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ABSTRACT
This paper introduces games of incomplete information in which the number, as well
as the identity, of the participating players is determined by chance. The participation
of certain players may not be independent of the participation of others, and hence the
very fact that a particular player was chosen to play may give that player a clue as to
the number and the identity of the other players chosen. However, players have to
choose their strategics before the identity of the other players is {ully revealed to them
and thus, effectively, before they know whether or not they will take part in the game.
Pure-strategy, mix-strategy, and correlated equilibria of random-player games are
defined. Thesc delinitions extend the corresponding definitions for finite games,
Bayesian games with consistent beliefs, and Poisson games—all of which can be seen
as special cases of random-player games. Sufficient conditions for the existence of

pure- and mixed-stratcgy equilibria are given.
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b, INTRODUCTION

The aim of this paper is to set up a basis for the study of games where the
participating players have incomplete information regarding the number and the
identity of the other plavers. In games of incomplete information commonly studied
by game theorists and cconomists the characteristics—or types ot the participating
plavers may be incompletely known. but their number is assumed common
knowledge. However. many game-like real lite interactions. like auctions. clections.
and road jamming. involve a random number of non-identical plavers. who have to
decide on their course of action before even the number of other plavers is revealed to

them.

Iven though plavers may not know the number and the identity of the other players.
they may nevertheless have certain beliefs about them. In this paper we assume that
these beliets are derived from a common prior that the potential playvers share. That is.
the selection ol actual plavers is viewed as a random event. having commeonly known
probabilistic properties. Potential plavers do not know in advance whether or not they
will participate in the game: and once chosen to play. they must do so. The fact that a
particular plaver was chosen 1o play is a private information ot that plaver that may or
may not give him a clue about the identity of the other playvers. Although initially
equally 1gnorant. after being notified ot their participation difterent playvers may come
1o have difterent beliets. or posteriors. regarding who else 1s in the game.

The idea of a random set (ot actual plavers)y 1s captured by the mathematical notion
of a simple point process. A simple point process is a mapping {rom some probability
space into the space of finite {(or. sometimes. countably infinite) subsets of a
topological space (the space of potential plavers. in the present case). We recall
several definitions and results from the theory of point processes on compact metric
spaces n Seetion 2 below.,

A formal definition of a random-player game. as well as several examples. is given
in Section 3. where we also present the increasingly more general definitions of pure-

strategy profile. mixed-strategy profile. and correlated strategy and define correlated
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equilibrium. Pure- and mixed-stratcgy equilibria are characterized as special cases of
correlated equilibrium in Section 4. Sufficient conditions tor the existence of pure-

and mixed-strategy equilibria are given in Section 5.

2. POINT PROCESSES

The space MX) of all (finite) integer-valued measures! on a compact metric space U
is topologically complete and separable in the weak topology (Kallenberg. 1985,

p. 170} 9UX) consists of all measures on ¥ that can be written as a finite sum of

Dirac measures (Daley and Vere-JTones. 1988, p. 198). Thus. every element of 91 X)
has a tinite support. Y. and can be written as Z\:\ n,o.. where n, 15 a positive integer
that expresses the size of the atom {x}. An element of QYY) 1s called simple if all its
atoms arc ol size onc. The mapping that sends every such measure to its support is a
one-to-one correspondence between the simple measures in 91(X) and the finite
subsets of X. A point process on X is a random c¢lement in M), that 1s. a
measurable mapping {rom some probability space into M), A point process 1s called
simple if it is almost surely simple-valued. The distribution of a point process u 1s
defined as the probability distribution it induces on 9UX). This probability
distribution is completely determined by the distribution of the random vectors
Tyl Toy VT ciey, @ tinite measurable partition of X (Kallenberg.
1983. p. 27). The space of probability distributions on M X) is topelogically complete
and separable in the weak topology (Parthasarathy. 1967, Theorems 11.6.2 and 11.6.5).

We will often identify point processes with their distributions.

L:xamples.

