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Abstract

There is an underlying tension between allocative efliciency and information
aggregation in markets. We explore this in the context of an auction in which
k objeccts are auctioned off to n bidders. The objects are identical, but of
wnknown quality. In addition, bidders differ in their taste for an object of any
given quality. The & highest bidders get an object and pay a price equal to the
k4 1st highest bid. Bidders receive a binary signal that gives some information
about the value of the objects, and know their own tastes. We find conditions
under which in the limit, objects are allocated efficiently to those with the
highest tastes, and price converges in probability to the value of an object to
the marginal taste type.

1 Introduction

In manyv market settings, there is both a private and common value component to
values: buvers have some private information about the quality of the objects for sale
but in addition, differ in their reservation price for an object of any given quality.
Consider for example, the new car market. Potential buyers may differ in their
information about how well built cars of a particular model are, and in addition
differ in how much they like the stvling and features of that model. As an example in
an auction setting. consider the sale of timber harvesting contracts on public forests.!
Firms may differ in their cost structures, for example. because their current capacity
utilizations differ. In addition, they may possess private information about the quality

of tracts from a particular forest.

ISee Haile (1996) for a description of timber auctions.



A common intuition in the econumics literature is that if there are many market
participants with the same information about the quality of what is being sold, then
the equilibrium price in the market should aggregate that information. So, if there
are many firms bidding on tracts from a given forest, then price should reflect what
is known about the quality of that forest.

Another standard intuition in the econumics literature is that if there are many
participants, then the market should bring about an efficient allocation (assuming
that there are nu externalities and all market participants are strategically small).
In the timber example. tracts should be sold to those firms with the lowest marginal
cOsts.

In an auction setting. these two intuitions are clearly in tension: If bids depends
on private information about the quality of the forest. then there will be allocative
inefficiencies. If firm 1 has substantially more favorable information about the quality
of the forest than does firm 2. then firm 1 will bid more than firm 2 even if firm 2 has
somewhat lower costs. On the other hand. if bids do not depend on private informa-
tion. then of course the outcome of the auction cannot reflect such information.

In the standard competitive rational expectations model. this problem is essen-
tially assumed away: In a fullv revealing rational expectations equilibrium (REE)
the price function depends on the aggregafe information in the economy. The price
function is an equilibrium if it clears the market given that all consumers can observe
the price. Since buyvers can infer the true quality of the object from the price. their
demands are independent of their private infurmatiun. Price thus aggregates pri-
vate information by assumption. and allocative efficiency follows antomatically since
demands depend only on tastes.

However. as in all competitive models, there is no explanation given in the REE
model of how this price came about. A full analysis of the tensiun between infor-
mation aggregation and allocative efficiency must consider a model where price 1s
a function of individual buyver behavior, and where this behavior in turn depends
only on the individnal’s private information {and not on the information contained
in the equilibrium price). And. in any such model. it seems likely that efficiency and
information aggregation will be in tension: for price to reflect quality, the actions of

market participants must depend on their information about quality. This in turn



generates allocative inefficiencies.

Of course. the intuitions about information aggregation and efficiency depended
on the market having many participants. And. as the number of participants grows.
it becomes less clear that the tensiun between allucative efficiency and information
aggregation must persist. If the action of each participant depends less and less on
her private information about quality, then in the limit, there need be no allocative
inefficiency. On the other hand. as the number of participants grows. it may well be
that any given participant’s behavior becumes less and less informative about quality.
but the information available from the aggregate behavior of all market participants
still grows increasingly precise.

This is merely the vbservation that as a market grows large there need not nec-
essarily be a conflict between efficiency and information aggregation. It says nothing
about whether the incentives in the market process actually lead to either efficiency
or aggregation. It does however, suggest that it is interesting to consider the limiting
properties of a model in which market participants have both differing tastes for ob-
jects of any given quality and differing information about quality and in which price
is the result of a non-couperative game plaved among the market participants.

In this paper. we address this question using a simple model of a uniform price
auction. Consider an auction with & objects and n bidders. The objects are identi-
cal. but of unknown guality ¢. In addition however. players have idiosyneratic taste

parameter {;. Plaver 7 places value
U = q + 1'-5

on winning a single object and nw value on further objects. Each buyer knows his own
{; and. in addition. receives either a good signal ((;} ur a bad signal (B} about g. where
the probability of receiving 7 is strictly increasing in g. conditionally independent
across players given ¢. and independent of the t;'s. Each buyer submits a bid on
the basis of his observed signal and his taste parameter.? The k highest bLidders
receive an object and pay the k + 1st highest bid. with ties broken by symmetric

3

randomizations.? Bids therefore determine both the allocation and the egnilibrium

2S6. our players have a two dimensional type space. This is a departure from the vast majority of
the existing auction literature. We discuss the motivations for. and implications of. this departure
i Section 2.1,

3For technical reasons, we will use a somewhat unusual tie breaking rule. This is discussed below.



price.

For fixed ¥ and n. there is indeed the described tension between infurmation
aggregation and allocative efficiency: the more sensitive are bids to private informa-
tion. the greater the allocative inefficiency. while the less sensitive are bids to private
information. the less information about quality is reflected by the equilibrium price.

However. to gain insight into the validity of our intuitions about efficiency and
information aggregation. the key is to understand the Lehavior of the equilibria of

these auctions as both & and n grow large. We obtain the following result:

Consider a sequence of auctions of the type described. If both & and n
go to infinity (and k/n remains bounded away from 0 and 1). then in
the limit of anv sequence of symmetric equilibria there is both allocative
efficiency and full infurmation aggregation. That is. in the limit, objects
are allucated to the plavers with the highest f;’s. and price reflects the

true value of an object to the marginal taste type.

We already argued that in the limit, as & and »n go to infinity, efficiency and
information aggregation become both feasible. And indeed. the equilibrium behavior
of plavers satisfies both in the limit: Dbidders pay less and less attention to their
own information so that in the limit allocative efficiency results. but pay sufficient
attention to their information that the market clearing price comes to reflect quality
exactly!

The major impetus for our work is to understand the general conflict between
information aggregation and allocative efficiency. rather than the limiting behavior of
large auctions themselves, Auction models are convenient for this task because they
are a tractable non-couperative model of price setting. However, even for auctions.
uir results are of sume relevance: many real auctions do have a large supply and set
of potential buyers. And. as we argue below. auctions which combine a private and
common component of values probably should be viewed as more the norm than the
exception. The model seems to fit the timber example reasonably well. For general
markets it would be desirable to consider strategic sellers as well as strategic buvers.
Such a generalization is left for future research.

Grossman and Stiglitz (1976) point out the following paradox in rational expec-

tations models with a small cost of acquiring information: if the equilibrium price



reveals information, then there is no value to acquiring information. But, if no in-
formation is acquired. then price is uninformative. and then there is an individual
incentive to acquire information.

In wir setting. there is no cost to acquiring information: the buyer receives the
signal fur free. Despite this, the basic furces underlying the Grossman-Stiglitz para-
dox remain: if price is very informative about quality. then individuals have strong
incentives to let their idiosvneratic preferences override their signal about quality.
But. then price cannot be informative. Su. the paradux remains even if information
is free: it is not enongh that consumers have information. they must want to use
it. One wayv tu interpret this is that while there is not cost tu acquiring information.
there is a cost to wsing information excessively: letting one’s bid depend sensitively un
one's own information results in too few purchases when bad information is received.
and tuo many when good information is received.

