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Abslract

A transversal generated by a system of distinct representatives (SDR) for a
collection of sels consists of an clement [rom cach set (its representalive) such that
the representative uniquely identities the set it belongs to. Theorem 1 gives a
necessary and sulficient condition that an arbitrary collection, finite or infinite, uf
scts, [inite or infinite, have an SDR. The proof is direct, short, and doces not use
transfinite induction, A Corollary Lo Theorem 1 slows eaplicitly the applicativnto
matching problems.

In the context of designing decentralized cconomic mechanismes, it turned
out to be important lo know when one can construcl an SDR for a collection ol sels
that cover the parameler space characterizing a finite nunber of cconomic agenls.
The gondition of Theorem 1 is readily verifiable in that cconomic conleat.

Theorems 2-5 give different characlerizations ol situations in which the
collection of scts is a partition. This is of interest because partilions have special

propertics of informalional cfficiency.
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Introduclion

A class of scls is said to be represenitable if there is a function that assigns to
cach sct in the class an clement of that sct in such a way that no two scls arc
assigned the same clement. Such a representation is called a system of distinet
representatives (SDR). In this paper we present necessary and sulficient conditions
for the existence of an SDR covering cases in which both the class of scts and (he
scts in the class may be infinile.

Our interest in systems of distinet representatives arises from mechanisim
design, more specifically, from our construction of an algorithmic procedure lor
designing decentralized mechanisms Lo realize a given goal function. Ordinarily o
come up with a mechanism that solves a given design problem requires the

an idea for a mechanism that will

designer to have somc insight into the problem
meet the given requirements. And ordinarily the desiginer must then show that
her mechanism does in fact work. An algorithmic procedure for constructing
mechanisms relieves the designer of both of these burdens, Following the steps of
the algorithm resulls in a mechanism that is guarantced Lo work. The algorithin
for construcling mechanisms makes usc of systems of distincl representalives. This
is discussed in more delail after the concepts and technical machinery have been
introduced. The algorithmic construction is presented inumedialely following
Theorem 1. The construction relies on bolh the resull stated in Theorem 1, and
part of ils proof.

Rescarch on mechanism design divides into two main branches. One
branch focuses on incentive effects arising from distributed or asymmelric
information, ignoring issucs of informational feasibiily or efficiency, while the

other focuses on the problem of informationally efficient coordination arising [rom



distributed or asymmetric informalion, while ignoring incentive issucs. There are
a few papers that addicss both issucs together. (Hurwicz [10a], Reichelstein [15a),
Reichelstein and Reiter {15b]).) Our algorithm focusces on construcling
decentralized mechanisms with desirable informational properties that realize a
given goal function, ignoring incentive issucs.

Roy Radner’s work on mechanism design conlains important contributions
to this branch of mechanism design theory, notably his work on Team Theory,
(Radner [14a], [14b], [14c]; Marschak and Radner [1972] and our joinl work wilh
Roy on the B-process. !

Denote by C a collection of subsets K of a set W. (Thus, the K's arce
subscts of W but clements, sometimes called members, of C.) A collection C has
an SDR (is representable) if there is a function A that assigns (o cach set K in € an
clement of K, so that A(K) € K, and Asatisfies the condition that if
K'# K" then A(K')# A(K").

Nolt every class of scts is representable, as the following example shows.
Let the underlying sct W consist of two clements, a and b, Let the collection €
consist of three sets, K, = {a}, K, ={b}, K; ={«,0}. Clearly the collection C s
not representable because it is impossible to have three different representatives
drawn from a sct containing only lwo elemenls.

P. Iall [8] gave a necessary and sufficient condition that a class be
representable when e class contains a finite number of {inite scts. Hall's

condition is that cach union of n clements of C conlain at least nclements of W. i

l 2 . . [ LI . - - R . . .

Fhe B-process [Hurwicz, Radner and Reiter1975} is a decentralized stochastic mechanisny thal
reakizes the Walras correspondence incclassical and non-classicel environments - environments
that can incude indivisibilities and non-convesitics, bul not exlernalitics.



the above example, Hall’s condilion is violated because the union of the three sels
has only two clements.

The following example shows that Hall’s ‘counting’” (cardinality) argument
fails when the collection C of sels is infinile (even just denumerably infinite).

