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Abstract

Consider a probability distribution goveming the evolution of a discrete-time
stochastic process. Such a distribution may be represented as a convex combination of
more elementary probability measures, with the interpretation of a two-stage Bayesian
procedure. In the first stage, one of the measures is randomly selected according to the
weights of the convex combinations (i.e., their prior probabilities), and in the second stage
the selected measure governs the evolution of the stochastic process. Generally, however,
the original distribution has infinitely many different such representations.
Econometricians and economic agents may reach different insights about the process
depending on the representation with which they start. This paper identifies one
endogenous representation which is natural in the sense that its component measures are
precisely the learnable probabilistic patterns.
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1 Introduction

The concept of a discrete-time stochastic process is a major modeting tol
in decision theory and economics. Since the probability distribution govern-
ing the evolution of sueh @ process can he highly complex. researchers often
represent it as a convex combination of shmpler distributions. Such a rep-
resentation can result in a better understanding of a process and to better
predictions about its evolution. The purpose of this paper s to idemify such
natural representations,

Convex representations arise when we deal with Bavesian models. For
mstance. a probability distribution that can be written as g = oy [l —a s,
mav be thonght ol as a two stage process. Inca preliminary stage. p or g,
= selected with prior probabilities o and | — a. respectivelys and then in a
secoted stage the selected distribution governs the evolution of the process,
Foven il the ortginal distribution 7 is complex. it miay he that the components
(o and g are simiple.

The multi-arm bandit problentis a well-known example from decision the-
orv. which has many applications in economics. (For example. see Rotschid
C197 0L Banks and Sundaram (1992). and Bergemann and Valumakt i 19967.)
[n this example. repeated uses of an arm. or activity, result ina stochas-
te segrence ol pavofls. The agent must decide m each period whether to
choose one activity (rather than other onesi. and holds subjective heliefs
about its future pavoll sequences. These beliels are deseribed by a proba-
bility distribution over pavoff streams. I many studies using this model.
the agent assumes that the real distribution governing the system is one of
many possible stationary distributions. hut does not know which one. Il
one assigns prior probabilities 10 the underlyving possible distributions. then
the agent’s heliets mav he represented as a convex combination of station-
arv distributions. Notice that while the agent’s overall beliels mav not be
stationary. sinee he updates them as he observes pavofts generated by the
armn. these beliefs may be represented as a convex combination ol stationary
distributions,

Multiperson versions of such decision problems also arise in repeated
cantes with mcomplete imformation. [(See Awmann and Maschler 119951)
Fach plaver in such a game chooses a repeated game strategy according to
his realized {Harsanvi (1967)) tyvpe. and the evolution of play is governed by
the distribution induced by the vector of strategies of the realized 1vpes. o



an observer who does not know the realized tvpes. the overall distribution is
the convex combination induced by his prior heliels of the likelihoods of the
various 1vpes,

More generallyv. in Bavesian statistics. when the statistician or econorme-
trician analvzes sone diserete time stochastic process. she considers a set of
models that may deseribe the evolution of the svstem. Starting with prior
probabilities over these possible models. which are npdated by Bayes™ rule
after every ohservation. she obtains an overall probability distribution for the
evolution of the svstem. This econometrician’s primitives are these models
with their prior probabilities,

However. 1t is possible that other econometricians, with different models
and prior probabilities. will all arvive at the same overall probability eistribu-
tion for the evolution of the svstenm, If thev all make the same predictions, ix
it ~till possible that one’s primitives are better than another’s? Two criteria
~<cem interesting: simplicity and learnabilityv. The econometrician who ob-
tains his overall distribution by building on simpler models may gain a hetter
understanding of the process. And the ceconometrician who builds on models
that become recognizable with time mav learn to make better predictions.

Starting with an arbitrary probability distribution for a discrete-time
finite-state stochastic process. our goal is to identifv its natural representa-
tions. We want the component distributions of a representation tu be simple.
in order to explain the nature of the distribution. and usetul. to tmprove pre-
dictive ability. For this purpose. we single out component distributions swhich
we call patterns. and show that the distributions of well behaved processes
may be represented as convex combinations of these patterns. Moreover,
il one wants these patterns to be learnable, then every process has essen-
tiallyv a unique representation by patterns, These learnable patterns may be
imnterpreted as the conditional distributions indueed by the tail ficld of the
I)l‘()('(’f’.‘.

To explain the notions ol patterns and learnability let us consider an
example ol a process consisting of infinite sequences of /1 and 77 one obtains

when studving repeated coin tosses,

Patterns. There are obviously many wavs to define a notion of pattern.’

"Recent examples of other noticns of pattern. drastically different from ours, can be
found tn Sonsino (1897). Fudenberg and Levine 1993), and Sargent (1993). Marimon's
P 10UAY 2urvey on tearning includes discussion of the uses of the terms “pattern” and “pattern



For onr purposes. we need to define probabilistic patterns. and the notion
we adopt Hits well nto the mathematies of representations. .\ pattern is
a probability distribution for the process. governing. for example. infinite
sequences of I and 17s. which has this property: given any finite initial
seoment ol ontcomes fooand a late time £, the conditional probabilities of
events after £ given the initdal segment ho are essentially the same as the
probabilities of these events without the knowledge of the initial segment /i
[n other words. a person who knows the pattern nay disregard any nitial
information when she predicts late events. The following exaniples should

help ns understand and motivate this definition.

