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Abstract:

A plaver influences a collective outcome if his actions can change the probability of that outcome.
He is a-piretal if this change excecds somne threshold a. We study influence in general environments
with N plavers and arbitrary sots of signals. It 1s shown that influence is maximized when plavers’
signals are identically distributed and the outcome is determined according to simple majority rle.
This leads to the surprising conclusion that wajority rules already contain the maximal number of
pivotal plavers. From this we derive a tight bound on average influence. as well as a tight bound on

the number of a-pivotal plavers. which is independent of V.

‘This analysis is relevant to problems where playvers” influence is a key consideration in determining
their strategic behavior. The applications we consider include the problem of designing a meelianisi
for the provision of public goods in the spirit of Mailath and Postlewaite (1990). partaership games.

games with production complementarities. and cooperation in a noisy prisoner’s dilemma.




1. INTRODUCTION

Strategic behavior often hinges on plavers” beliefs about the impact of their actions on a collective
outcorie,  This dependence surfaces in many contexts ranging from the provision of public goods
and optimal allocations in the presence of exrernalities. to voting. implementation aud reputation
building. In these settings. only plavers who believe they will be pivotal take into account the impact
of their actions an a collective outcome: non-pivotal plavers ignore such strategic considerations and
behave myvopically. For example. in the classic public good problemn. the only force countervailing
the incentive to free-ride is the extent to which plavers believe their contributions will he pivotal in

determining whether the public good will be provided.

How much influence can an individual plaver have? How wany players can be pivotal in a given
setting”? And. what impact does the allocation of influence among players have on equilibrium out-
comes in economic applications? To address these questions, we consider a general environment with
N plavers. cach with a random signal f,. Siznals can be interpreted as privately kuown tvpes (as in
implementation and mechanism design problens) or as noisy ourcomes of unobserved actions (as in
problems with moral hazard}. An outcome function F maps the vector of observed or reported signals
to= (F..... fv) into a collective outcome F(t) ¢ (.11 The cutcome may be interpreted as either
the probability of a binary eollective decision. e.g.. the probability that a public good is provided.
or as an outcome i [0.1], c.g.. the level of pollution. The outcome function £ and the profile of
signals £ = (f,..... fyv) can be arbitrary. In particular, signals may be correlated and asvinmetrically
distributed. aned F can range from being anonvmous, depending only on some ageregate statistic. to
the other extreme of treating o fow plavers as pivotal and lguoring all others, We define a playver’s
influence to be the change in the probability of the outcome F caused by a change in his signal. A

plaver is n-pivotal if Lis influence exceeds some threshold o < (0. 1}.

Our main result derives a tight bound on average influence which is uniform over all mechanisms and
profiles. This bound is achieved in an environment where players” signals are identically distributed
andl the outcone function is simple majority rule. From this it immediately follows that average

influcuce converges to zero at the rate N7 2 Wo then show that the mamber of a-pivotal players is



bhounded uniformiy over V. This bound is tight and can be easily commputed. Finallv, we extend the
results to enviromnents with correlated signals and where plavers might have a continuun of possible

slgnals.

Our work builds on an observation by Mailath and Postlewaite (1990) in their paper on the problemn
of provision of public goods. I their model, individuals have privately known valuations represented
by non-degenerate independent random variables £, .. tx. Selving this mechanism design problem
involves finding a schiedule of individual contributions and an outcome function that maps reported
valuations into a probability of provisien. Mailath and Postlewaite derive an asvmptorie result
which they show that the probability of provision goes to zero as the munber of individuals increases
to infinity. Their result can be intuitively understood i terins of an individual's reasouing in the
lnterim stage after learning his type. but betore learning the other individuals® types. This individual
compares the private cost of Lis contribution with the expected impact of his report on the probability
of provision. In the language of our paper, only playvers who believe they are sutficiently pivotal will
make large contributions. Alailath aud Postlewaite's insight was to recognize that in a large economy,

“Tf valuations are independent ... [then] ... few agents can be pivotal™ (p. 363).

The observation that there cannot be many pivotal players is central to arguments about strateaic
behavior in o wide range of problemns. Our contribution is to provide. for a broad class of environments,
characterizations showing that average influence and the number of pivotal players are maximized

under simple majority rules. rather than more complex non-anonymous mechanisms. !

We implement
this approach in applications which highlight the central rale of influence and “pivotalness” as a commaon

thread throughout the literature.

Overview of the Applications

In Section 3 we apply our results on influence to the problem of designing voluntary contribution
mechanisms for the provision of public goods. We provide a simple proot establishing an upper bound
ou the probability of provision. A consequence of this bound is Mailath and Postlewaite’s asymptotic

result that the probability of providing a public good of fixed per capita cost converges to zero as



the number of agents goes to infinity. We also identifv conditions under which there is an amount
¢ such that no conununity of any size can huild a project costing more than C under any voluntary
contribution scheme. This points out that the failure of such schemes may be more dramatic because

It Is not necessary to assume that the cost of the project is unbounded.

The comiection between the mechanisi design problem and our analvsis of influence can be intu-
itively understood as follows: incentive compatibility constraints require that the private gain from
declaring a lower valuation is simaller than the private loss from reducing the probability of provision.
Iu the language of our paper. the monetary contribution of an individual of type ¢ under an incentive
compatible mechanism cannot exceed ¢ times his influence, We use this observation to derive an
upper bound on the probability of provision which is uniforim over type distributions and all budget
balanced, individually rational and incentive compatible mechanisms. The bound, which can be easily
computed from the primitives of the model. clarifies the severity of the public good problem in settings
with moderately small numbers of individuals. sueh as small organizations. neighborhoods. and so on.
Many such settings iinvolve too few plavers to make asymptotic arguments useful or informative. We

provide numerical examples in Section 3.3,

The second class of applications is that of games with moral hazard. Here we stucy games with
N players each generating a sigual correlated with his unobserved actions.®  The frst two examples
apply our results to a partuership game and an ageney problem with production complementarities.
The third example studies cooperation in a noisy prisoner’s dilemma with random matching followed

by a coordination game.

Related Papers

Our results may be compared to an alternative proof of Mailath and Postlewaite’s {1990) result
which they provide in the Appendix to their paper. That proof exploits the fact that a random
variable f, viewed as a point in a linear space. cannot have high covariance with many members of
an orthenormal basis for that space. Interpreting members of the basis as the random tyvpes of the

agents. one can conclude that not many agents can accurately predict £ based on their signals. While



the notions of pivotal players and influence are not explicitly defined. the predictability of the public
outcome is clearly in the same spirit. Another related approach is that of Tudenberg. Levine and
Pesendorfer (1995}, Thev study repeated games with a large player and many small players, provide
an upper bound on the average predictability of an outeome and derive a result on the negligibility

of small plavers.

Our approach {and proof) differs from these references in a mmmber of respects. First, we provide
a tight bound on average influence and explain what sort of mechanisin achieves this bound. Second.
the bound covers the cases of correlated signals and when playvers” have a continuum of possible
signals. Both cases are important In any applications. Third, we show that the number of a-pivotal
plavers 1s bounded for any o € {1, This is a stronger conclusion than asserting that the retio of
such plavers goes to zero as NV goes to infinity, Finally, our proof provides a better perspective on
how the non-anonvinity of an onwteome function affects averagze influence awd the munber of pivotal
plavers, An implication is that the problem of characterizing inffuence for potentially complex. non-
anonymois mechanisms can be reduced to looking at simple, anonymous mechanisms which take the
form of majority rule. This leads to the surprising conclusion that majority rules already contain the
maximal number of pivoral plavers: so. no further gain can be made by considering more complex

mechanisms.



2. THE MODEL AND MAIN RESULTS

2.1 The Model

We consider an environment with N players, eacli with a random signal f,. taking values in a sot
7,, of cardinality A, (we use 7, to denote the realized signals). We focus here on the case where 3,
is finite. In section 2.8 we consider the case where one or more plavers has infinitely many signals.
The profile of random signals is denoted t=(f..... fv) and takes values in ' =T, x - x Ty, We
use t_, and t_, to denote. respectively, profiles of random signals and vectors of signal realizations

for all plavers other than plaver r. and write Ty, =17 x - x Ty x Ly =< - x Ty

Plaver 1 observes his private signal £,,. but does not ohserve the signals of the others. Signals are
sencrated according to a joint probability distribution 22 en I'. with P(t) denoting the probability
of the vector t € 7. We use £ to denote expedtations with respect to P2 and E(F[£,) to denote
the expeetation of Fconditional on individual n's signal being ¢, To simplify the exposition, we
assume for the moment thar the sienals are independent. Independence allows 15 o express P oas
7

the product of its marginals on T, and 15,0 Seetion 2.7 extends the results to environments with

correlated signals,

Let A(T;,) denote the simplex representing all probability distributions on the set of player n's

actions. and 7, € AL} dencte the distribution of f,,. Define
AT = {(rh . Py e A" s e for allm = 1. AL}

to he the set of totally mixed distributions iu which each signal has probability at least €. Denote
profiles of such signals by

A = A (T % x AT

¢

The observed vector of siznals € is mapped into a collective outcome or decision represented by an

putcome function F o7 — [0.1.% Here. F(t) can denote either the value of an aggregate outcome



{e.g.. the level of pollution. output of team production. a principal’s reward. . ete)), or the probability

of a binarv outcome {c.g.. the probability that a public project is undertaken).