Let the underiying set W be the set N = {l,2,...,ud inf} of natural
numbers. Let the collection C consist of the singlelon sets, {n},.,, together wilh
the set N itself, ie., C= {N,{i},{:l},...,adillf}. Then the cardinalitly of Cand ¥
are the same, but it is clear that there can be no SDR, because cach singleton {1}
must be represented by its sole clement n; thus all the clements of N are used up
representing the singletons and there is no distinet clement of N left to represent
N itsell. This is a (well-known) counterexample to an analogue, based on
cardinality, of Hall’s theorem for the case of an infinite collection of sets. Nole thal
not all of the sets in € are finite.

An SDR for a family of scls is closely related to the concept of a transversal.
If A is an SDR for C, then the set A(C) is a trausversal for C. *Mirsky [11]
comments,

“In the transfinitc form of Hall’s theorem [relerring to Everelt and Whaples
theorem mentioned below], we opcral(_" with familics of finite sets. This reslriction
is extremely irksome as it greatly narrows the field of possible applications of

Hall’s theorem, but it is not casy to sce how it might be relaxed.”

This concept ol a lansversal is less restriclive than sume used in other parts ol matheinatic,
¢, the concepl of a transversal to the sets making up a (dilferentiable) foliation.



Mirsky gocs on Lo present a theorem of Rado and Jung, discussed in Rado
{15] which allows an infinite number of scls, just one of which is infinite, but
requires a condition to exclude the counterexample mentioned above.

M. Hall [8] showed that Hall’s condition holds for an infinite colleclion of
finite sets. Tverett and Whaples [6] also gencralized Hall’s theorem to the case
when the collection of sels may be infinite, but the member sets (the K's) are all
finite. Their approach involves representing the collection C of sets as an incdexedd
| family, so that cach member of the collection might be counted more than once.
The cardinality of the index set is not restricled. Their proof is by Lransfinile
induction, and relics on the finiteness of the sels in C to provide the bound needed
for Zorn’s lemma. Folkman [7] studicd the case of inlinite lamilics with finitely
many inﬁnite scls, as did Brualdi and Scrimger [3]. The problem can also be
formulated as the “marriage problem” in sociceties consisting of men and women,
and studicd in the sctling of bipartite graphs. Damercll and Milner [4] gave a
criterion for deciding whelher a countable family of scts has a transversal; an
alternative crilerion was given by Podcwski and Stellens [13] and Nash-Williams
[12]. Shelah [17] provided an inductive criterion which together with the other
resulls resolved he issue for the case of countable collections of countable sets.
Aharony, Nash-Williams and Shelah [1], working in the selting of bipartite gra phs
(matching theory) gave necessary and sufficient conditions that an infinite
collection of infinite scls have a Lransversal.

P, Hall’s criterion for the finite casc involves a property of subcollections of
the given family of scls, namely, that the union of every subcollection have as
many clements as there are sets in the subcollection. Hall’s proof of sufficiency

uses an inductive argument. The generalization presented in [1] follows the



pattern of Hall's argument in both respects. Their result is that a socicly has a
solution to the marriage problem if and only if it does not contain any onc of a
certain set of structures in its subsocieties. Their proof is by transfinite induction,

In Theorem 1 we provide a necessary and sufficient condition that an
arbitrary (finite or infinite) collection C of (finile or infinite) subscls of a sct W
have an SDR. The Corollary to Theorem 1 covers the case of an indexcd family of
sets, a case that more naturally accommodates matching problems. The condition
requires the existence of a correspondence U (whose range is C and whose
domain is Lhe union of the members of C, denoted by ©) that (i) yenerates C, in
the sense that for cach 0€©, U(0) e C, and for cach clement K in C there is an
clement 0 € © such that U(0) = K, and (ii) is self-belonging, ie., 0 € U(0). The
proof of Theorem 1 is direct, brief and does not involve translinite induction. It
docs use the Axiom of Chojce.

In the first of the examples above, our condition is violaled because there i
no self-belonging correspondence defined on the two-clement union {a,b} of the
members of C = {K: K, [{3} that generates all three sets. The second example
does not contradict Theorem 1, because the collection C = IN{1}{2},...,ad inf}
cannot be generaled by a sclf-belonging correspondence whose domain is &,
{(which is the union of the members of C ).

