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How Proper is Sequential Equilibrium?

by George J. Mailath, Larry Samuelson. and Jeroen M. Swinkels

1. Introduction

Among the more surprising resnlts in game theory is that a proper equilibrinm in a
normal forin game indinees a sequential equilibrinum in every corresponding extensive
form (van Damme [11] and Kollberg and Mertens [M]). The converse however, can be
false: a strategy profile can be sequential in every extensive form with a given normal
form withont being proper. Proper equilibriiun is thns stronger than sequential-in-
every-tree. What s the difference between the two, and how mich stronger is proper
equilibrium?

The paper addresses these guestions by exploring the relationship hetween proper
equilibrinm and two other concepts: quasi-perfect in every tree and strategic indepen-
dence respecting equilibrinim (SIRE). Quasi-perfect equilibrivm, which van Damme [11]
defined and showed is implied by proper equilibrinun. is an extensive-form concept closely
related to trembling-hand perfect equilibrinm.! Strategic independence vespecting equi-
Librivan is a normal-form concept that is, we argue, the appropriate decision-theoretic
description of sequential rationality (a key element of sequentiality).?

We begin by showing that properness is equivalent to quasi-perfect-in-every-tree: A
converging sequence of perturbed normal form strategy profiles supports its limit as a
proper equilibrium if and only if the sequence of strategies induced in every correspond-
ing extensive form supports its limit as a quasi-perfect equilibrinm.® We thus obtain
an extensive-form characterization of the distinction between properness and sequen-
tiality, since ¢masi-perfection reqnires players to act optimally against each term in the
secquence of opponents” strategies. while sequential eguilibrium requires optimality only
against the limit of this seqguence,

While the difference in the definitions of quasi-perfection and sequentiality is easy
to understand, the differences in the implications of those cdelinitions are more subtle.

I differs from extensive-form trernbling-hand perfection in that, at each information set, the plaver
choosing an action ignores the possibility of her own iture mistakes.

“Both sequential cquilibrinm in the extensive form and SIRE {like mumt existing solution coneepts)
impose rather strong cress-plaver consisteney conditions on beliefs. We will not try to argae that these
conditions are natural.

A key ingredient in this result is the requirement that the same sequence be used in all correspond-
ing extensive forms. The result 35 false without the restriction that the same sequenee is wsed in all
corresponding extensive forms (see Hillas [3]).



In particular, secpiential rationality is often described as the requuirement that, at every
information set, a player's choice makes sense il that information set is reached, even
il the player learns something nnexpected about the play of her oppounents (i.e.. the
information set is ofl the play path). In contrast. ¢nasi-perfection seems 1o have little
to do with the information a player learns about her opponents during play.t More-
over, every extensive-form game 1sed i the proof of the equivalence of proper and
quasi-perfection has the property that cach plaver receives no information about the
play of her opponents.”  Since sequential rationality appears to depend in a central
way on the notion of information, while quasi-perfection does not, onr extensive-form
characterization is an incomplete description of the relationship between properness and
soguential-in-everv-tree,

The remainder of the paper is concerned with a normal-form characterization of
the relationship between properness and sequential-in-everv-tree,  The requirement
that planned actions at an information set make sense when that information set is
reached seems intrinsically an extensive-form notion.  However, Mailath, Sammclson.
and Swinkels [5] (henceforth MSS) argne that this is not so: statements about “when”
an action will matter can be translated into statements about =i an action matters.”
That is, sequential rationality can be rephrased as the vequirement that a decision that
only matters for a given subset of strategies by the opponents should be made as if
a strategy [rom that snbset had been chiosen. In the normal form, the phrase “only
matters for a given subset of strategies by the opponents™ comes down 1o a partienlar
pattern of payoff ties for the playver making the decision. We call this pattern of ties
a strateyic independence. Like an infortnation set in an extensive forim, a strategic in-
dependence captnures a sitnation in which a plaver can uncouple her decision into two
parts. one of which is relevant il the information set is reached. and one if it is not.¥

Regniring seqnential rationality in the normal form (optimal play in the limit at all
strategic independences) vields strategic independence vespecting equilibrivn (SIRE).
The normal-form characterization of the relationship between proper and sequential
equilbria then involves two elements: the connection between sequiential-in-every-tree

*Sequentiality is more sensitive than quasi-perfection to the information structure of extensive-form
games. Consider the following two-player game of perfect information: Player [ chooses “Out” or “in:"
the game ends after O yielding payoffs 0 and 1 to players T and 11, respectively: and plaver 11 has
two powsible actions {A, C} after 1, with {7, A) vielding payoffs 1 and 0 and (1. €) yielding payotTs —1
and =1 to players I and II, respectively, The only sequential equilibrivm is (7. A). However, in the
sinltancons-move extensive-form game in which plaver I does not know if player [ has chosen [ when
choosing between .1 and € when cheosing between A aud €, (O, €' is also a sequential equilibrinm, 1n
comtrast, only (1. A) is quasi-perfect in cither extensive form.

*This does not mean 1hat the dynamic structure of the extensive fori is irrelevant. The ditferent
extensive forms are nsed Lo foree playvers to make choices between (and so rank) every pair of strategies.

B A strategic independence for paver 7 is aoanbset of strateay profiles, X x X .y, and is reached if the

apponents’ cholees are in X -,



and SIRE, and the connection between SIRE and proper.

The connection between sequential-in-every-tree and SIRE is straightforward: In
an extensive form, if an information set is not reached, not only 1s the decision maker
indifferent about her choice at that information set, but all other ployers arve indifferent
as well In contrast, a strategic independence in the normal form is defined solely
terins of the pavotls to the decision maker, A strategic independence for wlach the payoll
ties also hold for the other plavers is called a normal form information sef. Requiring
sequential rationality only at normal {orm information sets rather than at all strategic
independences vields normal form sequential equilibrivm. MSS show thal an assessment
induces a sequential equilibrinm in every extensive form with a given redunced normal
form if and only if it constitntes a normal form sequential equilibrium in that reduced
noral form. The difference between SIRE and sequential-in-every-tree is thus the
cdifference between sequential rationality at all strategic independences and sequential
rationality only at those strategic hcdependencies satisfving the extra condition on other
plavers” pavoffs. From the point of view of the decision maker, pavoff ties {or the other
plavers are irrelevant and so there 1s no decision-theoretic reason to distinguish between
the ditferent strategic independences. Henee, SIRE is the appropriate decision-theoretic
formudation of sequential rationality.

The relationship between proper and SIRE is the normal-form analog of the relation-
ship between ¢uasi-perfection and sequentiality, In particular, properness is equivalent
to optimal play along the sequence at all strategic independences, while SIRE requires
optimality against the limnit,

We next turn to the decision-theoretic foundations of SIRE and proper.  Bhune.
Brandenburger, and Dekel [2] provide a decision-theoretie characterization of proper
cqralibrinm in terms of lewicographic probabilily sysfems (LPSs). We provide a similar
decision-theoretic characterization of SIRE.