N deterministic evelical pattern. say the infinite sequence {1 T H T

fits owr definition of a pattern by viewing it as a Divac measure that assigus a
probabilitv of 1 to this particnlar sequence. A person who knows this pattern
will call the outcome correctly at any time while ignoring whatever initial
information is given 1o him.

A stationary stochastic pattern. where the process is determined by visd.
tosses ol a coin. with a fixed known probability # for /1. fits the definition
of a pattern. Again. a person knowing this pattern will assign a probability
of # 1o Il at every time and will disregard any initial history of outeomes in
making this prediction.

Notice. however. that a randonily selected stationary distribution results
i a distribution which s nor a pattern. For example. consider tossing repeat-
cdlvan Lid. coin whose probability of heads. . s unknown and was zelected
by a unifornt distribution on the interval (0. 1), The tirst 100 outcomes of the
selected coin inform an observer about the likelihood of the selected parame-
ter f. which s Important information for predicting the onteome inany future
period. Tn accordance with onr results. while this disteibntion self s not
a pattern. it mayv be represented as a convex combination of continuously
many stochastic patterns. i.e. the ones generated by all possible realized
coins with known parameters,

A heavy coinis one which starts in the fivst period in a hxed position. say
. and i each subsequent period stavs in the same position as in the pre-
vions period with probability 1-c. but tums over 1o the other position with
probability . for <ome known small positive number ¢, The distribution
senerated by such a coin is a pattern consistent with the asvinptotic defi-

recoznition’ i the literature.



nition given above, For cach imitial sequence of outcomes: the probabilities
assessed for events ocenring sulficientdy far i the future are essentially the
same whether or not these assessments condition on the initial seement. It
i~ such patterns that lead us to an asvmptotic definition. An mitial scgnient
may be relevant in nmaking predictions at earlyv times: for example, inidally
it is important to know the lTast position of the com. but atier enough time
has passed the last position ol the coin becomes less important to a person
knowing the pattern.

We should emphasize that our analyvsis 1s not Inmited 1o stationary pro-
cesses, as the example of the heavy coin illustrates. Qur analvsis mayv be
applicd to any process for which the outcome of some given finite horizon s

asvmptotically independent of events far into the futare.

Learnability. Under the definition of patterns snggested above. any
determiistic infinite sequence of {1 and 7% 1x a pattern. I one knows
the sequence e, the pattern, she needs no initial information 1o correctly
predict the owtcome o any tme /. This means that anv distribution g
has a trivial representation by deterministic patterns: We simply assign 1o
every apfinite sequence its Dirac measure and use the original disteibution p
as a prior over these measures, Untortunately, these very fine patterns are
not recognizable. in that even a long time observer may never be able o
identify them. Consider. for example. the stationary stochastic disiribution
o associated with the repeated toss of a fair coin (e with #=.51. While this
distribution is decomposable into a combination of deterministic distributions
that put wetght one on cach ditferemt mfinite 1.7 sequencer an observer
cannot learn to identily which sequence was realized, After every history of
ontcomes a Bavesian observer would assien all continnation sequences the
same probability as she would withont knowing the initial seement. Thus
no information 1= revealed abonut the realized pattern. except for that part
alrcady revealed. In other words. this representation by patterns olfers no
help in predicting the future of the process,

In contrast with the above example where the type of coin is known.
consuder the earlier example of & repeated coin toss where £ (the coin’s prob-
ability of headsiis unknown and has a uniform prior of possible parameters
between 0 and 1. In this case the realized pattern (1.e.. the com) is learn-
able. After observing the outeomes for a long time. one obtains a fanly

<harp posterior distribution about the realized coin and 1= able to predict the



probabilities of the next outcome with a high degree of acenracy,

Therefore we mayv define a representation by patterns to be learnable it
for cach realized pattern. a long-time observer of the evolution of the process
assigns conditional probabilities to the values of the next state that are nearly
the same as the ones assigned by a person who knows the realized pattern.
[n other words. an observer will learn to call probabilities correctly, just as

il she had learned the realized pattern.

Relationship to de Finettl’s Theorem. The celebrated de Finett
Theorem sugeests a well-known example of a decomposition to learnable pat-
terns, [ustrated in the context ol repeated coin tosses. de Finetti considers
situations where the probability assigned to every ininal finite sequence of
[7s and T7s.is exchangeable. Le. the probability depends entirely on the
munber of /7s and s and not on their order in the sequence. De Finettd
shows that the overall probability of such a process mayv be represented as a
convex combination of distributions induced by vepeated comn tosses. when
the parameter of the coin is random. Thus.in the Tanguage of this paper. he
represents an exchangeable distribution by a convex combination of learnable
patterns. which are stationary in his case.

Our main result ix similar to de Finetti’s, except that we replace the
exchangeabiiity condition with the weaker condition of asymptotic mixing,
Our conclusion is therefore weaker: we obtain a representation by learnable
patterns. which are not necessarily stationary, however.

