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Abstract

We model the effects of alternative coordination structures on the performance of a firm that
faces uncertain demand in multiple horizontal markets. The firm’s coordination structure is
jointly determined by its decision-rights structure and by its information structure. We compare
the performance of decentralized, centralized and distributed structures and study factors that
affect the value of coordination. The results quantify and illustrate the value of co-locating

decision rights with specific knowledge.

1 Introduction

Information Technology (IT) has a profound impact on the coordination structure of organiza-
tions [27, 28]. In this paper, we propose a theoretical framework for studying the impact of
alternative coordination structures, modeling a firm that faces uncertain demand in multiple hori-
zontal markets {e.g., geographical regions or countries). The firm selects a coordination structure
by jointly determining its decision authority structure (*who decides what”) and its information
structure (“who knows what"). This analysis extends and operationalizes key aspects of the Jensen-
Meckling [26] (JM) approach to the design of organizations.

Demand uncertainty has always been an important feature of business environments. Prolifera-
tion in product varieties, shorter product cycles and the volatility of the global marketplace increase
demand uncertainty for any given product, resulting in unmet demand or price markdowns [13].
General Motors, for example, loses upwards of 20% of potential sales because the desired vehicle
is not available within its customers’ wait tolerance, and over 40% of its customers buy a “com-
promise” vehicle [19]. In the apparel industry, the cost of demand uncertainty was estimated at
$25 billion per year [16], and department store markdowns have doubled in about ten years [15].
These effects were important in the business failures of ill-prepared retailers such as Best Products,
Carter Hawley Hale, Hills, Paul Harris and Gantos.

In contrast, the superior performance of firms like Wal-Mart, The Gap, The Limited and Benet-
ton 1s due in large measure to their ability to manage demand uncertainty using “accurate respon-
se” [15] strategies. To quote a senior executive at the retail chain Mervyn’s, “to compete effectively.
we must be able to identify trends in the stores immediately and react swiftly to different sales

patterns” {11]. Wal-Mart and The Limited use electronic links with suppliers to reduce order cycle



time and base stocking decisions on observed early sales rather than pure hunches [14].

[T enables firms to effectively cope with demand uncertainty. Specialty retailers such as The
Gap. The Limited and Toys “R” Us were among the first to invest in systems to automatically
reorder popular items and mark down slow sellers on a weekly or even daily basis. For example.
Tovs "R” Us has its Point of Sales {P0OS) data relayed instantly to headquarters, where it is used to
pinpoint the hot sellers and the duds for the all-important Christmas Season [13]. KMart invested
$1 billion in a nationwide POS system linking 2, 250 branches to corporate headquarters by satellite
to track daily sales and respond to market shifts. This resulted in reported savings of $87 million
for the 1990 Christmas Season [29]. J.C. Penney {32] installed computerized inventory systems
that use POS scanner data to automatically reorder products from 281 suppliers, or roughly half
of their $12 billion annual sales. Service Merchandise has a system that suggests stock orders and
even stock transfers [32]. Wal-Mart uses checkout scanners to transmit POS data via satellite to
its suppliers’ systems. to speed up inventory replenishments and minimize stockouts {39]. Other
examples include apparel manufacturers such as Levi Strauss, Haggar, Arrow, The Gap and Sport
Obermeyer, who use information systems (IS) to monitor market trends in styles, sizes and colors.
To be effective, however, these IS must be harmonized with the structure of the organizations they
support. We argue that both the firm’s organizational structure and its IS should be viewed as
part of an integrated architecture — the coordination structure of the firm.

The economics of organizational design is an active area of research. Radner {37, 38] motivates
the economic analysis of “managing” and studies efficient information processing networks in terms
of the tradeoff between delay and number of processors. Other recent research addresses the
efficient allocation of tasks within a firm when information processing is costly [1, 10, 17, tradeoffs
between coordination and delay costs in hierarchical information structures [1], hierarchies arising
from bounded rationality [17], organizational returns to scale [40], tradeoffs between specialization
and coordination under information processing and communications costs {5] and centralization vs.
decentralization in the context of delay costs {6]. “Coordination Science” is fast developing as an
area of research in its own right [27, 28].

Three key determinants of a firm'’s structure are the power to make decisions (‘decision rights’),

decision-makers’ incentives and the firm’s information structure (IS).! While JM [25, 26] focus on

'The firm’s information systems implement its information structure. We use the acronym IS for both.



the role of incentives and the allocation of decision rights. our emphasis is on the joint determination
of decision rights and the firm’s information structure, and the associated value of alternative IS. We
model a profit-maximizing manufacturing firm that sells its product in several horizontal markets
that are subject to demand uncertainty. The firm’s marginal cost function is increasing. giving rise
to potential coordination problems: when the decisions on how much to sell in each market are
made without knowing total production. decision makers do not know the effective marginal cost
they face. These coordination problems are confounded by the fact that different decision-makers
have different information sets available and hence differ in their market assessments. The firm
has to design its coordination structure, which determines (i) who makes the quantity decisions
for each market, and (i1} what information is available to each decision maker. Our main model
differentiates demand information into local knowledge that cannot be communicated (such as a
‘feel” for local market conditions) and data that can be (e.g., past sales). We focus on the case
where the firm’s decision makers operate as a team, but we also consider the use of transfer pricing
to resolve or mitigate incentive problems.

We model three coordination structures (CS): (i) the centralized CS, where the center makes
all the decisions using all the data but none of the local knowledge, (ii) decentralized CS, where
each branch makes its own sales decision based on its own local knowledge and data, and (¢id)
fully distributed CS, where all data are shared and hence each branch makes its decisions based on
both its own local knowledge and all the data. The fully-distributed CS does better than both the
decentralized CS, where branches cannot share their data, and the centralized CS, which fails to
exploit local knowledge. The relative performance of the centralized and decentralized CS depends
on additional model parameters.

We define the value of coordination (VOC) as the profit difference between the distributed
and decentralized CS. VOC 1s at first increasing in the number of branches and then - strictly
decreasing. For a large number of markets, the decentralized CS does almost as well as the fully
distributed CS. This suggests that distributed systems would add more value to firms operating in
a small to medium number of markets than to those operating in many independent markets.

Our primary model assumes that decision makers behave as a team and that demand curves
are statistically independent across markets. The results underscore the importance of local knowl-

edge, which is not amenable to statistical aggregation, for effective decision making, and link the



location of specific knowledge to organizational and IS design. We find that in a variety of cases.
the performance of decentralized CS dominates that of centralized CS in spite of the latter’s su-
perior coordination. In the special case where local knowledge is of little value, the centralized
CS does better for a small number of markets. However, as the number of markets increases. this
performance gap decreases. and eventually. the decentralized regime does as well or better. Fur-
ther. the profits of CS that tap into local knowledge are convex functions of its precision. i.e.. there
are increasing returns to local knowledge. Our results also demonstrate that knowledge and data
are complements (however, they may be substitutes under alternative model specifications). Thus.
the availability of specific market knowledge need not diminish the value of IS, which may provide
useful complementary information, depending on the structure of the demand shocks.

