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ABSTRACT. State spaces. direeted graphs. and transition matrices are impletnented
to cousider sequences of play of repeated games as a dyvnamical system on the svi-
bol space. defined as the ontcomes of the stage game. Strategles are described
as subshifts of this svinbol space. The complexity of of bomnded recall straregies
is eanated with the topological entropy of an assoclated trausition matnx, The
ropological entropy measures how complicated a strategy is by what paths of the
extensive forin gamne are possible nnder the strategy. This measure 1w nsed 10 coni-
pare the complexity of different strategies.

i INTRODUCTION

The complexity of finite automata has heen applied to measure the complexity of
the strategies which rhev mimic. Specifically. the mumber of states of a minimal finite
antomaton that plavs a strategy is defined ro be the complexity of that strategy (e.g.
Kalai and Stanford. 1988). This approach has led in a number of different directions,
One of the motivaring factors for this research has been the intuition thatr highly
complex strategies may not be frequently nsed by plavers. For instance, complexity
costs mayv deter individuals from using different strategies. Also. the munber of states
of & finite automaton correspond with the minimal amount of information or wemory
needed to mplement the strategy,

Nevinan [1935) and Rubinstein (1986) deternine what solutions are possible for
repeated Prisoner’s Dilemma games when there are restrictions on the complexity of
finite antomata. Lehrer {(1988) examines what eqnilibrinm pavoffs are possible under
<tationary bounded recall strategies m repeated games when plavers have different
memory capacities. More recent work includes Johnson (1995) which introduces a
finer measure of complexity associated with the algebraic complexity of semigroups.
Other recent work includes defining strategic eutropy to measure the complexity of
mixed strategies in two persoi. zero-sum ganies. where one plaver is restricted to a
sialler set of strategies (Neviian. 19967, A more complete survey of other uses of
complexity can be found in kalar (199071 and 11995).

Dater Septemboer 194G,
Key words and phrases. Cowplexity, Topologeal Entropy, Svinbolic Dynamices. Repeated games.



b

ERIK M. BOLLT AND MICHAEL AL JONES

This paper focnses on a slightly different. but related question associated with
repeated game strategies. When strategies are limited to stationary bounded recall
strategies, can one determine how complex the possible outcomes of a repeated game
can be? For our purposes. the complexitv of a strategy or strategy profile is equated
with the complexity of the possible outcomes of the repeated game nnder that strategy
or strategy profile.

To analvze the complexity of the possible ourcomes nnder bounded recall strategies,
the action space of the stage game defines an alphabet or svinbol space. This alphabet
leads to interpreting the possible outcomes under a strategy as a subshift of symbol
space. By applving ideas from dyvnamical systems. we measnre the complexity of the
outcomes by determining the topological entropy of a transition matrix assoclated
with a strategv. To measure the complexity of a strategy profile. an algebra s nsed
to create a transition wmatrix for the strategy profile from the transition matrices of
the individnal strategies that make up the profile.

A bounded recall straregy dependent on the last & romds of playv uses less informa-
tion than a bounded recall strategy dependent on the last A+ 1 rounds. Consequently.
their corresponding transition matrices are of different dimensions. To compare ma-
trices of different dimensions. a hft map 15 defined.  This lift represents a matrix
as a “higher” dimensional matrix. so that marrices can be operated on to form the
transition matrix of a straregy profile,

Svmbolic dynamics and associated directed grapls and matrices. comparable to
Markov transition matrices. are introduced in Section 2. Secrion 3 introduces the
lifting technigue. Secrion 4 defines an algebra on the transition matrices and utilizes
the lift 1o compare matrices of different dimensions,  Section 5 defines 1opological
cntropy. its use as a measure of the complexity of a strategv. and proves that this
measure of complexity is well-defined. easv ro calenlate. and a natural way ro consider
complexity. Different bounded recall strategios are compared i Section 6. Examples
throughont the paper introduce the new material and allow for the comparisor of
strategies of a repeated Prisoner’s Dilenma game.

2. NOTATION AND SYMBOLIC DyNAMICS

Let N = {1.2....n} be the set of plavers, The stage game is defined by the set of
actions available 1o Playver /10 D; = {d,, . d;,. .. .. d;. }. ar every round. Notice that D;

consists of mr; possible actions. The set D= Dy x Dy x - x D, is the action space of

"

the stage gamne and the cardinality of D15 m = H my. Normallv, a ntility finction is
fe]

defined for each plaver mappmg D into the real numbers. We do not require utility

functions for the plavers at this time since we are interested in what the strategies are.

not whether thev are Nash equilibria. ete. We restriet our consideration to plavers

bounded recall strategies thar are independenr of time. Lehrer (19338) defines these
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bounded recall strategies as stationary. The following developnent assumes that
the repeated game lasts an infinite nmumber of ronunds, The analysis can easily he
triuncated for finitelyv repeared ganes.