For example. suppose that the probability assigned to every initial seg-
ment ool s and 75 is given by p{h) = (27 + 373/27Y where wois the
length of /o and ¢ is the munher of s appearing i odd periods plus the
number of 17s appearing in even periods: then this is not an exchangeable
process since switching the positions of adjacent I/ and 1 changes the valne
ol ¢ and therefore the probability of fi. Thus. de Finetti's theorem does
not apply. Nevertheless the process can be decomposed into two learnable
patterns. g5 and g, deseribed as follows:

The first pattern. g 5. 15 our standard distribution obtained from repeated
independent 1osses of a fair coin. The second pattern. iy, may be deseribed
as the distribution of tosses that ave imdependent across periods in which
a 0,75 comn s tossed in even periods, whereas a 0.25 coin is tossed inodd
periods, 1t is casy 10 see that we will obtain the probabilities of histories

presented above when we randomly choose one of these two distributions
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with equal prior probabilities and apply 1t to generate the sequence. Morve-
over. cach of these two distributions is a probabilistic pattern that when be
accurately predicted without using the mnitial information.

In addition. however. these patterns are learnable. For almost every evo-
Ition of the process. after a sufficiently long time an observer will make one
of two types of predictions regarding the probabilities of oncoming /17<. She
will cither predict them all to be 0.50 or she will predier them to he 0.7
for odd periods and 0.25 tor even pertods: she will do this just as if she had
known the realized pattern of the two possible ones. Ngain. it is important
to empliasize that the observer does not need to know the decomposition we
presented: she will be lead 1o 1t as a consequence of simple Bavesian updating
of the original distribution,

2 An Overview

Let @ e a given set and {£,},7 be a sequence of finite o fields on Q. Let

- be the a-fiecld on @ generated by { £} e F= g (L2 Fi. Note that

I 1 coumably generated. Denote H, = o ( S /) {11.}._,
on SO F0 Let P be the set 0[ all )l()h(ll)lhl\ measares on (8,17

A
Thronghout the paper we shall treat Q0 {F2},0 Cand p & PO as fixed.

1= & hltration

Representations

Definition: A quadruple iO. B A {jri)een) consisting of a probability space
(O, .0 and probability mcasures s € PIOUE) s a representation if
FRN= O

L. & — 40 S) s measurable, and

200N = g (S dADL

For any hixed g there are varions representations from which to choose.



Two obvious examples are as tollows:
Let O consist ol a single point 4 and p: = .

Let © = Q018 = 1A= poand p_(5) = Isiw) (where [ 15 the indicator

function. i.e. the Dirac measure on <),

Notice that. with a representation. we can think of a random draw of «
according 1o g as equivalently first choosing # by A and then choosing w by
si. Inoother words, a representation consists of a prior A over (O, 7] and a
collection of posteriors, ;.

Our interest i the sequel is to identily the “right™ representation fron a
1

i a Bavesian manner over time. We would Tike to have the representation

specific point of view. An observer ol the filtration {1}, may update p
preciselv capture what the observer will learn over tune. That isowe would
like 1o be able to sav that what the observer can learn from the filiration is
essentially equivalent 1o simply being told which # has been drawn. In most
cases ol interest, the observer will learn more than the trivial representation
iwhe

re @ ix a singleton) and less than the complete representation iwhere
0= Q)

However. let us he more precise abont what we meant by the right”

representation.
Learning

First. since the representation is supposed to show what an observer ol the
filtration contes to know. it nmust be something that contains only intormation
eventually available through the filtration. This is made precise by means
of the notion of merging of measures originated by Blackwell and Dubins
i19627. We use a weaker definition from Kalal and Lehrer (1991, which
has proven 1o be important i the Bavesian learning literature fe.g.. kalai
and Lehrer ¢1993). Lehrer and Smorodinsky (19951, and Jackson and Kala
FE995 .

Definition: Let &€ P{OUF). We sav that & merges with v il 9 ¢ > 0 and

s
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=

AT = T{c.«w) such that for all 1 > T

[Zn i £ I S

sup [P = v (A H | < e

.-lE”':+1

It & merees with v, then eventually forecasts provided by & reeardine
g : | : o 3

short horizon events will approach the "true” torecasts provided Dy .

Using the notion of merging, we may now formalize what we mean by a

learnable representation:

Definition: \ representation (0.0 BN (g 11 is Jearnable if j merges with e,
for d-a.c. 0 - 0.

Our definition of Jearnability states that a representation is learnable if
an observer of the filtration will eventually: make predictions as f she had
heen inforted about the parameter £ Thus. given what the observer has
learned through the fltration. knowledge of 8 has become redundant in that
it would not change the observer’s forecast. This is the sense in which 0 1«

“learned.”
Patterns

The right™ representation should satis(y two considerations. First, as
above. the right representation should not embody anvthing which could not
be known by an observer of the liltration. Second part it should not enibody
anvihing less than what would he known by an observer of the filtration. at

least asvmptotically, That ix captured in the following definitions.
Definition: \ measure i follows a pattern if for all £ and |

T, sup i V) — gl =0 7 —ae.
AevTHrg,
This definition captures the notion that observing the filtration fasyimp-
toticallvi suggests nothing new to someone who already knows the measure
i We apply this definition 1o cach jes.

Definition: A represeutation (OO B A (pa)) of a measure jo € PIOUFY pro-

vides patterns il pg follows a pattern for A-ae. € 0.



In order 10 sce the intuition hehind the above delinitions of patterns,
consider an agent who knows the transition probabilities of an irredneible
Markov chain but as unfamilar with the current state of the chain. Her
forecast regarding the next period state mayv be incorrect. ver the agen
knows the pattern that the chain will follow asymptotically: her prediction
about events onthe far horizon are independent of the current state ol the
chain. Ton this case. knowing the transition probabilities fmodeled as knowine

#) imeans that one knows the patterns of .

Onr Goal

With the above definitions in hand. we now may be more specitic about
the main result that we pursue in this paper: our goal to identify the repre-
sentations which are learnable and provide patterns.