In the Bhume, Brandenbirger, and Dekel 2] characterization. a proper equilibrinm
can be viewed as the resiult of plavers” ranking their strategios according 1o a lexico-
graphic probability systemn (Le.. a hierarchy of beliefs) over the play of their opponents,
where the hierarchy of beliefs reflects the opponents” pavotls in an intnitive manner. A
plaver {irst consults her first-level beliet about opponents” play and ranks her strategies
according 1o their expected payofls given this belief. I any indifferences ocenr. the
player appeals to her second-level beliefs, breaking indifferences accordingly to their
expected payoffs against this beliel. Further indifferences are appealed to a third-level
belief, and so on. This process continues until either all indifferences have been bro-
ken or sufliciently many beliefs have been encountered that their supports exhanst the
opponents’ strategy spaces,

Like proper, SIRI can be viewed as a ranking of strategies driven by a hierarchy of
beliels about opponents” play. However, in a SIRE a playver appeals an indifference to
the next level only il iU is a structural indiffercnce, that is, i the player’s indifference is



cansed by ties in the payoff matrix (as opposed 1o an indifference created by a fortuitons
beliel about opponents’ play).” The dedsion-theoretic difference hetween SIRE and
properness this hinges on how they treat cases in which plavers are indiflerent between
strategies,

Onir last result compares properness and sequentiality in terms of trembles, but
withont reference to information sets or strategic independences. We show that the
strnctural ordering (underlving SIRE) ranks player i's strategy r; ahead of s; if and
onuly if »; receives a higher pavoll 1than s; along every seqpence of trembles that con-
verges {in a sense made precise below) to the nneertying hierarchy of beliefs abont play.
The lexicographic ordering {(nnderlyving properness) ranks r; ahead of s; if and only if
ri achieves a higher pavoll along a converging sequence of trembles drawn from a par-
tienlar subset of such sequences, Both proper and SIRE are characterized in terms of
optimal behavior against seqpiences of trembles, but the set of sequences of trembles is
different.® “The conditions for properness to rank a pair of strategies are weaker than
the corresponding conditions for SIRE, and so properness accordingly mposes more
restrictions on strategy chwices than does SIRE,

The following scction introdnces notation. Section 3 presents the extensive-form
characterization of proper equilibrinm in terms of ¢uasi-perfection, and so the charac-
terization of the difference between properness and sequentiality in terms of optimalicy
along a sequence of pertnrbations versus optimality in the limit. Section 4 introduces
strategic independences and SIRE. Lexicographic belief systems and the strategy order-
ings nnderlying properness and SIRE are described in Section 5. Section 6 charact erizes
these strategy orderings in terms of sequences of perturbed strategies.

2. Preliminaries

We denote the set of plavers by N and player i's (pure} strategy set by S;. 1 € .\,
with |5 < oo . Typical strategies for plaver i are denoted ;. s;. and t;. The set
of strategy profiles is given by 5 = [T, A 55 A set of strategy profiles .S and a payoll
uction 71 5 — BN constitute the normal form game (5, 7). A snbset of plaver s pure
strategy space is denoted X, The set of probability distribitions over a set X; C S,
is denoted A(NG) A subseript —/ denotes N7} and a sabseript =1 denotes N/
For any distribution 4 & A(S ). deline expected pavolfs given this distribntion over

"Normal form sequential equilibrium appeals an indifference to the next level only if erery player in
the game is structurally indifferent bhetween the outeomes involved (as upposed to indifference only on
the part of the player making the decision).

“There is, as far we know, no corresporncding tremble characterization of the ordering deseribed in
foatnote 7 for normal form sequential equilibriam.



opponents’ strategios as:

50 s
Definition 1. Strategies r; and s; agree for playeri on X ; C 5 ;i ¥s ; € X .
wi{rios ) = mlsios )
Strategies r; and s; agree for all players (or agreejon X ; C 5 il Vs ;€ X .
milrics §)=w(si08 5). VjELN.

We 1se the term agree for player i on X _; to emphasize that player ¢ is inditferent
between »; and s; for any fixed strategy profile, s_;, of the other playvers in X_,. but
other plavers might not be. Note that these indifferences are due to the structure of
pavolf ties in the game. and do not depend on some partionlar mixed strategy profile of
the other plavers. We will accordingly say that v, and s; are stracturally indifferent on
<x’ -i-

We say that the normal form (8. 7) is a pure strategy reduced normal form gome
(PRNF) I there does not exist a pair {r.os,F with ry # 5, and ryoagreeing with s; on
S 50 Any normal form is easily written as @ PRNE by treating the set of pure strategies
that agree on Y, as a single strategy.

For any mixture on PRNL stridegy profiles 2, we also let 2 denote the mixtare
on normal-form strategies obtained by dividing the probability attached to cach PRNE
strategy equally among the corresponding normal-form strategies.?

A probability scquence. ({7} 00 € N1 s a collection of independent probability
distributions such that each 7' is a completely mixed probability distribntion one S5,
Given a probability sequence, we define £ and 77 in the obvions manner. f.e. [7(s) =
[Tooa I7(s0) and P7y(s) = [T, £7(5)). We say that the probability sequence {7} s
conditionally concergent if, for all subsets X C S {77 | X} (and all its marginals) are
convergent seqiences, where £2(s | X)) = PU(s)/PM(X) for s € X and zero otherwise.
We sometimes refer to converging probability sequences as “trembles™ or “sequences of
perturbed strategy profiles.”

Definition 2. (Myerson [9]) A strategy profile o is proper if there is a probability
sequence {7} with lim 7' = 0 and a sequence {ey} 6, — 0. such that, for all i and
all rio 8, €5,

E{mi(se P < B{m{r P70 = 20 (s) £ G PN (). (1)

*A PRNF strategy need not imply unigue choices in an extensive form, beeause different actions at
an extensive form information set. may be consistent with the same PRNLE strategy, This ambiguity is
unimpaortant because the differing actions consistent with a given PRNF strategy profile do not affect
any players" payvolls, Henee, anv other completely-mixed division of the probability amsong corresponding,

normal furm stratecies conld have been chuosen,



By taking snbsequences, we can alwavs ensire that {77} is conditionally convergent.
If o is a proper equilibrinm and 77 is the probability sequence satisfving (1), then we
say that o is supported by {P"}.

3. An Extensive-Form Characterization of Properness

This section characterizes the difference between the cguilibrinm conceepts of sequential-
in-every-tree and properness. Sequential-in-everv-tree requires strategies at every infor-
mation set (in every tree) to be best responses to the limits of sequences of opponents’
strategies. Properness requires strategios at every information set to be best responses
to all of the ferms in the sequence of perturbed strategies.

The extensive-form equilibrinun concept used to characterize proper egnilibrinm is
that of a quasi-perfect eqnilibrium:

Definition 3. (van Danme [11]) A conditionallv convergent probability sequence
{£"} with Imit ¢ induces a quasi-perfect equilibrium in an extensive form game
[ if. for the corresponding sequence ol completely mixed behavior strategies U7 and
linit b7 for each plaver i and information set b for that plaver. contingent on having
reachicd b 03 is a best replv to 0% for all n.