Definition 2.1. A bounded recall strategy of & rounds. for Plaver 7. 1s a strategy
which depends onlv on the last & actions and is independent on the round of the
game. For every round #. the strategy

S'=S, Y — AD; 2.1

is o bonuded recall strategy of & rounds. where H* 1s the set of all & length histories
and AD, is the set of probability distribntions on £),.

To simplify the initial analyvsis and presentation. we assume that there is a common
knowledge initial state which conrains sufficient terms for every plavers’ bounded re-
call strategy to be applicable. Define the svmbol space on D as ¥ = {oq.010,. .. |0, €
D}. which is also called the full shift. A point in svmbol space is a possible path of
plav. The space Yp represents all possible sequences of play. often denoted by 7.
the set of all possible histories of the infinitely repeated game. The foilowing definition
relates strategies to svimbolic dynannes.

Definition 2.2. The Bernoulli shift on 5 is a map s : Y¥p — ¥ defined by
slo) = slag.o,o903 ...V = 0,004 . ... (2.2)

A srrateey for Plaver 7 restricts the possible sequences of plav. Hence. a strategy
can be represented by all the possible paths of plav that can occur under that strategy.
This limitation on possible paths of play defines a subspace of X0 Another way to
consider this subspace is as the brauches of the extensive form of the repeated game
that can be reached by the strategy profile of the plavers.

Definition 2.3. A subshift ¥ 15 a subspace of Y which ix invariant under the full
shaft. e if 7 € ¥ then siogy € X

Every bounded recall strategy can be represented by a subshift. This is apparent
since the strategy restricrs what actions can be piaved after a certain history has
been plaved. To nnderstand the intuition and to introduce the notion of transition
matrices. consider a simple strategy that only depends on the realized actions from
the previons ronnd. The strategy for Plaver ¢ is a function from D to probability
distributions on D, The set D doubles as rhe enumerated state space. Player /75
strategy can be represented as a directed graph and transition matrix between the
possible states, The transition matrix, M. has entries m, equal to O or 1. The enfry
mey = (0 if state t cannot be reached by state s under Playver i7's sirategy. The entry is
1if state + ean be reached by state s under Plaver /s strategy, The following example,
using a simple strategy dependent onlv on the realized acrions of the preceding rouund.
describes the directed graph. transition matrix. and subsequent subshift.
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FiGURE 1. Plaver 1's Tit-for-tat Strategy Transition Matrix and Di-
rected Graph

Example 2.1. Tit-for-tat for Plaver 1 in the infinitely repeated Prisoner’s Dilemma

The stage game for the Prisoner’s Dilemma is defined by N = {1.2} and D) =
Dy = {c.d}. where ¢ represents “cooperate’ and d represents “defect.”  (Although
there are certain requirements on the pavofls for the stage game to he a Prisoner's
Dilenuna. we suppress the pavoffs to emphasize the mueasurement of the complexity of
the strategv. independent of the utility functions.) The rit-for-tat strategy for Plaver
lis a map S, D — AD) defined by S/{c.¢) = ¢. Sile.d) = d. Si{d.¢) = ¢. and
Sild.d) = d. The mage ¢ is equated with the probability distribution that plavs ¢
with certainty, siumlarly for o,

Consider the set D as a set of possible states. Enumerate these states as 1 = (¢ ¢).
2 = (e.d). 3 = (d.¢). and 4 = (d.d). Alrernatively. we can define the tit-for-tat
strategy as a poiut-ro-set correspondence. S, D — D. which maps to possible plavs
i the next round. Therefore, Syic. ¢) = {{c.c). (c.d)} since Playver 1 will play ¢ and
Plaver 2 mayv cooperate or defect. Eqguivalently. Site.e) = {(c.%)}. which indicates
rhat Plaver 2°s strategy is unknown. and its ontcome could be either ¢ or d. Using
the emuncrated states. a directed graph and transition marrix between these states
is defined {in Figure 1) which represents the rit-for-tat strategy for Plaver 1 (realize
that this tit-for-tat strategyv wonld generare a different directed graph and matrix i
used by Plaver 27
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The transition matrix. 4. shows that (in terms of the numbered states) the tit-for-
tat strategv for Plaver 1 restricts possible sequences of plav to those which: stare 1
is followed by state 1 or 2. state 2 is followed by state 3 or 4. state 3 is followed by
state 1 or 2. and state 4 is followed bv state 3 or 4. For example. the sequence ot
play 1.23412341234... cannor ocenr sinee stare 4 follows state 3. However. the state
1.23123123... is possible and would be part of the subshift thar defines the possible
sequences of plav by Plaver 1's tit-for-tat straregy.

