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Abstract

I ncertainty aversion 1s often modelled as (sir1ct) quasi-coneavity of preferences over
nncertain act=. A theory of nueertainiy aversion: may be chiaracterized by the paivs of acts
for whicli strict preference for a mixture between them is permitted. This paper provides
siuch a charactetization lor 1wo leading representations of nncertaiuty averse preferences:
those of Schimeidler 200 {(Choquer expected nriliny) and of Gilboa and Schmeidler 13,
(maxiin expected wility with a nou-nnigue priov). This characterization clarifies the
relation between the two theovies, Jowrnal of Feonomie Literalure Classification Number:

=1,



1 Introduction

A large body of work has recently emerged in economies and decision theory with the goal
of representing behavior in the face of subjective uncertainty that may violate the
independence axiom of subjective expecred utility theory. One branch of this literature.
and the one that will be the focns below. considers preferences that may violare
independence by displaving a preference for facing risk (or “objective” probabilities) as
opposed to nncertainty. This preference 1s known as uncertainty aversion. One motivation
for examining these preferences are the well-known problems posed by Ellsberg [9% and rhe
huge experimental literatnre that has followed. in which many individuals behave as if rhey

were 1neertaint v averse.

There are several wavs that one could imagine defining uncerramty aversion. The
definition that 1 will nse here. and the oue that has dominated the literature so far. 15 due
to Schmeidler (200 It states that for any rwo acts which an individual is indifferent
hetween. a mixture. or randomization’. over these Two acts is af least as preferred as either
act. One may interpret this requirement as sayinyg rhat the individual likes smoothing
expected wility across stares. This smoothing hax the effect of making the outcome less
subjective. and therefore sitch a mixing operation conld be called “objectifving ™. Thus, in
a natural sense. sieh an individnal s displaving an aversion to nncertainty. An equivalent
way of stating this characreristic 1s to say that preferences are guasi-concave (f = g and
a € (0.1} implies af ~ (1 —a)g = g} I partienlar. observe that if f ~ g then

gquasi-concavity allows of + (1 —a)y =g while independence requires af + (1 —ajg ~g.

From this viewpoint . a rheory of nucertainty averse preferences may be characterized
by the ser of violations of iudependence in the direction of strict quasi-concaviry thatr i
allows. The goal of this paper is to provide a characterization of this kind for two leading
axiomatic theories of nneertainty aversion. the Chogner expected utility theory of
Schmeidler 2200 and rhe maxmin expected ntiliry theory of Gilboa and Schmeidler 3
Quch o characterization is nsefnl not only from the point of view of theoretical

understanding. bur also as a gnide ro the design of experiments resting one theory of

IThere is some controversy in this literature as to whether or not a randomization should be considered
eciivalent to a mixnure as defined in a formal sense. The correctness and (in large part) interpretation of
the analvsis below is independent of one’s position in this debare. The objects of study are acts, while the
isste of randomization concerns which acts are feasible in particular setrings.

21 thank Mark Machina for suggesting this rerm.



nncertaintv aversion against another. Furthermore. in the emerging literature applyving
these theories (e.2. Dow and Werlang [7]. Klibanoff [14]. Lo [13|. Eichberger and Kelsey [&'.
Marinacei [17} on game theory: Wakker [21] on optimism and pessimism: Dow and Werlany
6. Chareannenf. Kast. and Lapied {3{. Epstein and Wang [10] on financial markets:
Mukerji ‘1% and Ghirardaro [117 on contracting: and others) too often one theorv or the

other is adopted without much recognition of the ways in which the theories differ.

The next section introdnces the Choquet expected utility and maxmin expected
utility theories and points ont the known. vet frequently ignored. fact that under
uncertainty aversion, maxmin expected utility Is a striet generalization of Choquet
expected utility. Section 3 presents the main theorems characterizing the acts for which no
convex combination is ever strietly preferred to both acrs themselves under maxmin

expected nrility and under Choguet expected ntiliry respectively. Section 4 concludes.