Onasi-perfection is closely related to sequentiality: segnentiality is obtained by re-
placing = is a best reply to b, for all n” in the above definition with 6™ is a best

reply to him,, L B

. That Is; sequentiality requires best replies. at all information sets.
to the limits of a pertarbed seqnence of opponents™ strategies, while ¢uasi-perfection re-
quires best replies, at all information sets, 1o cach clement of the seqnence of pertnrbed
strategies,

Ixtensive-form trembling-haned perfection (herealter, perfeation) reguires plaver ¢ to
play a best response at every information set to the perturbed strategies of her opponents
and to perturbed versions of her own continnation strategies. Quasi-perfection. on the
other hard, forces player ¢ to ignore the perturbations in her own strategies. As a
result, there is no inchision relationship hetween perfection and quasi-perfection. The
two standard examples illustrating this are in Figure 1. T the first extensive form, L1 s
¢nasi-perfect, but not perfect, while in the second. R L is perfect. but not quasi-perfect.
A quasi-perfect eqmilibriun mmst be sequential, but the converse fails.

It womld be consistent with common nsage to characterize a strategy prolile o of the
PRNF (5. 7) as indncing a quasi-perfect equilibrinm in an extensive form (with that
PRXF) if there exists a sequence of completely mixed behavior strategy profiles whose
limit is ecpuvalent to 7 and is a quasi-perfect equilibrinm. I contrast, we have defined
a sequence { P} as indncing a quasi-perfect equilibrinm in an extensive form if {7}
vields & sequence of completely mixed bhehavior strategies that converges to a limit that.



Fignre 1: There is no inclusion relationship between perfection and guasi-perfection.

together with the sequence, satisfies the conditions for quasi-perfection. Thus, when
{1} indices a quasi-perfect eqnilibrinm in every extensive form with a given PRXNI,
the strategy sequences supporting the guasi-perfect equilibrivun in the different extensive
forms are derived from the same sequence of completely mixed PRNFE strategies. 19
While a proper equilibrivun need not induce a perfect eqgnilibrinun in every extensive
form (LL in the first extensive form in Figure 1. for example), a proper equilibrivin
does indnce a quasi-perfect eqmilibrinm in every extensive form {van Damme [11]). Our
first result is that this property characterizes proper equilibria:!!
Proposition 1. A conditionally convergent probability sequence {1} on S induces a
yuasi-perfect equilibrinnn in every extensive form with PRNF (5.7} if and onlyv if the
luit o of {1} is a proper equilibriuin supported by {7} in (5.7).

The proof of this proposition begins with a straightfoward reformulation of proper
equilibrinun (whose proof is omitted):

MEigares 11-13 0 MSS deseribe o simple example «f a pair of extensive forms with the same normal
form with the property thal a stratesy profile can he supported as a sequential equilibrinum in each
extensive form, but only by using different trembles. Hillas 3] contains an example of a4 strategy profile
that is not proper, and yet can be supported by {necessarily different) trembles as a quasi-perfect in
oevery tree,

o a previous version, we stated this proposition with the additional assurnption of transference of
decision maker indifference {zee footnote 16). We are grateful 10 John Hillas for pointing out that our
proof did not require this assmmption. Also, see Hillas [3] for a different proof of this theorem.



Lemnna 1. The strategy profile o is a proper equilibringm if and onlv if there exists a
conditionallv convergent probability sequence (P}, with im PP = o and a sequence
¢y — U sncl that, for all i and all r;, s; € X;.

fAm (s, P < Em(r PP = Pl | e sih) < e (2)

Proof of Proposition 1:  [OXLY IF] Suppose { P} indnces a quasi-perfect equilibrinm
in every tree. Since { £} is completely mixed, 1t can be viewed as a completely mixed
behavior strategy profile. Fix a pair of strategies s; and ry for plaver ¢ such that

E{ms 7)) < E{m(r. 7). (3)

The trivial extensive form representation of the PRNFE, interpreted as a siimultancous

move game, has one information set for cach plaver, with [.5;] choices for plaver j. Let
I” denote the extensive form obtained from this trivial extensive form by the following
application of the “coalesce™ transformation: Replace the single information set of plaver

S| — 1 actions, corresponding

¢ with two sequential choiees, the first information set has
to {r;. s} and the strategies in S\ {5} with the action {r;. 5} leading to a second
information set, b with two actions, r; and s;. In U, if plaver 7 wishes to play either r,
or sy, ¢ st irst select {75081 and then choose between ry and s, Since {77} indnces
a cmasi-perfect equilibrinmoin I, (3) implies P"(s; | {s,. ) — 00 Because S, is finite,
a sequence {eq} can be found such that {2) is satisfied, and so o is proper.

(IF] This is van Damme [11, Theorem 1]. u

Thus, the distinetion between properness and sequential-in-every-tree is that proper-
ness requuires optimality along the sequence, while the latter only regnires optimality in
the limit. One of the attractive aspects of Proposition 1 is that it gives a characteriza-
tion of properness that invelves optimal play against a sequence of perturbed strategies,
rather than condition (1), which only reguires almost-optimal play. This characteriza-
tion does, however, require considering different extensive forms (with the same PRNE).
The key step in the proot of Proposition 1 involves finding, for every pair of strategies for
each plaver /. an extensive form in which plaver / chooses from Just these two strategies
while all other players still ave all of their strategies available. For any pair of strate-
gies. there are extensive forms with snch an information set. but, in general. there is no
extensive form that captures all of these information sets for all plavers (see Mailath,
Samnelson. and Swinkels [6. Section [T for a canonical example).!?

¥ The distinetion between properness and sequential-in-every-tree is retniniscent of that hetween tren-
bling hand perfection and sequentiality in a given Lree. Moreover, generically (in extensive form payotfs)
the latter two coincide. This suzeests that, in some sense, generically, proper and segnential-in-every-
tree cotneide. However, sinee we must deal sinmltaneously with several extensive forms at the same
time, the description of the appropriate genericity requirement is a subtle issie. Section 10 of Mailath,

Sanmelzan, and Swinkels [7] disensses this issue in some detadl.



4. Sequential Rationality

4.1. Strategic Independence Respecting Equilibrium

The idea behind sequential equilibrium. optimality at every information set, is often
phrased in terms of restrictions on the behavior of a player when he is asked to make
a decision, "This snggests that an mmportant feature of the stmcture inan extensive
form game is that a plaver need not make a decision until reqguired to by the realized
play of the game. In MSS. we argned that this is incorrect: it is not that the cholee of
an action at an information set need not be made nntil that information set is reached
that is iimportant, but rather that the chiolee of action, whenever taken, “matters” (ie..
affects the ontcome of the game) only if that information set is reached. Henee, whether
a plaver makes a decision at an information set or makes an ex ante contingency plau.
the player’s action for that information set can be made as if the information set in
question has been or will be reached. Secpuential equilibrium requires that this choice
be a best response 1o some belief abont opponents’ play givern that the information set
in ¢uestion is reached.

