qg = (), we have from algebra that

ap = —Aqy /2, bp = A3 /2,7 = M, k = A/3 (4.5)

for any A > 0. Equation 4.5 provides an immediate relationship between the geometry of
pairwise outcomes and the profile decomposition.

This geometric representation of the pairwise outcomes offers new insight into classical
concerns. To illustrate, recall that an agenda is a listing of the candidates, say < A, B, >,
meaning that the majority winner of the {4, B} election is matched against C. In the
idealized world of Cor. 2, the outcome is independent of the choice of an agenda. In general,
however, the winning candidate can depend upon the agenda. This converts the choice of
the agenda into a strategic variable.

This phenomenon never occurs with the basic portion of a profile (with its outcome in
the transitive plane) because the transitivity forces the same outcome with any agenda.
The cycle portion of an outcome, on the other hand, always elects the agenda’s last listed
candidate. So, according to Thm. 3 (and the transitive plane coordinate representation),
this “agenda manipulation” phenomenon is strictly a consequences of the pe portion of a
profile. Indeed, the problem occurs iff the Condorcet portion is sufficiently strong to force
the election outcome into a cyclic region of the representation cube,

Similarly, all problems of any “reasonabie” ranking or choice procedure based on pairwise
rankings are completely attributed to the Condorcet portion of a profile. By “reasonable”
[ mean that if the pairwise rankings and tallies satisfy the “idealized world” conditions
described above, then the outcome is the expected conclusion. For instance, the Condorcet
winner, the Copeland Method, Kemeny's rule, and agendas are “reasonable procedures.”
As Cor. 2 requires a reasonable procedure to be well behaved on the basic portion pg, all
problems, paradoxes, weaknesses, and inadequacies of these procedures are strictly due to
the pe Condorcet portion. Consequently, a quick but complete analysis of these procedures

only involves understanding their behavior on Con?.
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4.3. The Condorcet portion. As all conflict with pairwise rankings and tailies comes
from the Condorcet portion of a profile, we need to analyze the pairwise vote on this one-
dimensional space. I do so with the traditional three-voter profile

A=B>C,B-C>A C>-A>B (4.6)

given by 1(K* + Con®). Here, each candidate is in first, second, and last place exactly
once, so (;L!ong with neutrality and anonymity) it is easy to argue that no candidate has
an advantage:; in particular, these voters’ votes should cancel. This natural outcome of a
complete tie for the Condorcet triplet %(Kg + Con?) holds for all positional methods. But,
a pairwise vote (Thm. 3, part 3) vields the A = B, B > CC » A cycle.

Any analysis of the pairwise vote of Con® must explain why the cyclic outcome replaces
the complete tie. In particular, we must understand why individual transitive preferences
cause a non-transitive cyclic outcome. I do this by showing that the pairwise vote applied to
pc drops the critical assumption of individual rationality.

Clearly, when procedures emphasize different information from a profile, we must expect
different outcomes. So, a way to analyze procedures is to identify what profile information a
procedure retains, and what information it devalues. The pairwise vote {along with Arrow’s
[TA [1] and Sen’s Minimal Liberalism [30]) drops all information concerning the individual
rationality of voters (Saari [24]). Clearly, a procedure which devalues information about
individual transitivity cannot be expected to have transitive outputs.

To explain, if we only know that a voter prefers A » C from {A, B,C}, then it is im-
possible to determine whether his full preferences are rational or irrational. This is because
transitivity involves specific sequencing conditions on the three pairwise rankings. Similarly,
a procedure which ignores this sequencing discards information about the individual ratio-
nality of voters. This happens with the pairwise vote as it solely concentrates on how voters
rank a particular pair when determining that pair’s societal ranking. All information about
the relative rankings of other pairs is ignored.

To illustrate, the irrational voters described by the cyclic preferences

Number Pairwise Rankings
2 {A»B,B»C,C>» A}
1 {B»AC» B, 4> C}

cannot vote in a wg election. This is because to use a wg procedure voters need a transitive
ranking (for 0 < s < 1], or at least a top (for s = 0) or a bottom-ranked (for s = 1) candidate,
but cyclic voters fail to meet these minimal conditions. However, because a pairwise vote
ignores information about individual rationality, the pairwise vote can tally the ballots for
these irrational voters defining the expected cycle A = B, B » C, C » A with 2 : 1 tallies.

When information about the individual rationality of voters is ignored, we must expect
with a sufficiently heterogeneous society that the pairwise vote cannot distinguish whether
the voters have transitive or irrational preferences. Theorem 3 asserts that this is true
and that Con® defines the required heterogeneity. Indeed, notice how the combination of
anonymity® and the ignored sequencing information makes it impossible for the pairwise vote
to distinguish between the Eq. 4.6 and Eq. 4.3 profiles; the only relevant information is the
number of voters with each ranking of each pair. Consequently, the pairwise vote cannot
distinguish between the Condorcet triplet of Eq. 4.6 and any irrational way voters rank pairs
that generates the same tallies.