We study an alternative model where the demand states are linked by an aggregate shock. For
a large number of branches, the VOC tends to zero in spite of the dependence across markets,
and data and local knowledge remain complements. We further introduce specific knowledge of
overall market factors that resides with the center. As a result, the Centralized CS becomes more
attractive, since the allocation of decision rights has to trade off the loss of local specific knowledge
against the loss of central specific knowledge. We illustrate how the relation between the precisions
of the two types of specific knowledge affect the choice of CS.

We also relax the team assumption and allow for self-maximizing decision makers. We show
how transfer pricing can resolve incentive problems. We then consider determinate transfer pricing
schemes where each branch faces a fixed price-quantity schedule, and derive the optimal scheme
and the assoclated agency costs. We find that agency costs sometimes undermine the advantages
of distributed systems, a result that links their use to the firm’s incentive structure.

The rest of the paper is organized as follows. The next Section develops our modeling framework.
Section 3 provides the optimal team solutions and their implications. Section 4 examines the effect
of agency problems. Section 5 studies the effects of demand correlations in a model with aggregate

shocks. Our concluding remarks are in Section 6.



2 The Model

2.1 Background and General Framework

Hayek articulated the role of markets as aggregators of idiosyncratic pieces of knowledge that are
specific in time. place or circumstance: “[t is with respect to this that practically every individual
has some advantage over all others in that he possesses unique information of which beneficial use
might be made. but of which use can be made only if the decisions depenrding on it are made with
his active cooperation™ (24, pp. 521-522). He pointed out that centrally-planned economies are
destined to fail because no central planner{s) could ever assimilate the diverse bits and pieces of
information that are necessary for optimizing the economy even if they had the incentive to do so.
In contrast, the market system lets individual decision makers act in the light of their own (limited)
knowledge: market prices serve as efficient aggregators of information, allow individual agents to
maximize their own welfare, and in the process — lead the economy to an efficient equilibrium.

Jensen and Meckling [25, 26] apply similar ideas to the design of organizations. JM [26] ar-
cue that whereas in a market system, ownership rights largely solve the twin problems of rights
assignment and control, their unavailability within the firm requires alternative solutions. In the
JM view, the design of an organization requires the specification of (i) decision rights that assign
responsibility for decisions to individuals or groups: (i) reward and punishment rules based on
decision makers’ performance; and (i) monitoring mechanisms to evaluate performance.

JM [26] recognize that organizations must cope with limited information processing capabilities.
They distinguish between “specific” knowledge, which is costly to transfer among agents, and
“general” knowledge which is inexpensive to transmit. If the center retains all decision-rights,
it incurs costs to obtain information available only to individual agents. On the other hand,
decentralization of decision-rights leads to agency problems: an agent’s objectives differ from the
firm’s. and inducing her to act in tune with organizational goals is costly. Thus, a centralized system
of control leads to high information costs and low agency costs, whereas a decentralized system
leads to the reverse, with the optimum degree of decentralization being determined by balancing
these costs (Gurbaxani and Whang [22] provide an excellent overview of these issues).

JM’s analysis shows how the location of different types of knowledge drives organizational design.

IT, however, reallocates information among decision makers, and hence the IS design problem is



necessarily intertwined with that of organizational design {33, 34. 7).

We define a decision point as an individual or group responsible for a decision. We call the
{initial) allocation of potentially useful information among decision points the informational en-
dowment of the firm. We classify decision points” informational endowments into two categories:
untransferable Knowledge and transferable Data. For example, unlike POS data or historical price
and quantity summaries that are easily communicated. “intuitions™ and expertise regarding market
factors that are honed over time by the local sales-force at a particular branch or by a central buyer
are not. In our context, the *knowledge” possessed by a decision point cannot be communicated to
other decision points. whereas “data™ can be. For example. the reaction of store workers at a J.C.
Penney store in San Antonio, Texas, to a certain “flashy turtleneck body suit™- that the trendy
outfit is attractive but they don’t plan to stock it because they “kind of tone things down in south
Texas” - is local knowledge that is hard to communicate to buyers in New York [18]. J.C. Penney’s
local knowledge also suggests that some local customers prefer certain color combinations and that
others “won't spend more than 318 for a child between the ages of 7 and 14, and $18 is tops and it
better be the best™ {18]. This contrasts with the transactional data in J.C. Penney's systems that
is highly communicable.

The firm's IS determines what information will be available to each decision point. Its decision-
rights (DR) structure determines what decisions will be made by each decision point. For a given
IS, the DR structure thus determines how each decision point will map its information into action.
In this paper, we make the IS, determined by the firm’s IT choices, a design variable. The firm’s
problem is then to decide on its coordination structure — the combination of IS and DR structures

~ that will maximize its profits.

2.2 The Model

We consider a firm that produces and sells a homogeneous product in n markets labelled 1,2,..., 7.
The firm consists of a “center” that controls production, and n “branches” (one in each market)
that are responsible for sales. The firm’s objective is to maximize its overall expected profits. The

total cost of quantity @, TC(Q}. is an increasing and quadratic (hence convex} function,

TOQ) =c Q+ 540" 1)



Equivalently. the marginal production cost function is linear and increasing in @: MC({Q) = c+~().
where v > 0. The assumption of increasing marginal costs for a fixed plant capacity is common
in the literature {cf. Varian [41, pp. 68-69]) and implies that the production technology is not
scalable. Thus. the firm has an incentive to restrict output so as to avoid higher marginal costs.

On the demand side. we assume that the n markets have independent. linear demnand curves. A
market may be in a ‘hizh-demand’ or a "low-demand’ state. The demand curve in each market has
a known slope —b (b > 0) (with b = 0 for perfectly competitive markets). but in each market ¢. the
intercept is a random variable that depends on its state s;. In the “high” demand state (s; = 1).
the demand in market i is given by P(g,) = ag — b - ¢;. and in the “low” demand state (s; = 0). it
is P{q;) = a; —b-q; where 0 < ar < ay. Thus. for shipment quantity ¢; to market ¢, the (random)
price is P, = a; — bq;, where a; is ay if 5, = 1 and ay if s; = 0. We assume that a firm operating in
a single market would want to sell positive quantities in either state, and that the branches always
operate in the increasing part of their revenue curves, i.e, ay > ay > c and af > %(a;{ —q).
The latter assumption is made to ensure that no branch operates in a range where selling more
quantities decreases its revenues.