The normal form strcture that captnres sitnations in which a player can make a
decision as if he knew that his opponents had chosen from a partienlar subset of their
strategies was called a strofegic independence in MSS:

Definition 4. The set X C 5 is strategically independent for player 7 if
I. X =X, x X ,. aml

20 9r 8 € Xy G € X sueh that ty andd ry agree for plaver i on X and ; and s
agree for plaver t on 5 X .

suppose X Is a strategie independence [or playver +0 I s; and £, € 5; agree for plaver
pon X © 55 then we say that s; and {; are X -equivalent. 1f s; and ¢, agree for
plaver  on & X ;. then we say that s; and ¢; are § X -equivalent. Then when
player 7 is evalnating strategies in X, we can think of him as independently choosing
an X -equivalence class of strategios in X, and an & AN -egquivalence class: these
together determine a strategy in X, The optimality of the cholee of an X -equivalence
class is a function only of beliefs over X ;" Similarly. the optimality of the choice of an
S OAX equivalence class is a function only of beliefs over S\ ;0 We can thns think
of plaver s choice in Xy as one of choosing behavior that is relevant if opponents choose
from X ; and independently choosing behavior that is relevaut if opponents choose from

S ,‘\_X’ i

Ve . . . .
This follows from the fact that, in any two X -equivalence classes, there are strategies s; and

] . . . .
g which agree on & A\X 4, so that an X i-equivalence cliws can be chosen without worrving abont

S OAX L

9



The decision-theoretic analog of requiring best replies at all information sets is re-

(uuiring best replies at all strategic independences:

Definition 5. The limit of a conditionally comvergent sequence {P"} is a strategic
independence respecting equilibrimn (SIRE) if for all 7 and any strategic inde-
pendence X for plaver ¢, lim PF{- | X)) is a best reply from among the elements of X,
tolim (| X_g), e, for all 1y, € X,

E{m{s Tm PTG X Ny < E{m( im PP X ) = B P77 (s

Xi)=0. (1)

As usnal, we say that the strategic independence respecting cquilibrinm is supported
by the sequence {7}, Some examples are discussed in Section 5.3.
As asecond manifestation of the limit of aptima vs, optima of Timits distinetion, we

note:

Lemma 2. A strategy profile o s proper if and onlyv if there is a comditionallv conver-
gent probability sequence {7} with im " = o, and a sequence {¢,}. ,, — 0. such
that. for all ;. all strategic independences X for o and all r.s; € X,

Elma TN ) < Edm(en PG TX )Y = PMse | X)) < o (%)

Proof. [OxNLY [F]: Let o be a proper equilibrinm and let {7} and {e,} be sequences
satisfying (1). Snppose f£{m (s, 750G X o0 < w20 X)) Sinee X s a
strategic independence. there exists §; £ X that agrees with s; on & 0\ X ; and agrees
with v, on X 0 Then F{=(s,. 7))} < E{m (6, 7))} and hence properness implies
Pl {siy < G 0 (8). Sinee s, 4 € XG0 we then have PF(s | X)) < g MG X)) <.
giving the result.

IF]: Since X = {8} % 8 4 is a strategic independence for player 7. and on that
strategic independence. E{m{r 270 | X ) = F{=:(r P and F{m (s P70
X Nt = E{m(s. P70} the result follows from Lemma 1. O

Condition (3) implies that if there exists an n® sneh that the antecedent of (3) holds
for all n > n*. then Hm £7'(s; | X)) = 0. The definition of SIRE is thus the limit
of the characterization in Lemimea 20 proper equilibrinm is the imit of a sequence of
strategies, cach element of which satisfies an optimality property, while SIRE requires
optimality only with respect (o the limiting strategies induced by such o sequence,1?
This also implies, of conrse, that & proper equilibrinm is a SIREL and so SIRIS exist.

INote that, sinee {7} s conditionally convergent, it (5) holds for all », either F{m (s (|
X N} € E{m(r P70 X 0} haolds fur all posutliciently large, or the reverse inequality holds for all
1 sutficiently large.

P8inee the staternent and proof of Lemima 2 are <6l valid if strategic independence ix replaced by
normal form information set, a similar distincetion holds between properness and normal form sequential
equilibrinm.

L0



4.2. Sequential-in-every-tree

If the deflinition of a strategic indepetdence is strengthened by reguiring agree for all
plavers, rather than just agree for plaver 7, then the resnlting normal form strncture is
called a normal form information sel. This stracture s the focns of MSS, where it s
shown that a set of strategy profiles X of a PRNF (5.7) 1s a normal form information
sel for plaver ¢ i and only if there exists an extensive form game without nature with
PRNE (S5.07) with an information set 7 for plaver 7 sneli that the set of PRNE strategies
that make & reachable is precisely X (Theorem 1},

The detinition of normal form seguential equilibrivim is obtained by replacing “strate-
eic independence”™ with "normal form information set™ in the definition of SIRE. Normal
form sequential equilibriun is precisely sequential-in-every-tree, in the sense that the
limit of a conditionally convergent sequence { £} in a PRNE is a normal form sequen-
tial equilibrinum if and only if {#} induces a sequential equilibrinm in every extensive
form with that PRNEF (MSS. Theorems 7 and 8). While the lexicographic belief sys-
tems formulation of SIRE has a clear dedision-theoretic character, the corresponding
formmlation of normal form sequential equilibriun does not {see footnote 20). Since any
normal form information set for a player s also a strateaic independence for that plaver.,

any SIRE is a normal form sequential cqguilibrinm. '8

5. Decision-Theoretic Foundations of Properness and SIRE

In this section, we begin by briefly reviewing Blume, Brandenbnrger. and Dekel [21s
notion of lexicographic probability svstems (LPSs), We then recall their characterization
of properness in terms of an ordering induced by an LIPS Finally, we show how that

order can be modified to vield @ characterization of SIRE.

5.1. Lexicographic Probability Systeins

Clonsider a finite state space €1, In a game theoretic context, the appropriate choice
o
for @ is 5;.5 ;. or &0 For example, the state space when deseribing plaver s beliefs

"Since nat every strategic independence s a normal form information set, the converse can fail.
Following Marx and Swinkels [8], say that a game satisfies transference of decision-maker indifference
if, for all # and any pair of strategy profiles (s;.08 ) and (Gos ), T8 5.,) = m(fios_y) implies
{88 0) mi{l,os 3) for all j € N Every strategic independence Tor a player is also a normal
form information set for that player if and only if (5.7} satisfies transference of decision-maker indiffer-
ence. Moreover, if the game satisfies transference of decision-maker indifference, strategic independenee
respecting equilibrinm and normal formn sequential equilibrium eoineide.,

Y Blume, Brandenbmrger, and Dekel [1] provide an axiomatic characterization of decision making
that yvields a subjective expected utility theory based on LPSs0 Myerson’s [ notion of a conditional
probability system (which s equivalent o the notion of a lexicographic conditional probability svstem,
see footnote 21) s an alternative deseription of beliefs abont out-of-equilibrinm play.
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about opponents’ play is the space of strategy choices for the other players. .S ;. Where

convenient, we will define the concepts for an arbitrary state space €.

Definition 6. A Lexicographic Probability System (LPS) on € is a A-tuple p =

{ .'\'-l)

(" .. .. I . Jor some integer K. of probability: distributions on €.

Blume, Brandenburger, and Dekel [2, page 82] interpret an LIPS p as follows: ~The
first component of the Li?S can be thonght of as representing the plaver’s primary theory
of how the game will be playved. the second cotponent the playver’s sccondary theory.
and so on.” In a Nash equilibrivun, plavers” primary theories about the play of the game
will be correct and so pf also deseribes plaver s behavior.