However, as we will see, the forces which generate a paradox in the rational expec-
tations model are precisely those which imply that in the limit there is both alloca-
tivelv efficiency and full information aggregation. Much like in Grossman-Stiglitz. if
the market does not do a good jub of revealing true quality, then there is a strong
incentive to use information. contradicting that the market fails to aggregate infor-
mation in the limit. Conversely. because the market is in the limit doing a good job
of aggregating information. it does not make sense for an individual to incur much
of a coust in terms of potential misallocations to use his own information. So. in the
limit. this misallocation must also go to zero.

In a companion paper (Pesendorfer and Swinkels (1996)), we analyze information
aggregation in a pure common values setting. There we show that information ag-
gregation holds if and only if k. — > and n, — k, — oc. The result here is weaker
in two significant ways. First, in this paper we require that k,/n, remains bounded
away from 0 and 1 along the sequence. The result for the case when k,/n, headed
to a boundary in the pure common value setting depends on a fuller characterization
of the equilibrium than we can achieve in this setting. The second weakness is more
serious: in the pure common value case, we are able to show that there exists a unique
symmetric equilibrium. fully characterize it. and then show that it has the properties

needed for information aggregation. In this setting. we are unable to show existence



of a symmetric equilibrium, or provide a full description of the equilibrium. Rather,
we are able to show only that if symmetric equilibria exist. then they must have the
properties necessary for our results.

The present paper is also related to work by Feddersen and Pesendorfer (1996).
They analyze two candidate elections in which voters have different preferences and
have private information about the quality of the candidates. Similar to the & + Ist
price anction analyzed here. in a voting model the action of a player (the vote)
only matters when he is pivotal and thus a voter (like a bidder in an auction) has
to condition un being pivotal. As in the present model. there is a tension between
information aggregation and the willingness of agents to use their private information:
if the election aggregates the private information of agents effectively then voters can
infer the quality of the candidates frum being pivotal. But then most voters will ignore
their private information when making their vote choice. Feddersen and Pesendorfer
give conditions under which the election nevertheless fully aggregates the private
infurmation of voters.

In the next section. we lay out the model. and describe the key pruperties of
the equilibrium for fixed k¥ and n that we will need for our asymptotie results. We
also briefly discuss the role of our two dimensional type space. Section 3 is the
heart of the paper. It examines the behavior of the equilibrium as & and n grow
large. Finally, onr asymptotic efficiency and information aggregation results allow us
to characterize asymptotic bidding behavior preciselv. This is despite the fact that
equilibria are extremely difficult to solve for in the finite setting. Section 4 provides

this characterization. Prooufs of all results are contained in Section 3.

2 The Model and Equilibrium for Fixed Market
Size

Assume there are n buvers and k objects for sale. Buyer i's utility from a single
vbject 1s

=g+t
and any further object gives a utility of 0. The quality of the object. ¢. 1s common
across plavers. and drawn according to a distribution {7(.). with support [0.1]. /" has

continuous density f{.).where f(gq) >~ > 0.Yg € [0.1]. Bidder i's taste parameter (,



is drawn independently across bidders from probability distribution B with support
(0,7]. 1 has continuous density w:(:) where w(t) > v > 0.

Bidder i knows ;. and receives a signal s; € {3. (7} about the quality, ¢. We as-
sume that s; and {, are independent. Conditional un ¢. the signals s; are independent
across plavers. with a probability 7;(q) of a good signal G. and 7y(q) = | — 7(q)
of a bad signal /3. where 7 is continuous. bounded away from 0 and 1. and strictly
increasing.

Each bidder 7 submits a bid b; as a function of his taste-signal pair (/;s;). The
k highest bidders receive the ubject and pay the k 4 lst highest bids. Since two or
more bidders mav be tied at a bid we have to specify a tie breaking rule: A bid b
wins the ubject with probability une if fewer than k& — 1 other bidders submit a bid
greater than or equal to b. If b is the k-th highest bid and & or more other bidders
submit a bid larger than or equal to b we assume that the probability of winning the
ubject is equal to z. where 0 < = < 1. The probability = is independent of the number
of bidders above b or at b. This specification of the tie-breaking rule 1s non-standard.
Below we discuss its implications. Here it suffices to note that we show below that
in anv svmmetric equilibrium ties occur with probability 0 and hence in equilibrium
the tie breaking rule is never used.

We counsider symmetric Nash equilibria. In the following we describe the equi-
librinm strategies from the perspective of bidder 1. Since we assume symmetric
strategies this describes the whole equilibrium profile. Let d denote the kth highest
elerment in the set (by.....0,). i.e.. d denotes the kth highest bid among all bidders
except bidder 1.

Our first proposition shows that symmetric equilibria can be described Ly a pure
strategy with the property that the bid function b(f. s) is strictly increasing in /. In
addirion. a bidder with taste £ bids more when he receives the guod signal than when

he receives the bad signal.

Proposition 1 Any symmelric equilibrium can be desceribed by a bidding funclion
b{t.s). where b(t.s) is strictly mereasing in t with b(L. Gy > b(t. B) for all t € {0.1].
Moreover,

b(t.s) =t+ E{qld =b{l.5).s) (1)

for all s and {.

|



Thus. in equilibrium. each bid b made is such that if the type of plaver 1 who bid
b is on the margin between winning and losing (i.e., if d = ). then the expected value
of the object to him is equal to price.

To give intuition for this result. note first that it is easy to show that if for a given
signal s. b is optimal for taste f, then every optimal bid with signal s and taste {' > {
is at least b. This is so as { contains no information about either g or other players’
actions. and su increasing ¢ simply makes any given increase in bid strictly more
attractive. But then. it must be that for almost all ¢, there is a nnique optimal bid."
Since the distribution of ¢ is atumless. we can thus without loss of generality restrict
attention to equilibria in pure strategies. That is, for every equilibrium, there is a
realization equivalent equilibrium in pure strategies (simply take a selection at the
zero measure set of points where the best respounse is not unique). So. an equilibrium
can be characterized by a function b({. s) which for each s is non-decreasing in 1.

To give an intuition for equation (1) consider first a bid & such that for each s.
b{i.s) is strictly increasing as it passes through b (that is. neither b(¢. ) nov b(¢. 13) has
a flat spot at b). Then. the distribution over d has no mass points in a neighborhood
of b and for small = > 0. conditional un d € [, b+ =|. there is probability 1 that a bid
of b by player 1 luses while a bid of b + = Ly player 1 wins. Since rhis is a uniform
price auction, the only time increasing 1’s Lid Ly = matters is when d € [b.b 4 ¢]. So.

the change in payofts has the same sign as
Flglde [b.b+:z].s)+t— E(pld € [b.b+=].s). (2)

where p is the randum variable describing the equilibrium price. Arguing similarly
for = < 0. and taking limits as = — 0. we conclude that (1) must hold. Note that the
above argument was independent of the tie braking rule because a bid of b+ = wins
with probability 1 and a bid of b loses with probability 1 conditional on d € [b, b+ 2],

Consider next the case where b(s.t) = b for some interval of ¢ for at least one
s. Then. there is a positive probability of a tie at b and therefore there is a positive
probability both of winning and of lusing with a bid of b when b is pivotal. So. unlike

above. it is not the case that whenever d € [b.b + z|. there is probability 1 that a bid

*To see this. let y{t) be a sclection fron the best response correspondence for some given s. Then.
y(1) 15 a non~decreasing function, and y{t) junips at every { where the best response 18 non-unique.
So. there are at most a countable set of such points.