Because our crilerion is equivalent to the existence of a lransversal for a
family of sets, and so is the criterion given in [1], the two crileria are logically
cquivalent. However, they may not be cqually uselul in application. In our work
on the design of decentralized economic mechanisms il turned oul to bo

important to know whea it is possible lo construct an SDR for a covering C of a



given underlying set W. In models of a decentralized cconomy of & agents, Cis a
covering of W =0, O = O©'x---x 0" and the elements of ©' are vectors of
parameters characterizing the i-th agent. Hence W =0 is called the parameter
space. The problem of designing decentralized mechanisims involves a given poal
function F:© — Z, where Z is the space of oulcomes or actions. The problem is
to design decentralized mechanisms that for cach 0 ¢ © produce the outcome
prescribed by the goal function for that environment 0. We have developed an
algorithmic procedure that constructs decentralized mechanisms (with desirable
informational propcitics) forra given goal Function. Tle procedure involves two
stages. The first, called the Reclangles Method (RM), ceastructs a covering of the
contour scts of lhe goal [unction /7 and therefore aluo a covering ol the space O,
by product scts, called rectangles.

The second stage, called the Transversals Method (Th1), mvolves conslrucling a
transversal for the covering C. In the RM construclion the covering Cis gencrated
by a correspondence U:0Q —— ©. In many cascs ol inlerest, the set W =01is
infinitc and the covering C is an inlinile collection of infiaite sels.”

The case where the covering is a partition is of particular inlerest is the
analysis of information cfficiency of mechanisms, and il is helplul lo know which
correspondences gencrate partitions. A characlerization of parlitions in lerms of
SDR’s 15 provided in Theorem 2. We define a properly of correspondences, called
block synomcetry, and ohiow in Theorem 3 that the coverirg C generated by a sell-
belonging correspondence U is a partition if and only if U is block symmetric.

Block symmelry is a slrengthening of the property of symuncetry of a relation,

? A more detailed description of the algorithmic procedure is iven in the Appendix,



Symmetry of the generating (self-belonging) correspondence is not sufficient tu
ensure that the covering generated is a partition.

In Delinition 6 we introduce the concept of redundant scts in a covering and
the related concept of irreducibility of a covering. These concepls are of interest in
connection with informational efficiency. A member set that can be eliminated
while the remaining scts still constitute a covering is called redundant A covering
is irreducible if it contains no redundant scts. Clearly a covering that is a partition
has no redundant scts and hence is irreducible. Theorem 4 characlerizes partitions
in terms of symmelsy of the generating correspondence and irreducibility of the
covering it generales. Theorem 5 summarizes the equivalencies of e
combinations of conditions in Theorems 2, 3 and 4.

Returning to the concepl of reducibility of cuverings, il is clear thal every
finite covering contains an irreducible subcovering--one with no redundant sels.
Dugundji [5, p. 161] has given an example of an infinite covering of the
nonnegative real line that does not have an irreducible subcovering. Fowever,
that example is a nesled family of sets in which cach set in the covering is a subucl
of other scts. A family of scts conslructed by the RM procedure cannot have scls
that are subsets of others in the family. Therefore Dugundji’s example does not
settle the question whether an infinite colleclion of scls constructed by RM has an
irreducible subcovering. At this point the question whether infinite RM coverings
have irreducible subcoverings is open.

Preliminaries

Remark 1. Let Cbe a collection of (non-emply) subsets of some set W.



Let ©=0(C) = UK.
KeC

Then Cis a covering of ©.

Definition 1. A systent of distinct represcntatives (SDR) for a collection C of subscls is

a function A:C — @ c W such that

VKeC A(K)eK, (1)

(K,K'eC, K=#K)=> A(K)#AK') (ii)

Delinition 2. A collection C of subsels of W is said to be generated by a
correspondence if and only if there exists a correspondence U :0 —— 0 such
that
(1) for every K e C, thereis 0 ¢ @ such that K = U(0}),and
(2) for every €O, U(0) e C
Definition 3. A correspondence V@ A == B is called self-belonging if and only if
Vae A, aeV(a).

Distinct Representatives for an Arbitrary Colleclion of Subscls.

Theorem 1. Let C be an arbitrary collection of subsels of a set W. (By Remark 1,
Cisacovering of ©.) C hasan SDRif and only if C is generaled by a self -

belonging correspondence U :© —— ©.