We assume that each branch is a decision point ¢ possessing information ¥; consisting of ()
knowledge or data that were part of i's initial endowment, and (4¢) data that were communicated to
i. Similarly, the center, denoted by ¢ = 0. is an additional decision point possessing information ¥g.
The firm's DR structure determines which decision points will decide on the quantity ¢; shipped
to each branch i. These decisions are made before the actual state of demand is known. The firm
then produces total quantity @ = >.1-, ¢; at a cost TC(Q) given by (1), and ships ¢; to branch
t. Finally, the true state of demand in each market ¢, and the corresponding sales and profits, are
realized.

Our analysis assumes for the most part that decision points act as a team [30, 31], i.e., they
have the same objective: maximizing the expected overall profits of the firm. This assumes that
all incentive problems have been solved, and the focus is on communication and the effective use
of information. This approach to the theory of the firm was proposed in the seminal work of
Marschak [30] and Marschak and Radner (MR) [31]. and our specific setting follows their general
formulation. In particular, MR [31, Ch.6] analyze the team decision problem for a quadratic payoff

function and derive the corresponding optimality conditions and the system’s asymptotic behavior.



Unfortunately, their results are inapplicable to our setting becanse their decision variables are
unconstrained. As a result, applying their generic solution to our problem would require the firm
to “buy” the product in the low-demand markets for resale {at a profit) in the high-demand markets.
While this type of arbitrage makes sense in other contexts. it does not in ours. Consequently, our
qualitative results (Section 3} are sharply different from those obtained under MR's quadratic
model, Nevertheless. MR's analysis serves both as a helpful starting point and as an interesting
benchmark.

We assume that for all ¢ = 1....,n, the state of demand is given by s; = z; - y;. where z;
represents recorded market-i data (e.g., POS data) that may be communicated elsewhere, and y;
reflects unobservable local conditions. Local branches can only make an imperfect inference on y;
through a noisy binary signal L; (discussed below) that represents the local specific knowledge of
branch 7. L; cannot be communicated to the center, nor to the other branches. We assume that all
of {r;,y;,1=1,...,n} are independent binary random variables. Let z; = 1 with probability ¢ and
) with probability 1 — t where ¢ is commeon knowledge (to avoid trivialities, 0 < ¢ < 1), and let y;
take on the values 0 or 1 with probability % each. Thus, {s;}*, are independent random variables
with s; = x;-y; taking on the value 1 with probability % or 0 with probability (1 — %) The observed
local signal L; captures the value of y; with imprecision «, i.e., L; = y; with probability (1 — )
and (1 — y;) with probability a; we call (1 — «) the precision of the local signal. Without loss of
generality, we assume o < %; Q= % means that L; gives no information, and o = 0 means that L;
fully reveals y;.

Let (Q*(s;) denote the quantity sold if there is only a single market with known demand state s;,
and define Q3 = %ﬁ%ﬁ and @7 = %fbi—; Ifs; = 1, Q" (s;) is the solution of max, {(aH —bg)q — (cq + %7(;2)},
which is Q3. Similarly, for s; = 0, Q" {s;) = Q]. We denote by (J_; the total quantity shipped to
all markets ofher than i.

The following Theorem provides the optimality conditions for the team solution. It may be

proved by adapting [31, Ch.5, Theorem 4] to the case of non-negative quantities.?

Theorem 1 The optimal quantities must satisfy the equations ¢; = max{E[Q* (s:}|¥:]— (55} ElQ-:[¥i]. 0},

where ¥, ts the information available to decision point 1.

#We thaank an anonymous referee for this suggestion.



Intuitively, each decision point i tries to equate its expected marginal revenue. Ela; — 2bg;| ;).
to its expected marginal cost, ¢ + vE[q; + Q—;{¥;]. If E[Q_;]¥,] is too high to have the first order

condition satisfied, the optimal order quantity is ¢; = (.

2.3 Coordination Structures (CS)

The coordination structures we analyze have a centralized or decentralized DR. When DR are
centralized. the center (indexed by 0) is the sole decision point. If DR are decentralized. the
branches (indexed by ¢t = 1..... n) make the quantity decisions.

We first anayze the centralized (C) CS, where both the DR and the data are centralized. The
center knows the values {;}], of all data items. but not the specific knowledge L, available locally
at the branches. Using the data. the center decides on the order quantity g; for each branch :. Thus,
the knowledge of local market conditions is traded for superior coordination across the branches
and the possibility of a more cohesive strategy. Formally, the IS is ¥g = {x,...,Zn}.

The centralized IS can be implemented using a central database into which POS data from
the branches are fed via communications lines. Examples of companies that employ such systems
abound. The Canadian tire company Kal Tire makes its reordering decisions based on sales data
automatically downloaded from 80 tire outlets each night. In Mervyn’s, the retail chain, POS data
on 300.000 Stock Keeping Units from 286 stores are transmitted via satellite to a central mainframe
and are subsequently used for centralized demand trend analysis and purchasing decisions. Another
case in point is Mrs. Fields’ Cookies, which has a highly centralized system to assist and control
most aspects of store operations [36].

Under the decentralized (D) CS, each branch 1 orders quantity g; based on its own data z;
and specific knowledge L;, exploiting its superior knowledge of local market conditions. Here,
U; = {z;, L;} for each 1.

Successful companies judiciously exploit both specific and general knowledge by an appropriate
combination of decentralization and information-sharing. Thus, DR may be decentralized, but
pertinent data are shared by decision points. This is modeled by our fully distributed (FD) CS, where
each branch i decides on ¢; based on all the data z;,7 = 1,...,n and its own specific knowledge L;.
Recognizing the need to get more information at the store level, Toys “R” Us installed a system to

“gather and disseminate data to its stores nationwide” [8]. Liquor distribution in Saskatchewan,



Maritoba and Ontario is done through a distributed system that uses recorded sales data from each
store to analyze sales performance and suggest reordering requests. which the store manager can
override, alter or approve [42], Formally. for the FD coordination structure, ¥; = {z,... . Zx: L},
for each i.

In implementations of the D coordination structure, each branch has its local processing ca-
pability with no real-time linkage. The FD coordination structure is typically implemented using
networked minicomputers, workstations or PC’s. each having real time access to the data through-
out the network. Retail operations often combine aspects of both the D and FD C8's. Wal-Mart
and J.C. Penney both give store managers considerable autonomy in allocating space and ordering
stock. exploiting their knowledge of neizhborhood tastes and trends. Yet, their POS data are sent
to the firm’s computers and information is reported back to the stores. Wal-Mart centralizes most
of its pricing, but it identifies 500-600 price-sensitive items on which store managers are required to
beat the local competition. Since local competitors’ prices are specific knowledge, store managers
make the pricing decisions on these items. A number of retailers having similar policies go through
competitors’ racks in the local area daily and record their prices to support pricing decisions.

Finally, we consider the no information systern (NI} CS, where branches do not have an IS in
place to record data. They decide on their order quantities based on just their specific knowledge
L;. Thus, ¥; = {L;} for each 1.