1. Every finite subset of X can be seen as a simple point process.

b n this paper. the measurable structure associated with a topological space is always assumed 1o be

the Borel gralgebra. i.c.. the g-algebra generated by the open sets.
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Every probability measure @ on TxTax. . .xT,0 where {T7) 4, 1s a finite
measurable partition of X. detines a simple point process on X {or. rather. a
distribution of such a peint process). Exactly one point is selected from cach

subset 7.

Fl

3. A Bernoulli (or sample) process is defined as a sampling (with replacement) of »
clements in X, chosen independently according to a fixed probability measure £
- - . . H -
on .\, Formaliy. a Bernoulli process may be written as Z,_ (O, where xps. Ly,
arc i.1.d. random elements in X
4. If. in the previous example. we take 7 to be a random variable. rather than a fixed
number. then a mixed Bernoulll process results. A mixed Bernoulli process 1s

simple i and only 1t 2 1s nonatomic or P> 1)=0.

N

A mixed Bernoulli process is called a Poisson process if # is a Poisson random

variable.

The requirement that the process be simple is ofien added to the detinition of a
Poisson process (sce. ¢.g.. Kingman. 1993). The importance ot the simple Poisson
process lies in the tact that this is the only simple point process in which no point 1s
selected with positive probability. and diftferent points are selected or not selected

independently ol one another (Kallenberg, 19850 p. 38):

Proposition 1. Suppose that the point process e satisfies ut {x)=0 almaost surely for
every xin X Then g is a Poisson process if and only if it is simple and p(1) and p(47)

are independent whenever A and A are disjoint measurable subsets of X

For every point process g, the set function 4 — bFu() is a measure on X, denoted
ba. We will call it the mean measure of g. I the mean measure of g is finite. then
there exists a tamily (g} of point processes. indexed by the elements of X. such that.

tor every bounded measurable function /1 2 U L) — o4

(1) |.Eh(.\'.,u\.) Fufedv) = 10 | h{x p—0y) plcdx)

(Kallenberg. 1983, p. 8:4). The distribution of g, can be interpreted as the conditional

=

distribution of g—o_. given that g( 1x})>1. The mapping that sends x to the distribution



of g, is a measurable function on X. 1f {u',} is another family of point processes
which satisfy (1) tor every bounded measurable function /4. then the distribution of g’
is equal to the distribution of g, for Eg-almost every x (this follows from Theorem

V8.1 of Parthasarathy. 1967).

Example. Let g be a mixed Brenoulli process. 1.c.. n independent draws ol clements in

X according to a tixed probability measure 4. where m is random. It the expected

number of draws. Lg(X), is finite. then Eg = Fa(X) £ It in additon. it is strictly
positive. then. for Fg-almost every v, g, is also a mixed Bernoulli process. namely. »'
independent draws of clements in X according to A. and P(n'=k-1) = K’Eu(X) P(rn=k)
for k/=1.2..... It follows that. conditioned on the number of dravws. g, has the same
distribution as g2 and » and »' are identically distributed if and only if 7 has a Poisson

distribution.
Furthermore (Kallenberg, 1983, p. 97 and 101).

Proposition 2. Jc¢t g he a point process such thar Xy is finite. Then the
distribution of u is the same for Vg-almost every x if and only if g is a mixed
Bernoudli process, and in such o case . is dalso a mixed Bernoulli process. The
distribution of . is equal to the distribution of g, for Eg-almost every x. if wnd only if

s Poisson process.
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3. THE NODEL

The space of potential plavers is a compact metric space X.° A random finite set of
actual players is given as a simple point process X on X satisfving EX(X)<=?
Strategy scts are defined by a continuous function £ {from a compact metric space &

[y

into X4 the strategy set of plaver x is 2 ({v})." The pavott ifs.5) to an actual player

who plays s when the plays of the other actual players are Sis given by a bounded and

measurable utility function « : SxMNS) —» I For every v and S. the restriction of
. | . . - . v onr o~ o .

n(-.Sy o Z(Ix)) 1s assumed continuous. The quintuple (Y. XS . Zu) 1s called a

random-plaver game,

Lxamples.