' Henee for every 0co, U(()) + .
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Proof To prove sufficiency, suppose C is generaled by a self-belonging

correspondence /@ ——> . Then for cach K € C there exists QA, cK
such that U(Q\) = K. Define ArC—© by A([{) —= 0,\“ This establishes
(l) Of. Definition 1. To cstablish (ll) supposc A([() = 0,\' = 0,\" = A(]\f,)
It follows from 61; = 0}(’ that U(@A) = U(Q\) Thus K = K.

To prove necessity, suppose C hasan SDR A:C — ©. Then by (1) of
Definition 1, for every K € C, A(]() C K. we define the generating
correspondence U0 —>— @ in two steps. First, for 0 € A(C), let

Ul A(C) —— 6 by given by UI (Q) = K ifand only if A(lf) =(J.
Second, for gc o1 A(C) define U2 O \ A(C) > as follows. Lirsl,
forall O € ©, et Co — {f( cC|0e [(} Notc that Ca is not emply,
because C isa covering of ©. Lot U2 (9) = K for sume arbilrary K e CU.
Now, define the correspondence U y

ue)={ u(o)itoc A(C)
U,(0)if 0 c©1A(C)

2
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Thus, Uis a sclf—bclonging correspondence that gencrales C. The Axiom of

Choice is used in both parts of this proof.

The question of existence of an SDR for certain coverings arises naturall y in
designing decentralized procedures--mechanisms-- to meet ( ‘realize’) a given
optimality criterion.

The mechanisms we consider are those thal verif y whether a certain aclion,

represented by an element z of the ‘outcome space’ Z, is optimal, The crilerion

of optimality is a goal function /: @ — Z, where © = Ol x.- x (“)N; agenliis

. : { {
characterized by a parameter point 0° € ©°, known oaly to that agent, where

@fis the individual parameter space of agent I, Inan cconomically important class
of cases the spaces © and Z are Euclidean, and in simpler subcases the goal
function 7 is real-valued. More generally itis a vector-valued correspondence.

The verification procedure is indirect. It involves an auxiliary space M,
called the message space.” The procedure is decentralized in the sense that cach
agent’s role requires only the knowledge of its own parameter value, and not
those of others.

A mechanism consists of three basic clements: a message space M, a

binary verification relation o, relaling © and M, and the outcome funclion

* In cconomic market models, prices are clements of such an auxiliary space. IUis ausiliary in the
sense that it helps o determine the relationship between the outcomes and Lhe apenls’
characleristics represented by their parameler vaiuges.

*"m p 0" is read as “mis an equilibrium message for 0.”



h: M — Z specifying the outcome (action) z appropriale for a given message 1.,

The verilication relation @ can be represented by a correspondence
U O M, suchthat m € u (0) ifandonly i mp 0 . We say the
mechanism (M,,O,/l) ‘realizes” the goal function /7 if /=Moo tt where the

carrespondence J represents the relation o, We call the mechanisim “decentralized”
if there exist N individual correspondences ¢ such that m1p 0 is equivalent

, i), _ / _{nl N ;
tom cu’ |0 |,i=1-Nad@ ={0 *,---,0 . When the mechanisim is
decentralized, the set U/ . {9 cO:meu (0 )} is the Cartesian product of N
sets U:” =10'ce @' me u!(U IJ ,

. [ . [
=1, N, where cach Um is a subsct of @°7

If a mechanisin realizes £, the sets U st cover the parameter space ©.

Hence to construct a decentralized mechanisim that reafizes / we must find a

covering of © through a process such that the equilibrium relation @ is verified al
a glven message /11 by having cach agent i separalely check thal 0 satisfics the

relation m o ° ¢ l, Le, that m e 1 [(0 1). If all these relations are salisficd, the

. [ . . . .
" In particular, when N=2 and cach Um is an inlerval on the real axis, the sel Um is a

reclangle.
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proposed s qualifics as an equilibrium message, and the oulcome tunclion
prescribes the corresponding oplimal action z = lz(m).

To carry out this program we proceed in two stages, KM and TM.
Prog 5

Stage 1. The method of rectangles (abbreviated RM),

We conslruct a covering of the parameter space © by whal we call the

mcthod of rectangles, abbrevialed RM; we do this by associating with cach 0 ¢ Q
a ‘rectangular contour-contained (abbreviated F-c-¢)’ subsct V(O)g S

containing the point ¢, This conslruction produces a covering of © thal is

generated by a self-belonging correspondence.

stage 2. The method of transversals {(abbreviated TM).

