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ABSTRACT

Vector maximization problems arise when more than one objective
function is to be maximized over a given feasibility region. While the
concept of efficiency has played a useful role in the analysis of such
problems, a slightly more restricted concept of efficiency, that of
proper efficiency, has been proposed in order to eliminate efficient
solutions of a certain anomalous type. In this paper necessary and
sufficient conditions for an efficient solution to be properly efficient
are developed. These conditions relate the proper efficiency of a given
solution to the stability of certain single-objective maximization problems.
The conditions are useful both in verifying that certain efficient solutions
are properly efficient and in identifying efficient solutions that are
not proper. An immediate corollary of the theory is that all efficient
solutions in linear vector maximization problems are properly efficient.

Examples are given to illustrate our results.



1. INTRODUCTION

Vector maximization problems arise when p Z 2 noncomparable
criterion functions are to be simultaneously maximized over a given
feasibility region. The concept of efficiency has played a useful role
in the analysis of such problems. A slightly restricted definition of

efficiency, that of proper efficiency, has been proposed, which eliminates

certain efficient points that exhibit an undesirable anomaly. Kuhn and
Tucker [8], after proposing the original definition, gave a specific
example problem with two criteria in which an improperly efficient solution
allows for a first-order gain in one criterion at the expense of but a
second-order loss in the other. 1In this way, the marginal gain-to-loss
ratio of the two criteria can be made arbitrarily large. Subsequently,
Klinger [7] demonstrated that every improperly efficient solution has this
property. Geoffrion [5] noted that efficient solutions may exist which
demonstrate a similar anomaly but are proper in the sense of Kuhn and Tucker.
In order to exclude all such undesirable solutions, Geoffrion reformulated
the definition of a properly efficient solution as one in which, for each
criterion, at least one potential marginal gain-to-loss ratio is bounded
from above. Using this definition, Isermann [6] proved that each efficient
solution of a linear vector maximization problem is properly efficient.

In § 3 of this paper we develop necessary and sufficient conditions
for an efficient solution to a vector maximization problem to be properly
efficient. These conditions relate the proper efficiency of a given solu-
tion to the stability of certain single-objective maximization problems.

A direct consequence of this theory is that any efficient solution for a
linear vector maximization problem is properly efficient. The use of
these results in identifying properly efficient solutions to vector max-
imization problems is demonstrated by the examples presented in § 4. Con-

clusions are presented in g s,
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2. THE VECTOR MAXIMIZATION PROBLEM: BASIC DEFINITIONS AND PRELIMINARIES
Consider a vector-valued criterion function
f(X) = [fl(x)’ fz(x)"'°’ fp(x)]
defined over a set X given by

X =1{x¢€ IRnIgi(x) z0 Vi€ 1}

where p =z 2, £,: X cR"->RY j€3 = {1,2,...,p}, T = {1,2,...,m}, and
g;° R~ R Y i €1, Let ]R_rll_ = {xE]Rnl'xo >0, #=1,2,...,n} and for any
k € j, let J, denote the set (J - {k}). Then. the vector maximization problem

k
VMAX: £f(x) subject to x € X (P)

is the problem of finding all solutions that are efficient in the sense

of definition 1:

DEFINITION 1. xO is said to be an efficient solution of (P) if x° € X and
fi(x ) >-fi(x0) for some x € X and some i € J implies that there exists

at least one j € Ji such that fj(x ) < fj(xo).

In order to both exclude all efficient points of a certain
anomalous type and to allow for a more satisfactory characterization,
Geoffrion [5] has proposed that properly efficient points be singled out
for study, where his definition of a properly efficient point for (P) is

equivalent to the following:

DEFINITION 2. x0 is said to be a properly efficient solution of (P) when it

is efficient for (P) and there exists a scalar M > 0 such that for each
i € J and each x € X satisfying fi(x) >-fi(xo), there exists at least one

J € 3 with £,6o) < £, x°) and (£, () - fi(xo)]/[fj(xo) ICOIERY

For each properly efficient solution of (P), given any criterion,
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the marginal gain in that criterion relative to a loss in some other
criterion is bounded from above. An efficient solution that is not properly

efficient is said to be improperly efficient.