1. Every finite game. and more gencerally every finite-player game with compact
strategy sets and bounded and measurable payvoft functions. can be viewed as a
random-player game: X in this case 15 a constant set.

2. Every Bavesian game [T with a Onite set of plavers N={1.2.....1}. compact.
disjoint sets of types {7,y compact sets of actions {4;},- . bounded and

measurable payvofl functions fu; : X 7 x X o — =)0\ and consistent beliefs

derived from a common prior ¢ can be scen as a random-playver game. Potential

players in this random-plaver game correspond to tvpes in [ Formally. the playver

* The generalization to locally compact separable metric spaces (such as =) is immediate: if X is such a
space. that X can be defined as a point process on its one-point compactification.

* Throughout this paper. random elements of a topological space are denated by bold letters. Sets are
denoted by capital letters. Since simple measures are of a dual nature. the realizations ot X. and ot
other simple point processes. will sometimes be treated as measures. SOmMeHMes as scts.

+ Note that the inverse relation. 7 is an upper semicontinuous correspondence (multifunction) with
domain X. We could. of course. use that correspondence tor defining the strategy sets.

* The strategy sets of ditferent plavers are thus assumed to be disjoint. This harmless assumption

makes tor a considerable simplification of notation.



space 15 ITU 7. X is defined as in Example 2 in Scction 2. £ is defined on

i

U('[;x Ay as the projection on the first coordinate. and u is defined by

w1 ) Ay e ) =l o) e T =\i.and e T for all

JeNoand = 0 otherwise.

tad

A Poisson game (Myerson. 1994) 1s a random-player game where X 15 a Poisson
process. and there exists a finite partition |4, } | <<, 0f & such that u(s.5) = u(s'.8"
whenever v and »” are in the same clement of {4} | c;<,, and SC1)=S1;) for every
1<i<m. (The total number of strategies in a Poisson game is thus ctfectively
finne.)
A pure-strategy profile is a measurable tunction from X to & that assigns to cach
potential plaver x an element of =2 v, Since Zis a continuous function defined on
a compact domain, a pure-strategy profile exists (Parthasarathy. 1967, Theorem [.4.2

~

and Corollary 1.3.3). A mixed-strategy profile is an assignment of a random element

B
s.oIn S

(1v)) to every potential plaver x such that. tor every measurable set AC S, the
tunction x +— P(s-€.1) is measurable. A point process S on & is a correlated strategy
il the distribution of §¢ 2 Vs equal to the distribution of X.

Ivery mixed-strategy protile {s, ), oy (and. hence. in particular. every pure-strategy
profile) can be identified with a particular correlated strategy. The distribution of this
correlated strategy S is given by
) BAS) Ly g A ey
for every bounded measurable function /0 M(S) — X Thus. § results from first
choosing a realization v of X and then. independently for each clement x in AL

choosing a realization ot s Note that Equation (2) implies

[ () EStads) = Thgts ) EXUedv),

—
ted
-

tor every bounded measurable function g1 & — =

A pure-. mixed-. or correlated strategy (profile) § 1s. respectively. a purc-strategy.

mixed-strategy. or correlated equilibrium if. for ES-almost every s, Eu(s.8)>
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Euts'S,) tor every s'1n & ¥ f A9, The point process S,. detined as in Lquation (1}
above. is interpreted as the posterior of the actual player that plays s on the plays of
the other actual plavers. The equilibrium condition therefore requires s 10 be a best
response for that plaver against his posterior. This condition can also be stated in
terms of the expected aggregate utility (which is the expression on the left-hand side

of Equation (+4) below):