It follows from Theorem 1 that the covering C' = {A’g@.' K ZV(U),U C (‘)}
has an SDX, i.c., a function A- C — Owith the propertics specified by Definition 1.

" . - - *
However for purposes of mechanism construction we need a “special’ SDR, say A",

satisfying (in addition to the propertics required by Definition 1) the condition

*) V(A‘(K)) =K.

. { {
¥ Le., there exist N correspondences Vion @) such that for cach

0ev, we huch(O)zvl (0 1)><-—-><VN (() N )

Pk Tor each 0CO,V (0) s asubset of the conlour sl [ (1(0)).



The first part of the proof of Theorem 1 shows that such special SDR’s exist if the
hypothcsis of Theorem 1 is satisfied, i.e., if the covering C is generated by a self-

belonging correspondence. If the covering is a partition, then (*) is automaticalf y

satisfied by any SDR A. In general, A is not unique.

Let 7% = A*(C) be a (special’) transversal corresponding to the (“special’)

SDR A’. This transversal can be used to construct a mechanism 77 = (11/[,;1,,/1) that

realizes the goal function /. This is done by the following steps.

(i) We first use the transversal as the message space of the mechanism, i.e., we sct
M=T""
(it) We define the equilibrium correspondence i from O to M by the

cquivalence
"me ;t(@) if and only if m = A (V(O)) for some A’ satisfying (%),

where ¥ is the sclf-belonging F-c-c correspondence on © that generales C

(i)  We define the outcome funclion #: M —> Z by the relation

" It also has the propertics (rectangularity and contour-containment ) needed to make the

resulting mechanism decentralized and one that realizes F.

"' Typically the message space M provided by the transversal T s smaller’ than the

¥
paramcter space ©; g, I has smalier dimension than © in cases where they cach have
dimension. Hence the use of such a message space increases the informational cfficiency of the
mechanism.



/i(m) = F(m) for all me M.

The mechanism 7 = (A/[,u,h) s0 constructed can be shown to realize the
given goal function /7. e, given any @ € ©, there exists a message #t such that

m e ,u(@), and forany me M,ze Z,and 0 €09,

if m E,u(@) and z = /z(m) then z = F(O).

Notice that this construction does not depend on how the covering and the
transversal are obtained. If the covering has the F-c-c properly, and a transversal,
then the mechanism constructed from that transversal realizes the goal function

F.

This mechanism is decentralized when the correspondence Vo is rectangular,

i.c., when V(@) is the Cartesian product of subsels Vi(()) of the individual

parameter spaces o’ ,i=1,--,N,which is the case in the RM construction. In the
case of a covering thal is not obtained by RM, the mechanism is decentralized

when the sets of the covering are rectangular.

Families of Sets

It is not clear that Theorem 1 applics to matching problems.
A formulation in which matching problems can naturally be stated involves a
gencralization of the framework used in Theorem 1. We present the definitions

and a Corollary to Theorem 1 that applics to matching problems.
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The marriage problem is a well-known example of a matching problem. In
one version the marriage problem consists of a sct of men, a sct of women
together with a specification of the women who are possible marriage partners for
a given man, the requirement that cach man marry a woman who is a possible
marriage partner, and that no person be married to more than one partner. It is
also required that all men be married, but not that all women be married. The
problem is: Docs there exist an assignment of wormer to men that meets these
requirements in which all men are married? The Coirollary to Theorem 1 gives
necessary and sulficient conditions for the existence of such a solution. The proof

of the Corollary “conslructs,"--using the Axiom of Choice-- a solution.