2 Two Models of Uncertainty Aversion

2.1 Notation and Set-up

Throughout the paper. preferences are a binary relation. >. on functions (acts) f:5 =Y
where § is a finite set of states of the world. X a set of prizes. and ¥ the set of all
probability measures with finite support (lotteries) on X. Mixtures of acts are taken
pointwise. and thns the set of acts 1s closed under mixtures. Lotteries are evalired

according to an affiue utiliry function v . Y — .

2.2 Two Models

A leading representatrion of nncertainry averse preferences is the Choguet expected utility
representation axiomatized by Schmeidler [20]. Here preferences are represented by the
Choquet integral of a urility function wirh respect 1o a capacity or non-additive measure.
One of the properties which characterizes such preferences is comonotonic mdependence.

Two acts. f aud g. are said ro be comonotonic if. for no pair of states of the world s and »".



f(s) = f(s") and g(s") = g{s).” Preferences satisfy comonotonic independence if. for any
acts fand g. f=gifandonlvifaf+ (1 —a)h = ag + (1 —a)h foralla € (0.1) and all A
such that f.g.h are pairwise comonotonic. This is simply a restriction of the standard
independence axiom (e.g. Anscombe and Anmanu (11} to pairwise comonotonic acts. From

this axiom. the following is immediate:

Result 1 Suppose that preferences salisfy comonotonic independence. Then for any
comonotonic acts f and g. for each a € (0.1). etther f = af + (1 - a)g or
g = af + (1L —aly or both

Thus. strict preference for mixtures cannot oceur with comonotonic acts. Notice that
this observation derives from comonotouic independence alone and is in no way implied by

uicert aillf}' AVEOTSION per 13

Now cousider the second main representation of preferences incorporaring uncertainty
aversion. namelyv 1he represeutation axiomatized in Gilboa and Schmeldler {13/, I this
work. the axiom of comonoronic independence is replaced by an alternative axiom. denotred
C-independence. C-independence reguires the independence axiom to hold only when the
act b used to form the mixtures gives the same expected utility in every state of the
world.* Intuitively. acts which vield the same expected utility in every state leave no room
for uncertainty abont which state will ocenr to marter. C-independence is the assnmption
that mixing with snch an act will not change either the way in which the decision maker
perceives her uncertainty or the way in which she allows her attitiide towards uncertaiuty

to affect her preferences.

Gilboa and Schimeidler [13] showed that C-independence and the standard
assumptions of weak order. continuity and monofonicity together with uncertainty aversion
imply that preferences can be represented by the minimum expected urility of an act.
where the mininmum is taken over a closed. convex set of probability measures. Notice thar

an act which vields constant expected ntility across states 1s comonotonic with any other

3 £(5) should be understood as an act which gives the outcome that act f gives in state s no matter which
state occurs.

4 Technicallv the axiom is more restrictive, requiring /7 to give the same Jottery over outcomes in each
state of the world, bur togethier with the assnmprions of weak order. contimuty and monotonicity the axiom
as described is tmplied. Note that the assumprtions of weak order. continuiry and meonefonicity were also

assumed in the Choquet expected uriliny theory of Schmeidler 20
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act. In fact. comonotonic independence. weak order. continuiry. and monotonicity imply
C-independence. This means that, under the assnumption of uncertainty aversion. any
preferences that can be represented by Choguet expected utility can also be represented in
the sets of measures framework {Schmeidler [19]. [201). The converse is not true. however.

as the following example makes clear.

fo1s 235
g

Set of measures: B = {(p1. po. pa)ip = 1 NP 21 0<p <1
P2 pP3) T Pa 2= F p

Example |

In example 1. an individnal must choose over two possible pire acts. f and g. which
give the expected utilities indicared above in the three possible states of the world.
Observe that [ and ¢ are comonotonic. Suppose that the individial's preferences can be
represented by minimum expected utility over the set of measures B (i.e. the set of all
probability measures which assign eqgial weight to s; and s3). Straightforward calculation
shows that f and g each give a minimum expected utility of 2. while. for example. a
half-half mixtire between f and g sives a minimnm expected utility of 2.05. Therefore.
this nncertaint v averse individnal will strictly prefer a mixture over f and g compared to
either act alone. Since this violates comounotonic independence it shows that these
preferences cannot be represented in the Choguet expecred ntility framework. and also
demonstrates that comonotonicitv is not enough. in general. to guarantee that an
nncertaintv averse individinal will not strictly prefer to objectify by mixing over acts. What
is the righr condirion to gnarantee no striet preference for mixtures in the maxmin
expected ntility representation? s the comonotonicity condition a necessary as well as
sufficient condition for no preference for mixing nnder Choquet expected urility? The next

section provides results to answer these questions.