For Theorems 1-3 we need the assumption (which we drop in Theorem 4) that all signals have

positive probability:
Assumption Al:  There is ¢ > ( such that te € AT tor all n.

We call a sienal distribution i, e-extremad if it coincides with a vertex of the trimmed simplex
) I
A (T). That is. £, is e-extremal if it puts probability e on all but possibly one signal. Denote the set

of extremal distributions for plaver n by ext A, (75,), and profiles of extremal distributions by ext A},

2.2, Symmetrie Environments

An etvirontnent is symmetric if all plavers have the sane signal sets: Lo i 1 = Lo for any pair of
players n and . In this case we denote the number of signals for each player by M. Symnnetrie envi-
ronments are of interest because they arise naturally in many applications (e.g.. voting). and because
their siwplicity often provides intuition for the results in more general settings. More significantly.
we will show that in studving bounds on iufluence and the number of pivotal plavers. one can restrict

attention to svinmetric environments without loss of generatity.

For svimmetric environments we also define a profile t to be symmefric it the agents stgnals are
identically distributed: 7, = 1, for all . n. This can be done with no ambiguity since agents’ signal

distributions in a sviunetric environment are defined on the same signal space.

2.3 Anonymous Mechanisms and Majority Rules

In syimnetric envirounients it makes seuse to talk about anouymous mechanisims that ignore the
agents names. Specifically. a mechanisin Fois anonymous relative to a subset of players Wit for any
pertutation ¢ of the names of players that maintains the names of plavers outside i F(t) = Fla(t).!

=



Wo call F anonymous if K = N. Anonymity cau be equivalently defined in terms of the vector
d(ty = (dy(t)... .. dar(t)) of empirical frequencies of the A signals in ¢ {that is. d,,(t) is the number
of times the mth sienal is observed. divided by N} It Is casy to verify that Fis anonvinous if and

only if F{t) depends on t only through the vector of frequencies d(t).

A special class of anonvimous mechaniss is that of majority rules. Formally, Fis a majority rule

if there are two sisnals m and ' such that for any t,

don(t) > dye(t) = F(t)=1. and

"fm(t) < dm’(t) — F(t) =4

It will be useful to interpret signal moas *Yes', sigual m’ as "No'and pool all remaining signals into a
single signal which we refer to as “All-other-signals™. or simply ‘Abstain’. Thus. amajority rule ignores
abstaining plavers and determines a binary YES/NO outcome based on o simple count of Yes's and

No's.

We will be interested Inter in describing the plavers’ influence when the outcome is determined

according to a majority rule. Define the maximal binomial probability of A independent Bernoulli

T

{rials with probability of success ¢ & (0.1} by

I\— i IN .
= max 1-gyh*,
o= s () oo

Under this rule each plaver assesses probability p, o of being i a position where his vote will he
. . [ 1 fel

pivotal in determining the outcome,

Consider now a three-sivnal environment with .V plavers. cach having signals (Yes. No. Abstain]
with probabilitics (p. p. 1=2p). with 0 < p < lc The outcome is now determined by applving a siinple
majority rule for the voting (... non-abstaining} players. What is the probability a playver assesses
to his vote being pivotal? Let K(t) be the random variable denoting the number of non-abstaining
plavers. Then P(K(t) = K) is the probability that precisely A plavers out of the remaining N1

plavers make a Yes/No vote. Then, the probability that the vote of a particular player is pivotal is the



probability of being pivotal witl: K voting players averaged over the range of the number of voring
players:

N-1

R;J.A\' = Z ])([{) o w

K=0

The figure below gives a simple geometric representation of B and p. Points in the simplex represent
frequencies of Yes's. No's and Abstentions, Horizoutal lines represent outcomes in which the number of
voting players is held constant. A plavers faces two types of uncertainty. First he is unsure about the
number of voting players K (i.e., uncertainty about the horizontal line he is on). Sceond. conditional
on knowing K. there remains the uncertainty about the nutnber of Yes's and No's. In a nmajoriry rule.
the outcome is determined by a simple 50/50 count at each K. so F = 1 to the right of the vertical
line and £ = 0 to its left. Roughly. a plaver is pivotal if the actions of ali other players correspond
to a point on the vertical line where a single vote can change the outcome, The probability of the

vertical line is R, v

"All-other-signals™ (Probability 1-2g)

K= 1
K=2eN
K=~ 1
"No’ “Yes'
(Probability g) (Probability €)

2.4 Influence

Define the influence of player 7 relative to an outcome function F. a profite t. and a pair of stenals
it by

VilF ottty =E(Flt, =) - E(Fit, =1

That is. the influence of player n is the expected impact on the outcome cansed v changing his siznal

-



from ¢ to t'. The expectation is caleulated from the perspective of this player atter uncertainty about

hiis own signal has been resolved. but before uncertainty about the others is reselved.?

To give an economic intuition, think of the problem of desiguing a mechanism F to determine the
vilue of a public outcome (g, whether a public good 1s provided). Requiring F to be incentive
compatible means that an individual of type ¢ must evaluate the implications on the outcome of the
mechanism if he reports some other tvpe /. The meclanism can. in principle. depend on the vector of
reports of all individuals in a very complex way. so the effect of individual »2's reporting t7 instead of
t may be quite sensirive to the signals t_,, of the remaining individuals. For example. while reporting
# might increase F oat a particular t—,,. it may well decrease it at some other vectors t'_ . The key
observation is that since individual 7 is unsure about the realization of t_,, the relevant object in his
decision problem is the change in the erpected impact on the collective ourcome his report will have.

This is the notion of influence captured in the definition above.
We define a plaver’s influence as the maximal infiuence he can have over all his possible signals:”

Vo(F 1) = max Vi (F. e 1)
t.6

= Wax E{F|t) - 1113’1‘1 E(Fi|t).
(£, et

2.4, The Bound on Average Influence

One measure of avereoate influence is given by average infiuence relative to t aud F:
Calel -y = . .

This measure is useful in dealing with probletus like the provision of a public good. Our first theorem
savs that average infuence is maximized using a simple majority rule applied to a symunetric profile.

It then follows that average influence is bounded by R, -



THEOREM 1. Toranye>0.t€ A and F,
V(Et) <R, ..

This bound is tieht: It is achieved in a svimetric enviroument by a svunnetric c-exeremal prefile and

an ourcome function [ that takes the form of a majority rule.

The exact value of the bound R, o for low values of N can be derived from the definition of the
binomial distribution. For large N. estimates of R, o can be found as follows: Given a symmetric
extremal profile and a majority rule relative to two e-probability signals, Cliebyshev’s inequality implies
that with high probability the uumber of voting players is approximately A = 26N, Conditional on
this value of K. the Yes's and no's are i.i.d. with mean 0.5, so the application of a majority rule means
that a plaver's influence depends on the adds that there are exactly & = eV Yes's, Using Stirling’s

formula in estimating binomial probabilities. we get the following approximation:™

1 1
]1) v = — =3

VET VN

2.6, The Number of Pivotal Players

[n many applications there is a critical threshold of imHuence below which a plaver ignores the
hupact of his actions on the mechanisin (for such applications, see Section 4). With this motivation.

for a € (0.1}, we define a plaver n to he a-pivotal if his influence is at least o
Vi) >
For a fixed €, define A7 to be the smallest integer K saristving
B o=

Note that K7 is completely determined by two parameters € and a0 and is otherwise independent of
At and F. Our next resuls provides a tight bound on the number of a-pivotal players:

10



THEOREM 2. Foramv0 < a < 1. N.t € AY and F the nmber a-pivotal playvers Is at most

K

n-

The bound A7 is achicved i a syimnmetric environnient by a syimmetric extremal protile and an
outcome function that applics a simple majority rule relative to A7 playvers and iguores the signals of
the remaining plavers. A useful implication of Theorem 2 is that the ratio of a- pivotal playvers to the

. i .
remaining plavers is bounded by —2. and so it converges to zero at the rate of —.

A N

Note that if there is no noise. e € = 0. then p, o = 1 tor any K. Thus, every plaver is 1-pivotal
and average influence cquals 1 regardless of how large N is. In a public good setting with publicly
kuown valuations. this can be exploited to induce individoals to contribute their true valuations via
“discontinuons’ mechanisims that makes building the project contingent on every plaver reporting the

truth. Such mechanisms are clearly fragile to the introduction of private information.

2.7 Correlated Signals

In this sectiom we extend our results on influence to environuments with correlated signals. We
study correlation structures in which signals are generated as the outcome of a two-stage lottery in
the following sense: Let @ be a finite set of aggregate paranteters and P a joint distribution on T x €.
Wo assume. without loss of generalitv, that 2{#} > 0 for all § since we can simply remove #'s with
zero probability, For € ©. let P(-1#) denote the conditional probability on T given 8. We make the

following assumption:

Assumption A2: (Conditional Independence) For every # € €. the signals (Froo... f ) are inde-

pendent given @, and their distribution (-7 4) belongs to AN

Roughly, assumption A2 savs that: (1) 8 is a sufficient statistic summarizing all that a plaver hopes
to infer about t_,, from his private signal £, and (2) even if playver n knew 6. then there is still cnough
- . . s
residual randomuess about other plavers” signals.”

11--



Let P(t_, [ f,) and P(#]t,) denote the posterior distributions of plaver 5 on 1, and © respec-
tively, The conditional independence assnmption iplies that P(t_,, 1,6} = P(t_, |#). In particu-
lar, for any random variable f that is measurable with respeet to t_,,. we have E(f 1 £,.8) = E(f 8.
We will apply this fact later to the random variables Flt_,,. ¢, = ). for those values of ¢ thatl achieve

plaver 1's maximum influence.