Definition 4. A family of scts is a set 1 (the index sct) and a correspondence

{ = K, where for each 1 € [,where foreach i €/, K, is a subsct of an

underlying set W. We wrile A = {‘K: I [ € [} In the case where [is the set of

natural numbers K is a sequence of subscts of W,

Definition 1.1. An SDR fora family of sets A is a (single valued) function

AK—> U [<: such that

ief

) Viel A(K ek,

ii) L, jel i+ j, implics A([(r) + /\(/\/j)



Definition 2.1.

a) A family of sets K = {]&f‘ | | G [} is generated by a correspondence if and

only if there is a correspondence u:\ K". —>—> [ XW such that

i)

iel

for each W € | J K, 'U(W) €A,

ief

for cach Kr. € K there exists W, € U Kl. such that KJ. = ‘U(W{.) :

icl

~ A correspondence U U f‘; —>—> I XWis sclf-belongringr if and only if

e/

forcach weJK,, welU (w).

icf

Stating the marriage problem formally, let [ be the set of men; let W be
the set of women. For each [ € [ let Kf. be the set of women who are
possible marriage partners for Mr. £. The family of sets

K = {K‘ l [ E [} is thereby defined. A solution of the marriage

problem is given by an SDR, A, for K Thus, the marriage problem has



a solution if and only if the family K has a transversal, A(?() if

we A(K‘), then woman W will be married to man .

Corollary to Theorem 1.

Let X = {K; [ i€ [} be a family of subscts of W. K has an SDR, A, i

and only if K is generated by a self-belonging correspondence

UK —>— [ xIW.

iel

The proof of the Corollary parallels the proof of Theorem 1.

Proof: ((Z) sSuppose Kis gencrated by a self-belonging correspondence U. For

cach { € [ and [&fl € A, there exists W, E UK{ stich that

iel

u(WK ): Ki. Because U s sclf-belonging W, G KJ.. Now, [or

K (S U[< define A(K ) W,. . Therefore AU Ki D IXW . This

Jel ' icf

cstablislies l) of Definition 1.1. Next we establish l'i) of Definition 1.1,

/

Suppose A(Kl) =W, =W, = A(K') Then, ‘U(WK' ) =K

and 'U(WK‘) [( It follows that [( «[f’



(:>) We turn now to the converse. Suppose K has an SDR, A. Then

for every K,. & X, A(K) & [(i. Define 'U.'U Ki —>—> K, by

e

U, A(?() S>> K
U, JK. \A(?{) =K

iefl

where, "UI is given by ‘UI (W‘) = Ki if and only if A(K{) = W.. Todefine

fef

U, et we U Kt. \A(f/(:) Let ?\’:W = {[<r cA l W e K{. S E [} Then,

Let (f2 (W) = KJ. for some arbitrary jsuch that KJ. € X ,. Decfine U by

ﬂ(w) = U, (w)ifw S A(ﬂ()
U, (w)ifw eUKX, \A(K)

iel
The correspondence 'U(.) is sclf-belonging and generates X . (End of proof.)

Characterizalions of Partitions

If a collection of sets C'is a covering of ©, and is a partition, is it
generated by a correspondence, U © —— @7 Clearly, yes, but what conditions
must U satisfy if Cis a partition? It is obvious that if C is a partition then it has
an SDR. Is there any special property that an SDR for a partition has ? Theorems

2,3 and 4 provide answers 1o (hese questions. For the record,

19
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Definition 4. A collection C of sets (cquivalently a covering C of ©) is a partition,

ifand only if, for K, K e C, cither KNK' = ,or, K=K"

The following characterization of partitions in terms of SDR is

straightforward to prove.

Theorem 2. A coveripyr Cof Bisa artition if and only if every function
5 P ) b,

A:C— 0O that satisfics

(A} VKeC, A(K)ek,

isan SDR for C.

Proof. {Nccessity) Suppose Cis a partition, and suppose A 1 (7 - O satisfies (A).

Weshow that K,K'e C, K # k' implics A(K) » A(K"). Supposc
KKeC and K=K Since C is a partition, KK =@, Since A satisfics
(A) A(K)e K, and A(K) €K' Hence, A(K) # A(K"). Thus, A(®) is an SDR

for C.

(Sufficiency) Supposce that every function A1 C~— O that salisfics (A) is an SDR

for C. Because the scls & ¢ C are not empty there are many such functions. We

choose one such function, A, if necessary, using the Axiom of Choico, Thus, Ais

an SDR for C.
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If Cisa partition, there is nothing to prove. So suppose C isnota partition. Then

there exist two sets K and K'' in C such that

K'NK"'+ @, (a)

K'#K'". (b)

By (a), there is a point '€ ©, such that 'e K" and (' € K''. Now define the

function A': C— © by

A(K)=A(K), for allKe C\{K',K"'},
and

A(K)=A(K")=0". *)

Then, forall K € C, A'(K)e K. Thercfore (1) is satisfied. But, by (b),
K'# K", and by (*), A'(K')=A"(K""). Therefore, A' is not an SDR for C.