SNote that this argument docs not depend on the non-standard tie breaking rule.



of b by plaver | loses. Nuw the change in payoffs has the same sign as
F{qgld € [b.b+ =] b luses. s) + 1 — E{p|d € [b.b+ =], bluses, s}. (3)

The standard tie breaking rule specifies that when there is a tie at b. the probability
that 1 wins with a bid of & is equal to (k — #bids abuve b)/(#Dbids equal to b).
Under this rule. when d = b. whether player 1 wins or luses with a bid of b contains
information about the number of bids above & and equal to b. This in turn may contain
information about the signals other plavers have received. Therefore. (3) need not be
the same as (2).

It is precisely for this reasun that we specify vur unusual tie breaking rule. Under
our tie Lreaking rule. supply is alwavs adjusted in the event of a tie su that the
probability of winning an object conditional on a tie is ¢ independent of how many
bids are either above or equal to b. Sou. conditioning on losing at b does not provide
any further information abuut ¢ or p unce vne conditions on the event that b is pivotal.
and so (2) and (3) are equivalent. A similar argument applies when = < 0 for the
event that d = b and a bid of b wins. Taking = to 0. we cunclude that (1) must again
hold. But. since (1) can hold for at most one { for each s. this in fact rules ont the
pussibilits of b(s. 1) being constant over any range of t's. Thervefore, b(f, s) is strictly
Increasing in f.

Similarly. since the probability of receiving signal (7 is strictly increasing in gq.
Elgld =0.G) > I{gld =b. B).

and hence if the Lid b is made both Ly the type (£.() and by the tvpe (. f3) then
equation (1) implies that i* > . In the Appendix we demonstrate that this argnument
can be generalized to imply that b(f.(7) > b(t. B} for all L.

Our tie breaking rule is nun-standard since it requires the auctioneer to deliver
the guod with a fixed probability = whenever two or more bidders are tied at the kth
highest bid. If the anctioneer sets = = % then this tie breaking rule is always feasible.
However. this will typically result in fewer than k objects being sold in the case of a
tie. Since we show that in equilibrium ties occur with probability zero. this is not a
problem.

Note that the unly time the tie breaking 1ule is used in the proof of Proposition

1 is to rule out flat spots of the bidding funetion. Thus. any symmetric equilibrium
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of the game with the non-standard tie breaking rule will remain an equilibrium when
the standard tie breaking rule is used. And. a non-atomic equilibrium of the standard
game is of conrse an equilibrium of the game with the non-standard tie breaking rule.
We have not been able tu show. however, that with the standard tie breaking rule

other equilibria {involving atoms) cannot exist.”

2.1 Comments on the Two Dimensional Type Space

Our model has the property that each bidder is characterized Ly two parameters: his
taste and his signal abont quality. It is this two-dimensionality of the type space that
gives rise to the conflict between information aggregation and allocative efficiency
discussed in the introduction.

In contrast to our model. the vast majority of the existing auction literature
works with a one-dimensional type space: each plaver receives a single signal x; €
R. Milgrom and Weber (1982} show that despite this one dimensional tyvpe space.
the model is rich enough to include pure private values (a playver's utility from the
object depends only un his uwn signal). pure common values (a player’s utility from
the object depends symmetrically on all signals) and models which are intermediate
between private and common values (a plaver's utility depends on all signals. bur
weighs stgnals of other playvers differently than his uwn).

In the one-dimensional environment there can be no-conflict between infurmation
aggregation and efficiency: a higher estimate of quality always also implies a higher
taste parameter. We are thus unable to use the standard Milgrom Weber (1982)
framework in this paper. More generally. we believe that most auction settings do
contain both common and private values components. And, unless tastes and in-

formation are perfectly correlated. this requires a type space with more than one

“Doing so woukd involve establishing that with the standard tic breaking rule there s a winner's
curse at an atomn: once one has conditioned on b being pivotal. the additional news that one has
won should at least weakly reduce one's beliels about quality. It s possible to establish that in any
equilibrinm. involving atoms or not. bids are at least weakly increasing in signals. Winning at b
tends to suggest that there were not too many people who bid strictly above b (so that there are
lots of objects left for people who bid #) and not too many who bid & (so that not too many people
are competing for the objects avallable at ). So. intuitively. winning at b ought to be bad news
about the quality. However, while bids are easily shown to be increasing in s;. we are unable to
show Lhal they are affiliated with s,. which is what one would need to apply for example Theorens
3 of Milgrom and Weber {1982). In the pure common value setting., we were able to establish this
result. See Pesendorfer and Swinkels (1996).
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dimension. For examptle. bidders on an oil lease may differ in their current cost of
exploration and drilling activity. and in addition, have different information about
the amount of oil which a certain tract might contain. It seems highly artificial to
assume that good information about the oil-content of a tract also implies that the
company has lower costs of exploration.

With a single dimensional type space. there is a natural guess about the form
of the equilibrium: bids will be strictly increasing in type (and symmetric across
plavers). Having made this guess. inference problems about equilibrinm behavior
are reduced to inference problems about underlying parameters. So for example. the
question “what would T infer if I knew my bid was tied with the highest bid by my
opponents” reduces to “what wonld T infer if T knew my signal was tied with the
highest signal by my opponents.” One can then easily derive first order conditions
on what the bid of any given signal type must look like, Integrating these first order
conditions vields a candidate equilibrinum. and the assumption of affiliation allows one
to verify that the randidate is indeed an equulibrium.

With a two dimensional tvpe space. there is no “natural” complete ordering on
the tvpe space. Guessing an urder on the tvpe space invulves gnessing which pairs
1o

H

and t;; go together: e.g.. for anyv given type ;. what type { has the property
that b(L. () < b(ty. B) if and only if £ < ;7 But this question cannot be answered
independent of the equilibrium strategies. It is equivalent to guessing what a bidder
infers from d = & which in turn depends on {5 and {¢.

As a consequence of the two-dimensional type space we have not been able to
prove existence of equilibria. Our results instead hinge un a partial characterization

of what equilibria must lock like in the limit. if thev exist.

3 Efficiency and Information Aggregation

3.1 Asymptotic Efficiency

Efficiency requires that the playvers with the %k highest values are those who win
ubjects. This maximizes the gains from trade acruss buvers and the seller. and.
given our assumption of quasi-linear utilitv functions, is the unique Pareto optimal
allucation. Of course, given that players who observe (5 always bid more than those

who observe 3. exact efficiency is unattainable for any finite anction. In particular.
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since b(¢.(7) > b(t. B) it folluws that there is a positive probability that a bidder with
tvpe (£.(7) wins the object while a Lidder with type (. 8).1" > [ does not win. In
the fullowing we will define a measure for the degree of inefficiency.