The following two definitions will aid in our derivation of necessary and

sufficient conditions for an efficient solution to be properly efficient.

DEFINTTION 3. xo is said to be a kth-entry efficient solution of (P), where k € J,
if x° € X and fk(x) > fk(x°) for some x € X implies that there exists

at least one j € J, such that fj(x ) < fj(xo).

k

DEFINITION 4. xO is said to be a properly kth-entry efficient solution of

(P), where k € J, when it is kth-entry efficient for (P) and there exists
a scalar Mki> 0 such that for each x € X satisfying fk(x)i> fk(xo), there
exists at least one j € Jk with fj(x) < fj(xo) and [fk(x) - fk(xo)]/

0
[f.(x) - £,(x)]=M .
‘J)J k
The following results follow directly from these definitions.

PROPOSITION 1. A point xo is an efficient solution of (P) if and only

if it is a kth-entry efficient solution f (P) for each k € J.

PROPOSTITION 2. A point xo is a properly efficient solution of (P) if

and only if it is a properly kth-entry efficient solution of (P) for each

k € J.
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3. NECESSARY AND SUFFICIENT CONDITIONS FOR PROPER EFFICIENCY

Consider the following problem, where k € J,:

max[f (x) *5 23 ujfj(x)] (Pu)
k

subject to
x € X.
Let X: denote the set of optimal solutions for (Pu). The following lemma
characterizes properly kth-entry efficient solutions for (P) in terms of

solutions to (Pu).

LEMMA 1. (1) If x0 € XZ for some u = u0 € IRE_l, then xO is a propexrly kth-

entry efficient solution for (P).

(2) 8uppose that fl(x), f2(x),..., fp(x) are concave functions on the

0
convex set X. Then x is a properly kth-entry efficient solution for (P) if

and only if there exists a u = u0 E:mi'l such that xO € X;.

PROOF. (la), First it will be shown that x0 is kth-entry efficient in (P).

Note that xo € X. Let Uk

{jlu?> 0, j€ Jk]. Then, either 1)

U, =¢ or 2) U, # @

Case 1. U, = ¢. Then u?

X 0 for all j € Jy- So x0 achieves the global

maximum of fk(x) over X. Thus there is no x € X such that fk(x) >'fk(x0).

By definition 3, x0 is kth-entry efficient in (P).

Case 2. Uk # ¢. Suppose x € X and fk(x ) >’fk(x0). Since xO is an optimal
solution to (Pu) with u = uO, we have

f x )+ 2 u, f x )= f (x ) + 20 u, f (x ).
JEJ i3 J€J ]

By definition of Uk’ this can be written

£, )+ T o) f )= £ G+ D e GO,
JGU ] j€u,
k
Since £ (x ) >'f (x ), we have that 2 u, f x )< 2 qu.(xo). That is,
€U, i3 €U, J
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2 u?[fj(x ) - fj(xo)] < 0. Since u?i> 0 for all j € Uk’ it is necessary
j€ Uk

that fj(x ) - fj(xo) < 0 for at least one j € Uk' Thus fj(x ) < fj(xo)

for some j € J By definition 3, XO is kth-entry efficient.