Figure 1 summarizes the DR and IS structure for the alternative CS that we study and compare.
In particular, we study the value of coordination {VOC), defined as the difference in profits between
the FD and D coordination structures,® and the value of Information Systems (VOIS), which is
the profit differential between the D and NI CS’s. Since the DR structure is held constant, these

are measures of the value of alternative IT implementations.

2.4 Alternative Model Specifications

Clearly, our model is highly stylized, making it important to identify which results are sensitive
to model specification. Two key assumptions that require such sensitivity analysis are (i) the

assumption that the state variable is given by the product {or the minimum) of its components

*In our model, coordination manifests primarily as information sharing. More generally, coordination could include
additional aspects that are not modelled here.

10



(viz. 8; = x;-y; = min{zr;,y,}) and (ii) the independence assumption across markets.

With respect to (z), note that if z. y and s are binary and the state s is a non-decresing function
s = f{x.1y) of both arguments, then the only non-trivial choices for f are s = min{z,y} = z-y (the
form assumed by our model} and the alternative form s = max{x.y}. We analyzed the model using
this alternative specification. confirming that the structure of the solutions and all the qualitative
results remain the same with one exception: data and local knowledge become substitutes rather
than complements {see Section 3).

With respect ta (i), Section 3 studies an alternative model speification where a common aggre-
cate shock. reflecting macroeconomic events or changes in common tastes. gives rise to correlated
demands across markets. Beyond the analvsis of sensitivity to the independence assumption. Sec-

tion 3 also introduces a role for central specific knowledge and examines its implications.

3 Analysis of Alternative Coordination Structures (CS)

In this Section, we derive the optimal strategies for each CS, which will enable us to analyze and
compare their performance. We first identify common structural characteristics of the solutions
that help solve for and interpret the equilibria.

Note that in our model, branches are ex ante symmetric. The ez post symmetry of the branches
depends on the actual information received by them. We call a solution to Theorem 1 symmetric

if ex post, symmetric branches get identical quantities.

Lemma 1 Under the C,D,FD and NI coordination structures,
(i) When b > 0, there is a unique optimal solution; that solution is symmetric.

(ii) When b =0, there may be multiple optima, but there is a unique symmetric solution.

We thus focus on the symmetric solution for all the CS. The optimal solution can fall into three
possible regions. In the full participation region, all branches get positive quantities of the good, with
the actual quantities depending on market information. At the other extreme is the exclusive region,
where quantities are shipped only to the branches with the most favorable market information,
and all other branches get zero quantities. In the infermediate region, some markets get positive
guantities and others get zero, depending on market information. When the number of markets is

sufficiently large, the solutions for all CS will be ezclusive with prebability 1. The intuitive reason

11



is that with a sufficient number of markets with the most favorable information, there is no need

to ship to the less favorable markets.

3.1 The Centralized (C) Coordination Structure

Under the Centralized CS, the center decides on the vector g(z} = {g:(z)}}L, of quantities shipped
to each branch ¢ using the date z = (z1,z2.....2z5). The specific knowledge L;.i = 1...., n
available to the branches is lost. However, this disadvantage {compared to D) may be offset by the
ability to make decisions based on all the data z;.: =1.....n.

Let g, (k) denote the center's quantity decision for a branch having r; = z when K,, = &k, where
K, is the number of branches having z; = 1. Define kj. = [% (ﬁ—fn@i)] where {£] denotes the
smallest integer > £. For b > 0, k- is the critical value separating the fully participating and

exclusive regions. For b = 0, the solution is fully participating when & = 0 and exclusive otherwise.

The following Theorem provides the optimal quantities conditional on K.

Theorem 2 : The optimal quantities under the C regime when K, = k are given by:

Case I (k=0): ¢g9(0) = (2_283'-—:1%) QL

Case 2 (k> 1):

oo — | () 2 (@ + Qi) < o(n =) (@5 - QL)L k<K
(%Tkt’) (EL;_Q&)’ otherwise.

o (k) (Tbtzz%ﬁ) b Qp — vk (Qy — QL) ik <k¢

0 otherwise.

3.2 The Decentralized (D) Coordination Structure

Here, each branch i observes both its own recorded data z; and its local knowledge L; and decides
on its own quantity ¢;. The center then produces Q = Y.1*; ¢;.
Let g,; be the quantity ordered by a branch ¢ upon observing (z; = z,L; = ). Note that

qoo = go1. since when x; = 0, s; = 0 irrespective of the value of L;. Define T(n) = t(n — l)(Zblw)

and R{a;n) =1— 1:+(1+T(3a))(1—'2a)‘ a decreasing function of « in the relevant range. The structure

of the optimal solution depends on the values of @} and @7 and on their relationship to R(a;n).

*This result reflects our specific context. In contrast, the solution to the MR [31, Ch.6] model is almost always
“fully participating”. For large n, markets with unfavorable information receive negative quantities, and favorable
markets receive positive quantities (larger than in our solution), which is clearly infeasible in our problem.

12
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When 2& < R{a:n). i.e., the relative spread of prices is sufficiently high, the solution falls in the

@k
exclusive region: only the branches with the most promising local information (z = ¢ = 1) order
positive quantities. and all others order zero. When gL > R(0:n), the optimal solution is fully
24

participating. The intermediate region. in which g;1 and g1y are positive but gog = 0. corresponds

to Rla:in) < gL < R(0;n). For this case to apply. there must be some 1mprecision inn the local
H

signal: i.e.. a > 0. Let
ta@; ~1-a)Q%) . : :
—Q*’-#ﬂ— in the exclusive region,
z—1in) :
t

Q3 ~Q35," . . . .
r-ir—J—,Q Tgn' - in the intermediate region,
=4 N}

eyl
I}

(20002 —1Q3 , C .
L / ; N
—-’-—-f—‘),l;n_l =i in the full participation region,

2hey

where § = (1 — #)qgo ~ %qm + %q“ is the expected quantity ordered by a branch prior to receiving
any information. Thus, 7 is also the quantity that any branch expects any other branch to order

in the decentralized regime. The equilibrium quantities ¢, are given by the following Theorem.

Theorem 3 : The quantities ordered under the D regime are as follows:

g =@ + (1 —-a)Qy — (n— 1)(#)@, always.

{d, in the exclusive region,,
1o = )

(1-e)Q7 +aQfy —(n— 1)(E;—7)rj, otherwise.