It is convenient to first define the inverse of the bidding function. For a given
aunction and equilibrium. and s € {B.('}. define the function {.(b) so that b(s.t) > &
for all £ > £,(b) and b(s.t) < b. for all t < {,(b). So. for bids b which are actually made
with signal s £,(b) is the taste parameters that makes bid b. while if b is not made
with signal s. then f,(b) is the taste parameter at which bidding jumps past b. If & is
larger than any bid made then we set {,(b) = . and similarly £,(b) = 0, for b smaller
than anv bid made. Note that since b(s,t) is strictly increasing in £, {,(b) is unique.

and is continuous. Figure 2 illustrates {;{b} and f(b) for a particular equilibrium.
Figure 2 about here.

Assume the price is b in some equilibrium of this auction. The smallest type {
who mayv get the ubject in equilibrium is t;(b). Similarly, the largest type { who may
not get the object in equilibrium is {;(b). Thus the maximum potential loss from
a misallocation of the objects if the price is b is 14(b) — {(b}). Therefore. an npper
bound for the luss in utility due to the misallucation of objects in an equilibrium is
given by

sup[t p(b) — L (D)} (4)

b

In the fullowing we consider a sequence of anctions with k, objects and n, bidders,
where Luth k. and n, go to infinity as + — . Alung this sequence of auctions we
keep the information structure. ... and I} fixed. Tu indicate that we are working
with elements of a sequience we will subscript strategies and inverse bidding funections
by 1.

We sayv that a sequence of equilibria is asympfofically efficient if

51:1)[f[;r(fl) — ter (b)) — 0
as rr — .

Note that this implies a strong form of asymptotic efficiency. First. as discussed

above. any misallocated object goes tu a playver whose utility for the object 1s almost

as high as that of anyv player who does not receive an object. Second, if k. /1, is
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bounded awav from zero. then the expected fraction of objects which is misallocated
also converges to zero. This follows since sup, [ty (b} —1 ¢ (b)] — 0. and therefore if the
equlibrium price is p a vanishing fraction of bidders will typically have a parameter /
Letween (. (p) and {¢.(p) in the limit.

We now twn to the question of when asvmptotic efficiency holds. It turns out
that a kev assumption is that the rativ of objects to bidders (k,/n,) stays away from

zero and une alung the sequence.’

Assumption 1 1, — > as r — . Morcover. there is a3 > 0 sueh that L — 3 >

koo >3 forallr.
We then have:

Theorem 1 If he sequence of auciions satisfies Assumplion 1 then any associalcd

sequence of symmetric equilibria is asymplolically efficient.

To gain an intuition for the result assume that fur sume bid b {g,.(b) — t¢(b) > =
for all r. Suppose. for simplicity. that the bid b is made by tvpe ({5,(b). 13) and by
type {{¢:+(b). (7). Then Propusition 1 implies that

tpe(b) + Egld, = b.B) = tq.(b) + E(gld, = b.(7) {5)
Bur then it nust be the case that for all »
Flgld, =b.G)— Fgld, =b.83) > = (6)

Thus it must Le the case that the inference abouut quality made by a bidder with a
good signal is significantly different from the inference made by a bidder with a bad
signal when conditioning on the event d, = b. We will now argue that (6) cannot be
satisfied for large r.

To see this first note that the probability that a bidder with a signal 3 bids

abuve b is strictly less than the probability that a bidder with signal G bids above b.

"I a companion paper (Pesendorfer and Swinkels (1996). we were able to explicitly characterize
1he equilibrium, and this allowed us 1o derive an infortation aggregation result even when LT
went 1o 0 or 1. Here. we are only able to derive some propertics of the equilibrium: this weaker
characterization reguires the stronger assmnption on A/, Whether our results would go through
when Ay /iy does go to 0 or 1 1s an open question.
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Moreover. since (g, (b) — 1o.{b) > = these probabilities stay bounded away from each
other. If d, = b then exactly k, of the n, — 1 bids are above b. If n, and k, are large
then we can infer with great precision what fraction of the buyers must have received
a good signal in order for a k,./(n, —1) fraction of bids to be above b. If {1,4(b) denotes
the probability that a bidder with signal s bids beluw b then. for large r. the bidders
estimate of quality conditional on d, = b must be very close to the unique ¢ that

satisfies

(1 — He;r(B))malg) + (1 — Hy (0))(1 — 7 (q))
= (1= Hp (b)) + (Hp (b)) = Her (D)) (q) =

But this implies that the private signal s cannot change the bidder's estimate of the
quality of the object significantly unce he cunditions on the event d, = b. Therefore

we have shown that Inequality (6) rannot be satisfied.

3.2 Full Information Aggregation

As a benchmark for full mformation aggregation we use the “full information™ market.
i.e.. the environment where all buvers know the true quality of the object ¢. In that
case the bidding behavior in any symmetric equilibrinm is for each bidder simply to
bid their valuation {; + g. Thus the equilibrium price will be equal to the &, + Ist
highest valuation. Define {} =1}’ ](ﬁ%g) In expectation, a fraction (k.+1)/n, of
bidders have  above 7. The law of large numbers then implies that the equilibrium
price of the full information game cunverges in probability to {} 4+ g as r grows large.

We demonstrate in Theorem 2 that the equilibrium price of the market where
quality is unknown also converges to t7 4 ¢ in probability. Thus. the equilibrium price
in a large market is the same (with high probability) whether ur not the quality of
the ubject 1s known to buyvers.

Let the random variable p, denote the equilibrium price in auction r. We can

then state:

Theorem 2 If a sequence of auclions salisfies Assumplion 1 then any associabed
seqienee of symmelric equilibria satisfies thal for all & > 0 there is an 7 such thal for

wll v > 7 Pr{lg+1:—p| > 8} <&
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Together Theorems 1 and 2 imply that the equilibrium price in a large market is
equal to the valnation of the object of the marginal bidder. Thus in the limit any
bidder who does not buv an object has a valuation less than the equilibrium price
and converselv. every bidder who gets the object has a valuation larger than the
equilibrium price. This implies that (in the limit) no bidder “regrets” his bid. 1.e.. no
bidder would want to change the bid once the equilibrium price is announced.

Tu provide an intuition for Theorem 2 cunsider sume bid b that is made by type
(1 5-(b). 3) and Ly tvpe {{.(b). (7). That is. consider a b that is in the support of bids

fur both signals. By Proposition 1 we know that
L (b)Y + Elgld, = b B) =t (b) + E(q¢ld, = b.G) (7)
By Theorem | we also know that
Le(b) — 1o (B) — O (8)
and hence it fullows that
Elgld, =b.B)— E(qld, =b.GG) = 0 (9)

The last expression savs that the conditional expectation of the guality of an object
is almost independent of the signal s. But recall that the probability of receiving the
goud signal. 7 {g). is strictly increasing in ¢ and hence the oniy time the signal does
nout affect a bidder’s beliefs about guality is if he can predict the guality extremely
precisely independent of the signal. In other words. (9) implies that the probability
distribution uver ¢ conditivnal on d, = b becomes arbitrarilv concentrated around the
rrue value q.