We introduce two notions of influence. each corresponding to a different assumnption abour the
information available to a plaver. Under the first seenario. plaver n s first informed that his signal
Is 1. then determines the pair of actions that gencrates the greatest expected impact on F. Note
that knowing f,, may be useful in increasing influence hecause the plaver can use that information to
better forecast other players’ signals, In this setting. a natural analozue of our definition for the case
of independent signals is to require that plaver n computes his influence as before, using the posterior

belief P(t_,, 1¢,). That is:

Plaver n's influence at ¢, VilFity) = wax E(F(t_,,.t)[t,) - 111‘}11 E{F{t_,.t)|t.).
1T, €T,
. . 1 e
Averange influence at t ViF:t) = — Z Vi(F ity
Expected average influence: VI{F) = Z POV (F:t).
t

Note that under this definition. different plavers will tvpically have ditferent posteriors about distri-

bution of signals of other plavers,

In our sccond definition, plaver n is informed of both his signal ¢, and the ageregate parameter .
He then determines the pair of actions that vields the greatest expected influence. Qur assumption
of conditional independence hnplies that his private signal ¢, is superfiuous becanse all infornation
relevant to foreeasting the signals of others is contained in 8. Thus, we can define plaver #'s influence
at {t,.¢) in terms of the posterior P(-6):

Vi (F.8) = ruE\f\; E(F(t_,.t,)i0) ~ rllél}l E{F{t_,.t,)ifh

12



and dehine

1

Average imfluence at ¢: V(F: &) = N Z Vi (F:8)
Expected average infuence: VY(F) = Z POV(F:8).
0

Note that plavers agree on the probability distribution used in computing expectations. Thus. con-
ditional on 4. this setting is covered by our result for the independent signal case applied to the

distribution £2(-1€). Our bound for the case of mdependent signals applies to V(F ) aud VY.

THEOREM 3.  Under assumption A2,

S, POVEt) < 3, PIEWV (F:6):

iy Foranve > 0.

2.8 Continemn of Signals

We now extend the framework to the case in which ageuts have continuous signal spaces, a case
that is relevant in many medels in information cconomics {e.g.. a continuwm of possible valuations for
a public good as in Section 3). We also want to understand what happens to the bound on influence

as each plaver has a finite but increasingly large number of possible signals.

A keyv parmmeter in our bound is the probability € of the least Likely signal. With A/ signals per
plaver. this probability cannot exceed \l‘, As A inercases, the minimum probability decreases so
our bound on average influence becomes weaker. In the limit when all players have a continuum of
possible signals it is easy to design a mechanism F7 such that eacl player has maximun influence of 1.
For example. suppose that f, is uniformly distributed ou 75, = 0. ll for every o, F(t) = 0 if at least

13



one signal is 0. F(t) = 1 if af least one signal is 1. and F = 0.5 otherwise. Using our carlier definition.
every player has influence equal to 1 as he moves from signal 0 to signal 1. Average influence is
then equal to 1 regardless of how large the number of players may be. This conclusion overlooks the
fact that £7(t) = 0.5 with probability 1. so F is in fact independent of the signal of any individual
plaver. suggesting that no plaver Las any influence in this case. The formal definition we provide
below captures the observation that a plaver's influence should reflect the change he can canse i the

outcome over a wide range (but not necessarily all) signals.

We will find it convenient to be explicit about the underlying probability space on which the random
signals arc defined. Specifically. we will assume that cach agent’s signal is defined on a nou-atomic
probability space (2. X ). Plaver n's signal is a random variable 1, : @ — T, where 1), is an
arbitrary set. Tt is clear that what is relevant for this plaver’s influence is the a-algebra G, geucrated
by 1, rather than the signal space T, itself. A mechanism F is a random variable F - Q — 0.1} and

the ability of plaver n to influence F based on his signal ¢ s represented by the conditional expectation

E(F1Ga)(t)-

Our treatment of the finite-signal case can be viewed as the special case where cach G, is a finite
partition in which each atom has probability at least €. In thix case. the conditional expectation
E{F1G,){t) takes ouly finitely many possible values (in whicli conditional expectation is uniquely
defined).  Our carlier definition of influence of plaver n, V,(F). is just the difference between the
Lighest and the lowest values of the conditional expectation of F viewed as a function of ¢, With a
continuum of signals and using this definition. plaver n can have maximum influence of 1 even though

F may be independent of his simial with probability 1.

One way to eliminate this problem can be roughly explained as follows: Fix 0 < ¢ < 1. and remove
a set of signals A7, of measure ¢ on which E(FG,)(t} assumes its highest values. In the example
discussed earlier, this would be any subset containing the point ¢, = 1 and excluding the point ¢, = 0.
Similarly, we remove aset of signals A, of measure € on which E{F 1 G,)(#) assumes its lowest values.
Let A, =1, — (A5 U A ). That so A4, represents the signal space after removing the two extreme

sets A0, and 47,0 We then define influence as the difference hetween the highest and lowest value

11-



of E(F |Gy ){1) as t rauges over the set A, With this definition. a player has small influence if he
cannot change by much the conditional expectation of the outcome by moving his signal over a set of

large measure.

To make this definition precise. fix versions of the conditional probabilities E(F

GO0y awd a

parameter 0 < ¢ < 1. We define the influence of player # relative to Fand e

VilFloe) = inf sup E{F1G){t) — sup inf E(F1G,)(t).
{ASI P <} 12 {AEX A <} t£.A

The complicated appearance of this definition stetus from the need to satisty two desired proper-
ties. First. for a plaver with a finite number of signals and distribution ¢, € A, (77,). this definition
coincides with the one we provided in Seetion 2.1 Second. the definition does not depend on the
particular version of conditional expectations selected. so in particular it is independent of the values
]

of E(F|G,)(f) over sets of signals of measure zero." Average influence is detined in the usual way:

N
. 1,
V(Fe =+ > Vi(Foe).

n=1

We call an agent {e.a)-picotal it VIEF. €) > a.

THEOREM 4. Five = 0 and N. Then for any set of signals {Gy.. ... Ga} and any meciranisin F.

V(F.e) <R, ..

An alternative approach is to define the influence of a player to be the change in the average value

of the random variable E{F

G, 1t} as this player moves between sets of measure at least e, Formally.

VL (F) = max : E(Fid) - min F(F 4)

{AEG A = JASG, Az}

v
. 1 <
and VI(F) = v Z";E(FJ<

=1

With this definition. following the proof of Theorem 1 we can show that: V(F) < R..x For any

N.Gi....G and F {the simple proof is omitted).



3. THE PROVISION OF A PUBLIC GOOD

In this section we use our analvsis of influence to study the problem of designing a voluntary
contribution mechanisim to provide a public good. We first derive an upper bound on the prabability of
provision that is uniform over all feasible. mdividually rational and incentive compatible moechanisis.
From this bound the asviptotic result of Mailath and Postlewaite (1990) follows: namely. that as
the number of agents increases the probability of sustaining a positive per eapita contribution goes to
zoro. We then discuss variations on the basic model and provide wuinerical examples illustrating the

results.

S.1. The Basie Model

Consider a public good economy Ex with .V individuals. In cconomy £x there is a public project
costing Oy, In this subsection. we consider {as do Mailath and Postlewaite) the case where the per
capita cost of the project is bounded away from zero. Specifically, we assume there is 3 > 0 such
that Cv > AN uniforinly in V. Under this assumption. the total project cost is unbounded across

CCoNONLes.

To model uncertainty about valuations and the mechanism., it is useful to be explicit about the
underlving probability space (€. 5. P} on which all uncertainty is detined. Individual 7 lias a privately
known valuation for the public project. which we model as a random variable t, (w) taking values in
a compact interval of possible valuations [#;.¢7]. We assume that agents’ valuations are independent
anel that there is a pon-vauishing uncertainty that an agent has the mininnnn valuation £, More
precisely. we assume that there is € > 0 such that P{t, = t,) = ¢ uniforly across all agents n and

economices &£y

For simplicity, we normalize ¢, = 0 for all Nt If the minimun positive-probability valuation of
individual = differs from zero. then a mechanism ean always extract >, f; by assigning to each
individual his minimal valuation.  The problem then becomes whether o mechanisin can extract

contributions exceeding the minimun valuations, Thus, one can view the assumption that £ = 0 as
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a normatization of the original problem in which it is assumed that the minimal contributions have

already been extracted.