*Here, anonymity means that the pracedure does not check the names of the voters for any input: it only
determines the number of voters with cach ranking.
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A computation proves there are four ways to combine the pairs from Eq. 4.6 to define new
profiles. Three of them have two voters with transitive rankings that reverse each other (so,
they cancel each others vote) while the third has the cyclic ranking A > B, B >~ C,C > A.
As this third voter’s preferences should break the tie to determine the outcome, the cyclic
ranking is a natural conclusion. The final profile is Eq. 4.3 where, again, the cyclic outcome
is reasonable.

In summary, the pairwise vote cannot distinguish between the Condorcet profile of transi-
tive preferences where the arguable outcome is a complete tie, and four other profiles involving
irrational voters where the cyclic outcome is the “correct” one. The cyclic pairwise outcome
merely manifests the pairwise vote's attempt to reflect the beliefs of potential irrational vot-
ers. (Geometric support is in (Saari [20]}.) Stated in another way, when the pairwise vote is
applied to Con?, it loses the assumption that individual preferences are transitive. Thus all
non-transitive arrangerments of pairwise outcomes — quasi-transitive rankings, acyclic rank-
ings, cyclic rankings, tallies violating cardinal transitivity (Eq. 4.1) - are due to this Con?
portion of a profile where the pairwise vote loses the assumption of individual rationality.

To see why a basic profile avoids these difficulties, notice that B has one voter with
A » B > (' and another with 4 > C > B causing the {B,C} comparisons to cancel. (The
same cancellation holds for the B 5 rankings associated with negative numbers of voters.) This
cancellation accentuates A’s role while treating equally all other candidates with a tie vote.
Consequently, the pairwise ranking of a general basic profile agB s + bgBg + cgB¢ strictly
manifests the ordering properties of the ap,bp,cp coeflicients. But, rather than reflecting
desirable properties of the procedure, the transitivity of the pairwise vote is preserved by the
nature of the basic profiles.

4.4. Borda-Condorcet comparison. As noted, all procedures based on pairwise voting
such as Copeland’s method, agendas, Kemeny’s rule, etc. can be quickly and completely
analyzed with this decomposition.® To indicate how to do this, I derive properties of the
Condorcet winner along with comparisons with the BC.

The key point is that while the BC and pairwise rankings agree on the basic portion
of a profile, the Con® portion has no impact upon the BC outcome but it distorts the
pairwise tally. Using the representation cube, the transitive plane component of a point
uniquely defines the BC ranking (Thm. 3}, while the component in the cyclic axis direction
determines the deviation from transitivity caused by the Condorcet portion. Thus all conflict
between the BC and the pairwise rankings and tallies is completely explained by the pairwise
vote’s treatment of Con®; it is due to the pairwise vote’s dismissal of individual rationality.
This effect. then, explains all differences between the BC and Condorcet winners. Since the
Condorcet portion of a profile is one-dimensional, it is easy to analyze these difficulties and
to construct illustrating examples.

Example 1. I am unaware of any necessary and suflicient conditions on profiles ensuring
that the Condorcet winner is not BC top-ranked. The profile decomposition reduces such
previously difficult issues to elementary algebra.

Without loss of generality, use the BC ranking A > B > C which occurs (Thm. 3) if and
only if the basic profile coefficients satisfy ap > bp > ¢p = 0; the b? tally is (2ap — by, 2bp —
ap,—(ap + bg)). The pairwise and BC rankings agree where the {A,B},{B,C},{A,C}

pairwise tallies are, respectively,

2(ap — bp) : —2(ap — bp), 2bp : —2bp, 2ap : ~2ap {4.7)

®A purpose of (Saari and Merlin [27]) is to show how the previously difficult analysis of Kemeny's rule is
easy with the decomposition: e.g.. for » = 3 candidates. all problems emerge just by considering Con®.
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It is well known (and derived below) that a Condorcet winner cannot be BC bottom
ranked, so our example must crown B as the Condorcet winner. According to Thm. 3, B is
the Condorcet winner for appropriate v values of ¥Con®. The 5 conditions come from the
{A,B}.{B.C},{A,C} pairwise tallies for the augmented profile which are, respectively,

2(ap — bp) +v: —2(ap—-bp) — v, 2bp +v: —2bp — 7,
Jag — ¥ : —2ap + . (4.8)
To make B the Condorcet winner by creating B » A, B » C pairwise rankings, we need
20ap —bp)+ v < —-2(ap —bp)—~, 2Wp+y> —-2bg— 1.

Theorem 4. A necessary and sufficient condition for the BC ranking A > B > C lo be
accompantied with B as the Condorcet winner is that the coefficients of the basic profile satisfy
ap > bg > cp = 0 and the coefficient of the Condorcet term yCon® satisfies

2(ap — bp) < —y < 2bp. (4.9)

A necessary and sufficient condition that the BC ranking 1s accompanied by a parrunse cycle
18 that v satisfies one of the inequalities

2ap < v, —2 Maz((ap —bp).bg) >~ (4.10)
The first inequality defines the cycle with A = B the second the cycle with B » A
Proof. The proof only involves solving the appropriate inequalities from Eq. 4.8 for . O

The choices ag = %.bB = %,’y = —% define the profile differential (0,2, —-3,0,—-2,3) or the
profile (by adding 3K?) (3,5,0,3,1.6). As this profile does not have a reversal component,
all w2 rankings are A » B >  while the pairwise rankings are B » A,B » C,A > C.