Proposition 3. { correlated strategy 8 is an equilibrivn if and only if

(4) F 2 qus.S vy =max F 2 gu(@s).8 (s,

where the maxinuom is takenn over the set of all measwrable functions ¢ 1 S — S that

sutisfpy == Z

Proof The restriction of the measurable function (s.s') 5 Ew(+'.8,) to the graph of the

compact-valued upper semicontinuous correspondence s = & I

(133} 1s contnuous
in its second argument. Theretore, there exists a measurable selection of that
AT A .Sy g T catia i N . - gy » . .t

correspondence. ¢ @ & — &. which satisfies Eu(g(5).8,) = max ¢ = 1y g4 Bl

for every & (Wagner. 1980. Theorem 3.7). Since. by (1) It Z.\.ES wps).8uis)) =
I Fux5).8,) ES(dv). the maximum on the right-hand side of (4) is attained at that
function ¢. Theretore. (4) 1s equivalent to J Lu(s.S) EStdy) = | MaN, ¢ = 1 A5
Fuis'S)) ES(ds). and this equation is clearly cquivalent to S being a correlated

equilibrium. [

A

An immediate corollary of Proposition 3 is that the set of correlated equilibrium

distributions 1s closed and convex.

4. MNINEDR-STRATEGY EQUILIBRIA

Given a mixed-strategy profile. S. the posterior of an actual plaver x on the plays of
the other actual plavers does not depend on that plaver’s action (because the

realizations  of the mixed strategies of  different  actual playvers are chosen
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independently). This posterior. S,. is only a tunction of the plaver’s posterior X, on
the identity of the other actual plavers and of the mixed strategies of these players.

More precisely.

Lemma 1. //'S is « mixed-straregy profile. then

,—.
th
-~

S‘\ = ’S‘.j,\)
holds for ES-almost every s where. for xe X the distribution of 8, is defined by

(6) l,f(S\) = [\\ I- Lo \‘f( {S\': \’E\\)

L IR N

for everv hounded measurable function f: WS - K If X is a mixed Bernoulli
process. then so is S, and the distribution of S is the same for EX-almost every x. The
distribution of 8. is equal 1o the diswribution of S, and 8 is a Poisson process, if X is «

Poisson process.
Proot By (3).(6). (1) and (2). for every bounded measurable function /1 SxM( S ) —
JER(s.S 50 ESs) = Ty Eg Mts S0 EXt) = TEy Egg v By bl dsedeay)

EX(dv) = Ex 2oy Eporoov, By A8elisclvax ) = B 2gcg MsSUsh.
Comparing this with Equation (1). we conclude that the distribution of S, is equal to
the distribution of' S 1 for ES-almost every s. It X' is a mixed Bernoulli process. then
by Propaosition 2 we may assume that the distribution ot X is independent of v, and is
equal to the distribution of X if X is a Poisson process. It follows. by (6) and (2). that
the distribution of S, is independent of x it X 1s a mixed Bernoulli process. and is
cqual 1o the distribution of S it X is a Poisson process. Therefore. by Equation (3) and

Proposition 2. the point processes S. S,. and S, are mixed Bernoulli processes it X is a

mixed Bernoulli process. and have the same distribution if X is a Poisson process. [

A mixed-strategy equilibrium s characterized by the actual plavers” mixed
strategies being best responses to these playvers™ posteriors:
Proposition 4. 4 mived-strategy profile 8 is an equilibrium if and only if. for EX-

almast every x,

(7) By s i(5:-S) = max (=10 g a(s.8,),
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Proof. § is an equilibrium if and only it | E(s.8) ES(ds) = I max S Fg.
u(s”.5) LSteds). By (3) and (3). this condition 1s equivalent to | Ly, Lg, (s.8,) EX(dx)

o2 ey Eg s S0 EX(d). And this equation clearly holds it and only 1t

= | max -

l'quation (7) holds for LX-almost ¢very x. []

The condition tor a mixed-strategy profile 1o be an equilibrium can also be
formulated in terms of the expected aggregate utility. Specifically. as an immediate
corollary of Proposition 3 and fquation (2) we have

Proposition 5. .1 mived-sirategy profile is an equilibrivon if and oniyv if. for every

measurable functions @ 1O — O that satisfics Sop= 2

\Z\»\l TR (‘\ RN BNEA WA : )z \Ztﬁ\' A {((/J(S_\‘)-{S_\";.\"E.\' -:.1'})-

3, ENISTENCE OF AN EQUILIBRIUAT

Milgrom and Weber (1983) proved an equilibrium existence theorem for Bayesian
games in which beliefs are derived from a common prior. We now show that. under
conditions rather similar to theirs, a mixed-strategy equilibrium exists in a general

random-plaver game.