3 Characterizing Preference for Mixtures

In examining when strict preference for mixrures is possible (or impossible) under the two
theories. it is helpful to consider a previous result characterizing preference for mixtures
under maxmin expected utility for a specified set of probability measures. While such
results are of more interest in a setting where certain beliefs are focal {e.g. equilibrium
beliefs in game theory). thev will be used in proving the theorems to foilow that apply to

the whole domain of rhe respective theories.

Theorem 1 (Rlibunoff (147} For any acts f and g such that f = g no marture over these
acts will be strictly preferred to either alone if and only if there exists some measure g in the
set of measures such that q minimizes the expected utility of f over the sel and such that

the expected utility of f with respect to q is af least the expected utility of g with respect fo q.
For acts which the decision maker is indifferent between this simplifies to:

Theorem 2 (Riibanoff .14') For any acts [ and g such that f ~ g. no mirture over these
acts will be strictly preferred to either alone if and only if there exists some measure g in
the sel of measures such that ¢ minimizes the expected utility of both f and g over the set of

INEASUTES,

Now we characterize the set of acts for which no G-S decision maker would have a
strict preference for a mixrure. This result and the corresponding result for the Choquet

expected nrility case ave provided in the next rwo theorems.

Theorem 3 Fir acts [ and g. No concer combination of f and g will ever be strietly
preferred to either alone {given G-S marmin expected utibty preferences) if and only if (1) f
weakly deminates g or vice-versa (i.e. u(f(s)) > (Shu{g(s)). for alls € S.) or {ii) there
erists an a > 0.b € R such that either u(g(s)) = au(f(s)) +b foralls €5 or

u(f(s)) = au(g(s)) +b for all s € S.

DProof: The diffiendt direction is to show that no striet preference implies (1) or (ii).
The kev step in the proof is 1o show that the conditions for a convex combination to reduce

nucertainty are equivalent to the existence of a pair of probability vecrors satisfying a set of



linear inequalities. This is done in the lemma below. The only task remaining is then to
characterize existence. To do this [ apply a well known result from the theory of linear
inequalities. Motzkin's Theorem of the alternative (see e.g. Mangasarian [16]). The
existence of a solution to the resnlting alternative system is then {after a bit of

rearrangement ) shown to be equivalent to the conditions of the theorem.

Let the vector of utility pavoffs to the act f be denoted F(= {u(f(s))}) and similarly
for G. The following lemma reduces the conditions for a convex combination of f and g to
possibly redice nncertainty to a question of existence of probabilities satisfying certain

linear inequalities.

Lemma 1 Fir F and G. There exists a non-emply. closed. concex set of measures B for
which some mirture of F and G is strictly preferred to either alone if and only if thers exist

probability vectors ploand p2 satisfying:
(HF-p2=F-pl >0

(iF-pl—G-pl <0

(1 G -pl =G p2 >0

and
(i)G-p2=F-p2<0

Proof:

(<) Suppose such pl and p2 exist. Let B be the set of all convex combinations of pl
and p2. Either f > g or g > f or both. If f > g then by (i) and (ii). pl is the only
minimizer in B of the expected utility of f and the expecred uriliry of f under pl. F - pl 1»
less than the expected utility of g under pl. G- pl. Therefore. by Theorem 1. there exists a
mixture which is strictly preferred. If g > f then by (fi) and (iv} and Theorem 1 the same

cotehsion holds.

s F - p} aud

A, Ap ! p g argming, ;G- p}h Consider pl £ 47 and p2 < A, By definition of these sers