This completes the proof.

We next give a characterization of partitions in terms of the generating
correspondence. First, we define a property that we show is a property of

correspondences that gencrate partitions.

Definition 5 Let 8,0',0" denote points of @. A correspondence U1 Q ——> 0, s

block syimmcetric if and only if
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[0'eU@)and 0" U0)] =[0'eU@") and 0" U(0")]. (©)

We show below that block symmetry is a strengthening of the concept of
symmetry of relations. The term ‘block symmetric” is used because, when (B) is
satisfied, there is a permutation of the clements of © such that the graph of

U consists of blocks, (‘squares’) with the ‘northeast’ and “southwest” vertices on the

diagonal of © X ©.

Theorem 3: A covering C of © is a partition if and only if C is gencrated by a

block symmctric, scif-belonging correspondence U: 0 —— 0.

Proof (Necessity): Suppose C is a parlition of ©. then C has an SDR. To sce
this, define A(K) to be any element in K. Because C is a partition,

K # K implies A(K) # A(K").
Because C has an SDR, it follows from Theorem 1, that C is generated by a sell-
belonging correspondence U : © —— ©. It remains o show that U s block
symmetric.

Let 0,0',0" be clements of Osatisfying the hypothesis of (B), i.c., let

0'e U(g) and 0'' e U(@-). (i)

To prove (B) we shosy that



0'eU(@"), and 0" e U(0"). (ii)
The relations (i) and the sclf-belonging property of Uyicld

0' e U(0)NU(G")

(iii.a)

and

0" eU(0)NuU(0m). (iii.b)
Since C'is generated by U, there exist K, K', K'' & Csuch thal

K=U(@), K'=U(0), K'"=U(0"). (iv)
Since C is a partition,

KNK'=Q or K =K'
and (v)

KnK'=Qor K=K",

But the relations (iii.a) and (iii.b) rule out the emptiness of the intersections
KNnK and KK, Hence K =K and K =K' By (iv), this yiclds
u(d)=u(0)

and

23
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Using cach of these relations in (i) yiclds the corresponding relation in (i), and

hence Uis block symunclric.
This concludes the proof of necessily.

(Sufficiency) Supposc that C is generated by a block symmelrie, sell-belonging
correspondence U : © —— 0. We show that Cis a parlition, i.c., that for cvery
K.K'eCeither KNK'=@,0r K=K".

Let X and K' be clements of C.If KN K'= @ there is nothing to prove. 5o,
suppose there is 0 e KNK'. Then, since C is generated by U, there are

elements, 0 and 0 in © such that K = U((}), and K'= U(@) Thus,

~

0e U(é) and 0 € U(OAJ
It follows from (B3) and 0elU (5 ) that
voeu(d) 0eu(0)

Therefore,
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Now, since é = U(ﬁ), because 0 € U(é), by self-belonging, and U(()) - U(O) as
just shown, it follows from (B) of Definition 5 (with

0 herecorrespondingto 8" in(B), @0 0", and 0 o Uin (B)) that

Thus,
u(0)20(d)
Therefore
u(0)=u(0)

»~
N

The same argument applied to U(O) and U (é) shows that

Therefore,

A
~ ~

K=U0)= U(Oj =K'

This concludes the proof.



Remark 2 Block symmetry of a correspondence is a strenglhening of the usual
notion of symmelry of a relation applied to the graph of the correspondence.

Symumetry may be defined by the condition

0'cU(0)=0eU(0). (S)
To see that (B) implics (S), suppose U is block symmetric. Suppose
0'e U(g) We show that 0 € U(O'). The hypotheses of (B) in the definition of
block symmetry are zatisfied for 0',0"",0, where ' = 0 . Therelore,
0"=0¢ u(o).
The following cxample shows that symmelry of the generating (sclf-
belonging) correspondence is not sufficient for the covering it generates to be a

partition.

Example 3. Let © = {a,b,c}, and let

Ula) = {a,b,c}, U(h) ={a,b}, Ule) = {a, c}. Then U is self-belonging and
symunelric, but the covering it generates is not a partition. However, in this

example the covering is reducible in the sense of the following definition.