Thus we may conclude that if d, = b and tvpe (¢. 5) bids b then b =2 t 4 ¢ where ¢
is the tre quality of the object. We claim that this also implies that if p, = & then
pr 25 1+ ¢. To see this note that d, = 6 if k&, — 1 of n, — 2 bidders bid above b and
one bidder bids b whereas p, = b if &, of n, — | bidders bid above b and one bidder
Lids b, For large r the events p, = b and d, = b provide therefore virtually identical
information about ¢ and hence the claim follows.

Tou complete the argument now ubserve that Ly Theorem | and the law of large
numbers the marginal bidder has a tvpe eluse tu {7 with probability close to one for
large 1. Therefore the equilibrium price must be elose to 1% + ¢ with probability close

to wne for large r.



4 The Limiting Bid Distribution

In this seetion we characterize the bidding behavior in the limit as » — oc. For
simplicity we assume in this section thar k. /n, converges tu constant # € (0.1). Let

=T YL - k).

Proposition 2 For all = > 0. there crists T such hal Jor allr > 7.
(1) for al i <17 — =t <D{t.5) <1+ =
(2) for allt > 1" + 2 L+t 42 <b(t.s) <1+

Thus the limiting bidding behaviur is easily characterized. Bidders with tastes =
below the pivotal tvpe (* bid as if the trme g of the object were 0 whereas bidders
with tastes = abouve {7 bid as if the tme g of the object were 1. Bidders with these
tastes thus essentiallv ignore their infurmation. Bidders who lie in a very narrow
range around t* behave in a way that depends sensitively un their information. The
following graph summarizes Proposition 1. In Fignre 1. ¢ = 1/2. 7 = 2. and the

median of 1™ is assumed to be 1/2.

o0 02 o4 oe 0 os

The limit bid distribution
To give an intuition for Proposition 2 note that since b({. ) is strictly increasing
in ¢ a bidder with < t* — = expects the equilibrium price (and the pivotal bid) to be
larger than his own bid with probability close to une for all values ¢. This is the case

since (v Theorem 2) the fraction of bidders Lidding above ¢ is strictly larger than

16



k./n. for large r. If the unlikely event veeurs that { is the marginal bidder then 1t
must be the case that both an unusual distribution of I's and a low value of ¢ have
been drawn. A similar argument applies for f > 1* 4 =

This characterization of the equilibrinm also makes clearer how the market man-
ages both information aggregation and allucative efficiency. To achieve allocative
efficiency. it is enongh that the interval of tastes over which bids depends sensi-
tively on information grows narrow. Then, a growing fraction of bidders lie vutside
of this interval. and thus are acting essentially independently of their informaticn.
On the other hand. while the fraction of bidders who use their information a great
deal converges to (. their absolute number grows fast enough that price contains all
informarion about quality in the limit.

The limiting characterization of the equilibrinum has an interesting parallel to Fed-
dersen and Pesendorfer {1996). In that paper. voters have different tastes about two
candidates and different information about the candidates. Feddersen and Pesendor-
fer show that as the number of voters grows large. voters who have tastes either a
little tu the left of center vote fur the left candidate regardless of their infurmation.
while voters a little to the right of center vote for the right candidate regardless of
their information. Only a narrow band of moderates uses their information in their
Lehavior. The analvsis in that paper is simplified Ly the discrete action space (vote
left ur vote right). which essentially forces players to either nse their information a
great deal ur not at all. Interestingly. vur limiting equilibrium approaches that result
even thoiugh plavers have available to them strategies which use information unly a

little bit.

5 Proofs
5.1 Proof of Proposition 1

The proof of Proposition 1 is divided into a sequence of Lemmas. Let K'(b|s) denote
the probability that a bid b wins in equilibrium given that the bidder has received
signal &. Let II(b. . 5) denote the pavofl of a bidder with taste { and signal s if he bids

b. Let [l denote an equilibrium bid distribution. i.e.. {{ is a measure on [0.1] x [0. xc).
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Lemma 1 Given any equilibrium f1. there is a function b(t. s) that is weakly increas-
ing in ! and such that (1) a player receives the same expected payoff and probability of
winning by wsing b(L.s) rather than his equilibrium bid distribution, and (2), playing
aceording to b{l.s) generales the same joint distribulion over qualilies, lypes, alloca-

tions. and prices as does H.
Proof Let b be an uptimal bid for a player with tvpe ({.s). and let < b. Then,
P1 (b wins. b’ loses| s) (#(g]b wins. b’ luses. s) +{ — I (p|b wins, b loses. s} > 0.

Now. if Pr(b wins. ¥ loses| s) = 0. then b is a best respunse for s if and only if ¥ is,
and neither the pavoffs of the plaver making the bLid nor the overall distribution uver
equilibrium outcomes is affected by whether the player bids b or 4.

Assume Pr (b wins. b luses| s) > 0. Then. it must be that
I {q|b wins. ¥ luses, s) 4+ { — F(p|b wins. 8/ loses. ) > 0.
But then. fuor any " > 1.
F(qlb wins. b luses. s) + 1" — [(p|b wins. b’ luses. s} > 0.

and so b is a strictly Letter Lid than U for tvpe (' s). Su. let I/ > {. and let b be a
bid which is a best respunse for with tyvpe ({.s). Then, every bid & < b such that
Pr (& wins. b luses.| ) > 0 is a strictly worse bid than b for (¢'.s). If & < b and
Py (b wins, ' luses.| s) = 0. then b is at least as good as ¥’ for {{’. s) and there is no

difference in the ontcome if (', s) bids b instead of . A

o

Lemma 2 for cach s = [3.(7. b(l.5) 15 striclly mcreasing in

Proof By the previous Lemma., b(#. ) is weakly increasing. Suppose that for sume
s.b(s.t) = bfor all { € (£.1y). Then. Pr(d = b. b loses. 8) > 0, and so F(gld = b.b
loses. s) is well defined. Consider a tvpe (/.s) who bids 5. By bidding just above b a

bidder with type ({.s) changes his pavoft by
[F(gld = b.bloses. s) +t — b Pr(d = b.b luses. s) (10)
whereas by bidding just below b the payoft changes by
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—[F{gld = b.b wins.s) + 1 — b Pr(d = b.b wins. )

But. the probability of winning is the same and equal tu 2.0 < = < 1. for each event

in which the bidder is pivotal and therefore
E(gld = b.bloses. s) = F{qld = b.b wins.s) = E(q|ld = b.s). (1)

\oreover. Pr{d = 0.5 loses) > 0 and Pr(d = 0.0 wins) > 0 and hence if b is optimal
fur (1.s) then
Flgld="0b.5)+1=0b

which ran hold at most for one f. Thus we have a cuntradiction and the Lemma
tollows.

For a (Lebesgue) measurable subset X C [0.o¢) let /[, (X) be the probability
of a bid b € X by a plaver with signal s. Note that [{,([0.8]) = ¥ ({.()). Let
H, = suppli,(.). Since each ¢,(b) is increasing function. /,(b) is differentiable almost
evervwhere. Let B be the subset of all b € {H; UHu\{min{H UHy} Umax{H, U
His b} for which t5(b) and /;(b) are both differentiable and either £,(b) # 0 or f{.(b) #
0. Since (b} is continuous and increasing. //,(B) = 1.5 = B.¢.