Proposition 2.1. A transition matrir A, generated from a bounded recall strategy of
a single round. defines all possible transitrons between the numbered states of D and.
thereby. generates a subshift X4 of Xy,

Proof. The subshift ¥ 4 includes all points ¢ which represent all possible trajectories
through the associated directed graph. -

When a strategy is dependent on more imformation than the realized action from
the last round. the technigne from the above example may not give fine enough results,
The number of states mayv be too restrictive. but can be split into more stares. As
an extension of Example 2.1, let the strategies Sy aud 15, for Player 1. both depend
on the actions from the last two previons ronnds. Specifically, let Sy((e. el (o)) =d
and Sy((d.d). {c.c)) = ¢. The point-to-ser correspondence representation would vield
S-z((c:. ¢} (c.e)) = {{d. %)} and Sg((d. d).ic.c}y = {{c. %)}, The strategy 5, allows for
all stares to follow state 1. The strategy Ty vields similar results if To{{c. ¢). (c.¢)) =
¢ and To{ld.d). (c.e)) = . The induced correspondence vields Tol{c.c). (c.¢)) =
{ic. %)} and Tolld.d). (c.e)) = {{d. %)}, Again. anyv state may follow state 1. However.
there s an obvious difference between the two strategies S, and T, The strategy S,
allows for sequences of play with the rrples 1130 114, 411, and 412, The subshift
associated with 7, contains sequences with the rmples 111, 1120 413, and 414, This
implies that the states mnder consideration shonld really he D x D, not just D,
Bounded recall strategies of more than a single ronnd are considered i the next
seetlon

3. Tur Lirr

From the previous section. a strategy on the action space D generates a subshifr
¥ consisting of all the allowed sequences of play adhering to the strategy. and ¥ is a
subset of Sy, the set of al/l permmrations of all sequences of play. The only strategies
treated so far. are according to the transition rules of an mox i matnix A which
defines a simgle ronnd bounded recall strategy. As described by Proposition 2.1, all
allowed sequences of play. generared by such a transition matrix. are elements of the
subshift ¥ 4. a subset of Y50 However. bounded recall strategies which relv on more
imformation than just the single previons round cannot be described in this manner.

Nonetheless. bounded recall strategies which rely on the & previous actions also
define a snbshift. which we denote 3 C X0 However. the grammar of such a
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multiple-step strategy's subshift cannot be described by any ni < m transifion matrix.
To adequately describe the grammar for the symbol dynamics of £ 1 terms of an
allowed set of transitions. here we develop the liff of the svmbol space Xp; to a larger
( “higher dimensional™) svmbol space in which the k-step strategy is generated by an
¥ m® transition matrix B, The matrix B defines the strategy as the subshift 24
a sibset of the larger svmbol space. in a straight-forward manner.

Transition rules between actions in 2. that incorporate information abont the pre-
vious A actions. necessitate a state space larger than D Strategies which incorporate
L previons states are best represented by a Bernonlli shift map on a higher dimen-
sional svmbol space. To define a A-step memorv dependent transition rele of the
m svinbols in D requires a transition ride on the m* svmbols of D*. Denote cach
F-tuple of svmbols from D as a svmbol in D, Let Tp denote the symbol space
of all infinite sequences of svmbols from D*. As defined below. the A-step memory
dependent grammar strategy on D is representred uniquely by a Bernoulli shifr on the
subshift S,‘; S S!_)&—,

The Bernoulli shift map applied to a point o € Sp. where £ states are recorded.
mayv be wrirten as

SLO = ST T Ty T = T 0904 Tp (T Ty i3.1)
\_"\/_/ e
A svmbols K svibols

Writing the decimal immediately afrer the 4™ symbol emphasizes the most recent
ronnd of play.

Counsider D* as the set of m* svmbols achieved by labeling all permmtations of m
states over & consecutive ronnds of play. Define the svinbol space with labels from

D' as Ty = {al.ota) ot € D}, Farther. define the lift function 12 Xy — Sy
by colleeting groups of & svinbols from D iu the following “overlapping” manner
where /{a) = ¢'. For the pomr ¢ = gp.oy0s ... 0 1005 -+ € Tp. the mage of
a nnder /s o = ool --- € S where o)) = ay010,..04. 0] = 010204 ... O,

ol = a4y .. Ty, #te. Notice that each g7, 15 a point 1n D, as required.
Example 3.1. Tit-for-two tar straregy for Plaver 2

Consider the Plaver 2 bounded recall strategy of 2 rounds. the tit-for-two tat strat-
cgv. where Plaver 2 follows the strategy: I do what vou did rwo rounds ago.” As in
Example 2.1. N = {1.2} and D = Dy x Dy where Dy = D, = {¢.d} and rhe enumer-
ated states of D are D = {1.2.3.4}. This approach can be extended to ufilize a state
space which holds more information. To analvze the tit-for-two tat strategy. the state
space is D? where the 16 elements of D7 are enmmerated by exrending the nnmbering
svstemn from D by defining 1 = (117 = {{c. ). {c.0)3. 2" = (12) = ({e. o) (e d}) o 4 =
(14) = ((c. ) (dod)). 5 = (21) = ({eod) ey . .ooand 167 = (44) = ({d.d). (d. d}}.