The remainder of the paper s stractured as [ollows. In the next see-
tion we <how that, instead of working diveetly with representations, we can
cquivalently work with a-fields. We then provide the characterization of the
representations which arve learnable and provide patterns. We close with briefl
remarks on possible applications and extensjions of the result. Proofs of the

results are presented inan appendix.

3 Representation by c—Fields

Although the definitions above arve intnitive. it is casier to deseribe repre-
sentations by associated « fields. This section shows that there is no loss of
sencrality i doing so. Roughlv, the information represented by @ mav be
equivalently represented by a o ficld. provided that @ contains no superflu-
ous mmformation.

As the paranieter set 0 is essentially arbitrary. one may naturallyv define
an equivalence relation between two representations which are just renamings
ol cach other.

[ delining the equivalence relation. we use o 1o denote the produet mea-
sure of A x o over (O] (QUF7), That is.

ol % () = / el C AN
Jica

)



Note that the marginal of o on O. denoted opi-r. is equal 1o Al and the
marginal on . denoted ool is equal 10 1.

[n the following we nse O 1o represent (4. 1N (g ey co. ) and O, 10
represent [Oy 350 A (s, Jieo, )

[ By — 3y such that oy (S0 < C) = oot A Oy forall = O £
1’3-‘3 x F

Definition: O, is weakly fincr than O.. denoted O, =, B,.if there exists

Definition: O, is equiralent to O, denoted O, ~ 0,10, =0, 0,

For the sake of simplicity we conline our discussion 1o representations
wich that £2 s countably generated. We refer 1o these as countabiy generated
represeitations. This is a wealk restriction. however. given that [ nself is

countably generated.
Consistency

Before proceeding further, let us note that one may introduce extrancous
information through a representation.  This is illustrated in the following

exainple.

Example: Consider anv g, A valid representation is to have © = {//. 1}
and g = pp = gy One may interpret this representation as having nature
flip a coin 1o choose hetween using gy or g even though this is the same

measire 1 either case.

I the example above. information about # s completely extrancous. from
onr perspective. This motivates the delinition of consistency. helow see
Diaconis and Freedman (19861
Definition: |he representation (OB A (jilaeo) 1 consistent i © s @ topo-

logical space and for d-a.c. 8 & @ og(, [ weakly comverges 1o ¢,

as |t — > premae
(‘onsistency savs that observing the filtration allows one 1o narrow i on
the parameter 8 in the weak sense of convergencee. This turns ont to he guite

different from being able to make predictions as il one knew 0 as we point

bl



out in the following examples. Thev show that consisteney and learnabiliny

are different notions, neither weaker than the other.

Example: \ consistent. but not learnable. representation: € = 0 = [0.1].
= F.and s the uniform distribution. Atv cach date £0 the observa-
tion H, is the fiest £ digits of the binary expansion of .

Example: \ lcarnable. bt not consistent. representation: (as presented

belore the definition of consistenty @ = {H. T} and gy = iy = 1.

Note that the first example shows that the weak convergence in the def-
inition of consistency allows the observer to place weight 0 on the “1rue” #f

all along the sequence.
Representation by a-Fields

We proceed toadentily with each representation a o-field corresponding
to the information captured by the representation.

Lot (7 C Fbeasub-a-field. Denote by ¢ the quadraple (Q0 G ip ) o
where prt Al = LGy ¥ A4 e B (Fix a version of the conditional ex-
pectation.) [ general. j7(-1 may not be a probability distribution. However.
1 onr case. we need onlyv consider s as we show helow i that are conntably
vencrated. i which case pz(-1 15 a probability distribution isee Theorem A
from Stincheombe (19899 10 our appendix).

Let F7obe the <et of all countably generated sub-a-ficlds of £

Lemma 1: I {OQ. B A {jrisec0) 1% a consistent. countably generated repre-
sentation then there exists (02 F= such thar (OB A (pa)ize) ~ (0L
and (7 1s consistent,

Lemma 1 atlows us 1o work with o fields diveetly, We now show that the
cquivalence relationship ~; between representations mayv be replaced with
an equivalence relationship ~» between o fields.

Definition: ¢ ~, " il for all A
piAAN ) = 00 and viee versa,

(/ there exists 32 07 such that

M



Lemma 2: 16 (¢ € Fothen (~o (il and only if (7~ o

We nse [(] and (7 1o denote the equivalence classes mmder ~5 and ~ .
respectively,

Given that it will often he useful to work directly with a-field represen-
tations. we rewrite the definitions of patterns and learnability Tor o ficld

represent Atlons,

Remark: If ¢/ = F*. then (7 is learnable if and only if for p-a.c. o and
Yo 0and prace. e Q3 Tsnchthat ¥ =1

sup | pn (A — pi VD < e i)
1t

Given this remark. we sav that (7 € F is Jearnable il (+1 1s satislied.
Remark: If ¢/ ¢ F~. then (o provides patterns il and only 1f g7, follows «

pattern for p-ae. «.

Given this remark. we sav that (7 £ F7 provides patterns it py follows a

paitern for p-ac. w.
Mixing,

Before proceeding to our main results. we provide a few more definitions.
We will restriet our attention to measures ji that are asvmptotically mixing.

This restriction 1s motivated by the following example.