To see this conflicting behavior geometrically, start with a point in the transitive plane
yielding the A » B » C ranking. To force a pairwise outcome with B as a Condorcet
winner, we need a component in the —(1,1,1) direction caused by the Condorcet portion of
the profile. If this component is too strong. the outcome will end in the cyclic region; this is
a geometric explanation for the upper bound on —+ in the theorem.

These descriptions show how to create profiles illustrating Condorcet’s assertion that the
Condorcet winner need not be top-ranked by any positional procedure. But B's status as the
Condorcet winner requires adding a Con?® profile component - a component which vitiates
the assumption of individual rationality. Thus, it is the BC, not the Condorcet outcome, that
is to be trusted. Although this assertion contradicts accepted belief, the proof is a trivial
consequence of Thm. 3 or the transitive plane geometry of representation cube.

To create an example with pairwise cycles, choose ag = 2,bp = 1,cg = 0 to define
the basic profile {2,1,—1,—2,—1,1) with its universal 4 = B » C election ranking. The
accompanying A » B, B » C, (" » A pairwise cycle occurs with v = 5 > 2ap = 4 to define
the profile differential (7,—4,4,—7,4, —4) or a profile {14,3,11,0,11,3). To construct an
example where the BC ranking is accompanied with a B = A, A4 > C,C > B cycle, choose
v = -3 < -2 Max({ag — bg).bg) = —2 to obtain the profile differential (—1,4,—4,1,—4,4)
or the profile (3,8,0,5.0,8). It is instructive to consider these examples with the transitive
plane geometry of the representation cube. O

[t has been known since the days of Borda that there exist relationships between the BC
and the pairwise rankings, but the reasons for the conclusions have not been well understood.
These earlier results use the Eq. 2.2 condition that a candidate’s BC tally is the sum of her
pairwise tallies. It now follows from Thm. 3 that this summation cancels the tallies from
the Condorcet portion of the profile. Alternatively, with the transitive plane coordinates,
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the summation cancels all effects in the cyclic axis direction leaving only the basic profile
terms to influence the BC outcome. So, the profile decomposition leads to extensions and
new proofs of known statements.

Theorem 5. Assume there are n — 3 candidates.

1. For any profile, there exists a unigue v value so that by removing v points from each of
T{A, B), 7(B,C), 7(C, A), the reduced tallies satisfy the cardinal transitivity condition
of Eq. 4.1. The removed cyclic terms from the tally correspond to the Con® portion
of the profile, while the reduced tally s due to the basic portion. The ranking from the
reduced, or transitive plane tally, agrees with the BC ranking.

2. If all pairwise tallies have a complete tie, then the BC outcome ts a complete tie. If the
BC outcome 1s a complete tie, then etther all pairunse elections are tied, or they define
a cycle with the same victory margin in each pairwise election.

3. The Condorcet winner cannot be BC bottom-ranked. The Condorcet loser cannot be BC
top-ranked. The Condorcet winner is BC strictly ranked above the Condorcet loser.

Proof. The proof of part 1 follows from Thm. 3. Because the first part of part 2 requires the
pairwise tallies to satisfy cardinal transitivity, the profile has no Condorcet portion. (The
point is in the transitive plane.] This means that each pairwise outcome for the basic profile
is zero, so, according to Thm. 3, the BC ranking also is a tie. In the opposite direction, a
BC complete tie requires a zero basic portion for the profile. Consequently, as the pairwise
vote is strictly determined by the Condorcet portion, the outcome is cyclic.

To prove part 3, notice that a Condorcet winner and/or Condorcet loser requires (from part
1) a nonzero basic portion. On the basic portion, the pairwise and BC rankings agree, and
the pairwise tallies satisfy the cardinal transitivity condition Eq. 4.1. The 7(X,Y") outcomes
are

(A, B) =7p(A,B) +~, 7(B,C) = 3(B,C) + 7,
T(A,C) = 5{A,C) —~ (4.11)

for any . The assertion now follows from simple algebra. |

For a geometric proof, notice that result follows directly from the orientation of the tran-
sitive plane. Other resuits are obtained from properties of the transitive plane. For instance,
the plane’s orientation restricts the pairwise outcomes generated by v > 0 and a basic profile
outcome of A = B » €. This restriction determines new BC ranking properties.