There are two possible collective outcomes corresponding to whether the project is built or not. A
voluntary contribution mechanism in £y is a pair (8.¢). where ¢ : Q0 — {0.1} is a random varlable
indicating whether the public good is provided. and ¢ is a veetor of contributions (ey.. ... ey ). where
e, 0 8 — R denotes the amount contributed by individual ni. This is a setting in which the Revelation
Principle (see. for example. Myerson and Satterthwaite (1983)) applics so we can. without loss of
aenerality, yestrict attention to direct revelation mechanisims in which eacli agent truthtully reports

his tvpe.
Individual 7t's pavoff under the mechanism (¢, ¢} in state w when he truthfully reports Lis type is:
wa(w) = Hlel dlw) - o (w)-

This formulation covers the case of mechanisms which may reitmburse parts of the contributions if the
project is not built. For example, the case in which there is a full reimbursement of contributions it

the project is not built can be expressed by requiring that ¢, (w) = 0 whenever &{w) = 0.
We will call a mechanism (&, ¢) {(ex-ante) budget balaneced if

Cx E6 <Y Ecy, (BB)

n
This requires budeet balancing on average rather than for each state. The stronger ex post budget
halancing condition nmay be more appropriate it the mechanism designer does not have access to risk-
neutral eredit markets. We use the weaker requirement (BB) in Proposition 1 so the bound we obtain

on the probability of provision is valid for a larger class of mechauisms,
Next. we hmpose ex ante individuel rationality on the mechanism (& ¢):
E{u,jt,)(w) =0 for alln, P—ac (IR)

This version of the assumption allows the mechanism designer to offer fuir lotteries to the agent it
doing so improves his incentives to contribute.
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The final requirement is that the mechanism be incentive compatible. Specifically, there s a subset

O < Q. with P(Q) = 1 such that
E(“n ifn)(*"') =ty (W} E((R i tn)(“‘;’) - E(“ri ‘.{n)(“‘-"’)' for all w. “"I S SZI (IC)

That is. the payvoff when individual n truthfully reports his valuation is at least as large as his pavoft

if he mis-reports his tvpe to be £ ().
PROPOSITION 1:

i) For every 0 <y < e. the probability of provision k¢ satisfies:

t- .
sup Eé < 5 (R, .+ 1]

Ay
(&)

where the sup is taken over all mechanisms (&, ) satisfying 1R. 1C. and BEB;

lim sup Eé =90.

N (o)
Proof: ‘Lo prove part (i), let 4, = {«: E(¢1t)(w) > E(@ [, = 0)} denote the set of states at
which individual 7's anmouncement of a tvpe higher than 0 inercases the conditional probability of
provision. Note that (IR) implies that E{e, {f, = () < 0. s0 {IC) in the special case of reporting # =0
can be rewritten as:

E(epta){e) < t ) ;E("" [ta{w) — B0, = ());-
This implies E(e, | 60(w) <0, for w € A% s0

E(ey 't (w)dP < /

A,

Be) = [ Bt lterdr < /

E(E ) (w) — E(& 1ty = 0), dP
S, .

The assumption that P(t, = 0) > ¢, implies that sup; 44y, nfga E{&ty) < E(&H, =0},
From the definition of influence. there is a sequence of sets By © € & = 1.2 such that P(Bg) <y

and supyg gy, E(¢] toi{w) - }l < infypaapyeny S E(E[ o) Thus, for every &, we have

1 :
V(o) = E(8 ot w) — E(d i, =0) = o for all w e By.

-
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These inequalities imply that for every &

Ele,) < / o E [ty = B¢ |t =0) dP
V.18

+/ LB [ h)(w) = E(@ [ t, = 0)] dP
Jaunng

—

<t {1‘},((‘.1,}) - }—} — 1t

Since this is true for any b, we have Ele, ) < [V, (&) + o0, From (BB). we have

ST Eey S IV g L N A X
C(M) < < N L — )+ < — v
E(#) < e = RS << Wit s S — v,

To prove part (ii). take a sequence of i — 0 and N = N(y) such that 7, v — 0.

Q.E.D.

Part {ii) is the counterpart of Mailath and Postlewaite’s conclusion of asymiprotic inetficiency (the
main difference is that the rate of convergence here s N 52 fnstead of V-5 Part (i) provides
hounds on the probability of providing the public good that can give some insight into the severity
of the free-riding problem in settings where asymptotic argunents mayv be inappropriate. See Seetion

o . 2
3.3 for numerical exaunples, 2

One draw back of the bound in Proposition 1 is that it depends on the uniformn upper bouid
on valuations ¢ . This undermines the bound in settings where plavers’ valuations have unbounded
support. or if some plavers have a vanishingly small probability of a very high valuation. To see the
nature of the problent. let ¢;Y () denote the valuation of individual 1 in cconomy Noaud let B be a

subset of individual r's types of measure . Then the seeond component of the bound on E(ey,) is
[ PYCE(E Y () = E(6 ity = 0)]dP < / £
Fa,on 1.M5

If the expected valuations are uniformly bounded {i.e.. sup,, v Et; < ) then Chebyshey's inequality
implies that the most the probability mass is concentrated in some compact interval 0.7 for large
enough £ uniforinly across agents and economies. This. however. ix not cnough to guarantee that the
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integrals f,, t;) P are unbounded across economies. The reason is that some individuals may have
increasingly larger valuations with vanishingly small probabilities in such a way that this integral is
unbeunded. This situation does not oceur in many settings (for example. if there Is o uniform upper

hound t7 or it valuations are identically distributed). For every o > 0 define

Ly = sup / > dP.
. N {1y =r)

A weaker condition than the existence of a uniform bound is to require that H(a) — 0 as ¢ — x. This

condition. known as wniform integrability ensures that the ntegrals [ £

1oan e 7 over sets of types of

stmall probability become uniformly small.

3.2, Bounded Project Cost

Theorem 4 shows that the expected per capita contributions converge to zero uniformly over all
mechanising as N increases to mfinity. While this implics that it is increasingly difficult to build
a project whose per capita cost is bounded below, it leaves open the possibility that free-riding in
financing public prajects of a given fixed cost might not be severe in large communities, 7.¢.. when N
is sufficiently large relative to the cost of the project. If correct. this suggests that larger connnunities

might have an advantage over smaller ones in resolviug public good problems.

To shed light on this issue we investigate conditions under which the conclusions of Proposition |
cal be strengthened so that the maximum agereeate contribution is bounded. Under the conditions
we introduce, there is a bound ¢ such that the probability of bullding a project whose cost exceeds
" is zero regardless of the size of the community. These additional conditions. while restrictive. may
be relevant in many public good enviromuents, Analyticallv. our conditions help explain what miglt
enable mechanisms in the general setting of Section 3.1 to extract unbounded contributions.

For simplicity, we restriet attention to the case of where each individual has a finite number of
poussible tvpes. each with probability at least €. Our first condition is that a mechanism (&, ¢} satisties
Minimal Contributions (MC) relative to a parameter ¢ > (1

plw) <7 = e, (t)y =0 (MO
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This rules out wmechanisms with vanishingly small contributions in the linit. One motivation for this
assumption is the existence of a collection cost {e.g.. of adiministrative nature) that make very small

contributions impractical.

Second. we assuine that the contribution e, () of individual 1 depends only on £, {w). We call this
assumption measurability as it amounts to requiring that the random variable o, is measurable with

respect to the signal £,
e {w) s measurable with respect to ¢, for cach n {1

This condition restrict the mechanism in two ways. First. it eliminates the possibility of making
the contribution of one agent dependent on the contributions of others. Second. it eliminates the

possibility of randomized contributions.

The next theorem shows that under these two conditions imply that it is impossible to extract an
agereaate contribution that exceeds the number of f—-pivotal players times the maximmn valuation

tr.

PROPOSITION 2: For anv economy Ex such that Cy >t N, and o = ;—

sup Eé =10

(&}

where the sup is taken over all wechanisis (6. ¢} satisfuing IR, 1C. BB MC and M.

Proof: Fixa = £~ an ceonomy Ex and o mechanisin {8 ¢). By Theorem 20 there are at most K]
individuals £+ for whom 15, (¢) 2 . We assuine that N — K7 > ¢ (otherwise the claim of the theorem

ix vacuous) and let 1 be an hdividual who is not a-pivotal.

Consider an arbitrary mechanism (& ¢} satisfving the conditions of the Theorem. The incentive

compatibility constraint for a tvpe ¢, misrepresenting his type to be £, = 0 becomes

FVE@ 1)~ Elen ta) = tE(& i1, =0) = E{cy (£, = 0).



Rearranging tenns, and using the definition of influence and the assumption that e, is #,,-measurable.
we have

Elegity) =ty 2tV (&Y<t o <o,

Tlhe assumption of a lower bound on pasitive contributions implies
e (t)y=0

tor all individuals who are not a-pivotal. The maximum any a-pivotal individual will contribute is -
50 1o project which costs more than Cy > 10 K2 will be built.

Q.E.D.

3.3 Numerical Examples

Propositions 1 and 2 can be used to compute bounds on the probability of provision Eé¢. In
illustrating Proposition 1. it is casier to work with the case where eacl: player has finitely many tvpes

cach with probability €. The following is a corollary to the proot of Proposition 1:

Corollary.  Suppose that there is € > 0 such that for each i T, Is finite and P{t,) > ¢ for every

t, €1,. Then
max,, £t

sup Fé << —————— R .
(&) ‘)’

where the sup s taken over all mechanisms (8. ¢) satisfving IR, IC. and BI.

Proof: Irow the definition of influence. for every n E{¢ [, 1) = E(é ¢, = 0) < ¥, (4} for all n and

tn. This implies E{e,) < 30, th [E(Fib)(w) = E(¢ 6, = 0Pt < max,, £t, V,(¢). From (BB).

ey,

we have F(8) < o

< e Bla gy < ks Bl

Q.E.D.

o)
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To take an example, suppose that ¢y = NV so that 3 = L. that ¢ = .10 and E,t, = 2 for all n.
so that on average eacl: individual values the public good twice as much as expected per capita cost.
The following table provides the value of B, and the maxiimun probability of provisien for various
values of .V {The estimated values are caleulated using the approximation formula in Section 2.5, and

the exact value for N = 10. 000 was difficult to compute on a personal computer):

N I, I, Eé
{exact) {estimate) at most

30 (1320 0.325 G4%
100 0177 0.178 369
200 0.125 (1126 25%
500 0.079 0.079 16
1000 0.056 (.056 12%
10.000 - 0.017 3.5%

The bound on the probability of provision declines with N sleavly at the rate N7 L2 Note that the
Wealk Law of Larege Numbers implies that for moderately large values of N wirh high probability, the
sumn of individual valuations for the public good is approximately twice us large as its cost, in which

case it is efficient to build it.