Theorem 1. [f the disiribution of X is absoluelv continuous with respect 1o the
distribution of some mixed Bernoulli process X' and if v is bounded and continuous.
then a mixed-strategy equilibrivn exisis.

Proof Let 1 YUX) —» = (a Radon-Nikodym derivative) be a measurable function
such that [ AXY AX") = L WX) holds for cvery bounded measurable function

U X) — & The expression on the right-hand side of (8) 1s equal to

l':_\"Z EAW f Y)L'\\,\ HAS ). l‘\’n E. "-{.\':)‘

and can also be written as



(9} 2;)”“.,.._{”-]{\_ Lo s )ds s DO L \ ‘”‘,)ﬁ Aldx)).
Ho i1

where p,:= POX(X)—n) and £ is a probability measure on X (see the definition of
mixed Bernoulli process in Section 2). Let Mt be the set of all probability measures 7

on & that satisty the equation f;oj":/‘,. [f 22 = Z then both the measure v defined by
10y Jats) ey = Jl{g(sr\.) Zdddx).

- . . -~ — 1 ]
tor every bounded measurable function g @ & — & and the measure 1eg - are i 15,

and (9) is equal to Flaeg o) where 1 MM, — &is detined by

Fiy.ongy= Zn P, J‘J._.Iu(x}. KIUR SV PRS0 080 ) S ) 1) ey )l_[ mds,)).

nel
It follows. by Proposition 5. that a sufficient condition for {s.} .-y to be a mixed-
strategy equilibrium is that the function F(-.v) takes its maximum at 1. quivalently.
£54 ve v 18 a mixed-strategy equilibrium it v is a fixed point of the correspondence y

defined on M, by w41 =1 7'eM ;' maximizes F-.n)).

For every measure vin M1 ;. there exists a mixed-strategy profile (s}, y (a regular
conditional probability distribution: sce Parthasarathyv. 1967, p. 147) such that (10)
holds. To prove that a mixed-strategy equilibrium exists. it theretore suffices to show
that 1 has a fixed point. Since & is compact. the set M 1s relatively compact
(Parthasarathv. 1967, p. 45). In fact. this set is easily seen to be a compact convex
subset ot the locally convex topological linear space of all finite signed measures on
&, topelogized by weak convergence. Therefore. i has a fixed point if it 1s upper
semicontinuous and ¥4 ) is a nonempty closed convex subset of M tor every neMi;
(Fan. 1932). To prove that y satusties these conditions. 1t sultices to show that F s

conunuous.

For every 1 such that p,>0. the function f{ {x}.xs.....x,}) is 2 -integrable. Therefore.
for every k=1 there exists a bounded continuous function f,,; : X" — 7 whose distance

from that function in the Z,(4") norm is less than 1/(-4) {(Halmos. 1950, p. 242).
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Since the mapping that sends two probability measures into their product is

continuous (Billingsley. 1968, p. 21}

Fany.n Zn P, J.J' J-u R SO T S 0 (T S D 7 A P A )ﬁ (s, )

n -1
is a continuous function for every & The continuity of F now follows from the fact
that /% — F uniformly. Indeed. it A/ is a bound on « then. for every 7 and »'in 2N
and forevery & Fin'.omy—Fn'.m <

< Z Xnp, .” J- FACT T NS 0 T SOND F Tl SR (R (U M (N ISR 0 D 7 X 740 )H s )

ol

S i [t Tz 10
I

il

]

Sufficient conditions for the existence of a pure-strategy equilibrium in Poissen {and

other) games arc given by the next theorem:

Theorem 2. Let . As. ..., be a partition of S into finitely many closed sets. If X
is « mixed Bernoulli process, if w is bounded and if. for every s and S, u(-.S) is
continnous and u(s.y can be expressed as a function of S-S USU,). then a

pure-strategy eqrilibrinnm exisis.