K
(1b). Now it will be shown that xO is actually properly kth-entry efficient

for (P), with M, = (p-1) max . uQ. Assume, to the contrary, that there
k JGJk J

exists an x € X such that fk(x ) > fk(xo) and fk(x ) - fk(x0)2>

Mk[fj(xo) - fj(x )] for all j € Jk such that fj(x ) < fj(xo). By definition

of Mk’ we have

fk(x ) - fk(x0)2> (p-l)u? [fj(xo) - fj(x )] for all j€ Iy

This last inequality holds even for those jEJk such that fj(x ) = fj(xo)
because, in these cases, the right-hand side is nonpositive, and, in all
cases, the left-hand side is positive. Dividing both sides by (p-1) and

summing over all Jk’ we obtain

£ ) -£GD> 2 & IE60) - £.(x)]

k k je3. 477 i

k

which, upon rearranging, becomes

£(x ) + 25 u(?f,(x )> £ (xo) + 2 u(,)f,(xo).

k jeg, 43 k jegy, 13

k k
This contradicts x0 € X; and completes the proof to (1).
(2) The proof of the "if'" part of this statement is provided in the proof
of (1) above.
Assume xO is a properly kth-entry efficient solution for (P). Then

there exists an M, > 0 such that the following system of inequalities

k
admits no solution in X:

0
fk(x) - fk(x >0

0 0
- - i .
fk(x) +—Mkfj(x) fk(x ) Mkfj(x )> 0 for all j € Jk
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By the Ceneralized Gordan Theorem [97] there exists

P

u € ]RE, u # 0,
such that

0 0 0\1 -
wlf (x) - £ (x)] +J_€>§ uj[fk(x) +nkfj(x) - £ x) - M (x )] = o,
k

or equivalently

P
[ 2w e G - £ GO+ T

0
Y(u)f, (x) - £.(x)] =0,
j=1 ser, ]

for all x € X. Dividing through by C = [ gilﬁ] > 0 and rearranging, we
3=1
obtain that
£ (x) + 2 (M u /C)E (x) = € )+ T
k j j

0
M u,/C)f (x7)
. k . kj j
JGJk JEJk

for all x € X. Since M, C> 0 and u Z20Vjce J,» we have 0 € X;o,

0 _ . 0 p-1
where uy = (Mkuj/C) z0 VYj¢€ Jk. Thus, u € E&_ and the proof of (2)

is complete. H

With the aid of Lemma 1, we will derive necessary and sufficient conditions

for a kth-entry efficient solution for (P) to be properly kth-entry

efficient. Consider the problem

max fk(x)

subject to b,k)

i

fj(x) - bj 0 VYje Jk

x € X,
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where k € J and {bjl j€ Jk} is any set of (p-1) real numbers. The following
definitions have been adapted from Geoffrion [4], where they were given
in association with a nonlinear minimization, rather than maximization,

problem. We assume throughout that X is a nonempty set.

DEFINITION 5. The perturbation function v:IRp-1 -+ JR associated with

(P b, k) is defined as

hY

v(y) = s £ )£, (x)
X EPX{ k J

yj Yj € Jk}.
Notice that when the optimal value of (Pb k) exists, it is equal to v (0).
>

DEFINITION 6. k) is said to be stable when v(0) is finite and there

(Pb,
exists a scalar M> 0 such that, for all y # 0

[vy) - vO)1/|lyll = m.

If (Pb,k) is not stable, the ratio of the improvement in its optimal
value to the amount of perturbation can be made as large as desired. We
note that the choice of the particular norm H-H used to measure the
amount of perturbation is arbitrary.
The next lemma shows that if concavity holds the stability of a problem
of the form (Pb,k) constitutes a necessary and sufficient condition for a kth-entry

efficient solution for (P) to be properly kth-entry efficient for (P).

LEMMA 2. Assume f (x) f (x)50.05 £ (x) are concave functions on the non-

P
empty convex set X. Suppose xO is a kth-entry efficient solution for (P).

Then x is a properly kth-entry efficient solution for (P) if and only if
R
(Pﬂ,k)’ where bj = fj(x ) Vq € Jo is stable.