(=) Suppose such a B exists. Consider the set 4y = {p|p<argmin,

1

we must have
() F-p2-F-pl =20



and

(b)G - pl =G-p2 20,

Suppose that (a) holds with equality for some such pl and p2. Then if g > f.
G - p2 > F - p2 which mmplies that the condition in Theorem 1 is satisfied and no mixture is
strictly preferred. If f = g. then F-pl = F - p2 > G- p2 and again appealing to Theorem 1
no mixture is strictly preferred. Similar arguments show that if (b) holds with equality for
some such pl and p2 then no mixture is strictly preferred. Thus for there to be a mixture

that is strictly preferred it must be that for all pl € Ay and p2 € A,.
(NF-p2=F -pl>0

and
(g -pl—g-p2 >0

Can it be that F-pl =G - pl > 07 This and (iii) wonld imply F - pl = G- p2 > 0 which
implies f = g aud thus by Theorem 1 and the hypothesis no mixture would be strictly
preferred. Therefore.

({iYF -pl=G-pl <0

must hold. By an analogons argument,
(iGg -p2=F-p2<0

mnst hold as well and we are done. QFED

Now that the lemma has been proved. the next step in proving the theorem 1s to
combine conditions (i)-(iv) with the restrictions implied by the fact that pl and p2 must be
probability vectors. To this end. let n be the number of states in 5. Then F.G.pl and p2

are n-vectors. Let F and G be row vectors and pl and p2 be column vectors. Let € be a

o)

row n-vector of 1's. Let

and
~F F
L_|G-F 0
g -G
() F -G

9



Observe that (i)-(iv) is equivalent to Ap > 0. Furthermore the requirement that pl and p2

be probabilities is equivalent to p > 0 and

e 0 _71 (1)
0€pwl' '

Equivalently. we can replace the normalization (1) with the condition

{6 —clpt-(]

and the condition p > 0 with the equivalent
ip>0

where T 1s & 2n x 20 identiry matrix. To snmmarize, we woild like to characterize whet
there exists a p sich that
() Ap >0

(bifp =0
anel

(e},

L

1
€ —F }[)i{}.

Bv Motzkin's Theorem of the alternative {Mangasarian [161). either (a). (b) and (c)

(*)< :ry]_ + IJy_g - !L [ } = 0 >
yr > 0.y >0

hias a solution y;. ya. yq. but never both. {Note that g > 0 means that each element of y,

has a solution p or

is greater than or equal to zero with at least one element strictly positive. ys > 0 means
almost the same thing except that it allows all elements to be zero.)

Al tlud remains is to rewrite system (7) to get an interpretable condition (namely
the one in the theorem.) First notice that since the elements of gy are all non-negative, (7}
has a soliution if and ouly if

’
.

ol Al o)
y =10

has a solution gy, ¢y Adding up the inequalities determined by he first Hne of (%) vields

(G — F)iyh —yi) <0

10



where
1
¥

1
Ya
il

1
Yu

Y=

This implies that either g = yj, or one of f and g is weakly dominated by the other. So.
a solution to (*) exists if and only if either weak dominance between f and g holds or (**)
s satisfied with g, = g3 lmposing the latter restriction and disaggregating the inequality

in (**) we obtain the system

g’(?lék + .U:_ln) - Ff(’Jil - Uéi) +eys < 0
Syl k) S F gl i) —eps =0
y. >0

which 1s equuvaleut fo

(e ) { G (s +yh) — Flyh i) Hevn =0
\ y, >0

C Observe that without loss of generality yh, can be ser to zero since it can be incorporated
into yi, and yh.. Now. suppose that one of y°, or yi, 15 zero. Then a solution will exist if
and only if either g or f or both are constant ntility acts. Finally. consider the remaining
case where both yl, and 4, are positive. Here a solution exists if and only if there exists

an a >0, 3> 0. and yy such that
aG - 3F +ey, =0 {2

This last condirion is equivalent to

)

G =aF +be forsomea>0beNR. (:

Now nofe that the case where a = 0 corresporuds o fhie cases where g is a constant act. If
only f is a coustant act. simply reverse the roles of [ aud g and again set a = 0.