4.5. Summary. The results of this discussion directly counter basic assumptions for much
of choice theory. For instance, it is easy to find criticisms arguing that even though the BC
has desirable properties, the BC “violates the binary independence axiom - - it is not ratio-
nalizable and violates choice theoretic conditions.” (Schofield, p. 12 [29].) But, instead of
being a BC fault, the real flaw is because the binary independence condition unintentionally
drops the crucial assumption of individual rationality; this always happens when this con-
dition is applied to the pc. An easy proof of this assertion is to note that by dropping the
Condorcet portion of the profile, the BC does satisfy binary independence. (This is immedi-
ate from Thm. 3.) More generally, by removing the pc portion of a profile before applying
ITA, Arrow’s theorem now has a positive, rather than the negative dictatorial assertion where
{(according to Thm. 3) the BC is an admitted procedure. (The reversal portion of a profile
disqualifies all other w2 procedures.) Stated in other words, Arrow’s impossibility theorem is
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completely due to the pc portion of a profile; without this profile noise there are no difficul-
ties. In this manner, Arrow’s Theorem underscores the importance and utility of the profile
decomposition.

Notice how this analysis compromises the many normative and intuitive arguments ad-
vanced to support the Condorcet winner, the Copeland winner, agendas, and a host of other
procedures based on pairwise outcomes. After all, it is difficult to justify including the Con-
dorcet bias manifesting the violation of individual rationality. A natural way to correct this
difficulty is to remove the troubling Condorcet portion of a profile so that the pairwise vote
is determined only by the basic portion of the profile. Indeed, removing the Condorcet pc
portion removes all of the flaws and faults of the pairwise vote. Just as this act reverses the
outcome of Arrow’s assertion, it permits many of the normative and intuitive arguments to
regain their merits.

According to Thm. 3, the BC and pairwise outcomes completely agree in the reduced
setting of basic profiles. This equivalence condition means that once the glaring flaws of
pairwise voting are removed, its virtues apply to the BC. Thus a pragmatic way to correct
the pairwise vote — and all reasonable procedures based on the pairwise vote — is to use
the BC. This observation, which is a direct consequence of Thm. 3, reverses what has been
generally accepted for two centuries.

5. POSITIONAL METHODS AND REVERSAL BIAS

Similar to how the Thm. 3 profile decomposition significantly simplifies all three-candidate
pairwise voting problems, it also assures us that all of the troubling ranking and choice
problems caused by positional methods can be completely analyzed with the basic and reversal
portions of a profile. Moreover, because the tallies of all positional methods agree on the
basic portion of a profile, all conflict in societal rankings and choice must be attributed
to the effect of the reversal portion on non-BC positional procedures. Thus, all of these
previously perplexing three-candidate problems — problems central to choice theory - admit
a surprisingly simple yet complete analysis.

3.1. Reversal Symmetry. Recall how the symmetry of “neutrality” requires vote taliies to
be interchanged along with the names of the candidates. For instance, if all voters thought
Ann: was Rose and Rose was Anni, then the final outcome is corrected by assigning the
correct name to a tally. Similarly, if all voters confused instructions by marking their ballots
opposite to what was intended, then it seems reasonable to correct the final cutcome by
reversing it. To illustrate, consider the profile

Number  Ranking Number  Ranking
5 A-C»>B 5 B»>C>»A (5.1)
3 A»B>C 3 C»>B»A

and its A > B > C plurality ranking with plurality tally 8:5:3. When each voter reverses his
ranking, it is reasonable to expect the new outcome to be the reversed C' > B > A. It is not;
it is the same A » B »  ranking with an identical 8:5:3 tally.

To understand why the plurality vote violates the natural conclusion, notice that in each
row of Table 5.1, each voter’s preferences are reversed by the other voter. This suggests that
their ballots cancel leading to the A ~ B ~ ( tied election outcome. While this occurs with
the BC and pairwise votes, no other wg‘ voting procedure honors this natural cancellation
and reversal symmetry.
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Definition 3. Reversal symmetry is where when each voter reverses his preference ranking,
the ranking of the candidates also is reversed.

Theorem 6. The pairwise vote and the BC satisfies reversal symmetry. All positional proce-
dures satisfy reversal symmetry on the Condorcet and basic portions of a profile. The non-BC
procedures do not satisfy reversal symmetry on the reversal portions of a profile.

Proof. This is a simple computation. O

For a reversal profile differential Ry, when each voter reverses his ranking, we obtain
the same profile. Indeed, the reversal subspace consists of all profile differentials with this
property. So, those procedures failing to give the natural outcome of a complete tie for these
profiles are plagued with distorted cutcomes. For instance, the two-voter profile %[Ks —Ra]
has one voter with preference B > A > C and one with ' > A > B; the profile involves both
preferences where A is middle-ranked. But instead of cancelling opposing voters’ votes, the
w3 vector tally is (25,1, 1) with the B ~ C > A ranking for s < % and thereversed A » B ~ C
ranking for s > %.? The important point is that when each voter reverses preference rankings,
we obtain the same profile. A similar explanation holds for the profile of Table 5.1 which is
%{*5Rc - 3Rp +8K?3]) with the w3 tally 5(1,1,2s)+3(1,2s5,1) = (8,5+6s,3 + 10s). Again,
one outcome holds for s < %, the reversed outcome holds for s > %, and the BC has a tied
vote. The explanation of this behavior is that the profile symmetry ensures that when each
voter reverses preferences, the same profile emerges.