According ro Plaver 2's tit-for-two tat straregy. transitions of the tvpe ({d.¢). (c.¢}) —
({c. ). (%.d}) are feasible, Plaver 2 plavs " which Plaver 1 plaved 2 rounds ago. as
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F1GURE 2. Plaver 2 tit-for-rwo tat strategyv

recorded by the state {({d.¢). (c.¢}). Plaver 1's action is unspecified by this strategy
of Plaver 2. thus rhe =+, Incorporating memory in the states of the bounded recall
strategy implies that each state can only trausition to one of 4 possible states (the
4 states that begin with (c.¢)). not 16. as mayv initially be expected. This will be
important when the complexity of straregies are measured. For the tit-for-rwo tat
strategv. in terms of the svmbols of D2 O = (31) = {{d.¢).{¢.¢)} transitions to
2= (12) = {{e.o) (e.d)} or 1 = (14} = {lc o) {d.d)}. The (c.c¢) is shifted to the
teft from {(d.c). (c.)}. while the (#.d} comes from the action that Plaver 2 takes,
allowing for each possibility for Plaver 175 action. Because states 2 and 4’ are possible
{under the tit-for-two tat strategy) when the history is given by state 9. there is a 1
in the 2 and 4" columns of the 9 row of the transition matrix associated with the
tit-for-rwo rat strategy. The rest of the rransitions for Player 2 under the tit-for-two
tat strategy are given by the 16 x 16 rransimion matrix B. displaved in Figure 3.1.
A complete list of all the stares for. and their rransitions under. the tit-for-two rat
strategy appears in Appendix [L

The tit-for-two tat strategy defines a subshift ¥ € Y;,0 but the subshift is not
generated by any 4 x 4 transition matrix on the 4 one-step svinbols of Do As described
above svinbol sequences beginming 3,12, and 3.14... are points included in the subshift
¥ defining tit-for-rwo tat. but 3.11... is exciuded from ¥ by the rules of the strategy.
The transition matrix B generates the subshift Y5 C X2 using the lift 70 Y —
Y. For example: 7(3.12..) = {31).(12)... and 7(3.14...} = (31).(14).... It is more
convenient i general to simply rewrite 2.13... as 21.3... emphasizing that two svinbols
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are recorded at a time. and agree to interpret the overlapping svimbols. each. as a
new svinbol in D?

Notice that ¥, formally includes all possible sequences of the " svinbols in
D%, The shift map on L cannot correspond to play on m® states of D¥ dne to
the use of labels in D to include the history of the past play. History cannot be
chosen independently ar cach plav. since the first & —1 terms are determined from the
previons state. Therefore, fransitions between each of the ¥ labels in DY can have
at most only m outcomes each. This implies an important restriction to the size of a
lifted full-shift. /{¥p) C X

Proposition 3.1. The full-shift ¥y, lifts to a subshift of Y.

Proof. Applving the shift map to points ¢ € I causes the L previous bit to be
forgotten. while only one new bit from the set D is generared. The other & — 1 birs
are remembered. and therefore each of the ' nodes in D* can transition to only one
of m possible new nodes. -

Define a “randomized strategy” to be a bounded recall strategy of & ronnds where
every history maps to the probability distribution which gives equal probability to
every action in D. The randomized strategy on the m states of D {not D*) is defined
by the i< matrix R, where every entry in the matrix is a 1. Note that the full-shift
¥, is generated by a randomized strategy. Lp = Y. Realize that the full-shift can
be generated by any strategy that supports everv possible action.

Example 3.2. Lifting the full-shift on 4 states.

Let N = {1.2} and D = Dy x Dy as in Example 2.1, Hence. a randomized strategy
ix represented be the 4 x 4 rransinion matrix By of all s, It follows that the full-shift
S, = Sp. The marrix £2, lifts to rhe 16 x 16 matrix labeled R in Figure 3. whicli
ui agreement with the proof of Proposition 3.1, has only 4 nonzero elements per row.
In general. define R, to be the lift of 12, 1o D*. Cousequently. R is the Lift of R,
ro DY, Proposition 3.1 dicrates that R has only m nonzero elements per row for
all k. I Section 5. this property preserves the complexity of a given strategy under
a lifr.

Theorem 3.2. Given a hounded recall strateqy of b rounds on D. described by «a
subshift of Sy the Uft ] X — Y gields an m*

uniguely defines the strateqy and generates the proper subshift Y C X

< m" transition matvie B owhich

Proof. All m* possible permutatious of A-step memories are represented by labels
from D*. and all possible transitions between DY svmbols can be represented Dy a
¥ x ¥ transition matrix. Such a matrix generates the snbshift of all paths through
the direeted graph. which corresponds to all plavs under the strategy. —
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FIGURE 3. "Randomized strategy for N = {1.2} and D = Dy x [
where 1y = Ds = {c.d} and rhe emmmerated states of D are D =
{1.2.3.4} The lift of By to k& = 2 preserves the fact that at each play.
the randomized strategyv onlyv has four possible ontcomes: R only has
1 nonzero elements per row.