Cleariyv if Luth {5(.) and i (.) are differentiable at b. then K'(.|s) is also differ-
entiable at b. su that K(b|s} is differentiable for all & € B. If either t'5(d) > 0 or
' (b) = 0. then A'(b]s) > 0. Since 1, (B) = 1.5 = B. G\ it follows that supp A'(.[s) =
He: W Hy Finallv, note that for b € 8. Fy|d = b. 5} is well defined.

Lemma 3 [for all b€ H.,. b is a best response for type {£,(D). 5).

Proof Since b(1. s) is strictly increasing. K'(.|¢) is continuous. But then. IT{b. 1. 5)
is contimions in b and trivially continuous in {. Assume that for some b € H,. b is
not a best response for tvpe (f,(b).s). Then. there is ¥ such that TI{¥.{,(b}).s) >
[1(b.1,(b). s). But then Ly continuity, II{(d"./,(b). s} > 11(b(s.f).1.s) for { sufficiently
close to [,(b). But then. for all such f. b(1.5) is sub-optimal. contradicting that in a

Nash equilibrinm. plavers must use a best response with probability 1. Wl
Lemma 4 If b e H, N B then I(gld = b.s) + 1,(b) = b.
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Proof Consider a puint b € H, N B. Since b ¢ B it follows that E{gld = b.5) is
well defined and hence

OTI(b.t. s y

M = [F(q|d =b.s) + 1 — b K'(b]s).

el

Since b € B.K'(b]s) > 0. And. since b € H,. b is uptimal for type £,(b). and so it

folluws that Flgld =0.s) +14(b)—b=0.1
The following Lemma sayvs that as long as the probability distribution over g is
not entirely concentrated at one point. the expectation of g conditional on receiving

the signal (7 is larger than. and uniformly bounded away from. the expectation of ¢

conditional un receiving signal f3.

Lemma 5 Lel Z be any distribution on [0.1). Then for alld > 0. i Pr{|lg — E(g})| > ¢) >

& there is an > O independent of Z. suech that
Elql() — Eq|B) > 1.
where probabilities and expectations are taken with respect to Z.

Proof Since Pr(lg — I(g){ > ¢) > & it must be the case that either Pr(g >
F(y) +¢8) > &/2 or that Prig < Fg) — &) > 6/2. Consider the first case (the
other is entirelv analogous). Then, since there is at least §/2 mass ¢ above [(q).
and since g € [0.1]. there must at least 82/2 mass below E{g). Let W, = [0. F(q)].
Wy = (E(q). Flg) + 6). and Wy = [E(q) + &.1].

3

#(q) = ZPI‘ (qe W) K (gW)

[
and.

3
ElqiC) = 3 Prig € WIG)E (g W G).
|
Clearly E(q|W.. G > E{g|W7). F{g|W;. () is increasing in i, and F(g|W5.G) >

I (giTV). G)+4. Since the signal has the MLRP. Pr(q € W}|(7) stochastically duminates

Pr(q € W;). Tu establish the existence of vur 7. it is thus enongh to find v depending
onlv on & such that Pr(g € W3|G) — Pr(g € Wy) > v and Pr{g € W) — Pr(g €
11,1¢) > v (becanse then Z(.}(7) can be thought of as obtained from Z(.) by a series of

transformations which at least weakly increased the expectation of ¢, and by shifting a
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mass 1 a distance at least & to the right). Since 7; is strictly increasing. thereis g > 1

Prigc Wy &) Prig: Wy)
Pr(g W () Pl W)

Since each of Pr(g € 113) and Pr(g € W) was at least ¢*/2. we are dune. B

such that 7g(y) /7 (w) > p for all ¢ € Wy w € W, and so.

The following Lemma shows that bidders whu receive a signal (¢ will bid maore

than bidders who receive a signal /3.
Lemma 6 For all i b(t.(7) > b(i. B).

Proof We will demonstrate that for all b € B. {;(b) < t(b). Since B is dense un
He U Hyy the lemma follows from the continuiry of £,{b).

Case 1 Consider first anv b € H ' Hy N B. Then by Lemma 4
Flgid =b.B)+tu(b) =0b

and

Fqld = b.GY + t,(b) = b.

Since the signal satisfies the monotone likelihvod ratio property it follows that
Elgld =b.G) > Flgld = b. B)

and rtherefore it must be that ¢ ;(b) > ().

Case 2 Cunsider anyv b such that b € H; N B but b ¢ He;. Since b € B, at least
one of (D) or {5(b) is strictly positive. If f{b) = 0. we are thus done. Assume
le:(b) > 0. Define b = maxy ., He:. Since ({0} = t¢;(b) it follows from Lemma 3 that
bis a best respunse fur a plaver with tvpe (f;(b). (7).

We consider two sub cases:

Case 2a /{;((b.5)) > 0. Then. of course K{b|(+)— K{b](7) > 0. Consider the payoft
change to a plaver with tyvpe (i ;(b). (7) of bidding b instead of . Since BN (b.b) C H .

Lemma 2 implies that for every ' € B (6. 5)
Elgld=10.8)=V 4+ t5) = 0.

The distribution over ¢ conditivnal on the event d = b counveys (possibly noisy)
infurmation about n — 1 signals and hence satisfies the assumption in Lemma 5 for

some ¢ > (. Thus. for some = > 0.
[L‘(q‘(f =¥, (;) > f;‘(q‘d =¥ ]3) + =
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But. since b < b {0 < 1y(b). So. if {{b) > {1(b). then

’)

/ Flgld =b.B) =¥ + =+ t5(b) dK{(¥]G)
Ia hh

(b 16(6).G) = 0 t6(5). ) = [, (”)(h’(qldzb’-@)—b’+fc(b))dh’(’

v

v

Flgld =4, B) = b + =+ tu(0))dRK(H|G)
JB(bh)

= {K(bIG) — K(G))

which contradicts that b is a best respunse for a plaver with type ({¢(b). (7). Thus.
falb) < 1 (b,

Case 2b Hp{(b.b)) = 0. Then. since every neighburhuod b bas non-empty inter-
section with He . and since B is dense un H,. it must be that for {" arbitrarily cluse

tu f; (b}, and & arbitrarily cluse to b
Flygd=0.Gy+ 1" =0 =0.

And. of course.

Flgd=b.B)Y+1pd)—b=0

However. since Hy({b.b)) = 0. the event d = V' cunveyvs arbitrarily cluse tou the
same information about bidders who bid either strictly more than b or strictly less
than b as does the event that d = b. And. conditivnal on d = b. the uppuosing
bidder who bid b must have seen the signal f3. while conditivnal on d = ¥'. the
opposing bidder might have seen (7. So. fur V' cluse enough to b, {gld = V. () >
Flygld = b.G) — /2 > E(gld = b. B) + ¢/2. Thus, it mmst be that £ < ,(b) — /2.
and su l;{(b) < (D).

Case 3 Consider any bsuch that b € H;NB but b ¢ Hy. This isentirely analogous

to case 2.

5.2 Proof of Theorem 1

In this section we shuw that every sequence of equilibria is asymptotically efficiend.