5.2. Different outcomes. In Sect. 4, [ showed how the fact that the pairwise vote devalues
information about individually rationality completely explains all pairwise voting difficulties.
Similarly, the fact that all non-BC w2 procedures devalue reversal symmetry completely
explains all differences in positional election outcomes® Activating the reversal profile is
the d® = (0,1,0) component of a voting vector (Thm. 2) because it recognizes only voters’
second-ranked candidates.

To illustrate with the two-voter profile %[K3 —Ra], A is the only second ranked candidate;
B and ' are symmetrically ranked at the top by one voter and at the bottom by the other,
Thus, the d2 vector tally is (2,0,0). According to Thm. 2 and Eq. 2.4, the w? tally is (1,1,1)+
(s— %)(2, 0,0) = (2s,1,1). This tally, then, identifies the value placed upon the second ranked
candidate by the different w2 procedures. Only the BC (where s = %) recognizes and honars
the reversal symmetry of this profile.

This phenomenon is illustrated with Eq. 2.5 and the profile of Fig. 1 where the b® ranking
is B> A » C with a (58,64,49) tally. Theorem 3 ensures this ranking for all procedures
when restricted to the basic portion of the profile. Consequently all differences caused by
the (s — %)(50, 50,14) term of Eq. 2.5 come from the reversal portion of the profile. To show
how wildly this reversal term changes the ranking, simple algebra shows that the resulting
profile admits five different rankings as s varies. Indeed, by solving the obvious inequalities,

“This reversal hehavior is an example of symmetry breaking from mathematics. When a natural symmetry
is broken. such as reversal symmetry. its effects are symmetrically distributed over the breaking procedures.
Here. the symmetry is captured hy similar |s — 2} values.

®Becanse of the analytic theme of these two papers. T resisted expanding this observation into a normative
argument. But. normative justifications are not necded because just the fact that the reversal portion of a
profile totally answers a leading choice theory issne ensures that it is an crucial concept.
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we have the following.

s values Ranking s values Ranking
0<s<{ C>B>A s=1 C~B>A
b<s<l B~C»A s=L BrC~A4A

T<s=1 B=4»C

These conflicting rankings are completely understood with the reversal portion of the profile.

It now is easy to construct examples illustrating all possible differences with positional
methods. To illustrate how to do this, | derive necessary and sufficient conditions for a profile
to have the BC ranking B » A > C with plurality winner (s = 0) A and anti-plurality winner
{s = 1) C. The resulting profile, then, allows each candidate to win with an appropriate wg
choice. But, as we now know, this previously perplexing behavior is completely explained by
the reversal portion of the profile.

Because the basic profile determines the BC outcome, the first condition requires

bp >ap >cp =0. (5.2)
with outcomes
(2ap — bp,2bg —ap,—(ap + bp)) (5.3)
The d® tally of reversal vector agRa + brRp + cgRe is
ap(—4,2,2)+ bg{2,—4,2) +cr(2,2, —4) (5.4)
causing (see Eq. 2.4) the reversal vector tally
(28 —1)(—2ap+ by +cr,—2bp +agp +ecp,—2cp+ar + bg). (5.5)

Adding the reversal and basic vector tallies and using s = 0, the respective conditions for the
plurality winner A to beat B and € are

2ap —bp —cp+2ap —bpg > 2bp —ap —cp+2bp —ap
2ap—br—cp+2ap—bp > Zcp—ap—brp—bp —ap
while the s = 1 respective conditions for C to beat A and B are
—2cp+ap+bp—ap —bp> —2ap+bp+cp+2ap —bp
—2cp+ap+bp—ap —bg > —2bgp+ap+cp+2bg —ap

Solving the inequalities proves the following.

Theorem 7. Necessary and sufficient condilions for a profile to have a BC ranking B »
A » C while A and C are, respectively, the plurality and anti-plurality winner are that
bp >ap >cp=0,cg=0.ap >ap, bp > by, andap — by > by —ag.

More generally, choose a BC ranking and a ranking for w3 # b>. There erists a basic and
a reversal profile so that the BC and w2 rankings of the combined profile are the chosen ones.

The profile differential defined by ap = 1,bp = 2,ap = 5,bp = 3 is (0,7,-9,-2,9, -5}
with an associated profile (9,16,0,7,18,4) where the plurality, BC, and anti-plurality rank-
ings are, respectively, A > B > C, B> A > C, and C » B > A. The reader can show that
this reversal portion forces seven different rankings when different w2 methods are used to
tally the ballots. In general, the procedure line allows anywhere from one to seven differ-
ent rankings for a single profile. By mimicking the above analysis, necessary and sufficient
conditions for each condition now is easy to derive.