Fach plaver ¢ has an LPS p ; describing his or her beliefs abont S_;. A collection
of lexicographic probability systems. one for each plaver, is denoted (p ... 7o)
We (like Blume, Brandenburger. and Dekel [2]) impose three restrictions on the lexico-
eraphic probability svstems held by plavers:

l. Commmon Prior Assmunption: There exists an LIPS p on 5 such that for all /.
p i the marginal on S, of p.'®

2. Strong Independence: There exists a sequence of veetors {r{n)}, with v(n) =
(r'(n)..... PR e (0008 1 and r(n) — 0. such that the probability dis-
tribntion r{n)0p is a product distribntion for all s, where +Op = (1 — #1)p" +
f.l[(] _ 1'2);;1 + 1.2[(1 _ ].:{)pz 4 :“'}'[- e ,,!\', 2[(1 o r;\' ,1).0[( ] + r,!\’f l/},l\',, i”” for
re (o nhob

3. Full Support: lor all v and s.; € 5 . there exists w0 such that p® (s ;) > 0.

The first condition 15 the nsnal reguirement that different plavers have the same
beliefs abont the behavior of other plavers. We let p; denote the lexicographic belief
system that plavers other than ¢ hold on 5,0 Fhe second condition ensures that playver
i believes that the other players are independently choosing strategios.'®  The third

Ve ayers i pendently choosimg strategles. 1 1nire
condition ensnres that a playver can evalnate the relative likelihood of any two strategy
profiles chiosen by the other plavers.

Every LPS indnees a “more likely than™ ordering:

P The marginal of an LPS (p".. ... P D is the LIPS whose 7' probability distribution is the marginal

(J(’)N, K00 N -1

"Blume, Brandenburger, and Dekel (2, Propewition 1] show that as n — oo, and hence r(n) — 0, the
seguence of probability distribntions {r(n)0p} “captures™ the hierarchy of beliefs deseribed by the 1LPS,
in the sense that strategies are ranked the same by the LPS p and expected payolls under the sequence
of probability distribntions {r(/)0p},T ) {see Propesition 4 helow).



Definition 7. Given an LPS pon Q and w. W' € Q. write w >, 7 if
min{n : p"(w) > 0} < mindx: p~{L') > 0},

The order >, captures the ranking on states indnced by the order in which these
states appear in the levels of the belief svstems. As usual, we have w >, &/ if w >, W/
holds but &' >, » does not; and @ =, ' if both w >, &' and W' 2, w hold. The order
>, Is a complete and transitive order on 0 Loosely, if w >, &', then w is “infinitely
more likelv™ than & under p.

IPinally, given a lexicographic probability syvstem, the number &(r,. s;). identifies the
first level in the beliels g, at which strategies r; and s; receive different pavofls. with
k(rios;y = K if ry and s, agree at all levels,

These preliminaries in hand., we now turn to the respective orders characterizing
proper equilibrinm and SIRE,

5.2. Propcer Equilibrinm
The kev to the LPS characterization of proper is the following order generated from the
LPSs and pavolls:

Definition 8. Given a lexicographic probability svstem p. the lexicographic order
=poon S 0s given v for vpos; €05,

Lory g sy i k(g sy < Koand. for v = k(rios;).
N - K S - ' A
13{"1’(’1\,“ z)} > L{nz‘(.‘,z‘p 1)}
20 ryrop sy Hk(ry ) = K.and
3oy mp s e s, 0r ey eep s
Note that > 15 a complete and transitive orvder,
When comparing strategies r; and s; for plaver 7. the lexicographic order seeks the
first level in the beliefs p ; at which r; and s; receive different pavolls, and ranks the

higher payoll strategy (at this level) aliead of the other. Blhame, Brandentnirger, and
Dekel [2] prove:

Proposition 2. The strategy profile @ is proper if and ondv i there s lexicograplic

(=8 . (=3
probability system p with p? = & that satisfies the conunon prior assumption. strong
inedlepermndence, full support. and

Ny

L S A T 1

™
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5.3. Strategic Independence Respecting Equilibrimn

The LI’S characterization of SIR L requires only a small modification to the lexicographic
order nsed to characterize proper in Proposition 2.

Definition 9. Given a lexicographic probability svstem p, the structural (partial)

order >5 on S; s given vy =g s if
Lo o= s and
20 for all k < k(ry sy, ry and s; agree for plaver 1 on the support of p~ .

The structural order, like the lexicographic order, secks the first level at which
r; and s; receive different pavoils. However, the structural order then ranks the two
strategies only if all preceding indifferences are structural, meaning that the indiflerences
are created by pavofl ties in the normal form and hence would hold for any possible
opponent strategy. As a result, =g in general will only be a partial order {(nulike > ).
In particular, if two strategies r; and s, have equal expected pavoffs according 1o p*
bt are not structurally indifferent on the support of o then they are not comparable
nnder =4, Conversely, if two strategies v, and s; are not comparable nnder =5, then
for some A, the expected payolfs to ry and s, are equal nnder all pt ) for & < & while
and s, are indifferent Inu not strmetirally indifferent on the support of p*

The strmetural order provides an intuitive characterization of SIRE:?Y

'

Proposition 3. The strategyv profile o is a SIRE if and onlv if there is lexicographic
probability systemy p with p = o that satisfies the connnon prior assumption. stromg
independence, full support. and

Ipos Sy = >p, S

Proof. We first formmlate SIRE in terms of LPSs. Let g, |y denote the conditional
distribution pf(- | X;). where & = min{x : pf(X,) > 0}, and similarly for p ;[x. Tt

200~ . L . . - - . R e .
I'here 15 a similar characterization of normal form sequential eguilibrium. The strategy protile o
is a normal form sequential equilibrinm if and only if there is an LPS o with p" = o that satisfies the
common prior asstumption, strong independence, fall support, and

T

where vy =5 s iff vy =0 55 and, for all & < E{rys:), re and s agree for oll players an the support of

% The difficulty with this characterization is that the order =% requires plaver 7 Lo pay attention Lo
the pavoff structure of the othier playvers, something that cannot be justified on purely deetsion-theoretic
grounds. Moreover, there 1= no trembles-hased charaecterization of > 5 analogous to the characterizations

of =, and o disensseed in the next scection.

Il



is imunediate from the definitions that a strategy profile o 15 a SIRE if and only if
there is a lexicographic probability system p with p = a that satisties the common
prior asswnption, strong independence, full support, and for every playver ¢ and every
strategic independence for player ¢ X, p; |x 15 a best reply to po; [x on X We say
that such an LPS is a SIRE, or that it supports @ as a SIREL

(1) (=5 85 = 1y >, 8:) = pis SIRE.

The proof is by contradiction. Suppose X s a strategic independence for player ¢
with p;|x not a best reply to p. ¢y, Let & = min{x 1 pf (X5} > 0} and & = min{w
PE(X ) = 0} Then there exists s, f, € X, with pf(si) > 0 and fri(.qz.pjf"i |x) <
Tr,'(ll.p‘[‘"l Ix). Since X is a strategic independence, there exists r; € X; agrecing lor ¢
with #; on X, and agreeing for 7 with s; on 5 VY 0 So

'

s p" ) = 07X om0 )+ (0= 00X Dm0t e y)

< AKX Dm0+ (= pE X ) m e Y lox) = E{m (i ot ) ).

where SV X denotes the distribntion conditional on S \X ; and the expressions are
well defined when p* (5 X ) = 0 (since p* (X ;) = 1 in that case). Now, r; and s
agree for ¢ on S A\X 5 and so ry =5 8. Bt then »y >, 83 which s a contradiction
(since pf(si) > 0.