Proof 1 (5,.5,) = (8.8} 1s a converging sequence 1 GxMS). then S04 = S0
holds tor every 7 and every large enough 7 (recall that ., is both closed and open). and
theretore w(s),.5,) — w(s.5). Thus. # is continuous. By Theorem 1. a mixed-strategy
cquilibrium. S. exists. By Lemma 1. .8 is a mixed Bernoulli process. and it may be
assumed that S, has the same distribution tor every player x. For fixed s. the value of
the random variable w(x.S,) depends only on the value of the random vector
(SLADS ) S, Theretore. Eis.S,) depends only on the distribution of
this random vector. It follows from the example that precedes Proposition 2 that.
conditioned on §(&). this distribution is multinomial with parameters (1.0).03.....p)
= (SO ESL)TESIS). ES(A-) ES(G).. . ESC1,)'ES(E)). The distribution of (&)

is completely determined by the distribution of the random variable $(&)—which is
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the same as the distribution of X(¥). Theretore. Fiu{s.8,) depends on .S only through

ES(A ). ESCA). S,

Let /; denote the nonnegative measurable function v = P(sye.d;). By (3).
J.,fj-(_\') FX(edx) = ES(A)) for every /. Since X is a simple mixed Bernoulli process. its
mean measure 12X 1s nonatomic. unless PCX(XU)>1)=0. Assuming for the moment that
PIX( X)L 0. the measure /4; defined by A1) = EX{:1 ~ supp /,) (supp /; is the set of
points in which /=0) is a nonatomic measure on X, for every i Since Yo =1
identically. there exists a measurable partition |71, o X such that A(7}) =
It (.\‘)/‘.,-(u’.\‘) tor every 7 {Dvoretzky et al.. 1951). and hence LX(7) ) = [ Jix
EX{(dx) = ES(A;). But since [7;) and {.1;} are both partitions. and EX(X) = ES(S).
equality must in fact hold for every /. It tollows that 7; can be chosen as a subsct of

supp f. and P(s,€.4;)>0 can thus be assumed 1o hold for every xe7;. Since § is an

equilibrium. this implics that the set mx) = (se 2 (x| s maximizes Fu(-.S,) in

I({x})}- may be assumed to be nonempty for every [ oand every x in 7. The

correspondence . defined on XL s closed-valued. and has a measurable graph.
Theretore, is admits a measurable selection. ¢ @ X — & (Wagner. 1980, Theorem

120 TFor every x. Butotx).8,) = max - =110y ba(s.8,). By definition. o maps the

yEZ

elements of 7. and only them. o eclements of . Therefore. it §7 is the

representation of o as a correlated strategy. ES'C1;) = { 74 l0(x) EX{(cdv) = EX(T)) =
liS(;J,) for every i, As shown above. these equalities imply Eu(-.870) = Eu(-.8,). for
X-almost every x, It tollows that 8" 1s u pure-strategy equilibrium. It PLX{X)>1)=0.

then anv measurable selection of the correspondence ¢’ defined by w'(x) =

1 _ . . : ey -
fseZ T (1xy) s maximizes bu(-. &) in 2 I fx1)1is a pure-strategy equilibrium. [

of Ty

Remark. Theorem 2 is the only place in this paper in which the assumption that X' is a
simple point process is used. All the other results in Sections 3 through 3 are wrue also
when X 1s not simple. that 1s. when the same potential player (now better interpreted
as a potential plaver characteristic) may be chosen more than once. Thus. for

example. 1f we write Equation (4) as J.u(,s'.S-- [$3)S(dls) = max | _|-u( PS8 8] Sdy).

then Proposition 3 is true regardless of whether or not X is simple.
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