Definilion 6. An clement of a covering C of O is reduindant if climinating that
clement from C slill leaves a covering of ©. A covering is irreducible ' if it has no

redundant clements; otherwise it is reducible.



If Cis a [inile covering, then it has an irreducible subcovering, which mightbe €
itself. 1f C is not irreducible then it has a redundant element. When C s {inile,
successive elimination of redundant clements must cvenlually result in an
irreducible subcovering. This is not true when C is infinile, as is shown by
Dugundji’s example {4. pl61].

The covering C in Example 3 can be reduced in two different ways. First to
the covering C' = {{a, b,c}}, which is generated by the (constant) correspondence
U (9) ={a,b,c}, for0 € {a,b,c}, and, sccond, Lo lhe covering
C'= {{a,b}, {b,c}}, which is generated by the correspondence
U (a)=U"(0) = {a,b}, and U"" (¢) ={b,c}. Both C' and C" arcirreducible,
and U' is symmetric, while U"'is not. Of course, C' is a partition and C"' is nol.

While symmetry is not enough to guarantee that the covering generated by
a sclf-belonging correspondence be a partition, it is the case that if the covering is

irreducible, then symmelry ensures that it is a partition. The converse also holds.

Theorem 4 Let € be a covering of ©. Cis a partition if and only if (i) C is
gencrated by a sclf-belonging, symunelric correspondence U 1 Q —~» @, and (ii)

C is irreducible.

* The texm “irreducible” applied to a covering was introduced by Dugundji [5 ] p. 160.
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Proof ((:) Suppose (i) and (ii) hold. We show that Uis block symmetric, and
hence, by Theorem 3, that € is a partition. To show that U is block symmeltric we

must show that U satis{ics
[0'€cU@) and 0"cU@)] = [0'cU©") and 0" cU©@)].  ®)
So, suppose that g is an arbitrary point of ©,and consider U(a) Let

£(0) = {0 u(o) v(0) = v (0)}
and

D(0)

1l
——
[t
m
=
|
\—;__.J
o
——
=
H
<
o
D
g
—

Note that U(0) = £(0)w D(0), and £(0) ~ D(0) = @.
Cither D=, or D+ .
Suppose D # . We shall show that D # @ leads (o the conclusion that the sct

K= U(a) is redundant, thercby contradicting (ii).

Consider 0 & U(U_) Lither 0 € L((j), or 0 ¢ D(d)

If0c D(O_), then 0 ¢ vy U(O).

e D(d)



Now suppose that Jc E(()_) Then U(ﬁ) = U(()). Let 0 U(O ) If for all
t—‘): S E(a), and all 0 ¢ U(ﬁ) 0c E(a), then D(a) ={J. So we may suppose hal

de D(a) Since, by symmetry, 0e U(é), it follows that 0 € U U(0).

ven(ir)

Since 0 is an arbitrary point of U(@_), we have shown that U(a) < w U(0).

vei(i)
In order to conclude that X = U(E_)) is redundant, we must show that not every sct
U(Q), for 0 ¢ D((j), is cqual Lo U(U) But this follows immediately from the
definition of D(_Q_ )
Thus, we have shown that if D # &, then U(a) is redundant, contradicting, (i)

Therefore, we may conclude that D= .

It then follows from the hypotheses of (B), i.c., that

g'e U_(E)und 0'e U(O_), that 0' e U(O") and ¢''€ U(()') , since il follows [roin

D=, that forevery 0 € U(ﬁ), U(0) = U((j), and hence
U(Q') = U(g) = U(U"). Thus, () is satisficd. Henee U is block symmetric, ancl

by Theorem 3, C is a partition.

(=). Suppose Cis a partition. A covering C is a parlilion if and only if it is
generated by a block symmcetric, self-belonging correspondence U 1 0O —— O,
Since block symmeltry implics symmetry, Uis synunclric. Finally, if Cisa

partition, then it is irreducible. This establishes (i) and (ii).



Theorems 2, 3 and 4 may be summarized in Theorem 5.
Theorem 5. The following four propositions arc equivalent:
1) A covering C is a partilion;

2) Every function A : C — © that satisfics condition (A) is an SDR for C;

3) C is generated by a block symmetric, sclf-belonging correspondence
U:0—--0;
4) C is an irreducible covering generated by a symmetrie, self-belonging

correspondence /10 —— 0.
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