(i) pis SIRE = (ry g 8 = 15 >, 84).

IPix ry. s and define X 5 to be the smallest subset of 5., with the property that
ryoand s agree for ioon S AN 0 Now, oy g8 = Tri(ri.,ok;-) > 7.‘1(.5’1.,(:""1-). where
M o=min{n: p® (X ;) > 0} Since {ri s} x X ;s astrategic independence. pf (s3) = (.
where & = min{r : pi({r,. 5:}) > 0}, and so r; >, 55 G

Thus, in a SIRE, strategies that rank higher in the payoll order =4 also rank higher
in the behavior order =, 0 That i, plavers believe that playver 7 is infinitely more likely
to play ry than s; il player /s preferences {(as deseribed by =) rank ry ahicad of ;.

I'ropositions 2 and 3 show that the decision-theoretie difference between SIRE and

proper consists precisely of the difference between =g and > 2!

Suppose that player ¢
finds himsell indifferem hetween strategicos ¢ and s;, 2iven that the opponents” play s
described by p ;0 SIRE appeals to the next level in the belief hierarchy o5 in order to

rank iy and s; if and only if roand s are stmcturally inditferent. Proper eguilibrium

210ne differetice hetween the orders =5 and =5, is retlected in the ability, when using =4, to work
with an LPS whose various levels have disjoint supports. A lexicographic probability systemn is a
lexicographic eonditionel probability system if the probability distributions (;)m ..... ;)K 'Y have pairwise
disjuint supports. An LPS pis a SIRE if and only if the lexicagraphic conditional probability system
p detined by 5,0 = p% (0| 50N Usew supp{p’ ) for all & is a SIRE. A restriction to lexicographic
conditional probability systems is thus withont loss of generality for the order =5 and SIRE. The same
is not trie for =5 and proper equilibria {Blume, Brandenburger, and Dekel (2, . 89]).
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Figure 2: ((5C 4+ 50,507+ 5R) is a SIRE bt is not proper
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Fignre 3: A SIRE that is not proper. Superscripts indicate levels of the LPS.

always appeals to the next level. As a result, we have r, =g 5, = r; = 5. Proper
ecmnilibrium thms mposes more stringent reguirements then does SIRE.

Since = appeals any indiflerences between strategios at a given level of beliefs 1o a
higher level, while =g appeals only indiflerences that are structural, these orders, and
hence SIRE aud proper equitibrinm. will coincide if all payofT ties arise out of structural
indifferences, [n particnlar, if pis an LPS supporting p% as a SIRE and the support of
p* is a singleton for cach &, then p supports p% as a proper equilibrinm.

IMignre 2 shows that a SIRE need not e proper, Since £8 weakly dominates %("-%— % 13
the profile (%( + %U. %( + %H} cantot be a proper equilibrinun, - However, normal
form information sets and strategic independences inelnde {00} x {2} {or both
plavers, Letting pl(C) = p0(D) = pNCY = PRy = 05, pl(3) = p (L) = 1. and
p3A) = 1 then gives best replies on all strategic independences atcd hence ensures that
(%( T4 %D. %( + %H) ix a SIRE. In partienlar. pf) makes plaver 1 indifferent between f3.
(', and 2, bt the indilference is not struetural and henee is not appealed 1o pl.
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The SIRE in Fignre 2 is not even a normal form perfect equilibrinm. sinee it attaches
probability to the dominated strategy %(' + %1’).22 However, Figure 2 is special in that
the pavofls to A B¢ and D) all fortaitonsly equal 2 when player 2 plays %(' + %H..
That is, the game is not robust Lo tie-preserving perturbations of payvolls,

An example in which SIRE and proper do not coincide that cannot be destroved
by tie-preserving payofl perturbations is given in Figure 3.2% Let p be as indicated, so
that p0(A) = p¥(B) = PN = PNDY = 25, ph(a) = 25, p)(F) = 0.75. py(n) = .75,
py(8) = 0.25. and pa(0) = 1. Then the lexicographic probability system p is a SIRE.
However, there exists no lexicographic probability svstem that will support this onteome
as a proper equilibrinm, To verily this, consider the specification of p) that wonld be
required for properness. Sinee plaver | is indifferent between strategies A and 1) against
Fy and A earns a higher payoff than 12 against . psy st attach a probability to & higher
than .25 (otherwise (4 snrely earns a higher pavofl than /), precnding indifference).
But plaver 1 is also indifferent between strategios 3 and ¢, requiring p3 to attach a
probability to + higher than .79, a contradiction.

6. Tremble-Based Characterizations of >; and =g

The characterizations of properness and sequentiality in Sections 3 and -1 are in terms
of perturbed stratesy profiles and the structnral features of games (information sets
in the extensive form and strmetural indifferences in the normal form),  In contrast,
the characterizations in Sections 5.2 and 3.3 are not in terins of structaral featires of
games, but do use LPSs. In this section., we provide tremble-based characterizations
that do not use the strnetural featnres of games, The original definition of properness
is. of conrse, one sich characterization of properness. The substantive result here is the
characterization of =g intermns of trembles, This is then compared with a tremble-based
characterization of =

First, note the following equivalence between lexicographic probability systems and
probability sequences: Given an LIPS satis[ving conumon prior, strong independence. and
full support, {7 = {r(r)dp} is « conditionally convergent probability secuence (where

r(n) is the sequence of vectors from strong independence). Moreover. £ = r(n)0p;.
so that, for s; € 57 and any & < min{~ : p~{s;) > 0}, ;}f(si) = lim £ (s)/ Hi e

2214, ix easy Lo show that a SIRE cannot attach positive weight to a pure strategy that is weakly deorn-
inated by another pure strategy, though it can attach positive probability to a pure strategy dominated
by o mixed strategy.

2This example s generic in the sense that any perturbations in payofls that preserve the ties in
plaver I's pavoffs yields a nearby SIRE that is nol a proper eguilibrium. The ties in plaver 2% payofls
appear for simplicity: they are not iinportant to the example. There exist nearby specifications of player
2% payvolls that feature no ties and again yield a SIRE that 35 not proper. This example is then only
nongeperic it one considers all perinrbations in pavedfs; including those that distupt ties,



(where we avoid division by zero by defining HQ] () = 1). In particnlar. p? =
i 7" Thus, p; |y is a best reply to p iy on X il and only if the distribntion
lim £27°(- 1 X;) is a best reply to the distribution lim 77,0 1 X_3) on X, Conversely.
given a sequence of completely mixed behavior strategy profiles and so. trivially, a
sequence of completely mixed PRNE strategy profiles, {£7}, there exists an LPS psuch
that a subsequence {77} of {77} can be written as 17" = r{(m)0p for a sequence of
veetors {r{m)} € (0. DY Uwith r{m) — 0 (see Blume, Brandenlnirger, and Dekel 2.
Proposition 2]).