Pulling rhe different possibilities together. we have that a solution to (*) exists if and
only if either f and g are ordered by weak donnuance or

G = aF +he for some a > 0. be® (-H

11



or.

F - aG +be forsomea >0 be R (5]

Pl |
—

Our applicarion of Morzkin's Theorem now vields the desired conclusion. QED

The analogue for Choquet expecred utility is given in the next theorem. Nofe that
this result is related to that of Bassanezi and Greco [2] who show that the Choquet integral

is additive for all capacities if and only if the functions being integrated are comonotonic.

Theorem 4 Fir acts f and g. No conver combination of [ and g will ever be sirictly
preferred to either alone {given Choquet expected utility preferences) of and only if (1) f
weakly dominates g or vice-versa {i.e. u(f(s)) 2 (<)uly(s)). for alls € S.) or (ii) f and g

are comonotonic,

Proof:

(<) It is straighrforward that (i) implies the weakly dominant act will be at least as
good as any mixture. Result 1 stated earlier says that (ii) implies no mixture strictly

preferred.

(=) We will show that Not ({i) or (it)) implies there exists a mixture that may be
strietly preferred to both f and g. Not ((i) or (ii)) implies f. ¢ not comonotonic and no
weak dominance between them. Since the two acts are not comonotonic. there exist states
7.5, € S such thar f(s;) > fls,) and g(s,) = g(s;). Consider the restriction of f and g to

{sf.5,}. There are two possible cases:

Case I: Neither restricted act weakly dominates the other. In this case. withour loss
of generality assume that f(s) = g(s,) = g(ss) = f(s,). Consider a capacity ¢ such that
v{{s5}) = v({s,}) = 0 and v({s5.5,}) = 1. Relative to this capacity. we can calculate the
Choquet expected ntility (CEU) of f and g0 CEC(f) = u(f{s,)) and CEU(g) = ulg{ss)).

By continuity of preferences. there exists an a” € (0. 1) such that
a"glsg) + (1 —a")flsy) > glss).
Taking the CEU of rhis convex combination with respect 1o ¢ vields.

CEU{ag - (1—af) ~ minlaulg(s ) F {1 =au(flsph).a"ulglsg)) + (1 —a")ju{fls;))

> ulglsp)) 2 ulf(se))

12



Therefore a*y + (1 —a*)f = fand a’g + (1 —a”)f > g for this v

This proves the claim for the case where neither restricted act weakly dominates the

other. Now we examine the remaining possibility:

Case II: One restricred act weakly dominates the other. Without loss of generality
assume f{s;) = f(s,) > g(s,) > g(sy). Since. over the whole space. S. we assumed neither

act weakly dominates the other. there must exist an s € S such that g(s’) = f(s).

There are several possibilities. First. suppose that g(s') = g{s,). Then g(s) = f(s)
implies f(s,} = f(5') so that f and g are not comonotonic on {s,. s'} and Case I applies to

the restriction of f and g to {s,.5 }.

Another possible ordering of the stares by g is g(s,) > g(s') > g{sy). Here
gls'y = f(s) implies f{s;) = f{s') and Case [ applies to the restriction of f aud g to
{sp.8}.

Finallv. assume {the oulv remaining possibility) thar g{ss) > g(s') > f(s). Consider
a capacity ¢ such thar o({s;.5,.8 1) = L ({s;.5,}) — k. and v is zero on all other subsets

of {s7.5,.5 }. Choose k € (0.1) to satisfy
Kal Fs, ) 1 (1= kY a(f(s ) = kulglsp)) + (1 = ku(g(s).
Such a & exists under onr ordering assumptions. Using the capacity v.

CEU) = ku(f{s)) + (1 — kju{f(s)).

and

CEU(g) = kulglsg)) + (1 = k)ulg(s)).

Thus for this capacity ¢ and utility u. f ~ g. Now. using the fact that we can represent the
CEU preferences under ¢ as the maxmin expected utility over the set of probability
measnres that are in the core of » (e, {p | p(s;) + p{s,) = k.p(sg) + p(sg) + plsy =1}
{Schmeidler [19i. [20]). we can apply Theorem 2 to show that some convex combination will

be strictly preferred to borh f and g.