While it is important to lift & A-step strategy. represented by a subshift of the
svihol space. £ C Yy, ar least up 1o Yy to represent the strategy by a transition
marrix 2 which generates the subshift Y5 C Sp. there 1s no danger in lifting the
strategy even higher. There is a unigue ' x m' transition matrix 4 representarion
of the strategy with outcomes recorded in the subshift 4 C 0 if 2 = A0 Over-
lifting the subshift is analogons 1o representing a 2-13 plane as a plane in a higher
dimensional space. The plane is still two dimensional. even thongh it is eubedded in
a higher dimensional space. In the uext section. overlifting a given playver's strategv
15 useful to compare strategies of plavers basiug their strategies on different amounts
of information. /... plavers use honuded recall strategies that depend on a different
munber of ronnds.

1. AN ALCGEBRA ON TRANSITION MATRICES

Ultimatelv. we want to be able to measure the complexity of a single plaver's
strategy. as well as the strategy profile acconnting for the strategies used by all of the
plavers. To proceed. we develop a technigue to find the transition matrix associated
with a strategy profile. if the transition matrices of the individual plavers are known.
To utilize this technique. all plavers’ frausition marrices must be of the same size.
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According to the previons seetion. it is possible to lift strategics and represent all the
individual strategios by transition matrices of the same size. The strategies can be
represented by m* x m® matrices where the bounded recall strategies are of ronnd &
or less for all plavers. This presupposes that the different plavers use the same svibol

=0t

Definition 4.1. For two transition marrices. A and B of equal dimension. define
" = AA D as the matrix where the entrv oy of (Tis equal to a,, x by, The operation
A s called the —and™ operation.

Notice that the (s. )" entrv of AA B is 1if both 4 and B have a 1 in their (s. frh
ertries: otherwise. the (5. )" entrv of AAB 15 0. To think of this operation in terms of
what states are possible from the plavers’ strategles. a transition to a new state Is only
possible if all plavers’ strategies allow for that possibility. The new transition matrix C
defines a subshift S¢ which mav further restrict what outcomes are possible between
the two plavers. Accordingly. ¢ = Y40 Ypg If the repeated gamne has n plavers.
the n plavers’ transition matrices are lifted to the same dimension (if necessary) and
the strategy profile’s trausition marrix is the ontcome of the A operation on the »
lifted. transition matrices. The following example determines the transition marrix
associated with the repeated Prisoner’s Dilemnua where Playver 1 plays rir-for-tat and
Playver 2 plavs tit-for-two tat.

Example 4.1. Tit-for-tat vs. tit-for-rwo tat in the Repeated Prisoner’s Dilenmma

From Example 2.1. Plaver 1's tit-for-tar strategy can be lifted and represented by a
16 x 16 transition matrix. Tlis 16 x 16 trausition matrix. utilizing the symibol notation
from Example 3.1, is given in Figure 4. Plaver 2's tit-for-two tat strategy vields the
watrix B in Figure 2. as determined in Example 3.1, The resulting fransition matrix
for the strategy profile of the two strategies is given in Figure 4.

To examine the complexity of a single plaver's strategy. simply take the A product of
that plaver s straregy with the transition marrices for the other plavers” randomized
strategies.  Recall that the randomized straregy places equal probability on every
action ocenring: the marrix associated wirh the randomized strategy is given by £, Ax
von would expeet. this should not restrict what outcomes ocenr. This is represented
bv the following proposition which follows immediately.

Proposition 4.1. Let the transition matrir A be associated with Player i's hounded
recall strateqy of b rounds. Then AN By = 4 and Y45 = X4
5. COMPLEXITY AND TOPOLOGICAL ExTROPY

Defining complexity of botl individual strategies and strategy profiles s quite nat-
nral using the svinbolic dvnamical descriprion of plavers™ strategies and the algebra
developed in the previons section. The kev 12 1o compare the “size” of the subshifr
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F1GURrE 5. The Strategy Profile Where Plaver 1 Plavs Tit-For-Tat and
Plaver 2 Playvs Tit-For-Two Tat: ("= A A B

which defines a given strategy by inclusion of all possible subsequences of plav. By
identifving rhe complexity of a strategy profile in rerms of the associated subshift. we
classifv strategies in rerms of the complexity of their ontcomes. This 15 1 contrast
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to a classification scheme which mav classifv complexity in teris of rules or restrice-
tious on possible outcomes. In fact. as the number of rules increases. the associated
sibshift. or ontcome space. tends to ger smaller.

Genericallv. other than a few trivial strategies with finite subshifts. the subshifts will
tend to be nnconutably infinite. Cardinality = not a sufficient measure to distinguish
between two obviously varied strategies. As an example. notice that randomized play
and tit-for-tat single plaver strategies hoth have nncountable subshifts. bur should
not he considered equally complex.