To this end we first need to establish a rentral information aggregation Lemma.
Denote by X, (b} the event that k, — 1 of bidders {3..... n,} bid above b and

i, — k, bidders Lid Lelow b. Note that because the equilibrium is symmetric, the

event d, = b can be replaced for all relevant purpuses by the event X, (b) N {by, = b}.
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The following Lemma says that if playvers who receive a good signal are more likely
to bid above b than plavers who receive a bad signal, then the event X, () alluws a

very precise prediction about the common value component g of the object.

Lemma 7 There is () such thal for all & > 0 and for all v > (&) and for all b
swelt thal Hpa(b) — Her (b)) > 6.

Pu (g — EglX.(0)] > 6 X.(b)) < 8

ared

(g Xo(b).sy = B.s) = B) < 6.

X (D). 52 =G5y =G) — Elg

Proof Fix é > 0. and b such that /{;.{b) — 1. (b) > ¢é. Let

n‘(q} = ]IH,-(!)) — W(‘,‘(q)(]l’[;r(b) - ]I(;,—(b))

be the probability that any given bidder bids less than b given g¢. Let

np kype- 2
2

arlg) = x{q) =

kp_ 2
nr 2

1 —x(q}]

Since 1, (b) — e, (b) > & and 7, (g) is strictly increasing. a(g) is strictly decreasing
in g. Thus o,{q) is a single peaked function of g. Let ¢’ = argmax, a.{q). By the
hvpothesis of the lemma /. (b) — 1 (b) > & This implies that for every ¢ > 0 there
is an L{c) > 0 such that for all r and for all ¢ with {¢ — ¢;| = ¢ |o,(g)] > L(c) . Let
J{g| X.(b)) denote the density of ¢ conditional un X, (b):

Jg)afg)™ ?
FI(g)a (g 2y

But this implies that for anv ¢'. ¢ such that ¢ + ¢ < ¢ < gl — ¢

Sl X(0))  J{d) (rtr(q')

flgl X (b)) =

[lar | X:(0))  fla) \ arlg)

Similarly. for ¢'. ¢ such that ¢ — ¢ > g > ¢ + ¢,

. 2
) < (1= cL{O))™ *+ 2

flglX.0))  flg) \a-(g)

Chuusing r large enough. the first part of the lemma follows.

FIXA) ) ((1)) oy 7y



To see the second part of the lemma nute that from the first part of the lemma.
that for all ¢ > 0.

Pr(lg — E(q| X (0))f > 1 X, (b)) < ¢

for sufficiently large r. So. for sufficiently large r.

Flg X, (0).G.0) <
(1 — O(EgIX(0) + Q) - 7 {0) min f(g) + ¢ - 1 - 7a{1)? max f(g)
(1 = ¢)e ( 2min f(g) + ¢ 7 (1)* max f(q)

and

E(glX (b). B.B) >
(l—g)( (qlh(b)) ¢) (1 —ae(1)*min flg) + (-0 (1 = 7¢(0))* max [(q)
(1= ¢}l —7a(1))?min flg) + ¢ (1 — 7 (0))? max f{q) '

Since 7,(.) is buunded away from zerv and one and f(.) is bounded away from zero
and infinity. each of the last two rhs expressions can be driven arbitrarily close to

I (i X ()} by chuice of . And of course. F{q|.X,.(b}). (7. (7) > E(q|X,(b). B. B). The

second part of the Lemma follows. B
Finallv. the following Lemma demonstrates that {4, (b) — ter(b) — 0 uniformly for

all b, This proves Theorem 1.

Lemma 8 There is () > 0 such that for all ¢ > 0. for all v > r(c}. and for all
e Her UHpe L) —1er(b) <.

Proof Let
&= min (W(r+d)—W(x)

i [0 o

and let r{c) = r(8). where r{.) is as given by Lemma 7. Note that & < ¢ and if
Lie(b) — feip(B) > ¢ then T (b) — He (D) > 6
Chouse i > r{c) and assume that there is b € H,UH g, such that f 5{b)—t(b) > <.

We suppress the » subscript for the remainder of this proof.

Define b, = miny -, H, whenever this is well defined and set b, = b otherwise.®

9

Define b, = max; <, H, if this is well defined and set b, = b otherwise.” Also note

that if b € He: N Hyy then b, = b, = b.

SNote that if b, is not well defined then it must he that s = /3,
“Note that if &, is not well defined then It must be that s = (7.
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Case (i) If be: = by define b = b and b = max, «, Hp.

Case (ii) If b; < by and by; > by then define b = by and b = miny >, He:.

Case (iii) If b; < by and bg; < by; then define b=bs and b= by,

Note that if b € He: M Hy then b = b = b. The above construction is necessary
to account for the possibility of discontinuities in the bid functions. We have the

following additional properties of (b.b) :

1. (b.by N H, = ¥ for all s.

NS

) Li(b).
3. b (D) < La{b).
1. beHy beHe.

Tu see {1) in case (i). note that Ly construction Hy N (b8} = @ and alsu by
construction He; N (b f_) #. Since b > by and since by € Hjy it follows that
b > by > band so He M (b.h) = 0. Case (ii) is analogous and (3ii} is trivial.

To see (2) in case (i) note that as we just observed. b > b and since {(b) is
increasing we conclude that {5{b) > f5(b). An analuguus argument establishes (3) in
case (ii).

To see {2) in case (ii) or {(iii). nute that in these cases. H; M (b.5) = ¥ and thus
[1:(6) = £12(b). A similar argument establishes (3) in cases (i) and (iii).

Now. by (4). and since B is dense on H,. there is bV € Hp, N B arbitrarily close o
b oand b € He N B arbitrarily cluse to b,

By Proposition 1

(q‘du—b 1‘3)4*1‘“(!)) L

and

il

Elgld =0 .G) + 1) =V

S0.

ts(0) — i) = =0+ E(qld=V.G)— E{gld=b".1)
F (G X(E) by = V. G) = B X(V) by =¥ B)

H@M@jm_b(J~EMM@1@=QJﬂ

X(0).G.G)— E(glX({¥). B. B) (12)

——
=2
=

—

AN

I)5



Since this holds for & and b arbitrarilv close enough to b and b, it follows that
s(b) — ta(B) < EglX (). G.C) — ElglX(0). B.B)
Bur since
(Q {_)) M (H(; U H,rg) = ffJ

it fullows that

X(b) = X(B) = X(b)

Therefore. since f3(h) — t¢;(b) > ¢. Lemma (7) implies that

E(glX(8).C.0G) = E(qlX(b). B. B) < c.

This is a contradiction since by construetion

L) = 1 (D) 2 tp(b) — i (b 2 . B

5.3 Proof of Theorem 2

The proof of Theorem 2 proceeds in two parts. The following lemma shows rhat if b
is the pivoral bid then. for large r.there is essentially no uncertainty about the value

of ¢ for large r.

Lemma 9 /[or all & > 0 there is an © such that for all ¥ > © there is a O, C [0.2¢)
with the property that Prid. & C.} < & and Prilq — F{gld, = b)| > ¢|d, = b} < ¢

for ceery be ).