Definition 10. The LIPS p and the probability sequence {7} are tail equivalent if
there exists n*. such that for n > n*, '™ = r{0)0p for some () € (0. 1N 1 with
rin) — 0.
The LIPS p and the probability sequence P are limit cquivalent if for all 7 <
Nows ol e85 L
)
5 52, L = nln_ri m

=

and

P las — p%y las. YR

where A = supp(p? ) and A% = supp(p™ ;)\ Upox A%

Limit eqnivalence is less demanding than tail egnivalence. For example, the sequence

1 [ U I S ENO ceanence {301
{5+ 5.5 — 5 }xg is limit, but not tail, ((pp\d](]jt to the constant sequence {5. 5}
More generally, if the probability sequence {27} s tail cguivalent to p. then it is limit

cguivalent to p and there exists p*. sach that for no> n*,
1 H .
Pl = 0t s TR

Given an LIPS with pairwise disjoint supports (i.c., a lexicographic conditional prob-
ability system, see footnote 21), the pavofls to anyv 1wo strategies, r; and =;, st be
ranked the same way by P70 for all sufficiently large noand for every probability se-
(uence that is tail equivalent to p. Hence, if r, receives a higher payolfl than s; along,
some probability sequence that is tail equivalent to p, then ry receives a higher pavoll
than s; along ecvery probability sequence that is tall equivalent Lo po This is also trae
when the LEPS does not have pairwise disjoint supports (Proposition { below), The same
does not hold for limit equivalence: it is casy to find two probability seguences that are
limit equivalent to the same LPS but rank strategies differently.??

243 . P 1 1 3 1 3 1 1 1 1 103 1 3 1 1 1
S oire he sequences {£ L 31 3 L1 1y, r_r3_1 3 L _ L 1m0
In Figure 3, the sequences {4 e llios N iy} JELSSTC i—- 53— % 3 in — o7 7)o

both limit equivalent to py, but the first gives a higher payoll to ¢ than to A (for large 1) while the
sccond gives a higher pavoff to A than to ¢



The lexicographic order indnuced by a lexicographic probability system g ranks r;
ahead of s; if and only if r; receives a higher pavoff than s; along probability sequences
that are tail equivalent 1o p:

Proposition 4. Suppose p s an LIS satislving the conunon prior. strong indepen-
dence, and full support assumptions. Then, for all i. r; >, s if and onlv if for every
probability sequence { "} tail equivalent to p. there exists n* such that for all > n*.

E{mlre )} > Fimlsi 1)}

Proof: The prool of [2, Proposition 1] applies here with the modification that {(using
their notation) n* is chosen so that n > n* implics v (n) < 1" ¥r > 1", where 1* solves
(1 —r )B4+ 2710 > 0. O

The structural order can be similarly characterized. but the relevant probability
secuiences now consist of all limit equivalent sequences. The appendix proves the fol-

lowing:

Proposition 5. Suppose p is an LIPS satisfving the comnmnon prior, strong indepe-
dence, and Ml support assumptions. Then for all {0 v, =g sy il and ondyv if for every
probability sequence { P} limit equivalent to p. there exists n® such that foralln > n”.

FAm(ry 7)) > E{malse P75 )

Propositions 1 and 5 describe the difference between tail and limit equivalence, and
correspondingly between the lexicographic and structural orders, withont reference to
strnetural featnres of the game. Fix an LP'S p and suppose that every tail-equivalent
probability sequence ranks 7; ahead of s;. Then r; =1 s, However, r; >4 s; may fail to
hold. as there may be limit-equivalent probability sequences that either fail to rank r;
and s; or disagree in their ranking.®® The strnctaral order this requiires more stringent
conditions than the lexicographic order (o rank strategies and the structurat order can
decline to rank strategies (hat are ranked nnder the lexicographic order.

We can illustrate this difference by returning to Figure 2. Consider the specillcation
PSCY = pY(1R) = 5 and pd (L) = 1. How should player 1's strategies be ranked? Against
P, player 1 is indifferent between A and 5. Properness then demands that the decision
between A and 3 be appealed to pl. which suflices to rank B ahead of . The set
{A. B} < {L}is a strategic independence {or playver 1. and SIRE also ranks £3 ahead of
A, Tt is obvions that for any {F%'} converging 1o py. 13 receives a higher payolff than A
along every term of the sequence.

2 A probability sequence foils to rank r, and s, if each strategy earns a higher payvolf than the other

for infinitely many terms of the sequence,



Player | is also indiflerent between strategios 2. (7 and {2 given pfz’. Properness again
appeals to ph, ranking 3 ahead of ¢ and . A similar ranking is given along every
term of any sequence Lthat s tail eqgnivalent to po The key here 1s that tail equivalence
preserves any indilferences that appear at any level of beliels in p. In partionlar. a
tail ecpuivalent probability sequence is simply a collection of convex combinations of the
distribntions pi, no=1.... k— 1, with the weight on pb beeoming arbitrarily high relative
to pg H
looking at seqmences of tail-equivalent strategios.

. Using p to evalnate strategies according to the order > is then equivalent to

Becanse plaver 1 has no information set or strategic independence that includes f3
and either (7 or 2, and in which playver 2's strategy set is {L}. the order > ¢ and hence
SIRE does not rank 53, (2 and D, 1t is easy to find sequences that are limit (but not tail)
cguiivalent to p in which either C"or 1D gets a higher payoll than /3 along every element
of the sequence. More generally, when must SIRE rank B abiead of 77 A necessary
condition must he that along every converging sequence of perturbed strategies, 3 does
strictly better than (7, since otherwise we can find hmits in which ¢ does as least as
well as B and henee the SIRE need not rank 8 ahead of €0 The proof of Proposition
5 involves showing that this condition is snfficient as well, by showing that if B fares
hetter than (7 along every limit-equivalent sequence. then all indifferences between B
and ¢ mnst be stractural indifferences, cansing =g to rank 3 ahead of €7,

7. Conclusion

[ this paper, we provide three results on the relationship between properness and
sequential-in-every-tree. First, we show that properness is equivalent to quasi-perfect-in-
every-tree. Since quasi-perfection is optimality along the sequence of pertirbed strate-
gies, while seqgnentiality s optimality in the limit, the distinction between properness
and sequential-in-every-tree can be similarly phrased.  Second. we provide a lexico-
graphic probability svstem characterization of SIRE, the normal form implementation
of sequential rationality. This characterization nses the structural order on a player’s
strategy space, denoted =g, Bhune. Brandenburger. and Dekel [2] have a similar charac-
terization of properness, based on the lexicographic order, ;. The distinction between
=g and = describes the difference in the decision theories that underlie seguential ra-
tionality and properness. Third, we give tremble-based characterizations of the orders
=g and > that do not involve strictural features of the game, such as information sets
or strategic independences.

Appendix: Proof of Proposition 5

The resnalt s trivial it vy and s; agree Tor 2 o S 50 So suppose not. Let & be the Jargest

20)



index satislving: r; and s; do not agree for 7 on supp{p™ ;) for £ < &. Let AV = supp(p(lz)
AT = anpp(p® )\ Upen A%, for all ko Define Am{s_,) = 7 (ries ) — milsy s 25).