We measnre complexity of a strategy or a strategy profile as the topological entropy
of the associated subshift. Originally introduced by Adler. Konheim and McAndrew
19650 in the context of information theorv. topological entropy has becoe a familiar
tool iu the theorv of dynamical svstems as a measure of the complexity of chaos. {The
other thermodynamic function “metric entropy™ also serves as an inferesting measure
of complexity in dvnamical systews. but is not as readily caleulated for the svmbol
dvnamical description of strategies as developed in the previons sections.) Calenlating
topological entropy is particularly straight forward for dyvnamices of a subshift of finite
tvpe {(when the fransition matrix is of finire size.

To define the topological entropy of a subshift ¥4 C Tpi. where A 15 the m® o it
transition matrix on the w* svmbols DY of Spe. some additional definitions and
concepts must be given. Define a word of length » as a particlar combination of n
svinhols from DF: (rgoriry. ) where o, € D, Thus. a point @ € Y can

n bits
e thonght of as a word of infinire length. with a decimal added as the place holder.

mdicating the current ronnd of play. The ropological entropy A of a snbshift X4 1s
the logarithm of the asvimptotic growth rate of the words of length » found in the
subshift. as » goes to infinaty,

Definition 5.1. The word count of a subshift ¥4 is the number of subsequences of
length » which are contained in the subshift. see Robinson (1995). and is denoted as

walSa) = #{{rg o)t =0, for some 0 = og.oi0,- - € L)

Definition 5.2. The 1opological entropy of the subshift £, 1s the scalar quantity
#0Y 41 where

In{w, (X,
Y= i ———(1—))

n—2x il

{5.1)

Entropyv s defined in terms of the fogarithm of the growth rate. For most strategies.
as noINereases. there s an exponential explosion of the nnumber of possible words.
Entropv measures the exponent.

Theorem 5.1. The range of the entropy function for a subshift 4 C X5 s given
by the inequality

O< Y, <Yy =Inm.
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Proof. For a subshift ¥ 4. h(X 1) 1s bonnded below by () since w, (X4 1s positive. Since
Y1 C T, it follows that w, (X4) < w, (Ep) and Al 4) < HXp).

For ;). the possible words of length noare all permurations of o elements noat a
rime. which eqguals m™. Equation 5.1 implies that

i, i X0 o nom”

MYpl=lim ———= = lim

— X 1 F— I

= um.

The full-shift on the ¥ svmbols of DY is b{S ) = klnm. If it were true that the
full-shift ¥, lifts to the full-shift ;. then the entropy would not be a well defined
measure of complexity, However. as stated in Proposition 3.1. the fullshift Xp, lifts to
a subshift. as required to preserve the entropy between representations of the same
set of strategyv onteomeoes.

Theorem 5.2. Given a transition matric A on the m symbols of D genevating the
subshift Sy, the lifi 12 — S to a b-step recall repiesentation with the mf x om*

transition matrar 3. preserves the entropy: h{Z ) = h{Zph

The next rheorem gives a useful technigue to calenlate the entropy of an arbitrary
h-step hounded recall strategy. The proot appears in Robinson (1995}
1 3. ]

Theorem 5.3. Given u subshift of finite type ¥4 genevated by the fransition matric
Jter, f1 A9 Y

A

MY =1npiA). {3.2)
Example 5.1. From Figure 3. we calculare the largest eigenvaine of 7y is p( Ry} = 2.

Likewise. the spectral radins p{ R} = 2. As expected. the topological entropy is
preserved by the lift and /(X)) = Ay =In2.

The restrictions that a strategy profile put on the sequence of play are at least
as confining as the individual strarvegies in the profile. This 15 disenssed below with
regards to the A operation.

Theorem 3.4. The topological eniropy funciion is monotone noninereasing under
ihe "N operator. For two transition matrices A and B3,

Proof. By definition of the "A” operator ¥4 C X 4. The rate of growth of words in
the subhset mmst be no greater than thar in the larger set. Hence the resnit. =

-

Corollary 5.5. A strateqy profile has fopological entropy less than or equal fo the
mdividual strateqies that make up the profile.
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6. COMPARING THE TOPOLOGICAL ENTROPY OF DIFFERENT STRATEGIES

Comparing bounded recall strategies by examining their topological entropy gives
a confusing account of complexity. It measures the complexity of the possible ont-
comes. not the complexity of the rules. In some sense. nsing cach action with equal
probability is not as complex as nsing a pure strategy which uses different actions
depending on different histories. However. we nse this measure to conpare how vared
the sequence of play can be given some initial string of information. First. we ¢ite a
lemnma which aids in the proof of the theorems. The proof of the lemma appears in
the Appendix.

Lemma 6.1. An s x5 matric with t s o earch row and colummn. and 05 elsewhere
has a largest eigenvalue of s.

The first theorem establishes the intaition that a pure strategy profile is less com-
plex than profiles that incorporare mixed strategies.

Theorem 6.2. -1 sirateqy profile of pure straiegies has topological entropy of zevo.