0, in exclusive and intermediate regions,
qon =

Q;—(n— 1)(#)@, in the full participation region.
3.3 The Fully Distributed (FD) Coordination Structure

Under the ¥D regime, DR are decentralized to the branches and. in addition to its local information
(7. £;), each branch 7 also knows the values of z; for all j # ¢. This corresponds to the sharing of
all communicable data among the branches.
Each branch’s decisions are a function of its own (x5, £;) and K, the number of branches having
x; = 1. Let ¢ ¢(k) denote the quantity decision for a branch having local datum z and local signal
£ when K, = k. As in the decentralized CS, at the optimum gqg (k) = geo{k) for all k. Define
Lrp = [(2)(gedgr)]  and

[’45[0% +(1-)Q7 +1(QY +Q}_)]
1(1-2a0){Q —-Q1) ’

+OC! 1fa:

if o <

02—

L%
2FD ™

b —
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Note that &] g < k3 pp. The equilibrium is fully participating when & < &] pp, and & > 0. or

k =0 and b = 0; exclusive when k& > k] 5, and intermediate for the remaining values of k. Define

ngb;— (@@ + (1 — a)QF]. i the exclusive region.
Qlk} = kﬁﬁﬁw Q1 + Q%) in the intermediate region,
.fbffn:‘ [{n— 5) T+ RO in the full participation region,

where Q(k) is the total expected quantity that the firm will produce given that K, = k. The

following Theorem provides the optimal quantities conditional on K.

Theorem 4 : The optimal quantities under the FD regime when K, = k are given by:
Case 1: [f k =0, then gp{0) = (zlb:ni ) Q7.
Case 2: If k>1,

;Q( ), in the exclusive region
a(k) = ¢ [aQ7 + (1 - a)Q%] —~ b Q( ). in the intermediate region

[2QF + (1 - a)Qy] + lb [ —Q( k)} ,  otherwise.

Q. i the exclusive region
quolk) = ¢ [(1—-a)Q; +aQy] - %%il%@(k) in the intermediate region

[(1— )@ +aQy] + 5 [L52H - Q(k)] . otheruise.

0, in the erclusive/intermediate regions,
Q1 + 35 (@1 — Q(k)],  otherwise.

Here, the information available to individual branches on the firm’s other markets is summarized

go1({k) = qoo{k) =

by K, the number of markets with favorable data. If K, is sufficiently large, then only the branches
with the most favorable demand information (z; = L; = 1) should receive positive quantities. For
intermediate values of K, other branches with less favorable information also contribute. It is only
when K, is small, corresponding to a market-wide slump in demand, that quantities are shipped
to the low-demand markets. This distribution of quantities is achieved by implicit coordination,

without the explicit guidance of a central authority.

3.4 The No Information System (NI) Coordination Structure

Here, branches base their decisions solely on their local knowledge L;, as they don’t have an IS in

place to record even their own data (the z;'s). Let g; denote the quantity decision for a branch with

local signal L; = £. Parameter values that satisfy the inequality (1_((11_;(;38;1?1?&’”@. < 45211(_513?)7
L H *
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constitute the exclusive regton. where q; is positive but gg = 0. For all other parameter values. the
optimal solution is full participation. Define ¢ as the expected quantity ordered by a branch prior

to receiving any information. Then

G- wf\b%“ I = (1= a)t)@Q7 + (1 —a)tQ%]. in the exclusive region.
Tgﬁ—:h(@ - HQ7 +1tQ%y). in the full participation region.

The following Theorem gives the equilibrium quantities g; in the different regions.

Theorem 5 - The quantities ordered under the NI regime are as follows:

q =1 ={1-ac))Q; + {1 —e}tQy — (n - 1)(?’_—7)(} always.
0. in the exclusive region,

q0 —
(1 —at)Qp + atQy — (n — V)51, otherwise.

We next turn to a comparison of the performance of alternative CS.

3.5 Profit Comparisons: Limiting Profits

We first compare the performance of our CS when the number of branches n is large. This case
is analytically tractable and gives a number of interesting insights. It is followed by a numerical
example that illustrates the behavior of profits under the different CS for small n. The numerical
results further indicate that the limits well-approximate the actual profits even for moderate values

of n.

Theorem 6 (Limiting Profits) : As the number of branches n tends to oc, the expected profits

for each of our CS are as follows:
L2 TR
(1)Centralized CS: llg = % ) (L?b_:ﬂ_) (Q; éQH) ;
(it)Decentralized and Fully-Distributed CS: llp = llpp = % , (E%;ﬂ”) (@Q} + (1 — C‘)Q;{)EI

(i) No Information System CS: Ty = & - {225} (1~ (1 - 0)t)Q] + (1~ 2)tQ3)*,

For a sufficiently large number of branches, the D coordination structure strictly outperforms C,
irrespective of the values of £ and « (as long as o < %, i.e., the local signal is not pure noise). If the
local signal is sufficiently precise that (1 — @)t > %, even NI dominates C in the limit; this relation
is reversed, however, if the inequality is reversed. D does always strictly better than NI.

Asn — oc, there is no performance gap between D and FD, i.e., the value of coordination (VOC)

tends to zero. To understand the intuition behind this result, observe that under D, a branch need
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not accurately estimate the actions of every other branch. but only their average effect. The more
accurately branches can estimate the total quantity ordered by all the others, the closer the firm’s
performance to that of the FD coordination structure. and in the limit, VOC tends to zero. Thus,
statistical pooling effects work in favor of the D coordination structure, which cutperforms C and
approaches the performance of FD for large n.

One implication is that distributed IS add more value to firms operating in a small number
of markets than to those operating in many markets (the increasing costs of distributed IS as the
number of branches increases reinforce this effect). One case that is often touted as an example of
the use of POS data to support fast response is Benetton [2. 3]. However, a closer examination [4]
revealed that Benetton’s retail operations were surprisingly low-tech and only a small fraction of
the stores used POS at all; furthermore, Benetton had no intention of changing this. Given its 7.000
stores, diverse international operations and numerous design combinations, specific knowledge is
clearly important for Benetton's sales. Benetton may well find a decentralized system not involving
instantaneous data-sharing sufficient because of statistical pooling effects.

To understand why D does better than C when n is large, observe that, for both CS, the
shipment quantities to each market are a function of two estimates: {i) the demand in that market,
and (%} the total demand in all other markets (recall Theorem 1). The availability of both data and
local knowledge enables D to do better than C on the first count, whereas for finite n C is superior
to D on the second count because the data from all the markets are available to the center. Asn
grows, each branch under D estimates the total demand with increasing accuracy, and in the limit,
it does as well as under C. However, I)'s advantage on the first count is never overcome by C, as
the loss of local knowledge in C is iredeemable. Thus, for example, the inability of the centralized
structure of Mrs. Fields Cookies [36] to successfully cope with a large number of diverse retail
locations may well be attributed to the loss of local knowledge inherent in its CS.