To illustrate Proposition 2. suppose that ¢ = 0.10. ¢~ = $100 and ¢ = $1. Then for a = 0.0%, one
can caleulate that K% < 32,000, This means that no public project costing more than $3.2 million can
be financed through a veluntary contribution mechanism satistving the assumptions of Proposition
2. Note that this bound is independent of both the size of the comnunity and the distribution of
valuations. For example. if valuations are identically distributed with {2} = 0.90 and P{tg) = 0.10,
then in any community of size N > 40,000 there is probability alinost 1 that total valuation will
exceed $3.2 million. Thus. in such communities there is probability almost 1 that the project should

be built. but probability 0 that it will be built under any voluntary contribution mechanism.
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3.4, Diseussion

Mechanesm Desigi Problems with Separable Payoffs: A key feature of the public sood problem
is that individual payoffs can be decomposed into a component which depends on the collective
outcome only, awd another component which depends on costs and transfers. Mechinisim design
problems that share this feature arise naturally in many contexts including. for exaple, the
externality and spill-over problems studied in Rob (1989) and Klibanoff and Morduch (1995).
For this type of problem the incentive compatibility constraint can be decomposed (as in the
public good case) inuto o component that depends on the transters and a component that reflects
the expected effect of a misrepresentation of tvpes on the probability of the collective outcorne,
Our results on influence simplify analvsis of such problems wlen the second component can be
bounded by a (linear) function of the individual's influence. If so. then most individiuals will
regard the influence of their reports on the collective outcome to be so stnall that their belavior

is almost entirely driven by the transfers component of their pavoffs.

Allocation of Property Rights: In our analvsis we focused on the case in which the minimnal
valuation of any individual is non-negative, An interesting case is that where for some individ-
uals the project may be harmful {e.g.. a garbage incineration plant or a shopping mall which
tay cause local traffic congestion) so ¢ < 0. This raises an important point coneerning the
specification of property rights in the economy. We have so far assumed that each individual
has the right to opt out of the project. It ¢ < 0. then the issue of whether such an individual
is entitled to compensation must be addressed. Our analysis can be easily adapted to other
property rights structures. Alternative property right structures are studied in Chari and Jones
(1994) and by Neeman (1994). Neeman examines a setting similar to the one considered above:
his main result is the identification of & property right structure that can achieve an ex post

efficient outcome.



i)  Correlated Veluations: The case of correlated valuations can be hatdled using Theorem 3 under
the additional restriction that the mechanisms are required to he ex post individually rational. '
The restriction to ex post individually rational mechanisins is necessary to rule out the sort of
bets, familiar from the work of Cremer and MeLean (1985). that can be used to induee truthiul
reporting at mininial cost ina way consistent with interim individual rationality. This point
clarifies the scope of our analvsis whicl provides bounds on the extent of individuals” influence
on the collective-outcome component of their payvotfs. Other aspects of the mechanisin design
probleni, such as lotteries with outcomes which depend on the reports of other individuals, arve

in principle unrestricted by our bounds on influence.

1
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4. APPLICATIONS TO GAMES WITH MORAL HAZARD

We provide three examples of ganes with moral hazard in which our results on influence can
be used to make predictions about the set of equilibria. Throughout this section we maintain the
following notation: Each of the N players has a binary action set B = {6.h } where cach action
b, € B of player n generates a distribution ={-|h) on a Huite set of signals X = {r).. ... rat. We
assuine that there is € > 0 such that 7, (D) > ¢ for all b € B, r ¢ X and uniformly in N, Plaver
1w mixed strategyv is denoted 17),, € 10,17 which we will interpret as the probability of action . The
sets of profiles of actions and siguals are denoted by B% and X7 respecrively. Mixed profiles will be
denoted by b and a profile in which every player playvs b by b, There are two cotloctive outeomes in
aset A = {a .« b and a decision or outcome rule o 0 XY — A(4) that maps vectors of signals into
a distribution on the set of coliective outcotnes. The interpretation of the collecrive outeontes and the

decision rule will depend on the specific applications considered.

4.1 A Simple Partnership Game

We examine a simple partnership problem in which free-riding in a moral hazard context forces
any equilibriun outcome to be inefhicient. For shnplicity, set ¢ = 0 aud interpret @7 as the per
eapita output, so total output iz Na~. Given a vector of signals x. we interpret the outcome rule o(x)
as a Cprocduction function” which determines the probability of high cutput «- as a function of the
individuals® signals. We impose no restrictions on o, In particular. ¢ can be non-monotonic in the

signals and may exhibit complex parterns of substitutability and/or complemenartrities in efforts.

Output is divided among individuals according to the sharing rule 5 = (5. ... sy) which allocates
to individual 7 the share s, N o when output is realized. We assume that 8 is balanced and feasible
in the sense that 0 < s, < 1 for all 1, and Zn spo= 1o Given @ sharing rule S and action b, the
pavoff of agent. n conditional on high output being realized is s, N a — e, (5), where ¢, (8) is the cost
of effort when action b is taken. We assume that higher effort is more costly uniformly across agents.
s0 there is [ such that e (b)) — e b ) = 0> 0 for all i With this description of pavoffs. any sharing
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rule S defines a non-cooperative game T'(S) between the NV agents.

Given a sharing rule 5 and a profile of actions of other plavers b_,,. plaver n takes the action b°

ouly if the following incentive constraint is satistied:

SN a” Z m(r, b)) Z Pix_ ] l"),,,)ﬁ(x_n..t‘”) —fb )y >

n

gl )

saNam > w (b Y Plx, bl el ) = elb § ()

Ti
Note that for any two signals rand o', g(a) — ("} <V, = V(7. b}. Therefore. any two averases

over g cannot differ by more than V,. so (**) inplics

Sp” NV, Zelh )Y =lb )y = [ (== *)

- { )
PROPOSITION 3: TForanva, e > 0and N satisfving R, < —. there exists no sharing rule
a

5 for which the profile b~ Is an cquilibrivun for U(S). for any {7, } and o.

Proof: From Theorem 1. for anv {=,} aud 7. V = 1'(0.13) < I, . By the choice of N, we have

a*V{r. b} < I combining this with (***), we have s, 0" NV, » 0"V =a- Z\— for all n. Therefore,

Vi

Spo> T\L for all 2. Sunining over all agents. we get that 1 =37 s, > Z\—% . \L I'Lis
. . Ay T‘ "rr - . . . - 11
nnplies that z*—,— > f—f—\. . coutradicting the nequality of averages.

w T ’

Q.E.D.

Proposition 3 is of economic interest when b- is the only efticient profile. This would be the case
if. for exawmple. for any 7 and anv b_,, there is w net collective sain when individual © takes action
b

ae(x | boy ) —a(x! b b () — b ).

The proposition s stated in a more general form without this condition for expositional simmplicity
proj A ;

and ta better highlight the role of influence in this analvsis.

To give a numerical example, assume that € = 110 and that the per capita gain a is. sav, three
tinmes the additional cost of higher effort, so that “L = 0.33. Then using the values from the table i
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Section 3.3, the profile b cannot be implemented for N > 30, regardless of anv of the primitives of

the model a-. [ {z,}. and a.

Finallv. with simple modifications, the model can be interpreted as one in which the production
function o represents externalities generated by the agents” actions. In this case. it would be natural
to consider a fixed S, representing the way in which the externality affeets the agents” pavotts. The
proposition would then imply that the efbicient profile cannot he an cquilibrium. regardless of the

cowplexity of the mechanism generating externality.

4.2 Game with Production Complementarities

This section introduces equilibriunm considerations by viewing the outcome function o as a stratesic
choice of another plaver. The setting is that of a non-cooperative same with production complementan-
ities between a Principal and N small agents. We use our results on influence. an iterated dominance
arginnent. audd the fact that strategy choices are common knowledge in equilibrivm to restrict the set

of Nash equilibria.

Agent nhas a pavoft function ula. b)) = a — e, (d) with e, (b") =, (67) > { > 0. as in the partuership
problem of Section 4.1, Note that we now interpret @ as an outcoie common te all agents. so s, = %
for all N'. The Principal chooses a contingent strategy o : X - - 0.1] which maps observed signals
into a probability of the action «”. Lot d{b} denote the frequency of &7 ina realized vector of actions
b. We assnme that the Principal has a payveff function of the form v(a. d{b)). Note that this does not
imply that the Principal’s strategy (or the agents’ conjectures about it in their equilibrizm reasoning)
is anonvmous. We consider & non- cooperative game with the above deseribed pavoffs. where agens
choose a profile b of actions aued the Principal chooses a strategy ¢ simultaneously and independently.

A pair {#.b) is a Nash cquilibrium for the game if the usual definition applics.