Proof For 0 < & < 1. let {, satisfv 1¥7(¢,) = . Noute that by the strong law of large
rimbers the fraction of bidders with 1 < f, cunverges to r in probability as r — x.
By Lemma 8. for any £ > 0. {5 (min He) < cfor v > r(c) and te (maxHy) > 1
If ¢ is chusen so that W (¢) < /2 and W(1 —«) > 3/2 (where 7 is from Assumption

1) then the strong law of large numbers implies that there is an v’ such that for r > ¢/
Pl‘{dr = [min H(;r. max H]gr}} > 1 - 3‘/.2

Thus choose ', = |min H,;,.. max Hy, | N B, and let 7 > r'.
Bv Lemma 5 there is an 1 > 0 such that if Pr(lg — Fgld =b)| > éld = b) > ¢
then I2(gld = b.G)— F{g|d = b. B} > n. Now let 7 > r(n6/2) and cunsider any r > 7.

(In the fullowing we drop the subscript )
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Step 1 Consider first any b€ Hy N He M. Then
L((_”d = b. ]3) + f;;(f)) =19

and

Elgld = .G + (o (b) = b
Since r > r(y) > r(né/2) this implies that {5(b) — t;(b) < 7 but then
Elgld = 0.G) — Elgld = b. B) <
and su
Pr(lg - F(qld = b)| > 8|d = b) < &
Step 2 Define
Z={beC:Prllg— Elgld=1b) > 8/ d = b) > 6}.

Bv Step 1 we know that b € 7 implies that §¢(HMH ;). Consider any b € 7.0 € Hys
and & ¢ H;. Define b = miny .y He: and b = maxy ., He;. Let B = BN Hy N (b 5)
For everv & € Hy; 1 {0, D)

[':(qLX(b’)_ /3) — {l’ + f-[g(bl) = O
and thus since b > b.
E(qlX(8). B) = +15(0) = 0.

By Lemma 3 both b and b are best responses for (7 with !(,-((_)) = t:(b). and thus
0 = / (J’:‘(q\X(b).(}) — b+ (b )dl\( | ()
S
lof¥

> /I (FlaiX(@).¢) = b+ 15(0) dKWIG) = /r 4K (b]C)

' - ST ' .
> / (I;’((;\X(b). 3)—b+ I:;(b)) dl\"(bl(}) _a / dl\"(b\(f) + 1 / d K (b](7)
Jr 2 Je Jzr

' ol
> dh(mc)f?j AR (D))

where the first inequality follows from the fact that f-n(g) - i((t'_)) < 6/21. the second
uses the fact that on Z. F(glX (). ) — E(q|.X(b). B) > 1 and the final inequality
wses the fact that 1 (g|X(b). B) — b+ {x(b) > 0 for all b € B'. Thus we have that

}'\(/ﬂ((

D) _
K((b.)) S8/

| Se]
-1



A similar argument can be made for b € He b g Hyp. Thus we conclude that the
probability that the pivotal Lid is in /£ is less than &/2 which proves the proposition. B

Proof of Theorem 2 By Lemma ¢ it folluws that whenever b € C. I'{qld, = b)
is cuncentrared around its expectation. Now consider the probability distribution of
4 conditional un the price being b. Note that the price is b if k, bidders bid above b.
une bidder bids b, and n, — k., — 1 bidders bid below b. Thus Flglp, = b) = I'{4|d, =
b.by > b) and hence

gl = 0) = Flalp =D < max |Flald, = b) = F(gld, = b.s)
¢ N

Since the distribntiun /7(g|d, = b) is arbitrarily concentrated around its mean for
large r. adding one additional (noisy) signal only changes the distribution by a very

small amonunt. More precisely, for all ¢ > U there is an » such that for r > ¢
F(qld, = b) — Flg|p, = b)] <«

and
| (qld, = b) — I{qlp, = b)] < ¢
with probability larger than 1—¢. Thus. since by Lemma 9 ['{(g|d, = b) is concentrated

around the true value ¢* it follows that F{g|p, = b) is also concentrated around the

true value ¢".
Consider a bid b € (.. If a bidder with type (f.s) made the bid b and if the

equilibrium price is equal to b then by the preceding argument
preft+q =8+ +q + (046

with probability 1 — ¢ — &, where ¢* denotes the true g. Further note that by Theorem
2 it must Le the case that for large r the bidder who makes the k. + 1% highest bid
has a I very close to {7 with high probability. Thus for » sufficiently large we have
that

prEll+q = (20 + )0+ ¢ + (26 + )]
with probability larger than 1 — e — 24

To prove the Theorem it is now sufficient to show that

Pri{p. ¢ (.} =0
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as r — . But {p, € (',} denotes the event that the k. + 1-st highest bid of 1, bids
is in ().
By construction. W[t (min He,, )] < 3/2 and Wle(maxHg, )] > 1 —3/2. Thus

the strong law of large numbers implies that
Pr{p, € [min H,;, max Hp, ]} — 1.
which proves the final claim. @

5.4 Proof of Proposition 2

Proof of Proposition 2 We will demonstrate that b.(f.(7) — { uniformly for all
f <1 — = Since [ < b.(f.B) < b.(t.(7) this proves the result for { < {7 — =
Cunsider { < (* — z. and b,.(/. (&) € (', (where (', is defined as in Lemma 9). By

Lemma 9 we know that
Prilg — IN{g|d, = b6.(1. G > é]d. = b, (1.} — 0

uniformly for all .(t. ;) € ', which in turn implies that

Prilq - Iq

X(B(LCN] > 8] X(bo(1.GN} — 0

uniformly for all &.(f. (/) € €', since the information about ¢ contained in the event
{d, = b} differs from the information about ¢ contrained in the event X (b, (1. ()}
by at most one signal. Thus. uniformly for all b.{t.G) € ..

’ ’ flg)a,(g.b, (1. G
g X (b (. ()) = -
f(” ( ( ))) .IU _f(i'f.')f-1.,(u_'. br(f. (;))nrdw

converges tu a densityv that has all its mass concentrated at sume g,. Recall that is a

(13)

single peaked function of ¢. Since f{g} > v > 0 and bounded. ¢, must satisfv
g — argmax a.{q.b.(1.G))) — 0
if i

uniformly for all 6.(t1. G) € C,.
Bv Theovrem 2,

Hifr(br(t-(;))* ”(;r(br({-(")) — 0 (14)

and

Hie (b, (1. C)) = ml@) (U (b, (1. G)) — Hear (0:(0.6))) — W (1)
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for all . Therefore. rhere is a & > 0 such that for sufficiently large r and £ < t* — =

Hog (b2 (0. G = 7 (@) (H e (0. G)Y = Her(b,(1.G))) (15)
< W) +8/2
< WH{m—=2)+8/2
< 1-F s
i,

Bur then (14) and (13) imply that uniformly for all b,({. () € C with 1 <7 — =
argmax o {q. b (1. () — 0
4

and conseqiently

q- — 0.

Thus. b.(. G <1+ F(q X (0).G) — tasr — x forall b.(f.G) € O with! < 1* — =,
Note that (7. contains all but a countable number of the bids of types (/. (7} with
{ < t* — = Thus we have established that for all but countably many # with { < 1" —=.
limb,{{.(;) = f. But since b.({.(J) is strictly increasing in { for all r.the fact that

all t <17

{f.
lim b, (. () =1 on a dense subset of the support of (7 implies that lim b, ({. (7) =1 for
<

The argnment for /. such that #* + = < { is exactly analogous and therefore

omitted. I
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