The limiting profits for all four CS are decreasing and conver functions of o. Thus, profits
increase as local knowledge becomes more precise; furthermore, there are increasing returns to
increased local knowledge precision. This points again to the importance of improving and taking
advantage of local knowledge, reflected in current retailing practice [14]. Indeed, successful com-
panies such as Wal-Mart, Toys “R” Us and J.C. Penney are now giving their store managers more

decision-making authority to take advantage of their local knowledge.
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Unlike the VOC, the value of Information Systems (VOIS =IIp — Iy} does not converge to
0 as the number of branches increases. In the limit, the VOIS approaches

§(25)  [10 - @)@y +aQi} — (L - et + (1 - (1 - «)1)Q} )],
which is strictly positive and decreases with «. i.e.. increases with precision in local knowledge.
The important insight is that knowledge and data need not be substitutes. and thev may well
be complements: with betrer local knowledge. the value of local data also increases. This result.
however. depends on the assumed structure of the demand shocks: under the alternative model
specification with s; = max{x;.y;}} (see Section 2.4). data and local knowledge become substitutes.
Thus. the actual relation between data and local knowledge depends on specific circumstances.

It 1s interesting to note that our results are qualitatively different from those obtained under
the MR {31, Ch.6] model, where the expected profits are asymptotically linear in n and hence,
unbounded. This reflects the increasing “arbitrage” profits as n increases, something which is
impossible in our model (and in the retailing context). Further, while under the MR model, VOC

tends to infinity as n — oc, its limit is zero in our model.

3.6 Numerical Example

We compare the profitability of the alternative CS for a representative example. The parameter
settings for the example are t = % ap = 60,6, =24, ¢ =20, v = 2and b = 1; these imply Q@ = 10
and Q7 = 1. We examine three levels of the local signal imprecision: a = 0, 0.3 and 0.5 (precise,
intermediate and no information, respectively}.

Figures 2(a}-2(c) show firm profits under our CS as a function of the number of branches n
for different values of a. For a = 0 (Figure 2{(a)), the FD and D regimes do very well, exploiting
the highly reliable local signal. The profits under both approach a limit that corresponds to full
information {i.e., full knowledge of the state of each market). The performance of C is independent
of a, and in the limit for large n, profits are about 30% of the FD and D limits. The NI regime is
the worst performer, but it approaches the performance of C as n increases.

For a = 0.3, Figure 2(b) shows a significant drop in profits under both FD and D. However, the
value of local knowledge is still sufficient for D te dominate C. When a = 0.5 (Figure 2(c)), there is
no specific knowledge to exploit. The C regime does consistently better than D, and its performance

is identical to that of FD: absent useful local knowledge, data sharing with decentralized decision
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making is equivalent to centralization (in this case. centralized systems are likely to be adopted
for cost reasons). In all cases, the NI regime performs poaorly. As n increases, the actual expected
profits approach the limiting profits of Theorem 6 fairly quickly. For example, for o = 0.3 and
ri == 100. the percentages of the limiting profits obtained, respectively, under the C, D, FD and NI
regimes are 98.0%. 93.5%. 94.3% and 97.1%.

Figure 3 shows the VOC for our three values of &. In the decentralized CS, there is a shift
from the full participation region to the intermediate region and then to the exclusive region. as
n increases. In the FD regime, as n increases. K, probabilistically takes higher values, and so the
exclusive region begins to dominate. In all three cases, VOC first increases with n and then falls.
Intuitively. there are two opposite forces affecting VOC. On the one hand, the firm’s scale increases
with the number of branches, which makes coordination more valuable and drives VOC up. On
the other hand, the statistical pooling effect discussed in the previous section gets more accurate
as n increases, and tends to reduce the value of explicit coordination. For very small values of =,
the first force predominates. Beyond a critical value of n, the change in scale as n increases is less
of a factor, and the increased accuracy of ‘implicit’ coordination reduces the VOC. For example,
when n = 100 branches and « = 0.3, the VOC is just 0.89% of the decentralized CS profits, that
is, the additional profits in switching from D to FD are less than 1%.

Figure 4 shows that VOIS is sizable {IS do have value after all!) and increases with the number
of branches at a decreasing rate, as might be expected. The VOIS is higher when « is lower,
showing that knowledge and data are complements (as they are in the limit; recall Theorem 6).
The lesson is that finely honed instincts on a specific market need not ipso facto diminish the value
of IS. depending on the structure of the demand shocks (also see Section 2.4).

We performed the analysis with identical parameter values for the case of perfectly elastic
demand (b = 0). The results {available upon request} were similar to those in Figures 2-4, with

faster convergence to the limits of Theorem 6.

4 Incentive Issues

So far, we assumed that the branches act as a team, i.e., their common objective is to maximize

the firm’s overall expected profits. In practice, divisional (or branch) managers are often evaluated
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on their division's performance rather than the entire firm's. This leads to incentive problems in
the CS with decentralized decision rights {D.FD and NI: see Figure 1}. In this section, we consider

transfer-pricing schemes that address these incentive conflicts.

4.1 Optimal Transfer Pricing

Our first transfer pricing scheme is based on the Clarke-Groves-Loeb mechanism {cf. {9. 20, 217} of
public economics: if branch 1 receives g; and the total quantity received by the other branches is
{J_;. then ¢ pays

TCQ-i+ @) —TCQ-4. (2)

where -, = 3 ,.:9;- In(2), TC{Q—; +¢;) is the firm’s production cost with ¢'s order and TC{Q_;)
15 the production cost if branch ¢ ordered nothing. Thus, branch i pays the incremental cost of
its order, taking the quantities produced for all other branches as given. This transfer price forces
¢ to internalize the cost that its order imposes on the rest of the firm. The optimality of this

transfer-pricing scheme is proved in the following Theorem.

Theorem 7 (Optimal Transfer Pricing) : When the firm employs the transfer pricing scheme (2)
and each branch mazimizes its own expected profits, the quantities ordered by each branch will con-

stitute a [Bayesian) equilibrium if and only if they solve the team decision problem.

Theorem 7 shows that scheme (2} solves the incentive problem and results in all decision points
operating as if they were a team. Intuitively, under this scheme each branch’s expected marginal
cost for its order is equal to the expected incremental cost the order inflicts on the firm, where both
expectations are taken with respect to the branch’s available information. Thus, the quantities
ordered under {2) will be identical to those ordered by a team.

Under this scheme, however, the price charged to a branch depends on all other branches’ orders.
Consequently, at the time of ordering, a branch does not know the actual price it will pay. This is
uncommon in practice. We thus consider determinate transfer pricing schemes which charge each
branch according to a pre-specified function of its order quantities, independent of other branches’

orders. Such determinate schemes are easier to implement, but they may give rise to agency costs.
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4.2 Determinate Transfer Pricing Schemes

A delerminate transfer pricing scheme operates as follows: The center offers a fixed (deterministic)
price schedule, specifving the dependence of each branch's order cost on its own order quanti-
ties. The branches receive their information (the ¥,’s) and then decide on their expected profit-
maximizing order quantities, taking the transfer price into account. The center wants to maximize
expected firm profits. indirectly taking advantage of the local knowledge of the branches. Thus. the
optimal price schedule should anticipate both the information received by the branches and their
reactions. The following Theorem shows that for all three decentralized CS (D. NI and FD), there

are quadratic determinate pricing schemes that are optimal.