The motivation for this deseription of the game is as follows, The Principal decides what action to
take after ohserving the (pavoff-irrelevant) vector of signals x hut before the pavoffrelevant choice of
b is revealed. Tn this setting. the Principal conditions his action a on the agents” signals x to influence
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the choice of b, For example. imagine the Principal as a teacher and the agents as students. The
reacher’s action mayv be choosing how much to invest in preparing eood classes and the students choose
whethier or not to study hard. The Principal observes signals, .., class participation. exam resylts,
which he can use to determine whether it will be worth his while to make high effort. Produerion
complementarties euters the niodel through the assmmption that high effort is worthwhile for the
Principal (agents) only if the agents (Principal) take high efforr. If this coordination fails. then all

plavers prefer to supply low eftort.

To model sucl production complementarties. we assume that for every oo the fuuction vla.d) :
[0.1] — R is monotone, and that v(a7.1) > r{a 1) and v{a .0} < v{a".0). Monotouicity implies
that there is * such that +{« . d) < (e .d) if and only if d < @*. Thus. high effort on the part of
the Principal is worthwhile to him only if d excecds the threshold o For simplicity of exposition we

assume that ¢ = 0.

PROPOSITION 4: Let o — 2. Then.

£
1) For auyv N, there ean be ot most KN agents who playv b~ in anv Nash eqnilibrium.

i) For large enongh N the game has a unique Nash equilibrimm in which b, = b~ for everv n and

a{x) =« for every vector of sisnals x.

Proof: For part (i). let {o.b) be a Nash equilibrimm of the game, so ali agents have a common belief
that the strategy o will plaved. By (**). applied when s,, = % only a-pivotal agents play - with

pasitive probability. By Theorem 2. there can be at most N such ageuts.

For part (ii). let {7 b} be anv Nash equilibrium. From part (i) we know that b, = b with positive
probability for at most A7 players. Thus. the ratio of agents plaving b7 cannot exeeed S, For
- K- . . . . N .. .
N> % the Principal’s best response is o(x) = a  for all x. For such o, every playver's influence is

zero. so every agent plays b

Q.E.D.
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4.3, Cosperation in a Noisy Prinsoner’s Didemma

In this section we cousider a two stage game with random niatching where the first stage is a
prisoner’s dilemma with unobserved actions and the second stage is a coordination game, Our goal is
to examine the extent to which coordination in the second stage can be used to support cooperation
in the prisoner's dilemma stage. Our main result states that the number of plavers who cooperate is

Lounded uniformly over N and all Nash equilibria.

The game is plaved between an even number of plavers N, A playver’s pavoffs is the sum of his
payoffs in the two stages described below. In the first stage plavers choose actions (Cooperate o
or Defect b7) then matched uniformly and randomly with each other. We distinguish between the
actions {6, 57 } and the signals {2z . }. which we interpret as “perceived’ cooperation and defection.
The first stage is noisy in the sense that (e b ) =x(r tb7) =1 —¢. Soif action b is plaved. the
corresponding signal is observed with high probability. but the orher sigiral is observed with probability
€. At the end of stage 1 the vector of signals of all participants x is made public. We assume. for

simplicity, that the pavoff of plaver nin stage 1 is obtained as a function of the actions.!?

The second stage is plaved without noise. Again, players are randomly and uniformly matched.
Player n observes the signals from the first stage. but not the actual actions. Thus, his strategy in the
second stage is of the form o, : X — [0.1]. where o, (x) is interpreted as the probability of playing

a " in the second stage given a vector of observed signals x. The profile of secoud period strategies is

denoted by ¢ = {(7,... .. aN).
b i a’ .
1 -1 e 0
b+ a’r
I 1+g o 0
l+g ( 0 ¢
b L
’ y 0 ‘ 0 )
Stage 1: Noisy Prisoner’s Dilemma Stage 2: Coordination Game
£ >0 ¢ *»e ()



A similar example of a two stage game without noise and with a continuum of plavers was presented
in Fudenberg and Levine (198%). They show thar there is an equilibrivm profile in which overy plaver
cooperates in the first stage. The idea is to design a profile in which every plaver is pivotal in the sense
that. given the equilibrium actions of all other plavers. a single defection in the first STAZe Causes o
switch to a worse continuation in the second stage. Ruawdon: matching in an infinitely repeated noisy
prisoner’s dilemma was studied by Ellison (1994), An important ditfference with our specification of
the prisoner’s dilemuma stage game concerns the way information is transmitted. Ellison focuses on o
special case of an information structure iy which a plaver conditions his play only on the sicnal of the
piayer with whom he was matched. In our model. we give greater freedom for plavers to choose the
set of signals used in determining their plav in the second stage. Proposition 5 below shows that the

degree of cooperation is bounded uniformly over all possible information structures.

PROPOSITION 5:  There is o > 0 such that in anv equilibrivn (b, @) the number of plavers who

plav b with positive probability is at most K7~ 1.

The intuition for the result is as follows. Second stage plav is represented by N mechanisims
(7). .. 7). cach depending on the Neveetor of signals x. Because of nniform random matehing.
oaell plaver cares only about his influence on the average behavior of the r()mui_uinp; plavers in the
second stage. A necessary condition for cooperation is that this influence is sufficientlv large 10
compensate for the forgone rewards from not defecring in the Hrst stage. Think of the allocation of
influence iy the N wmechanisms (o, .. ax ) in terms of an N x N matrix with generic entrv V),
denoting the influence of playver ni's signal on o, There are many wavs in which infuence can be
distributed. For simplicity. imagine that for cach n there is a subset A, of players such that o, ignores
signals of plavers outside M, If the M, 's are large (e.g.. M, = V for cach n). then cach player has
small influence on all mechanisis. Our bounds would then imply that the nfluence of each plaver on
average second stage behavior is small. On the other hand. If each A, s small (so only a fow plavers
matter relative to o, ) and there is not much overlap between thew, then a typical plaver has laree
influence relative to only a few mechanisins, so his influence on the average is again small. The proof

essentially shows that the degree of cooperation is bounded by mechanisms that consolidate influence
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i a single common subset of plavers MM C N. We can then apply Theorem 2 to derive a bound on
how M can be.

Proof: Denoteo_, (X} = v Lm;,n 7 (%), Since the plavers are matched uniformly and randomly
in the second stage, each will care ouly about the expected frequeney of the play of o= Thus, the
best response of plaver 71 1s of the form,

a if o_,(x)
BR,(x)={ « if o_;(x)
a ora  fa_,(x)y=p

for some threshold p determined by the pavofts of the coordination game. In deciding on whether to
plav b7 or b . plaver n will take into account only his influence on -, Let Vi, = Vi, (m,), so the

. . N
mfluence of player mon ooy, is 1), = %_l St Ve

v
For a given profile. let p,, denote playver 2's random pavof in the second stage and z,, denote the
probability of facing cooperation in the first stage. Player o playvs b with positive probability in the

first stage if and only if

1A

g+ (L= z < [(L=—a)E(p, e )+ eE(puie )] = [E@y e )Y+ {l-E(p.jr )

(1 = 2){E(py |2} = E{pa|a)]. (+)

That is. the RHS represents the gain of plaver » playing b~ instead of b7, while the RHS represents

the effect of shifting the distribution on his signal by putting more weight on - than hefore.

Fix an equilibrium and let {1.....] A} denote the set of plavers who play b with positive prob-
ability. Following an argument similar to the one used in the proof of Theorem 2. we may modity

each o, into a new mechanism o] that depends only on the signals of players m < M. m # n, and

.. . . ~— \f " Af ’ .
such that the sum of influences of these plavers increases: Y o V(o)) = Y w0 Vi Writing
I P

i) - f "y TP
Voo = Vinlag ). we have

Af MOON NoAf } NN M

Il”l = \Y _ 1 ‘?HH - \' _ 1 1'Ui?! 2 \‘ _ 1 147”” == .‘7”'
m=1 . =] v ) =1 m-1 ) =1 m-1 =1
s HoE A

From Theorem 1, there is a svimunetric environment such that for every n there is o svimetrie. e-
extremal profile and an anonvinous wmechanisim @, depending only on the signals of plavers m <
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A “r X - , , . . .
M. m # nosuch thatt 3 -0 Vi > 3w VL where Vi, = V,(64). Note thar in the new
i LT

environent the number of signals has changed: the “profiles’™ 4, ’s are used in computing bounds on

influence and have no strategic meaning in terms of the plavers’ actions.

Since p, < ¢+ (7 — g, (+) implies that a necessary condition for plaving - with positive

probability is

min{g A} < (L —2e){e” = VE{m_lum) = Elo_, |0 < (1= 26e)(e — e}V,

. . iu{g.d - - EES
Setting o = —wide g every < A we must have V), = oL and

(1-2elie -}

M A M
DIz Y VL2 Y VL Ma

=1 =1 m=1

- . N e . . .
T'hus, there s m < M such that V= ﬁ S Vi = e This In turn implies that there s 7

such that Vi, = . The anonymity of ; hmplies that V.5 > o for every m < M. m # n. This
means that every such player mis a-pivotal with respect to the mechanism 7,0 s0 by Theorem 2, A

is bounded by K + 1.

QO.E.D.



APPENDIX

For a plaver o let £, and 4 denote the pair of signals at which his nmaximum influence is aclioved
{that is, V,(F.t) = V,(F.t8,. 1)), Tt is also convenlent to define his conditional influence given the
sivnal of plaver n’ to be:

Vi(Fob [t = 00) = Y Pty tr =10} F{toty = 1) = Flto,t, = 1)

n
to.