To summarize. in each of the possible cases where Not ({i) or (ii}) holds the above
Las shown that there exists a convex combination that mav be srrietly preferred ro borh f

and g. QED

To facilitate a comparison with theorem 3 the following corollary is provided:

13



Corollary 1 Fir acts f and g. No concer combination of f and g will ecer he strictly
preferred 1o either alone {gieen Choquet capected utility preferences) if and only if (1) f
weakly dominates ¢ or vice-cersa {ve. u(f(s)) > (S)ulgls)). for all s € S.j or (1i} there
ericts an acl b and weakly increasing functions w and x on R such that. for all s € S.

w(f(s)) = wlulh(s)) and u{g(s)) = r{ulh(s)).

Proof- By Denueberg 5. Proposition 1.3]. two functions d.e 1 § — R are comonotonic
if and oulv if there exists a function z 0 S — R and weakly iiereasing functions w.r on R
such that d = w(z)and ¢ = r(z). Let d — wo f.e =uog. and z = uo h and the result
follows from theorem 4 and the fact that f and g are comonotonic if and ouly if o f and

uogare. QET

To see how this result compares to theorem 3. observe that if we require aud x 1o be
affine then condition (ii) of the corollary is equivalenr to coudition (i) of theorem 3. While
Choguet expected utility prevents striet preference for mixture for acts that are weakly
increasing tranformations of the same utility payoffs. maxmin expect ed utility does so only
if the transformations are affine. Intuitively. this savs that maxmin EU decision makers
care about the cardinal properties of the distribution of ntilities across states when facing

uncertaintv. while Choquet EU individnals only consider the (roughily) ordinal properties.

Remark: As the resulrs above concern striet preference for mixture. the reader may
wonder whetbet this addresses all the relevant possibilities for strict quasi-coucavity of the
preferences. Specifically. can there exist acts f and g satisfving (1) and (ii) of the
appropriate theorem above such that indifference curves over mixtures arve strictly
gnasi-concave. vet no mixiure is strictly preferred? It s casily seen that the answer may be
ves oulv if (i) is violated. To see this note that if (i) is satisfied then for any G-5
preferences the sanie probability measure will be used to evaluate all mixtures. generating
linear indifference enrves. Couversly. if (i) is violated then u(f) and u(g) are not related
by a positive affiue transformation and therefore order probability measures distinctly.
Given one minimizing measure for f and another for g. it follows that the measure used to
evaluate af 4 (1 — a)g must generate more than the minimum expected urility level for
one of the two acts. producing strict quasi-concavity of preferences. Arguments similar to
the ones above could be used to show this more formally and demonstrate it for the

Choquet case as well.? There is then no esseutial loss in limiting our analyvsis. as we have.

3Gee also Ghirardato. Klibanoff. and Marinacc (121

14



to preference for mixtures. Furthermore, by examining the preference for mixtures case, we
see that only weak dominance himits the extent of the quasi-concavity permitted by a

violation of (ii).?

Thus we have a characterization of the strict preference for mixtures {(or strict
quasi-concavity) that the two theories allow. It is hoped that this will lead to further
exploration of both the empirical importauce and rthe theoretical interest n distinguishing

between the two representatious.

4 Conclusion

Theorles of uncertainty aversion may differ in the circumstances under which they allow
violations of independence. and iu particular strict preference for mixtures. This paper has
provided a characterization of those acts which may never admit such a strict preference
for the 1wo leading representations of uncertainty aversion: maxmin expected utilitv and
Choquet expected urility. The fact that these characterizations are substantially different
Las implications for empirical testing of the theories as well as for those tryving to apply one
or the other model and wondering what the cousequences of the modelling choice are.
Fundamentally, Choquet decision makers view variations of expected utilities across states
i an (practically) ordinal way. while maxmin EU decision makers care about the full

cardinal properties of such variation.

“ An alternative reason for interest in preference for mixtures per se is that such preferences correspond

precisely to violations of the analogne for uncertain acts of the betweeness property for preferences under

risk (e.g. Dekel 41}
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