PROOF. By definition 3, xo € X. Then, by the definition of E; xo is
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feasible in (Pg k). In fact, xo is an optimal solution for (Pg k). For
3 3

an assumption to the contrary implies the existence of at least one vector

i

x €X satisfying fk(x ) > fk(xo), fj(x ) fj(xo) Yj € Jk’ which con-

tradicts that x0 is kth-entry efficient for (P).

(a) Assume (PE k) is stable and define the dual problem of (PE ) by
H H

k

0
o, =min { max [£ (x) + 2 u,(f,(x) - £, NI} (@ )
Kuzo0 xex & j€I, ] J b,k

where u is a (p-1)-vector of dual variables. Adapting a result of Geoffrion
(theorem 3, [4, p. 9]), we have that since (PB k) is stable, (DE K) has an op-
>

b

. . 0 0 . . .
timal solution u’, and x is an optimal solution for

0 0
vV, = max {f (x) +2, . u,[f, (x) - £,(x)]}. P/
k < € X{ k -—’JeJk J[ J( j ]} ( u)
. 0 0yq . 0, . .
Since {QZGEJ u fj(x )} is comstant for all x € X, x is an optimal solution
k

for (Pu) with u = uO EIﬂi-l. By Lemma 1, x0 is a properly kth-entry
efficient solution for (P).

(b) Assume x0 is a properly kth-entry efficient solution for (P).
By Lemma 1 (2), there exists a u = u0 GIRE-l such that xo € Xz. This
implies that x0 is an optimal solution to (P;), where (Pé) is as given in

(a) above. Thus Vk = fk(xo). Note that (xo,uo) is thus feasible in

0 , . , _ 0 O
Db,k)' (DE,k) has fk(x ) as its objective value when (x,u) = x ,u ).

Thus wk = fk(xo). Furthermore, since x0 is an optimal solution to (PE k)
3
the optimal objective wvalue of (PE k) is fk(xo). By the weak duality theorem
3

(

for nonlinear programming, we have @k:é fk(xo). Thus ®, = fk(xo) and (xo,uo)

is an optimal solution to (DE k). By Geoffrion [4] (PE k) is stable. H
H H

Lemma 2 can be used to derive an analogous result that gives necessary
and sufficient conditions for an efficient solution for (P) to be properly

efficient. This is our main result and is stated in the following theorem.
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THEOREM 1. Assume fl(x), fz(x),..., fp(x) are concave functions on the

0 . . .
nonempty convex set X. Suppose x is an efficient solution for (P). Then

0
x 1s a properly efficient solution for (P) if and only if (PE k), where
. 3

]

Ej fj(xo) Vi ¢ J.» is stable for each k € J.

PROOF. By Proposition 1, x0 is kth-entry efficient for each k € J. By
Lemma 2, then, x0 is properly kth-entry efficient for each k € J if and only
if (PE k) is stable for each k € J. By Proposition 2, x0 is properly

3

kth-entry efficient for each k € J if and only if xo is properly efficient.

Combining the latter two statements yields the desired conclusion.

Theorem 1 states that in vector maximization problems with concave
criterion functions fj(x), j€ J, defined over a nonempty convex set X, an
efficient point xo is properly efficient iff, for each k € J, the problem
{ max fk(x)\x € i#} is stable, where ik ={x € Xifj(x) - fj(xo) =0 Yjé€ Jk}.
Stability may not be an easy property to demonstrate directly. However,
whenever ik satisfies any '"constraint qualification" which insures that the
Kuhn-Tucker conditions [8] are satisfied at optimality, the problem
{ max fk(x)\x € i?} is stable [4]. 1In this way Theorem 1 can provide proof,
in some cases, that a given efficient point is properly efficient without
resorting to the basic definition. For example, if fj(x) and gi(x) are
linear functions Yj € J and Vi € I, respectively, then for any efficient
point xo and any k € J, Slater's constraint qualification [9] holds for i%
by setting x = xo. Thus, all efficient points in linear vector maximization

problems are properly efficient. We have proved the following result:

COROLLARY 1. Assume fj(x) and gi(x) are linear functions for all j € J and

for all i € I, respectively. Then any efficient solution xo for (P) is a

properly efficient solution for (P).
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Hence, our results include those obtained by Isermann [6] as a special
case. In the following section, the first example uses Slater's constraint
qualification together with Theorem 1 to provide proof of proper efficiency in a
nonlinear problem. This example also illustrates how Slater's constraimt qualifica-
tion and Lemma 2 can be used to identify efficient points that may not be pro-
perly kth-entry efficient for some k. However, the second example demonstrates
that even though Slater's constraint qualification may fail to hold for some

Xk? the associated efficient point x0 may still be properly kth-entry efficient.
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4. EXAMPLES
Example 1
Consider the problem
WAX: [-x% + 4, -(x-1)"7 ®1)
subject to
x + 100 = 0.

The set of efficient points for problem (Fl) is {x]O = x = 13,
Let EP = {x|0 < x < 1}. Suppose 0 € EP. Theorem 1 will be invoked to
show that xO is properly efficient. The functions fl(x) = -x2 + 4 and
f2(x) = -(x-l)4 are both concave on the nonempty convex set X = {x € BI|
x +100 2 0}. For k=1, x = (x0/2 + 1/2) satisfies gl(x ) =0, f2(x ) > f2(x0).
For k = 2, x = x0/2 satisfies gl(x )= o0, fl(x ) > fl(xo). Thus, Slater's

constraint qualification holds for X

1 {x € x[fz(x) - f2(x0) z 0} and

for X2 ={x € lel(x) - fl(xo) =z 0}. Because this implies that the problems
{ max fk(x)‘x € i?}, k = 1,2, are both stable, we have, by Theorem 1, that
xO is properly efficient. Thus, each point in P is properly efficient.

Note that for xO =0 and k = 2, and for xO =1 and k = 1, Slater's

.

constraint qualification does not hold for X2 and ii, respectively. Hence

from Lemma 2, one might suspect that x = 0 and x = 1 although efficient, are

not properly kth-entry efficient for k = 2 and for k = 1, respectively.

Indeed, a routine check via definition 4 shows that xO = 0 is not properly
2nd ~entry efficient, and that xO = 1 is not properly lst-entry efficient.
Thus, we have that EI = {0,1} is the set of efficient points for (P1) that
are improper.
Example 2

Now consider the problem

2 3]

VMAX ¢ [—(x—l)z, X, -x (P2)

subject to
X

v

0.
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The set of efficient points for problem (P2) is E = {x]O =x =1}. The
properly efficient solution set is given by P = {xIO < x < 1}. Thus,
EI = {0,1} is the set of efficient points for (P2) that are improper. Since
fl(x) = -(x-l)z, f2(x) = —xz, and f3(x) = -x3 are all concave functions on
the nonempty convex set X = {x € IR ‘x z 0}, we have, by Theorem 1, that
for any x0 € Ep, (PE,k)’ where Ej = fj(xo) Yj € Jk’ is stable for each
k € {1,2,3}. This is true in spite of the fact that for any <L e E,
Slater's constraint qualification fails to hold for ié = {x ¢ X[ fl(x) -
£,G) = 0, £,0) - £,0) 2 0} and for X, = {x € X|£, ) - £,G0) 2 0, £,G) -
fz(xo) =z 0}. Thus, in this example, given an xO € E, no knowledge can
be gained as to whether x0 is properly efficient or not by testing for
stability of problems (Pﬁ,k) via Slater's constraint qualification.

In the following, we will demonstrate for problem (P2) by direct
computation, the stability or instability of various problems of the form

(

Pﬁ,k)' These computations serve as both illustrations and independent
verifications of the conclusions implied by Theorem 1.