With this notation. average influence V{F. t) can be expressed in terins of the probability distri-

bution of plaver n's signals as:

A, AY
NV = U (Pt = Y Pl=10) Y Vie(FE[t, = 1),
mi=1 noFER

K

1

The second part of this expression: 370 P4, = #7994 is a linear function of agent n's distribution

Pty = 17") and is therefore maximized at some signal which we denote £

PROPOSITION A.1:  Fixe > 0. Fandt € A¥. Then there is a restricted signal set 1) of three
distinet signals for plaver 1. a distribution t; € ext A,(Tl) and a mechanism F o< T, — 0. 1]
stch that

V(Ft) < VIF.t x o)

Proof: Consider the subset of signals Il’ = {t;.t; "™} in which some of the signals may be
repeating (this will necessarily be the case if playver | has only two signals). Consider the distribution
# which assigns eacliof 17 .15 probability € and probability 1 —2e ro 1% Define F7 11’ x1I_,, — 0.1
as the natural restriction of the original F to the restricted sizgnals space 11’ Since individual 17s
influence depends on the value taken by Foat {7.£] } only. his contribution to total influence is
unaffected by this change in the signal space and the distribution. From the definition of /" we also
have that shifting weight 1 — 2¢ to it (weakly) increaszes the total contribution of other plavers to total

influence. Thus, V(F. t) < 1"(F’.f"1 x 6,0
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We now convert 11' to a set of three distinet signals 77, Tor later use. it will be notationally
convenient to choose 77 = {0.1.2} to be a standard signal space common to all players. H the
signals {04, A are all distinet, then identify 1'% with 1. #; with 2, and ¢ with 0. and define
Filix1., — [0. 1) to coincide with Fl’ under this identification of signals. We now turn to the

various cases i owhich {#7 .4, .6 fail to be distinet.

Assume first that #] = "% so the probability of this combined signal is actually I — e In this
case. identity £ with 1. and ¢ with (. We then split from signal 1 a new signal 2 that carries
probability ¢ {so signal 1 is now left with probability 1 — 2¢). Define the mechanism I} so that signal
2 is redundant in the seuse that F treats signal 2 in exactly the same way as signal 10 That is, the

new wechanism F oy x T2, — {0.1] is defined by

FlOo.t_) = F(t7 . t_y)

F(lLt_)) = F{t7.t_y)

Note that this does not atfect the influence of any individual. The proof for the case in whichi 1, = £
is sitnilar. Finallv. if #7 = ¢, . then the mass of 2¢ assigned to 1" can be split over two signals which
F treats in the same manner. and this can be done without reducing influence.

a

Q.E.D.

Call (17,01, t) the standard environment i {1) all agents have the same signal sets T, =
ri=1 o & n

£0.1.2}: (2) each agent has an extremal distribution such that sigual 1 has probabilitv 1T — 26 In

such environment. call a mechanism Foreguler if each agent’s maximuin influence is achicved when

his signal changes fron 0 to 2.

PROPOSITION A.2: Fixe > 0. F and t ¢ AY. Then there is a regular mechanism F in the

standard enviroument ({1, Y2_ V. t) such that

VIF L) < V(F.1).
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Proof: Apply Proposition A.1 relative to plaver 1 to obtain a new signal space Ty x o x -+ % T'y. 2t
voctor of random siguals 1 =7, % t_,,. and a mechanism £ so that V(F.t) < K(Flfl) Repeating
this process for plaver 2 relative to £y and t! vields a new mechanism Fy oandd profile £2 such that
average ifluence does not decrease. Continuing in this manner for all remaining plavers, we obtain a
sequence of pairs (Fn. t.’,”) along which V(F,,.E") is increasing. The elain is proved by setting F= [Fr\-
and t = t. The new distribution t is svinmetric and extremal by construction.

Q.ED.

PROPOSITION A.3: In the standard environment ({13, )., 4. t). for any regular mechanism F

there Is an anonvinous regular mechanism F sueh thar V{(FLt) = V(F' t).

Proof: Let o be any permutation of the set of plavers” names, and t be any syuunetric distribution
(references to toare dropped for notational simplicity). Define the new mechanisin F7 by F7(t) =

Fia(t)). We show that V{F7) = V-1, (F) for every n:

l‘n(Fn) = E(Fn“n = -2) - E(Fﬂ Hn = [))
= E(Fif”‘ ) — 2) - E(F“n L — U)

= "'ﬂ’l{n)(F)‘

Tlrus.

I I
R
-
B! [\/J
—
-
e
"

Let p be the uniforin probability distribution on the set of all permutations o over plavers’ naunes.
Define

F'it) =) pla)F7(t).



Obviously. F{t) is symnetric and

VIF') = plo)V (T = 3 pledViF) = V),

Q.E.D.

PROPOSITION A.4:  Fix the staudard environment ({T,43_1.1) and let F,, denote the nia-

Jority rule relative vo signals 0 and 2. Let F be any regular wechanism F. then

VIF ) < V(F,t) <R .

For the proof we will need some additional notation. As before. it is convenient to think of sienals
0 and 2 as "No® and “Yes' respectively, and sienal 1 oas representing tall-other-signals’. or ~Abstain’
Fix any set of N — | players. and let K —=0.,.... N — 1 be the random variable denoting the number
of non- abstaining plavers out of this set. and let Py (A7) denote its probability. Since the signal sets

and the profiles are symetric, the identity of the N — 1 plavers is irrelevant.

Proof: Let & be the random variable denoting the number of plavers saving "Yes™ (i« whose signal
is 2) out of .V — 1 players. and let Py (& A) denote its conditional probability (or simply Pk | K)

when NV is clear frow the conrext).

It is convenient to express Foas a function F(A R of the munber of Yess & and the munnber
of voting plavers K. For given A awd &, i plaver n changes his signal from 0 to 2 (a change that
gives hinn iaximum influence). then there will be &7 — 1 non-abstaining plavers and & — T Yes's, and
the outcome changes from F{A K + 1) to F{k + 1. K + 1). Note that while & and & represent the
relevant uncertainty from the perspective of plaver . as far as F is concerned the total number of

non-abstaining plavers is & + 1.



Fix F that satisfies the assumptions of the proposition (we drop references to t for notational

simplicity): define
N

VE S TP R Pk LK +1) - FO K + 1)}

k=0

and note that plaver n's mfluence is just:

N
VUF) =Y Py vE

N=4

Thus, V¥ represents plaver r's influence conditional on there being A non-abstaining plavers out of
n g (a o 1 .

the remaining N — 1 playvers.
(el 0
It is convenient to rewrite VA as:
T

VMEF)= -PO|K) F(O.K + 1)+ F{k = 1K + 1) \P(k = 0| K) — P{k = 1K)

+ F(k.K + 1) [Pk~ 1, K} = Pk{R)

-l

PN =LK+ 1) [P(K -2 K)— P(K ~ 1 /)]

FE(R 4 LR+ 1) DRR).

We view VA (F) as a function of the values F(k. K =1). k =0..... I for fixed probability weights and

with the coustraints that 0 < F(EL N + 1) <1 tor k= 0...., K. Sinee the constraint set is bounded.

the maximum of ¥} is achieved, and at which point the first order conditions must be satisfied. Since

POIK) and P(1IA) > 0, we must have F{(OL + 1) =0 and F(ALK + 1) = 1.

Fork =1..... I we have
PR
Plh=1"K)

K o
m\l = kW +1)=1

>l = kK +1)=0

and

That is. for a fixed I, the highest value of VM is achieved when. F{-. K + 1) is zero as long as the
binomial probability P(& | K') s increasing in &, and 1 as long as P{k| ') is decreasing in k.

-



Conditional of K. the signals of the A non-ahstaining plavers are independentiy and identically
distributed with probability 0.5 for 0 and 0.5 for 2. Thus. P(k | /) is a Bernoulli distribution of iy
independent and identically distributed random variable with probability of success 0.5, This is a

svmetric distribution whose maximum value is py ., hy definition.

We show that the optimal mechanism F,, has the form of a simple majority rule. If & = 0. then
VA = F(1.1)— F(0.1), aonumber which is maximized at the ‘majority rule” F(1.1) = 1 and F(0. 1) =
0. For ¥ = 1, note that

PlETR) () K —k-1

fe 1 ROy W B .
PSR () i
Assume first that A = 2L for sowe non-negative integer L (Le.. K is even). In this case. P{k|A)

achieves its unique maximum at & = L. o F,,, must be of the form

k<L == Foll.k ~1)=0

h»lL = F, (kLN =-11=1

whicl is @ majority rule. If A7 = 2L + 1 for some integer L (i.e.. K ois odd). then Pk | K) achieves its

maximurn at both & = L and & = L + 1. In this case, we can set F,,, to be the majority rule:

F<L+1 = Fo,lhRK+1)=0

k>L+1 — ‘Fm(-l\'.f\-*:'l)

I
—

which again has the form of a majority rule.

We have theretore shown that conditional on K. the mechanism that maximizes influence is o
simple majority rule for which influence is pye .. Averaging over N =00, .. N —1 with the probabilicy

distribution () vields the desired result.

(Q.E.D.
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Proof of Theorem 1: The proof follows by combining propositions A.1 through A1, Using
Proposition A.1 and A2 we can reduce any general problem to one in a standard environment and
a recular £ without reducing average infiuence. Propositions A3 then shows that anv such Fois
cquivalent (e, vields the same influence for cach plaver) to a mechanizsin that is anonvmous. Finally,
Proposition A4 shows that simple majority rule is the anonyvious rule with the maximum influenee
and computes the bound.