Proof. A strategy profile of pure strategles maps a state to asingle state with certainty.
Therefore. the associated transition matrix has a single 1 in every row. Consequently.
the spectral radins of the transition marrix is 1. From Lemma 6.1 and Theorem 5.3.
the topological entropy of a strategy profile of pure strategies 1s In1 = 0.

Individual plavers can use topological entropy to measure the complexity of their
strategios. as well as the strategy profile.  Pure strategies are again the siplest
stratesy. even for an individnal who s uncerrain abont the strategy of the other
plavers.

Theorem 6.3. Suppose Player i uses a pure bounded recall strategy of b rounds. The

s
topologieal entropy of thes strateqgy s In | %j
LA

Proof. The rransition matrix associated with Plaver /s strategy is an ¥ m® matrix
where 1 appears i 5 eutries per row. Since Plaver 7's strategyv is pure. it restricts
the transition to states that contain the action that Plaver i will rake. Since Plaver
¢ is uncertain about the other plavers  strategies. any of their actions are possible.
Foom?

m

There are
i

such actions. It follows that the specrral radius of an m " matrix

P
with 2= 1« in each row 1~ ln (%\f -

Realize that this measnre of compiexity oniv represents the complexity of the ser of
possible ontcomes under a strategy or strategy profile. The following example gives
three strategies whose possible outeomes have the same complexity. derived by their
ropological entropy. However. these three strategies are significantly different. Orher
measures of the complexity distinguish among these strategies.
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Example 6.1. Comparison of Measures of Complexity

Let 1. 5, Sy be three possible strategies tor plaver 1 in the repeated Prisoner s
Dilenima. Straregies Sy and S, will be honnded recall strategies which depend onlv
on the previous round. Letr S) be the rotally random strategy which selects ¢ or [
with equal probability regardless of the past actions. As seen previously. the spectral
radins of the associated transition matrix s pe, == [In4. This value is the largest tha
the complexity can be for a 2 plaver game where both plavers have 2 strategies.
Let S, be defined by

S, v =pC 11 —pD

S‘Q‘HC‘. Dn = ([)-3(' + 11— })g)D
Su)(\(D(')\ = j’):;C -+ (l — P.‘a)D
S;uD D= C {1 —p)D

where 0 < pp < 1 for all A, This strategy is similar to Sy since every action is possible
after anv sequence of plav. And. §; = 5, when pp = % for all &. Since everv possible
action can occeur after any sequence of play. the transition matrix for S, is the same
as the transition matrix for S5,. Therefore. S; and Sy have the same comiplexity.

Let Sy be a bounded recall strategy of 2 rounds. Define S5 by
1 5. R

S4i(C (.

(C.ChCoDY)
SaltC (DO
S ((CCy DD
Ss((C.Dy.(C.C))

(
Ss((C.DN {C. DY)
Ss((C.DyoD.CY)

S0C. DD Dy

Ssti DO
S30D.C).
Ss(tD.CYy. (D.CY

(OO

Sz((D.CY.(D.D)Y)

S4((D.D).(C.CY)
Sq((D.DY.iC.DY

SsD. Dy (DO
Syt D. D).

(DY =

DDy

V=g C (L gD
= qC 4+ (1 — )

B 11— gD

g C+ (1 — gD

g C + (1 — g5) D

gsC + (1 — gD
)

=¢:C+ {1l —g:)D
= guC = {1 —qgu) D

gal’ =1 —qol D

qr0C + (1 — g} D
griC + (1 =q)D
q12C + 1L = qi2) D
q13C + (1 — qi3) D
g1 C + (1 = qu)D

=qi;C+ (1 — g5 0

gjg;C -+ (1 - ql(i)D
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where 0 < ¢ < 1 for all &, Then. once again. everv sequence of play is possible. The
trausition matrix for Ss is a 16 x 16 matrix. The lifted transition matrix for .Sy and
S, is the same as the transition mairix for Sy, Hence. pg, = Ind. also,

This measure of comwplexity does not distinguish among the three strategies 5.
S,. and Sy. However. if p, & py for j # k and ¢; # g for j # k. then the minimal
munber of states of finite antomata representing these three strategies all differ. {An
antomaton with 1 state can mimic S;. while antomata with 4 states and 16 states,
respectively. can implement Sy and Sy.) The difference is one of perspective. Topo-
logical entropy measures the complexity of the possible outcomes. as opposed to the
complexity of strategy inplementation.

7. CoxNCLUSION

We have laid the ground work for the comparison of outcomes of strategies. Just
how complex can the sequences of plav be? Topological eutropy is a natnural way to
measure this complexity. Some of the results are very satisfving. e.g.. the topolog-
ical enfropy of the transition matrix associated with a pure strategy profile 1s zero.
However. other consequences are a bir disheartening. #.¢.. different strategies have
may have the same complexity of outcomes, but be implemented by antomata with
different numbers of minimal states.