Since xO = 1 is an improperly efficient solution to (P2), Theorem 1
implies that at least one of the problems (PE,k)’ k € {1,2,3}, where Ej =

fj(l) Vi € Jy» is unstable. In fact, both (PE,Z) and (P5,3) are unstable,

and, by Lemma 2, xO = 1 is improperly 2nd-entry and improperly 3rd-entry efficient.

Consider problem (Pﬁ 3), for example:
3
max -~x
subject to 2
'(X‘].) = 0 (Pl;,3)
—x2 +1 =0
x = 0.

We can quickly demonstrate the instability of (PE 3) by the following

argument. If (PE 3) were stable, since x0 = 1 is the unique optimal
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solution, there would exist an optimal multiplier u0 = (u?,ug) € IRi

0
associated with x such that

0

2(x2-1) = -1 (1)

-x3 - u(l)(x-l)2 - u

for all x € X (See Geoffrion [4]). Let x_ = 1-¢ where 0 < ¢ = 1. Then
X, € X so that, by setting x = xe in (1) and rearranging, we have that

93 - (3+u0

0, 2 0
+ =
1 uz)e + (3+2u2)e = 0. (2)

Dividing both sides of (2) by ¢ > 0, we obtain that

2 0

e ~ (3+u1 + ug)e + (3+2u2) =0 (3)

for all 0 < ¢ £ 1. Taking limits on both sides in (3), we have that

lim {ez - (3+u(1) + ug)e + (3+2u(2))} = 1lim {0}. &)
+ +
e—0 e—0
From (4), we obtain that (3+2ug) = 0 which contradicts that ug =z 0. In

a similar manner, one can demonstrate that (PE 2) is unstable, where
b

Ej = fj(l) for j = 1,3.

Theorem 1 also implies that for each x0 € Ep, problem (Pﬁ,k)’
where Ej = fj(xo) Vi € Jy» is stable for each of k = 1,2,3. We will show
this by direct computation for the case when x0 =% and k = 3,

When xO = % problem (PE,B) becomes

max -x

subject to

v
o

(P )

2 L
-&x-1)" + (%) = 5,3

-x~ +(Z)=zo0

0.

W
v

Any optimal multiplier uO = (ug,ug) € IRi associated with the optimal

solution xo = % for (Pﬂ 3) must be such that
b



-14 -

= - w17 - wx - (@] = -(1/8) (5

for all x € X. It is easily verified that u0 = (3/4,0) satisfies (5), so
that (PE 3) is, indeed, stable (See Geoffrion [47]). Notice that testing

(PE 3) via Slater's constraint qualification yields no information as to
3

its stability and, thus, no information as to the proper or improper 3rd-entry

efficiency of xo = % in problem (P2).
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5. SUMMARY

The concept of a properly efficient solution has been proposed
in relation to vector maximization problems. The goal of this paper was to
derive a set of necessary and sufficient conditions for an efficient point
to be properly efficient.‘ In order to derive these conditions, the concepts
of kth-entry efficient and properly kth-entry efficient solutions proved
useful. Necessary and sufficient conditions for a kth-entry efficient
solution to be properly kth-entry efficient were established in Lemma 2.
This development led to the set of necessary and sufficient conditions for
an efficient solution to be properly efficient which are presented in
Theorem 1. The conditions relate the proper efficiency of a given solution
to the stability of certain associated single-objective maximization problems.
These results show, as a special case, in Corollary 1 that all efficient
points in linear vector maximization problems are properly efficient.
The first example problem indicated a nonlinear case in which Slater's
constraint qualification, together with our results, was useful in con-
firming that certain efficient points were properly efficient and in
identifying efficient solutions that, with further scrutiny, might prove
to be improperly kth-entry efficient for some likely k. In the latter case,
a routine check demonstrates whether the solution is properly efficient or
not. The second example demonstrated that constraint qualifications such
as Slater's, however, may not always succeed in confirming the proper effi-
ciency of efficient solutions, since a stable nonlinear programming problem

does not necessarily satisfy some constraint qualification.
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