().E.D.

Proof of Theorem 2: The bound is clearly achieved as desceribed in the statement of the theorem.
It is also clear that no anonvinous mechanism o a svinnetric cuviromment can exceed this bound.
Suppose, by way of contradiction, that there is ¥ > K7 such that there is a profile £ and a mechanism
F with L > K% a-pivotal players. For convenience. reorder the plavers so that the a-pivotal plavers
are the first L and let VA{F.£) 2 a denote their average influence. Also, write any vector of signals t
as (ty.t_p). Now V7 ’r‘(F. f) is maximized at some vector t-, of siguals of plavers outside L. Define the
new mechanism ;o by setting £ (t) = F(tp. t_p) for every t. Clearly, 1""’(17[‘.5) > ‘[""‘(F.‘E). That
15, Fr lgnores what players outside L do. et still increases the average influence of players iu L (note,
however. that there way be less than L a-pivoral plavers under Fy)). We can now interpret Fyoas a
mechanisim in & problem with L > A7 plavers. For this problem. we know from the proot of Theorem
1 that there is an anonvinous 7 and a syinetric t/ in a svinuetric environment with L playvers such
that V(F'.t") > V{F..t) > «. This together wich the synunetry of £ and anonviity of F' iply
that there are L a-pivotal players, which contradicts the definition of A7 and the assumption that
L>hk;.

().E.D.
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Proof of Theorem 3:

NV(F) =X Z POV(Fit) = D(t) Z VL {F:t)

t t

= ZZZp(t,ﬁuifn)"'”([?:fn)
noody by,

il

= ZZVH(F:M) Z Plt_,itn)
.

7 L

=Y O PV,

Let f; and ¢, denote the signals of plaver o at which his influence is achieved when Lis actual
signal is 1,0 Also. let £ and t,; be the signals at which plaver n maximizes his influence if e knew

that the ageregate state is . That is.

max By (F(t_,.t.)]8) — 1111%} Ey (F(t_n. ,)i0) =E¢  (Flt_,.t,)]6) — £y
ret,

F{t_,. T,
fLET {(F{ f1i0)

Then,

N
SN T PUAVAF ) =3 P(t) B (Fltowit, Yity) = B (F(to,t)) ta)]

n=1 t,

=D L)Y PEIRE (Fleo,ctr ) e ) = Ee (F{t_uit, ) 1,.8)]

[

SN TP PO B (Fltoit;) 1 4,.8) = By (F(t,c8,) 4, 0)
[ f

n

SINTPU DI PO EC (Fltowty) 8) = Ee (F(t,:t,),8)) (=)
i

n fh

DU P Y PBIE)VLE:S)
2]

12 tn

11



=N VUE) D PO

no# [

=3 PO Vu(Fe).

where the conditional independence assumption was used to conclhide that taking conditional expec-
tation relative to £, i the expression in square brackets in (%) s superffuous when # is known.

Q.E.D.

Proof of Theorem 4:  For cach n. fix & version of the conditional expectation E(F |G, {#). The
proof consists of constructing a sequence of mechanisms F = Foy #..... Fyv = F along which average
influence inereases. and such that under £ all plavers have just three signals. We then apply the

bound obtained in Theorem 1 for the Anite signal case to F.

FixO<np<e Forn=1,....] N oand any mechanism Fodefine the functions

AY N
W (Fity =ty = Y VulFalty =0+ > Vi(Fejt, =1)

man L
N N
WoF) = > Wl = ) Vi(Foe).
meln LLE R T

That is. T, represents the sum of the p-influences of players before player wand the e-inHuences of

playvers after n.

For 1 <n < N let £, be the mechanism constructed in the previous step (for 1t = 1. this is just
the original mechanism F). Let A" be a set of measure  such thet E(F [ G){(#) = E{(F{G,){(#) for
anv € and 17 € A0 Such set A exists since P s non-atomic by assumption. Similarly, define

A to be aset of measure 5 for which E{F [ G, )(t) < E(F |G (1)) for anv t &€ A~ and # & A . Let

toCargmax e W (B ) f € argmax e q- Wo (Fy o) and £, € armmax,e - W, (8,10 6).

T
If the maximum in these dehinitions is not achieved, then the same argument would go throueh by
taking a sequence of signals for which E(F G} converges to the supremuim without changing the

basic idea of the proof.



Definre o new mechanism:

M

Far.t.,) ifd, e d-
Folty ton)y =< F{e,.t,) ift,ed
Fitr.t_,} otherwisc.

i

Note that:

E{F(G.)({,) = =up E(F|G,){t) > inf sup E(CF GO
= {2 ga
and
E(F|G,)(t, 1< inf E(F G < sup il E(F{G,)(#).
AT (Ao} (€4
Thus.

By the choice of #. f;, and ¢, woe have BW_, (F,_) < W_, (£, aud by the above areument we also

have Vo (Fooe) < VL (Fy ). We therefore conclude that:
W (Fact) + Vil Fusioe) € W (B + Wl B ).
Continuing this process. we have:
NV{F ) =W (F) ~ Vi(F. ) <O _y{Fy) =~ Vy(Fy.p) = NV{F. ).

Note that under F,. cach player o < oneffectively has only three signals: £, 0 f, and €7 each with

probability at least 1. Therefore. Theoremn 1 applies to F.from which we conclude that
ViFe) SV(F.y) < By N
The conclusion of the theorem now follows by taking y — ¢ and noting that R, + Is continuous in ».

(.E.D.
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ENDNOTES

To put these possibilities in perspective. suppose thiat there are N plavers each having three signals:
. . ) ‘ L i e
{0.1.2}. Then, with .V = 10 plavers there are 6 majority rules. 290 anonvious rules. and 2% =

N l'f C
27901 weneral non-anonvimeus rules.

The motivation for this work is Al-Najjar (1996) where the results on influence are used to study
the role of free-riding among small opponents in challenging the repuration of a central plaver in a

repeated gaime setting.

Our results go through (with appropriate re-scaling of the bounds) if the interval [0.1] is replaced

with anv bounded subset of real numbers.
Forinally., we consider perimitations o : {1...... Vi — {l..... NV} osucl that of{n) = nfor all n g K.

The dehnition is implicit in the nterim incentive compatibility constraint in Mailath and Postle-

waite (1990) where plaver i's influence is g, (0} — pn (0 (p. 353).

[ some applications. this definition is stronger than necessary because it might ignore useful model-
specific information which could rule out some changes as being clearly suboptimal for the playver.
The definition can be medified accordingly by defining the max on a more restricred set of signal

pairs.

Although our exposition is restricted to binary outcomes. one can ecasily extend the analvsis to
a Hnite number of L outcomes. Observe that the distance o the L-dimension simplex, which 1s
contained K71, is bounded by the sum of the distances along the axes. Thus. the infuence for L

outcomes is bounded by L — 1 times the bound for the binary case.

The error in Stirling's formula is bounded by a function which converges very rapidly to zero.
Thus. the error in our approximation of p also iinproves rapidly in N. For example, for N = 10,
the error in Stirling's formula is no more than 0.8%. o our approximation is innccurate by no more
‘ ‘ : : 1 - a0 e . .
thi: ““‘X{iﬁ(}:—:% -l et 1‘} < 0.025. or less than 2.59%. Similarly, for N = 100,
: S Do o

the error in our estimate of g is no more than 4.2%.

e



9- Without the conditional independence assumption. our bounds on influence (Theorem: 3) do not

10-

11-

13-

1i-

hold. For exannple. suppose that there are 23 playvers each with two signals (0 or 1}, Consider the
distribution F obtained by first selecting at randoin a subset of NV players, then assign to members
of that set signal 1 and O otherwise, The only ageregate state in this case is the realization itself.
s0 the conditional distribution (- 8} does not belong to AN and assumption A2 fails, Consider
now the mechanism F(t) = 1 if the signals of exactly N plavers are 1 and 0 otherwise. Then every

player is fully pivotal. awd average inHuence is equal to 1 regardless of Lhow large N is.

To see this. let w(t) and y(#} be two versions and let E be the set of measure zere on which thev
disagree. If by piayey SUPrea b)) > nfpoyycg supg o (f). then there must be a ser B
with P(B) < e such that infyq paycn supea 9(f) > sup,ep 2(f). Since E has measure zero.
PBUE) < e soinfypige supgyult) < supepenp () = Supgepp g 0(8) < sup,e g x(f).

which is a contradiction.

The case of #, < 0 requires a more careful consideration of the property right strucrure. This is

diseussed in Section 3.4,

It is easv 1o see that the proof vields a somoewhat sharper bound ﬂ‘—‘—‘“~;l-’4~ R .~ rT 4. Fhe weaker

7

bound in the statement of the proposition is maintained for simplicity of exposition.

This conclusion is alse obtained by Chari and Jones (1994) in a different model. where thesy also

imposce ex post individual rationality.

The inequality of averaces states that for anyv Anite sequence of numbers 1, the haruonic averase
l . oD - 1 )

does not exeeced the geometric average which does not execed the arithimetic average. Formally,
AY NN e
1 S (H11:1"‘) = N

\h

It mayv be more natural to assume that pavoffs are determmined using the signals. This lhas no

qualitative Impact ou the result, but slishtly complicates notation. The current assmiption may

be justificd by viewing the pavoll in stage | as aceruing afrer both stages have been already plaved.
] . = I . (a3 () (ol . I .
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