(=) Suppose {7} s Hmit vqm\ahnl o pand v >g s ih(’n r; has a strictly
higher expected payoff than s; under p* ;. Let (7 = Zp“" (s_)Am(s ;) and B =
max |[Am(s_;). Note that A¥ # B so that () = ™ (A% 05 (4* is well defined.
Since P s completely mixed. o(n) # 0. Choose 1 so that for n > n' and for all

$; & U,\<;\‘~11])p(p J P (s ) < Con) /(38 1S L)), Sinee P2 is limit equivalent to p.
l'non‘ s an 1" such that for no> n”.

37T s AR ) (e DY s AT D] < (3

s i AR T I
Set n* = max{n'.n”}. Since r; and s, agree for i on supp(p”™,) for & < k.

NP DAm(s ) = 3 (s AR )

Foad ccksupp(p™ )

Z 1= (s ) “z( )+ Z [ﬂ_i (ﬁ' JAT (s )

5 40 AR So0f ecesupp(pt )
> Z PU(so)Am(s ) — Ce(n)/3
ERTRn L
> (1) (O = Cf3 = CF3) = e(n)(73 > 0.

(<) Suppose for all {7} limit equivalent to p and for nosufliciently large,

drs DAT(s ) > 0. (6)

We suppose ry =g 8; does not hold and derive a contradiction. If r; =g s, does 1ot hold,
then:
Sopt(s JAm(s ) =10 forall 7)
i
YoM s AT ) <.

The definition of b and (6) implies:

Z PUs )Amis ) + Z P(s 9)AT(s ) > 0.

S_gu Ak § g% wcpsupp(pt )

Dividing by 1-’_’_‘2-(:“') and taking limits vields



Combining with (7) vields

Z pkl—(.s' DA ) =0, (%)

Nogt .'1k

We now argue that there exists a prebability sequence ¢ that is limit equivalent to
p but reverses the inequality in (6). which is a contradiction.

Define &;(s;) = min{s @ pf(s;) > 0} and k_i(s-;) = min{x : p,(s.;) > 0}
Note that & = k_;(s_;). ¥s_; € AX. Since p is strongly independent. there exists
r(n) € (0, )N 1 r(n) — 0 as 11— oo, such that »(1)0p = [[{r(n)Dp); = [L{r(2)0p).
Fixing s ; €5 . and letting & = k;(s5). & ;=& (s 5} we have

S (O RRRRS ) ((l —_— "*'l(n))pkfi'(s O ‘”[...])

= rrny PR ((l — it 1(!1})/}?"(51) + R G }) .
G
(We follow the convention that »'(n) - r%(n) = 1.) Dividing by »#'(n)---
taking r tonfinity shows that

PG =alk ke [0 (500 )

EES

"(n} and

where &% s the veetor (A;); 5 and

[T o
oy rE o (n)

a(k 7k ) = lim

7

£ 0,

Let A;‘f ={s; €5 (s;.8 iy) € A¥ for some s_g; 1} Deline u(s ) = a(k (s ).
k
boy(s 4)) < Ams ;) and consider the fanction & ¢ Hj#iﬁ}t’i.x — R, given by, for p_; =

Ak
(jljiops € R

$lp ;) = Z pr(sf) u(s L)

sopeAk A

From (%) and (9). ¢(p*,) = 0. where pi(s;) = ,r)j."("))(sj), Since w(s ;) # O for at

least one s ; €AY @ is not identically zero on any neighborbiood of p*. Fix & > 0
and p® such that | p* — p% [< 6 and ) # 0. Define p! = (p3..... p;.p?“ ..... )
for j = l......N, so that p® = p. Let j/ be the first index j such that &(p/) = 0.
Since d((1 — Mp' U A s alfine in A and S(p" 1) A0, there is a A € N such that
pd = (1= A7 U4 satisfies ©(pf) < 0 and | p*— pf |< 8. Since pi(s;) # 0. for small
&, p?(si) # U for all s; € 1ﬁ auel J.

| B
[ RN



We now define a psendo-LPS for player j.oa;(0068). as follows: (rfJ(h‘J)(.qJ: = pj(.s‘j).
and o (s,00) = pli{s;) for w £ & (550, The psendo-LPS fails to be a trme LPS only
becanse it may be that 37 (s;:8) # | for some »

Consider, for {ixed &, the pmbalnh[\ sequence {£77(08) ) given by N o d)-
(r(r}00,;(.:4)). where g;(ni6) = (Zﬁ(r'(n)DnJ(sJ;:r‘i))) ! € M, is a scaling factor
(qi{r:d) — 1 as & — O and q;(n:é) =il a;(28) 15 a e LPS) We now argue
that for n suthciently large.

STP (s s 8)AT(s 2 <0, (10)

This is clearly equivalent to:

Z(rl(n)v-- 1H ()00, {s,;:8)) Am(s_;) <O,

177

Using the fact that k;(s;) = min{x : pf(s;) > 0} = min{x : o {s;:8) > 0}, the left hand

side cotverges to

> Hnjf‘%)(.q_,:a) a{k s ) k(s NAT(s ) =0(p') <0

UANET

as o — oo, and so {10} holds for # sufliciently Targe.

Let Q7 = I’JH m)(.: I/m). where {r(m)}, -+ is an increasing sequence with the
property that (10) holds when 8 = 1/m and = n(m). Tt is immediate that {Q7'} is
limit cquivalent to p and reverses the inequality in (6). This s the desired contradiction
and so oy =g 85 O

References

(1] T.. E. Blume. A, Brandenlnwger, and E. Dekel. Lexicographic prebabilities and
choice nnder uncertainty. Feonomelriea, 59:61-79, 1991,

2 1. E. Bhune, A, Brandenburser, and [, Dekel.  Lexicographic probabilities and
& oy I
equilibriun refinements. Feonometrica, 539:81-08, 1991,

(3] J. Hillas. On the relation between perfect equilibria in extensive form games and
proper equilibria in normal form games. Mimeo. State University of New York al
Stony Brook. 1996,

] K. Kohlberg and J.-F. Mertens. On the strategic stability of equilibria. Leonomel-
rice, 5121003 1037, TYRG.



(4]

t

19

[10]

[11]

G. 0. Mailath, L. Sammelson, and 10 ML Swinkels. Extensive form reasoning in
normal form games. Economefrica. G1:273-302. 1993,

G Jo Mailath, L. Samuelson, and J. M. Swinkels.  Normal form strctures in
extensive form cames. Journal of Eeonomic Theory, 640325 371, 199.L

G.Jo Mailath, L. Samuelson, aned Jo M. Swinkels. How proper is sequential ecui-
librinm? CARESS Working Paper #9151, University of Pennsylvania, Janmary
1995,

Lo AL Marx and 00 AL Swinkels, Order independence {or iterated weak dominance.
Clames and Economic Behavior. fortheoming,.

R. B. Alverson. Refinements of the Nash equilibrium coneept. Indernational Jowrnal
of Game Theory, T:73 80, 197K,

R. B, Alverson. Multistage games with conmununication, Eeonometrica, 51323 355,
1 9RE.

F.ovan Damme. A relation between perfect equilibria in extensive form games and
proper ecpilibria in normal forin games, International Journal of Game Theory.
13113, 1984,