As all differences in positional election rankings result from the reversal portion of a profile,
support for a non-BC positional procedure, or for any procedure based on these procedures
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(such as standard runoffs, the Hare method, Approval Voting, etc.) must justify the bias that
is introduced by the procedure ignoring the reversal bias. Similarly, all paradoxes, all flaws
of these procedures result from these terms. Namely, by mimicking the earlier illustration of
the BC-Condorcet analysis, one can identify all flaws and properties of these procedures.

5.3. Summary. Mimicking our comments about pairwise voting, all normative arguments
about pesitional procedures, or procedures based on positional procedures, are compromised
by their violation of reversal symmetry. A way to avoid positional voting paradoxes is to
remove the reversal portion of the profile. As this requires the procedure’s outcome to be
determined by the basic portion of the profile, its tally agrees with that of the BC. Again, this
means that the BC inherits all of the normative arguments applied to the other procedures.
But the BC outcome is not affected by the reversal portion, so a simple, pragmatic way to
achieve this state is to use the BC. Stated in another manner, hecause the real difference be-
tween the BC and other positional procedures is that the non-BC approaches violate reversal
symmetry, any justification for using these other procedures must address this characteristic.

6. COMBINED BEHAVIOR

What makes the profile decomposition a powerful but easily used tool is the assertion that
the Condorcet portion does not affect positional rankings while the reversal portion has no
effect upon the pairwise rankings. Consequently, we can be separately consider the effects of
the Con® and reversal portions. This allows us to extend earlier results, say those of Thm.
5, by changing the non-BC positional ocutcomes to whatever we wish. From this we re-obtain
the following known theorem.

Theorem 8. Choose any ranking of the three candidates and any rankings for the pairs. If
w2 % b3, there is a profile where the pairwise and the w2 rankings are as described. The BC
s the only procedure where 1ts ranking must be related to the pairwise rankings.

The original proof of this theorem (Saari [22]) used very different methods. We know
from the analysis leading to Thms. 4, 5 that the algebra associated with the vCon?® term
captures all possible relationships between the BC and pairwise outcomes. (This, for instance,
prohibits the Condorcet winner from being BC bottom ranked.) On the other hand, we know
from Thm. 7 that no such constraint applies to the reversal portion. Thus, the w2 ranking
can be anything.

Example 2. To illustrate Thm. &, recall that Example 1 used ap = %, bp = % and v = —%
to define the profile (0,2,-3,0,—2,3) with the common w3 vector tally (2,1,—3) and the
A > B » ( ranking even though B is the Condorcet winner. To further complicate the

example, add the reversal tally from Eq. 5.4 to obtain
(24 (2s —1)(—2ap + br + cr), 1 + (2s — 1)(—2bp + ap + cr), (6.1)
—34(2s—1)(=2cp+apr+br)). (6.2)

Clearly, for s # %, reversal coefficients can be chosen to create any desired w2 ranking while
leaving the BC and pairwise rankings untouched. For instance, with s = 0 (the plurality
method), the choices cp = 3, ap = bp = 0 have the plurality ranking ' > A > B, while
changing bg te by = 1 defines the plurality ranking ¢ = B » A. O
6.1. Other procedures. This decomposition can be used to analyze methods involving
w2 elections of the three candidates and of pairs. The main point is that when the BC
is not used, the procedural outcomes are subject to all difficulties where the w2 outcome is

distorted by the pr portion of the profile p = px +pp + pPr + pc, while the pairwise election
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outcomes are twisted by pe. This makes it trivial to explain all single-profile weaknesses of
these procedure while constructing illustrating profiles. For instance, with a piurality runoff’
select an appropriate pr term to eliminate the undisputed winner of the basic portion (who
is the Condorcet and BC winner) by making her plurality bottom-ranked. Similarly, such
examples applied to the Hare method, where two candidates are being elected, demonstrates
how the pr bias can force the Condorcet winner to lose. Other faults are found with the pe
variable.

The above examples make it clear how to carry out such an analysis, so | now introduce
a new tool to addresses multi-profile issues. | have in mind questions such as manipulation
(where the first profile is sincere, the second profile is the strategic action), monotonicity
questions (such as when two groups supporting the same candidate join forces, the candidate
loses), etc. For other examples, see [20, 10]. Simplifying this analysis is the following assertion.

Theorem 9. When several profiles are added, then the sum of the basic portions is a basic
profile, the sum of Condorcet portions is a Condorcet profile, and the sum of reversal portions
s a reversal profile.

Proof. This follows from the vector space representation of profile differentials. ]

To illustrate the power of this assertion, consider two profiles p/ = pk’ + pp’! + pr/,
7 = 1,2, where both basic portions support the ranking A > B > C. (As neither profile has
a Condorcet portion, this also defines the pairwise rankings.) Using algebra, we can select
the two reversal portions so that

1. the p! plurality ranking is B > A > C,
2. the p? plurality ranking is C > A » B and
3. the p! + p? plurality outcome has A bottom ranked.