Example: Lot © = {0,110 Let H, be the field of ail evlinders of fength /£,
Fr=v 2 s Consider ameasure pgenerated as follows: Partition the
sct of periods IV o IV = U N o where ecach )\ has a positive density in
IN. Let © = [0.1]% be the parameter space. Given = 1d00 00000
pro 15 the measure representing a sequence of independent coin Hips
where 1he probability of heads at time ¢ s given by #; when 1€ N
Assume that the prior A used to select a ¢ € O has the property that
the selection of the component 8 is independent of other components
0, for j # i. This means that it we do not know . 1hen no matter how

long we wait, there will be new independent coins nsed in future periods

13



that we will have no useful imformation about. Thus. there will alwavs
he periods inowhich the forecast of an agent who has only observed
history will differ from that of an agent who knows the imformation ol
f from the representation. Al-Najjar (1996al uses a similar example 1o
demonsirate a chaotic asset market which is Timpossible 1o model with

a finite factor strncture (as i the Arbitrage Pricing Theory).

This example tllustrates the problem that there may be clear patterns
associated with the sequences that ay arise from the filtration. and vel
there 1s alwavs importan imformation that cannot be learned from any finite
historv: the mformation one needs in order to make predictions, is always
contained farther in the future. We use the notion of asviptotic mixing
(defined below) to restrict attention to “non-chaotic” measnres. This. as
we shall seel assures that the patterns identifiable from the filtration are
learnable.

We now formalize the notion ol asviptotic mixing.

Definition: Let /) and (7, be two finite sublields of F. We sav that ¢/,
15 d-independent of () with respect 1o 1o a given measure g denoted
G L7 G i 2 e, (0O — o < 8 Hor all (7 2 () except on
set of atoms (7 whose union has measure less than &,

Smorodinsky (19713 shows that if €/ L7 (50 then ¢ LY ¢/ Thus, i

all asviptotic sense (as ¢ — U) the relation L7 s svmmetric.

Definition: \ measure g is o-mixing il there exists a sequence ¢, < K

siuch that ¢, — 0 as 0 — ~ for cach o and such that lor all

R O

o« \

The inmterpretation of f-mixing is that any linite horizon information may
mlhence the forecasts regarding events in the (finite) long-run future by no
more than (asviptotically) & pois mixing if 10 1 O-mixing.

We shall confine our discussion 1o measures which are asvmptotically
mixing in the lollowing sense:

Definition: ;o 15 asvinproticallv mixing if lor p-ac. @ € Q0 and for any
& = 0. there exists 1= T(¢ w0 such that g1} ix e-mixine,

I



4 The Tail Field

We are now ready 1o state the main result of the paper.
Lot £l denote the 1ail o-field. £9 = AR 1NN )

In the sequel we will abise the notation [F™ 10 represent an arbitvary.
conmtably-generated. sub o-field whicl is equivalent thy ~1 1o the tail field.

The main result is that the tail field precizely captures the asvinptotic
information that an observer will learn through the filivation. This resuh
i< stated in three pieces. First. the tail field is learnable. Second. the tail
field provides patterns in the sense that any finite horizon inlormation 1s
redundant given knowledge of the tail field, Third. any representation which

satizfies these properties is equivalent to the tail ficld.

Theorem 1: [ ;1 ix asvinptotically mixing. then [#798 35 learnable.

Theorem 2: [+ provides patterns.

That the tail field is learnable (in the asvmptotic mixing case and pro-
vides patterns relative 1o g snggests that it gives us the right representation
ol the learnable uneertainty, To make this statement convineing, we show
that anyv field which is learnable and which provides the patterns relative to
o must be informationally equivalent 1o the tail field.

Owr notion of informational equivalence is hased on the forecasts provided
by alield. e. two fields are informationally equivalent if the provide the same

asviptotic forecasts,

Definition ¢/, and ¢/, arc asvmptoticallv informationafly equivalent (de-
neted (7~ Gy i for every noand p-ae. w

Hong sup qeun

o, U.’}"}l(.'\) — ,{!}";-_)l Ay =0

The eguivalence relation ~x is coarser than ~, (and thus ~ ).
Lemma 3: Given (.67 € Foif 0~y (7 then (0~ (.

[



We mav now provide the main result which characterizes the representa-
tious that are learnable and provides patterns.

Theorem 3: If y is asvimptoiicallv imixing. then ¢Cis learnabie and provides
patterns ifand ondy it (7~ F70

5 Additional Remarks

As we mentioned in the introduction. our analysis may he used to identify
the natural models that an econometrician or a econometrician could learn
by observing a stochastic process. The arbitrage pricing theory TAP T model
i< an example in which the factor structure underlving a stochastic process
of security prices is drawn ftrom the data.

The representation identified in this paper may also be wselul i assess-
ing the value of information obtained from long observation of a stochastic
process. The representation tells one i advance what patterns <he is likely
to learn and with what probabilities. [his is precisely 1the mformation she
will need in order to compute the expected additional henelit of observing
the process.

[t would he nseful to obtain additional results connecting our representa-
tions to specific attractive alternatives, For example. Theorem 3 provides au
equivalence class of representations under ~5. and one might want to refine
this class 1o representations with the least rednndancy. ez where different
parameter valunes imply different distribniions.