Theorem 8 (Optimal Determinate Pricing for D, NI and FD) (i) Under D, an optimal de-
terminate transfer pricing schedule is the quadraiic function Ap - q, + Bp - q?, where Ap =
c+ ~in—1) [Woo + (%"c)(fho + qu)], Bp = %’y, and qoo. g0 and g1 are the quantities derived
in Theorem 3. This scheme implements the team solution for the D regime with no agency costs.
(1) Under NI, an optimal determinate transfer pricing schedule is the quadratic function Axg -
qi +B_w-q;2, where Axyr =c+~v(n—1) [1‘—%'&] By = %7, and qg and q, are the quantities derived
in Theorem 5. This scheme implements the team solution for the NI regime with no agency costs.
(iti) Under FD, the optimal determinate transfer pricing schedule is the same as for D. With

this transfer pricing scheme, the firm's expected profits under FD and D are identical.

Recall that under FD, branches know the value of K, the number of branches with z; = 1.
The center would like to design its pricing schedule so as to induce the branches to make use of
this knowledge in placing their orders. Theorem 8 tells us that the center cannot do so - in fact,
when objectives diverge, the shared data (captured by K,) is useless, and the FD structure does
no better than D. Theorem 8 also implies that under determinate transfer pricing, the agency
costs for FD are equal to the VOC derived for the team problem. One implication is that for
comparable decentralized firms, ownership of their outlets is more conducive to the use of distributed
IS than (say) the use of franchises, since franchisees are more likely to be self-maximizers than
team-players. Furthermore, as the number of outlets becomes large, the benefits of the additional
information provided in FD {over D) fall, and the agency costs in FD fall correspondingly. Both

the informational benefits and the agency costs of FD tend to 0 as n tends to infinity.
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5 Correlated Demands: Aggregate Shocks

So far. we assumed that markets were statistically independent. In practice, the demand across
markets could be correlated because of common macroeconormic factors, consumer preferences or
product features whose effects are not perfectly known until demand is realized. Further. while
branches are likelvy to have superior knowledge of their local circumstances, the center may be in a
better position to make judgments on such market-wide effects.

To model these phenomena. we assume that the state of each market ¢ is given by $; = z -1 - ;.
where z; and y; (as well as the local signals L;) are as in Section 2. The aggregate shock z is 0 or
1 with equal prior probabilities, and it can be imperfectly observed by the center through a signal
M satisfying M = z with probability {1 — 3) and M = 1 — z with probability 3, where 3 < % This
observation constitutes specific knowledge which is available to decision-makers at the center and
cannot be communicated to the branches.

This model has two distinct purposes. First, it serves to analyze the sensitivity of our key results
to the assumption that demands are independent across markets. Second, it adds a strong element
of central specific knowledge that can provide another reason for centralization. The central specific
knowledge posited here is quite powerful, as the center is assumed to have exclusive access to the
signal M and it can make an inference about the aggregate shock z that affects all the markets.
Further. when the aggregate shock is low (z = 0), it determines the states of all markets regardless
of their local circumstances.

The solutions obtained for this model under our alternative CS are similar in structure to those
derived in Section 3. A succinct comparison among the different CS is obtained by considering the

limiting profits as n — oc under each structure, analogous to Theorem 6.

Theorem 9 (Limiting Profits under Correlated Demand) : As the number of branches n

tends to oc, the expected profits for each of our CS are as given below:

Iime wi3vae )2 L4339 o Ll e 12
(i)Centralized CS: Tlp = % ((25*7)2) {((léi)QL;(E)Q”) + (5 )QLTQ(T)QH) };’

T

La}2 . 2

(ii) Decentralized and Pully-Distributed GS: Tlp = rp = 5 (#2700) ((152)0; + (332)Qy)
i - 2 - * - - 2
{111)No Information System CS: Hy; = % . (Qb—?—)—) ((1 - L;E)QL + Qjc—')—tQH) .

Starting with the first objective of Theorem 9 (sensitivity analysis), part (i1} illustrates the in-

sensitivity of our result that the limiting VOC 1s zero to the independence assumption: as n — oc,
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the expected profits under D converge to those under FD even in the presence of an aggregate
shock. In addition. the limiting VOIS is positive for all &, as in Section 3. Further, the VOIS is
a decreasing function of «. confirming that data and local knowledge are complements regardless
of the existence of an aggregate shock (this specific result, however, is sensitive to the multiplica-
tive model assumption: see Section 3). In particular. when 3 = % the qualitative results are
substantively the same as in Section 3.

As for our second objective. Theorem 9 enables us to study the impact of specific central
knowledze such as the deep understanding of fashion trends. the untransferable instincts of central
buyers and their intuition regarding global factors that apply to all markets. As expected, this
makes the C regime, which enables the firm to take advantage of such knowledge, more attractive.
In particular, when the central specific knowledge is accurate (modeled here by low 3) and the local
specific knowledge is not {« is close to %) the C regime gives rise to higher profits than D/FD.
Thus, for example. according to The Gap's CEO. its central buyers have a better understanding of
market trends than store managers do, and local demand factors are less important than the ability
to forecast the national market. As a result. central buyers {each specializing in a product line)
make the stocking and pricing decisions for virtually all stores using comprehensive data obtained
from the stores’ POS systems. These decisions are partly automated {i.e., based on the data from
all branches) and partly based on the the buyers’ intuition and knowledge {modeled here by the
signal Af). The relative unimportance of unquantifiable local demand factors is probably due to
the fact that The Gap markets relatively homogeneous apparel compared to many other retailers.

We further note that in the limit. the data plays no role in the comparison between the de-
centralized (D/FD) and C regimes: it is explicitly available under both C and FD, and (by part
(it) of Theorem 9} it can be effectively inferred under D, just as in our earlier model. Thus, the
comparison is driven by the precisions of the local and central elements of specific knowledge, and

Theorem 9 enables us to quantify the tradeofl between them.

The profits under D/FD are greater than or equal to those under C if and only if

o (-9 Goad-e Q
G 3-8+ aGra)

The left hand side of (3) is an increasing function of 3 and a decreasing function of «, as expected:

more precise local knowledge makes the D/FD regime more attractive, and more precise central
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knowledge has the opposite effect. When o = 3 = % (3) is not well-defined. In this case, all three
R 2

regimes vield identical profits [Io = IIp = Ilpp = % : ((—Qb%ﬂ—) ((%)QE + (%)Q}{) . as might be

expected since both the central and local specific knowledge are pure noise.