The perspective of dyvnamical systems which considers the action space as an al-
phabet and the set of all possible sequences of plav as a full shift on a symbol space
is intrigning. As Nevinan (19385} and Rubinstein (1986) exaniine how the complex-
ity of amomata affect what equilibrium outcomes are possible in repeated games. a
sinilar conrse of research can be taken with this new measnure of complexiry. Should
plavers prefer to minimize the coniplexity of the possible outcomes or maximize it?
A plaver may want to use a strategy that has the same set of possible outcomes as
other strategies. This could be beneficial since opponents would find it more diffienlt
to determine his strategy.

Topological entropy onlv considers what can happen and does not weigh this out-
comes wirh any probabilities. Other definitions of entropy. e.g.. metric entropy {which
is similar in spirit ro the strategic entropy defined by Nevinan., 1996). may vield a
satisfactory technigne 1o consider these cases.

AprprENDIX [ DETAILS AND PROOFVS

Proof. (of Lemma 6.1) One can check that the colunin vector ¢ consisting of all 1's.
1 fact an eigenvecror. The equation Aied = Ale) vields A = 7. since calenlating
cach row is equivalent to the snm of # 157, by hvpothesis. However. it still needs 1o
be shown that A = f is the largest eigenvalue.

The proof of the theorem is illnstrated by the following example. Consider the piven
1 % 4 matrix A. with two "5 i each row and cohunn. i the following elgenvalue
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eqiation.
10 0] [d al
11 0 0] |6 b o
=001 1l e =M. b
0 01 1J d 4l
Aatrix multiplication vields two sets of equations:
a-+bh = Aa
a+~h = A= da=A
('+U’ = Ac
c+d = M= Ac= XAl (7.2)

The eqguation Ao = Ab has two solutions. A = 0 and @ = . Substituting o = b
into the first rwo equations vields A = 2. Likewise. Ac = Ad also miplies A = 0 and
c=d+=> =2

Consider the general 5 % s matrix A with + s per row and column. In fact. ¢ must
divide s evenly, which is easily visualized bv permuting rows and columns so that the
Ais in # x 1 block diagonal form. with 1's along the diagonal blocks. If + does not
divide s. then there will he overlap between the blocks. and some rows or colnmus
will have more than f ones. Return A ro its original arrangement. The eigenvalne
equaftion

Aty = Ales (7.3)

consists of s/f blocks of equations analogous to those i1 equations 7.2, Re-indexing
the ¢ 1o allows the order of T < < N 10 be chosen so that each block of equations

oo + 4= /\r‘L. {7.-1)

on | EER

where ¢ € L1 .. N/ and b € enoen + 1. en + 0 — 1o is written with associated
blocks i1 groups as in Eguation 7.2. Re-indexing effectively block diagonalizes the
problem. Hence. Equation 7.4 yields the s/t groups of equations.

R — J — - J i
/\f[_,_ - /\]rn+; - )\r(‘rw—n—l' (."'-)j

<~ ok Sy - ot : e 1| w 1 — . 7, — — —
Each group of equations has the rrvial solution A = Qand e =,y = .= o4, 1

Substitution of the nontrivial solution back into Equation 7.4 vields A = n forall . =

ArpExDIN I TrRANSITIONS FOR EXAMPLE 1.1

This appendix extends the list of transitions in Example 4.1 behind the derivation
of transition matrix 5. Figure 2. We explicitly hst all the allowed transitions of the
Plaver 2 bounded recall strategy of 2 roinds. nir-for-two-rat in the repeated prisoner s
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dilemna. The following are allowed transitions according to Plaver 2's strategy, 1 do
what vou did rwo rounds ago.”

1" — U or 3

({e.e) (e.cy —  {lechtxcll <—

He o led) — (ediix.0)) — 20 — Sor T
Heooy ld.oeyy — Hdoeynix el = 3 — Yoo ll
ile.oh id.dyy — d.diviz il = 1 — 13 orid
Hecddoic oy — deei =)y = 3 — Hor &
(le.dy. fe.d))y — {lediix=con <— t — 5 or 7
(ed)wd o)) — (deoli=cld = 7 — Yorll
((c.od). (dod)) — (dd).ixc¢)) — & — 13orly
((d.c).(c.c)) — (leo)(xd) < 9 — 2 or 4
((d.o). lc.d)) — (le.d)(x.d}) — 1V — 6 or 8
Hd.edoud. ey — (doej(x.dll <= 11" — 10 or 12
.oy id.od)) — dod s d) = 120 — 14 or 16
Hd.d).(c.c)) — {lcchixd)) = 13 — 2" or —1’
Hd.d.ie.d)y — tleodii(s.dyy «—= 14 — 6«
Hd. . (d.¢)) — (id.c)i=d)} <= 12 — 10 or 12’
(d.d).id.dy) — {{ddi.{=.d) — 1t — 14 or 1t

For every possible plav. according to rthe strategy. there is a corresponding =17

entrv in the transition matrix. {1’ — 1" or 3 implies the By} = B3 = 1). and every
other matrix entry is “0.7 That is. B, ; = 0 implies that the fransition " — ;" cannot
oceur 1n the given strategy.
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