A recent paper by Al-Najjar (1996h) considers comimuun cconomies
whoere agents mav be indexed by the interval [0.1 . Associated with cach
avent is a randoni variable representing some action or characteristic, Al
Najjar considers decomposing the nucertainty in such an economy into “ag-
arewate states” and ‘micro-states”. where an observer of a random sample of
agents may learn the correlation pattern in the aggregate states. but not the
micro states, His ageregate states bear an intnitive similarity to our param-
cters . Al-Najjar's work differs in the extent to whichi states are broken
dowin. His decomposition is driven by tndependent residuals tconditional on

LG



the ageregate states). while onurs driven hy learning and is thus based on the
asviplotic mixing notion.

Finallv., one mayv consider roughiv the reverse of the question we have
analvzed: that is. given tvpes (which may incorporate some posterior beliefs
abont such things as patterns). one mayv examine conditions under which
there are well-defined priors. or even common priors. consistent with the

tvpes. Recent papers by Samet (1996ah) address such questions.



References

Allen, B. 193! “Neighboring Information and Distributions of Agents’ Char-
actoristies under Uncertainty.” Journal of Mathematical Economics, Vol.
12, pp. 63-101.

Al-Najjar, N. "1996a]. "Factor Structures and Arbitvage Pricing in Large Asser
Markers” fortheoming: Journal of Feonomic Theory.

Al-Najjar, N. [1996h°. ~Ageregation and the Law of Large Nwihers in Leonomies
with a Continuum of Agents.” CMSEMS wp noo 11600 Northwestern
University.

Aumann, R.J., and M.B. Maschler [1995]. Repeated Games with Incomplete
Infornration. MIT Press: Cambridge.

Banks, J.S. and R.K. Sundaram ;1992]. “Denumerable Armed Bandits”
Fronometrica. Vol. 60, pp. 1071-1096.

Bergemann, D. and J. Valimaki {1996, “Learning and Strategic Pricing.”
Feapometrica. Yol Gl pp. [125 1130,

Billingsley, P. [1979]. Probabifity and Measure. Wiley: New York. ithird editioni.
Blackwell, D. and L. Dubins [1962]. ~Merging of Opinions with Increasing
Information.” Annals of Mathematical Statistios. Volo 350 pp. NX2ONS6G.

Delacherie, C. and P. A. Meyer [197x]. Probabilities and Potential. North
Holland: Amsterdan.

Diaconis, P. and D. Freedman [1936]. “Ou the Consistency of Bayes Iosti-
mates.” Anpals of Statisties. Yol Lo pp. 126,

Fudenberg, D. and D. Levine [1995. ~Conditional Universal Consistency.”
mitneo.

Harsanyi, J.C. [1967-63]. ~Games with lucomplete Information Plaved by Bayvesian
Plavers. Parts LI and T Management Seience, Vol i pp. 159 182,
3200 331086502,

Jackson, M. and E. Kalai 1995, ~Social Learning in Recurring Games.
mimeo: Northwestern University.

Kalai, E. and E. Lehrer '1993]. "Rational Learning Leads 10 Nash Fquilibrium.”
Feonometriea, Vol G1opp. 1008 1045,

Kalai, E. and E. Lehrer 19911 “Weak and Strong Merging of Opinions.” Jour-
nal of Mathematical Feonomies. Vol 230 pp. T3 =6,



Kandori, M., G. Mailath, and R. Rob [1993". "Learning. Mutation. and Long
Run Equilibria.” Feonometrica, Vol 61, pp. 27 26,

Lehrer, E. and R. Smorodinsky [1991]. "Repeated Large Games with Incom-
plete Information.” forthcoming: Games and Eeonomic Beliavior.

Marimon, R. 19950, “Learning {rom Learning in Feonomics.” prepared for the
s . : ! i3 ]
Tth World Congress of the Feonometric Society.

Rothschild, M. [1971]. .\ Two-Armed Bandit Theory of Market Pricing.” Jour-
nal of Feonontie Theory, Yol 9. pp. 185202,

Samet, D. [1996a;. “Looking Backwards. Looking Inwards: Priors and lutrospec-
tion.” mimeo,

Samet, D. [1996b]. “Common Priors and Markov Chains.” mimeo.

Sargent, T. [1993]. Bounded Rationality in Macroccononiics. Oxford: Oxlord
University Press,

Sonsino, D. [1997]. “Learning to Learn. Pattern Recognition and Nashc Equilib-
rinm.” Games and Feonomic Behavier, Vol 150 pp. 256 331,

Smorodinsky, M. [1971]. Ergodic Theory. Fntropy. Lecture Notes in Mathenat-
ics edited by AL Dold and B. FEckimann. Springer Verlag: Berlin,

Stinchcombe, M. [1990°. “Bavesian Information Topologies.” Journal of Mati-
ematical Feonomies, Vol 190 pp. 2313-253,

14



Appendix: Proofs

The following results will be useful i proving Lemma 1.

Lot ATe(ed = Ny qeceen L i See definition 3.2 of Stincheombe {19%9).)

Theorem A: [Stinchcombe {1939 I € Frothen there exist versionx of fal oy (o
for all 4 € £ such that (4 = E{14) is a probabiliny measure pr-ae.
Furthermaore. prt A pfe)) = 1 for ji-ae. o«

Lemma 9: If ¢, C I then {7 is a consistenl representation.

Proof of Lemma 9: We first need 10 show 1hat 7 ix a representation. This
is straightforward as the two conditions of the definition of representation are as

follows:

1.« — j7d8) i the same mapping as o — KOG e which by definition of
the conditional expectation 1s Borel measnrable.