(It follows from the algebra that parts one and two are necessary for part three to occur.) In
this setting, the Condorcet and basic profile winner A is the runoff winner for both groups.
But, when these voters combine to vote as a single group, A is eliminated at the first stage
and B is the winner. If you wish C to be the winner, add an appropriate Condorcet portion
to the profile.

In this same manner, many other issues can be addressed and illustrating examples con-
structed. Important to this analysis is that the sum of Condorcet portions can be used to
significantly distort the pairwise rankings. Other distortion are introduced by adding reversal
portions. It now is easy to understand why so many procedures deny selecting the Condorcet
winner, or to have other properties.

The source of the three-candidate paradoxes and conflict in voting and choice procedures,
then, is that different procedures use different information from a profile. By being based
on different information, we must expect conflicting conclusions. But, the BC is the only
procedure which ignores the Condorcet and reversal portions of a profile, so only the BC is
irnrnune from these extraneous effects.

6.2. Probability considerations. A paradox can be viewed as a profile noise bias that has
become so extreme that it is manifested by ordinal rankings. For instance, part of the choice
literature worries about the fact that procedures need not elect the Condorcet winner. We now
know that this merely manifests a sufficiently large reversal and Condorcet portion of a profile.
Prior to this analysis, however, it was not clear what caused the problems. Consequently, for
several of these issues, clever and technically difficult methods were introduced to determine
the likelihood of the various difficulties. For instance, we may wish to determine how likely

*After dropping the plurality loser. the remaining candidates are ranked with a pairwise election
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3

o election. (See Merlin and Tataru

it 1s for the Condorcet winner to be bottom-ranked in a w
[11]. For a small sample of other papers, see [34, 5, 28].)

As demonstrated by Thms. 4, 7, the profile decomposition reduces to algebra the previously
difficult task of deriving necessary and sufficient conditions for profiles to exhibit specified
behavior. For instance, suppose we are interested in super-majority cycles where a candidate
in a pairwise election needs y > % of the vote to win. These cycles are in two cones of
the representation cube; one is where rAB,Ip.c,xc.a > 1 — 2y, and the other is where the
terms are negative but the magnitudes satisfy the inequality. It is elementary to find the
transitive plane coordinates of all such points. This determines all possible profiles causing
such problems. Likelihood estimates now involve elementary calculus.

As this example illustrates, when analyzing paradoxes with the decomposition, the re-
sulting conditions define polygonal regions in the different profile subspaces. Because these
subspaces are orthogonal, the likelihood questions reduce to integral calculus problems. While
nmessy, they are solvable with standard techniques or computer programs.

A more interesting question, that previously was impossible to attack, is to understand
how likely it is for a procedure to exhibit any bias. The profile decomposition allows an easy
answer. To explain, normalize profiles so that p; is the fraction of all voters with the jth

preference; 7 = 1,2,...,6. The space of normalized profiles is the unit simplex

G
Si(6) = {x = (z1,...,2¢)] Z:L;cj > 0}

j=1

By moving this simplex to the origin (that is, subtract éKa from each vector in 5i(6)), we
have the five-dimensional normalized space of profiles differentials. (Two dimensions come
from the basic space, two from the reversal space, and one from the Condorcet space.) A
profile does not exhibit any bias iff it is restricted to the two-dimenstonal basic subspace; this
is highly unlikely. In particular, with any standard measures, this event has a zero likelihood
of occurring. For comparison purposes, notice that a completely tied plurality election is
the set of profiles where a equal number of voters have A, B, and € top-ranked; it is a
three-dimensional subspace of profiles. (Think of this as two equations in five unknowns.)
Thus, an even stronger statement comes from comparing these dimensions; it tells us that
the likelihood of a profile not exhibiting bias is rarer than a completely tied plurality election.

Determining the bias effect depends upon the procedure. The bias of a w3 £ b3 election
is affected only by the reversal portion of the profile, so there is zero-likelihood (in the space
of normalized profiles) of not exhibiting a bias. But the (dimensional) likelihood of avoiding
a paradox is equivalent to having a completely tied election. A pairwise outcome, however,
only is influenced by the pc portion. So, while over the space of normalized profiles, there
is zero probability of avoiding a Condorcet bias, from the dimensional perspective, it is more
unlikely to have a completely tied plurality election outcome.

7. CONVERSION OF PROFILES

It remains to convert profiles between the Eq. 2.1 and profile decomposition descriptions.
To change a profile decomposition into the standard representation, use

p=apBa + 5B +agRa + bpRp + vCon® + kK3, (7.1)
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From the Eq. 7.1 matrix representation p = A(v), we have that matrix T = A1 converts a
standard profile p into its profile decomposition format.

2 1 -1 -2 -1 1
1 -1 -2 -1 1
0 1 =1 0 1
61 -1 1 0 -1 1 0
1 -1 1 =1 1
1 1 1 1 1

The effects of profile p are determined by T(p).