When the central and local specific knowledge have the same precision but are not pure noise

(« = 3 # }). condition (3) implies that D/FD will always dominate C. More generally. for any

o

given value of 9L we can divide the square [0. 1] x [0. 1] in the (a. 3) plane into a region where C

Cy

dominates and a region where D/FD dominate: this was done in Figure 5 for g# =0.1,0.25 and
H

0.5. The C regime is preferable only in the right-hand bottom region of the square (corresponding

to low values of J and high values of o). which shrinks as the ratio QQ—L increases. Thus, for example,
H

as long as %L > 0.1 and o < 0.34, the D/FD regimes dominate for ali 3, even if the central specific
i
knowledge is perfect. The corresponding e threshold when %L = % is 0.45. As shown in Figure
o
3, for other values of %’L the local specific knowledge has to be rather inaccurate, and the central
H

specific knowledge — sufficiently precise, for the C regime to be preferable. These results illustrate

the power of decentralization [24] while also quantifying some of its limits.

6 Concluding Remarks

Information Technology is a key enabler of the ongoing rethinking and radical redesign of firms’
business models [23]. However, with the exception of a few widely-replicated templates, the prin-
ciples that should guide the redesign process are still unclear. We believe that an important part
of the answer lies in the analysis of firms' CS. The design of organizations requires an analysis of
what kinds of information the firm I;lGEdS to acquire, alternative ways of distributing this infor-
mational endowment and ways of structuring the organization to match its information structure.
Key to this analysis is the recognition that the firm's organizational structure and its IS must be
co-determined, and that varying one while leaving the other fixed is likely to lead to suboptimal
results.

In this paper we proposed a theoretical framework for analyzing firms' CS and applied it to
a firm that faces demand uncertainty in multiple horizontal markets. We studied the impact of
alternative CS on firm performance. The results provide insights to the process by which IS produce

value to a firm, and the factors that affect this value. We characterized conditions that favor a
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more centralized system and those that favor greater decentralization. We defined the value of
coordination and the value of IS and studied their behavior. We found that even in the absence of
explicit coordination. each branch can sometimes properly anticipate the net effect of the actions
of all the other branches using statistical averaging. When this happens. the value of coordination
tends to zero and fully-distributed systems are unnecessary. We also showed that knowledge and
data are actually complements under our model specification.

We studied alternative models, showing where key results are sensitive to model specification
and where they are not. The VOC tends to zero for a large number of branches and the VOIS
is positive for all the models studied. The complementarity between data and specific knowledge
holds in a model with correlated demands but depends on the assumption of multiplicative shocks.
The dominance of the decentralized CS for a large number of branches is not sensitive to the
multiplicative shock assumption. When the center has exclusive knowledge of a signal on an
aggregate shock, the centralized CS may prevail, but this happens only when the local signal is
sufficiently inaccurate in absolute terms (as well as relative to the central signal). In fact. there
1s a wide range of parameter values for which even perfect knowledge of the aggregate shock is
insufficient compensation for the loss of local knowledge under centralization.

Future work counld explore other modeling choices that build on our model structure. For
example, r; and y; could be modeled as separate estimators (with possibly different efficiencies) of
the demand state s5;. The state would no longer be binary-valued, but the added richness might well
compensate for the greater analytical complexity. In our models (including the one with aggregate
shocks), decision points shared data to learn more about their marginal costs, but not about their
own demand. Branches could actually learn about their own market demand from other branches’
data. This could be studied using a different model of aggregate shocks, where data (such as store
sales measured by POS systems) partially captures aggregate shocks in addition to local variations
and the center serves as a statistical aggregator of the data.

One of the key themes of our analysis is the importance of co-locating knowledge and the
power to make decisions using that knowledge. We found that for firms operating in multiple
markets, there are increasing returns to any process that increases (or taps into) local knowledge.
In retailing, firms have first focussed on centralization but are now recognizing that local knowledge

is indispensable. A recent Economist survey echoes these conclusions: “Initially, computers shifted
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many management functions - such as buving and pricing - away from the shop and towards the
centre... But centralising everything risks ignoring the peculiarities of local taste that can make or
break a particular store. Some retailers are now customising their computer systems. allowing each
store to set its prices and adjust its assortment according to local conditions... The best way to run
a retail chain... is to operate every store differently. with locally-tailored ranges and prices.” [14].

Our analysis builds on the JM [26: approach to the study of organizations. Commenting on
this approach. Demsetz [12] points out that “ .. their discussion... marks only the beginning of
the analysis [of organizational design]... they take the distribution of knowledge in a business
organization as a given when. in fact. it is not. The distribution of knowledge within a firm is
endogenous. .. The firm’ decides what knowledge to acquire.”

In terms of our model, Demsetz’s point is that both the informational endowment of the firm
and its allocation among decision points should be endogenous. Our model focusses on the second
extension proposed by Demsetz: the distribution of the informational endowment within the firm
1s endogenous. The endogeneity of the initial informational endowment is only partially captured
by the firm’s choice of CS. In the NI coordination structure, market data are not available, while in
the other CS, the firm chooses to acquire the data {z;}}* ;. Future work could expand the model to
focus on the choice of data, and knowledge, to be captured. Future work could also study the costs
of alternative coordination structures and incorporate them in the analysis. Another promising
direction is a more detailed study of incentive issues, especially the relationship between the choice
of CS and agency problems.

A more direct extension of the model is to a multiperiod setting. In addition to information,
inventory can also be used to cope with demand uncertainty [35]. The study of the interplay of
inventory and information, and their relationship to the firm’s coordination structure, will hopefully

provide additional insights.
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FIGURE CAPTIONS

Figure 1: Coordination structures by decentralization of decision rights and information available.
Figure 2: Expected profits under alternative coordination structures as a function of the number
of branches, n, for the numerical example of Section 3.6. The demand curves are downward-sloping
with b = 1. The imprecision of the local signal takes on three values:

(@) « = 0, corresponding to an error-free local signal:

(b) & =0.3; and

(¢} e = 0.5. corresponding to a non-informative local signal.
Figure 3: Value of Coordination as a function of the number of branches, n. for the numerical
example of Section 3.6. The Value of Coordination is defined as the difference in expected profits
between the Fully-Distributed and Decentralized coordination structures.
Figure 4: Value of Information Systems as a function of the number of branches, n. for the
numerical example of Section 3.6. The Value of Information Systems is defined as the difference in
expected profits between the Decentralized and “No Information™ coordination structures.
Figure 5: Indifference curves in the {«, 3) plane between the Centralized and decentralized (D/FD)
Cocrdination Structures for @Q—: =0.1, l; and % The D/FD regimes are preferable to C in the region

above the corresponding curve.
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Figure 2(b)

Expected Profit (o = 0.3)
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Figure 2(c)

Expected Profit (o = 0.5)
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Figure 3
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