20 [yt Sdp) = [ EUS[Ghi)dpie) = [ lstaidptey = (S,

The fact that ¢ is consistent then follows from Theorem A and the fact that

[H}2, generates F.

Proof of Lemma 1: By consisteney we know that Aae. ol | M) weakly
converges 1o & geasen Thiso we can generate a function 2 @ — 0 by hie) =4
such that oo(- | H)iw) — ¢ i defined g-ace. and s measurable. Extend hoin
an arbitrary way to be defined on all of Q. Cousider the collection 7= {714
Ae By Tisstraightforward to show that (7 € 17 (01 countably generated irecall
that 1335 countably generated). and ¢ is a a-algebra. e (0 € F70 We now show
that © >, /. By consisteney it is clear that pa (A7 = 1 for alinost all 6 £ 1.
and gt ) = 0 for almost all 8 £ 47 Define fid] = A AL S0

o frarx Dy = [ ,u( Sy dpie)
f:‘( L O idpw)

!,r) Neplay = plh7 T D)

.

ch—T(.

= / ;1,;(.;’.'7[(‘[)0,"):lr//\[ﬁ}

)

20



= / /.',_-.(h"[_-i}ﬂ 1)}(.’/\{914»/ ,u,n(ffl Ay INdA( )
Jhe A

: JoeAr
= / ja I d A8 + / N A E)
Jaie 4 e

= (f)][.\ < [
As for the converse, ((C > 1 define /0 @ — Qi any way so that Joo b
the idemity. This definition can be made almost everyvwhere since the image of
h has probability I. Take €7 € (7. By construction there exists 4 € B such that

e tel BTN = R0 = 4L Then

(;}."h—'-((‘) x ) = 11\.4 x Di=oyh i Dy = o0 5 ) B

Proof of Lemma 2: We begin by showing that ~» is stronger. Consider the map
iy s (8 — ¢ defined arbitrarily by g 008 ) = 00 As ~y is satisfied. this is well
defined. Similarly. define the map fo 0 (0 — (L Consider any (4. D)€ (O |

oA x DY = [yt D = | FUp[GH e dye = | Tl idye = f::.(;__“ Iplwidpy =
[; oy HEal Dielpe = opth () < D).

Similarlv, o Chat Yy D) = oyib x D) and 5O (f ~| e
For the other direction. assume that (7 ~; € and define 1y and ky accordingly.
For any 1 ¢ (f

gl = dp = / Ly Giieidp =
S

pig, (Wi = / pi, Ay = / Eily Gowldy =
A iy . i)

I

l;lw el = g AN ()

Therefore:

(ad pl A0 by =0

Applving a svmmetric argunient to fip{4) we get:
ihy oty D h_,w[h]{.l )= 0.

Also

el T hyhy A ‘*/ Ui anteidie =

/ F (Gl ldpe =



/ e g th (G dp = [ jg Ul ingc A ndp =
JA ’ f () )

S

/ pige U U 0D e = / FOL S panl Ot dp =
Shytkcan Jho (B (A )

/ l,—,‘,l,',l(‘.”)(w‘)(f,lr = p(hothy (A0
Bl i AN h

which mnplies
Peg pthy (A m 4y =0,
Combining (b) and (¢):
pthyl ) = e O T AN AU L +
pihrhyo Ar TRENEES
< g i s U O S gl = 0

+

which together with (ad shows that forany A € G A) € Gy satisfies pd VA0 L) =

0. By svinmetric arguments for every B € Gyl B A hyiBii = 0.1

Proof of Lemma 3: We show the stronger resnlt that sup, op iy (0 =

| ™~

pz G = 0 aces As there are countably many sets in L i s snihi-
cient to show that for any given £ and A € Iy gz o) - pr il = 0 s
We proceed by way of contradiction.  Suppose that There exist LB & 1 auch
that i (A £ s Yy for all o € B and p(B) > 0. Wihouwt Ims of seneral-
v we may assiume that Bis of the form {w |z () > 0 > pr S04} Denote
By = Ae | g (0 > o) By = e [y, () < (1} Obviously. 1y € ¢/ and
13, € (/5. Denote by &y 26 — Gy and iy 0 () — (7 the isomorphism generators
of ~1. Let B = b8 ie. By € ¢/ and B < (. Without loss of general-
ity (see Proof of Lemma 2). we assume that p{ 3y A By = ;u’ B A B3y =00 As
Bo=Byolywehave pt B A8 = gt B ANTBI 7B = 00 Also by the prop-
ertiesof iy oo (U B A 0N BT = 0and pi( 3,787 _\ L BB = 0.

We are now ready to reach a contradiction as follows:

Ay =

i Ay = / pr iy = / jir U =
EUUBINRY . JB.mHT T

pir ENdp <o 1

oo ) <

[l

Proof of Theorem 1: The prool of Theorem 1 relies an the following lemmas.

Lemma 6: ITS; 25, 35, ... is a decreasing (with respect toinclusion) sequenee

I~
(RS



of o-fields. then for any integrable random variable N

LN IS — 0 FUY 7L 8 pi—ae,

Lemmnia 6 s a straightforward application of the convergence theorem for reversed
martingales (see. ez, Theorew 35.9 in Billingsley. third edition).
Lemma 7: If g is comixing. then for any A1 & Fy

i 4 — Eig ] < e

Proof of Lemma 7: l'or any n.m € ¥

!;u,nf FOLF Al < iy — B v e

[ R - e Tl .
LA RISy S B AR Jray i1
According to the definition of c-mixing for any & £ V. one could 1ake » jarge
cnongh so the first summand on the right side of (6) i less or equal to “mlesien
I \ . [T R b i
IS R A R AR A R e (2]

We turn to treat the second summand. Note that for any n. F (l 1

P

—- Llherefore in

"

Ey

is a bounded martingale with respect 1o the filtration (4
converges to F{1ivE P By applving Egorovis on a set sk satisfving p{ 10 >

I — L for anv given n one can choose m large enough such that
R A 2 !