7.1. Condorcet’s example. To illustrate with the historically important profiles of Sect.
1.3, Condorcet used p = (30,1,10,1,10,29) to try to discredit the BC. The first two terms
of T(p) = %(68,76,—28,—20,19,81) dictates the B » A » C ranking for the basic portion.
The next two terms, which are equivalent to ap = 0,bp = %, cp = %—8, capture a reversal
bias favoring B and C'. The change is slight enough to alter only the antiplurality ranking to
A ~ B > C. The important effect of this profile is the vCon® coeficient 7 = % and its cyclic
distortion which changes the Condorcet winner from B to A. As this cyclic effect reflects
the loss of the assumption of individual transitive preferences, rather than supporting the
Condorcet winner, this profile identifies a flaw of Condorcet’s procedure by demonstrating
its susceptibility to the distorting Con® portion of a profile.

7.2. Borda's example. Another historically important profile is p = (0,5,0,3,4,0) used
by Borda in 1770 to show that the pairwise and BC rankings can radically disagree from
the plurality ranking. (Some tallies of this profile are computed following its introduction in
Sect. 2.1.) His example, which initiated the mathematical investigation of voting procedures,
has the profile decomposition T(p) = %(—5, -4,9,6,—4,12),

The converted basic portion ag = 0,bg = é,cB = % supports the ' = B » A election
ranking. What makes his profile effective for his purpose are the ap = g,bn =1 terms
indicating a strong reversal bias favoring A and helping B to create the conflicting 4 = B » C
plurality ranking. The cyclic coefficient v = —%, which favors B in the {4, B} pairwise
election, sharpens its conflict with the plurality ranking.

7.3. Unanimity profile. An instructive example is the unanimity profile where all voters
have the same A > B > C preference. Intuition suggests that nothing surprising or unusual
can occur, but this is not the case. The basic terms of the normalized profile decomposition,
T(p) = %(2, 1.0,—1.1.1), do recapture the accurate A > B > ( ranking. Somewhat unex-
pected are the reversal and Condorcet terms. To explain them, notice that the reversal terms
ap=c¢cp = % captures the conflict between plurality A » B ~ ( outcome and the unanimity
preference. This peculiarity, then, is totally explained by the reversal bias.

While the pairwise outcomes agree with the unanimity ranking, the tallies fail to reflect
A’s distinct favored status. Compare this with the respective {A, B}, {B,C},{A,C} basic
pairwise outcomes of (%, f%), (%,—%), (%, —%) which provide A an healthier spread over C
than over B. This diminished respect for A in the profile’s standard elections is caused by
the Condorcet coeflicient v = é which introduces enough rotation in C’s favor to reduce A’s
victory margin in their pairwise election. Namely, the cyclic effect even influences unanimity
outcomes! Only the BC captures the essence of the unanimity profile.
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7.4. Black’s method. As a final illustration, Black's single-peakedness restriction [2] (which
only admits profiles where some candidate never is bottom-ranked) avoids cycles by tempering
the magnitude of the vCon® coefficient. However, Black’s restriction need not preserve
the integrity of the basic portion’s pairwise rankings; it still allows bias to creep into the
outcome. For instance, Black’s condition is satisfied with the profile where six voters prefer
A > B > C, six prefer C' > A » B and one prefers B > A > C. The profile decomposition
ap = lﬁ—l,bB = 0,ep = % requires the A » (' » B basic ranking. The pairwise elections
support the conflicting A = B > C outcome; a discrepancy caused by the Con® coefficient
of v = % {Other examples are easy to create by using the transitive plane coordinates with
the representation cube.)

8. PROOFS

Proof of Theorem 3. An elementary computation shows that the subspaces are mutually
orthogonal. The assertion about K? is obvious.

To prove part 3, it suflices from the properties of the procedure line to show that the
normalized plurality and BC tallies agree. As they agree on each basis vector, they agree on
all vectors in the subspace.

The proof of part 2 for positional methods involves showing that the plurality and b?
tallies of the basis vectors agree. (For instance, with B4 they both are (2, —1,—-1).) The
rest of the conclusion follows from the properties of the procedure line and linear algebra.
The pairwise tallies of Eq. 3.5, which is a simple computation, show that the ranking of pairs
is identical to the corresponding ranking of ap,bp.cp coefficient values. Indeed, the tallies
for any two pairs uniquely determines the tally for the third. (For instance, the pairwise
rankings A > B, B » C hold if and only if ag — bg > 0, bg — cg > 0. The sum of these two
tallies, ag — cg, also is positive, so A »= C.) Thus, cycles are impossible. To show that the
pairwise rankings always agree with the positional rankings, it suffices to compare one pair.
The {A, B} pairwise ranking is determined by the ranking of the {ap, bz} values. The {4, B}
relative positional ranking is determined by the ranking of {2ap —bp —cp,2bg —ap —cp}. As
“cp” 1s common to both sides, the comparison is between 2ag — by and 2bg — ap or between
dap and 3bp. This completes the proof.

The proof of part 4 is a direct computation of the pairwise, BC, and plurality tallies for each
basis vector. The assumption about the non-BC positional tallies follows from the non-zero
tally of the plurality method and the properties of the procedure line. O
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