. PR hbH -5 - b -t ! .
‘1-_(1,_‘| CET = EOL v D < (3)

As v PN F by Lewnma Gowe have F (14 v,2 P71 converges ae. to
O P S0 (by similar arguments) one can take n large enough 1o satisfy
VL . & = = A

| an g gl f
‘f-_(l,; R I b
on a set If; satisfving p( By > 1 — £ Fioallv, Equations (210637, (1) and 05 give
=
-3

¢

plc = R l..Hf"""il)g < ;
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on e B Notethar gl 0 By > 1 - f’ As this holds for all & 2 V. the result
ix proven.

Proof of Theorem 1: ¥¢ > 0 and p-ae. o € @ there exists ng such that for all
i g p 00 {delined as p(c| P{w)) is c-mining. By Lemma 5
SUp };r,,(_\) — kA 1,1\}"'“‘” VoI <
'.!E.r_'n—l L !

which is exactly the required condition for learnability. |

Proof of Theorem 2: Since ji7.,. has a trivial tail for g-ae. o7 the theorem
follows from the fact that for any measure v.omixing 1= equivalent to having a
trivial 1ail. (See Smorodinsky (19710991

Proof of Theorem 3: The following lemmas are useful in proving Theorem 3.
- tre . . " i
Lemma 8 Vi = AT implies p7 =y

Proof: lLook at arbitrary wp.wn € Q such that AT (e = eglea) Lor an
arbitrary set 1€ Fodenote o= E{lg | Giw)and O ={w Filg | G)iwi=al.
Obvionsly, €72 &0 Definitely wp € ¢ and so A (e)) 200 Bur 2y € AT (w)) =
Aty CCand so Filg | (Hiwy)

we are fidshed. 1

=a. As wp.wy and B were chosen arbitrarily

m
-
L1l
~
Il

Lemma 10: ¢ merges with ¢ i, and only if. ¥ ¢ = 0 and v-ae. &
Tio.o)ysueh that ¥ ¢8> T

sup et AV — v )] < e

M.‘\En"}*,‘

Proof:’ [n the following. we make use of Lemma | from Kalal and Lehrer {weak
and strone mergingl. For the reader’s convenience, we restate this as Lemma 1]

helow.

Lemuma 11: Let g, be a sequence of measurable functions that converge v-a.e. to
k= 0. For every ¢ > 0 there is a time 1 such that

P L CoU () > o for at least one d > 1)) <«

Y has a trivial tail if w4 € {001} for all A€ FTRL
We thank Elind Lehrer for this proof,



\\'ll(‘I'(’

(= {w' M — ] > ¢ forsome s > f} .
\ ,
Bl

We use Lemma L1 with respect to the following sequence of functions

gler=T{= 34

18!

Py nlA oy — vl A > )

In this case. the set () can be rewritten as

(=4 SUp [ oA ey —wi o>
LAEF .

and

Cro=2w| sup jul | Hai—wiby gy <o
LAEF e

By Lemma 1. there exists f such that £ >/ linplies

e el O | < e > 0 > 1 =

Substituting ¢ for (4 we got

/

pla Oy M) > 1= 9> ) > 1 —c

For convenience we shall denote the above set by D, 1o

D= e el
Hoy» 1= forall ¢t > £y}, By the assumption of Lemma 10, 38 = f{<. ] such

that ¢ >t implies that forany fand 4 C Fopi

ol A Hy = e
=D Copy | Dy T, D 0 Coy e Y D D)
il DA Cog | DYy et 0 D Cosy = H D 00
+o( Do yet A e Dy — et | Ho D) <
SO ==+ (L= g2+ 1021 <

<50l



Lemma 10 states that merging assures that predictions of all short run events will
ovemually be accurate. whether they ocenr in the near or far future.

To prove Theorem 3. we show that i ¢/ and ¢ are both learnable and provide
patterns. thet O ~3 (/.

By Lemma 10, Lenma 2 in Lehrer and Smorodinsky (1996). (). and learnability,
for any e and jrae. @

e sup, qeoym g

P

1;1{“,—;(.HH,)f,ut.-l}ff;] =0, pp, —ae.

Sinee €4 provides patterns. it follows tat there exists a set Cp with pic = |
sineh that for all moand o € €7

11, SUD, Aevi B

A — g () =0

for any ' € Bi{whwhere gz (I (<)) = 10 By Theorem A we may assunie. without
loss of generality. that By(w) C Ay (<) By Lemuma S, one can write g7 instead
of pz. in the previons equation. Let Dy = U_co Byt Fhen pld Dyr= 1o and for

all i and &€ By

limesnp, e ps, o, | VST — ‘,1;‘_': {1 =0.

We can find a similar D, corresponding to (75 so that pify) = 1o and for all w
and e 1.

lim. sup,

o e U - pz i b =0,

Combining the two previous equations. let 1= Dy Do Then () = 1oand for
all meand 2 e D

Iy, SUP g

pes L == 018

l.l.':+”



