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Abstract

We consider an auction in which k identical objects of unknown value are
anctioned off to n bidders. The k highest bidders get an object and pay the
I+ 1t bid. Bidders receive a signal that provides information about the value of
the object. We characterize the unique symmetric equilibrinm of this anction.
We then consider a sequence of auctions A, with n. bidders and k, objects.
We show that price converges in probability to the true value of the object if
and only if both k. — 00 and n, — k. — co. i.e.. the number of objects and the
nimber of bidders who do not receive an object in equilibrium go to infinity.

1 Introduction

In his paper “A bidding model of perfect competition.” Wilsun (1977) establishes a
remarkable resilt abonut common value auctions. Consider an auction for a single
object of unknown value. Each of 1 playvers receives a signal about the value. and
then submits a bid. The highest bidder wins the object and pays his bid. Under
apprupriate conditions on the structure relating value to signals. price converges in
probability to the true value of the object as the niumber of bidders goes to infinity.
Thus rthe auction aggregates the information that is diffused through the economy.
Milgrom (1979) provides a precise characterization of the signal structires that give

convergence.

“We thank Fddie Dekel. Faruk Gul. Bengt Holmstrom. David Levine. Joe Ostroy. Bob Wilson
and sentinar participants at CalTech. Harvard. Northwestern. Stanford. UCSD, UCLA and Yale
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acknowleges support from NSF grant SBR-9307304.



Wilsun interprets this result as providing insight into the general way in which
prire formation processes might aggregate diffuse informarion. The advanrage of
the auction setting is rhat it pruvides an explicit model of huw individnal actions
and infurmation translate into prices. This is in rontrast to the price taking model
of a competitive market that is characterized by equilibrinm conditions un prices.
Lut provides no explanation of how prices satisfving those conditions are arrived at.
Milgrom (1981) carries this theme further. arguing that auction mudels address basic
flaws in the rational expectations paradigm. He also extends the convergence result
to uniform price k object auctions. Snuch auctions are a more appropriate model of
many price serting environments.

[t is rempting tu interpret these results as holding rather positive news about
the abilitv of markets to aggregate information. However. the conditions needed
fur aggregarion are very strong. In equilibrium. winning the object convevs the
infurmarion that n — 1 other bidders received less favorable news about the valie of
the ubject. As n — 1 grows. this winner's curse becomes arbitranly strong and su for
high bids to be optimal the bidder's own signal must be correspondingly powerful.
In Wilson's setting. for any 17, there must be a signal that is impossible for r < 1",
Working in a setting with a finite set of values. Milgrom (1979) shows that this
is essentiallv necessary: a necessary {and sufficient) condition for full information
aggresation is that for every 1/, and any M. there is a signal that gives a likelihood
rativon ' vs, 1 <2 " of at least M. That is. there must be signals that come arbitrarily
rluse to ruling onr values below i”.' Both the intuition and the result generalize to
uniform price anctions with any fixed number of objects (Milgrom (1981)).

These assumptions are very strong: for every value 1’ there is a signal <" such
that no matter what other information the budder infers from the behavior of his
opponents, he still puts very small probability on r being less than ¢'. We thus view the
Wilsun and Milgrom results as essentially negative: only under ectreme informational
assumptions is information fully aggreqated.

This Lrings 1us ro onr point of departure frum the existing literature: for many

VT see why these conditions are sufficient note that while s* essentially rules out values below

Cthe strength of the winner's curse essentially rules out values above ¢' when a bidder with signal

4 wins in equilibrium. Therefore. the player knows that if he wins with signal s’ the value of the

ohjret s casentially ¢ Since many other bidders will have received signals nearly as favorable as 5"
competition for the object rules ont prices much below . The convergence result follows.
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anctions where information aggregation is of interest. and certainly when using these
anctions as models of uther markers. it seems appropriate not only to let the number
of buvers grow large. but ro ler supply grow large as well.

We counsider the alluration of a set of & identical ubjects by an auction mecha-
nism. The ubjects have unknown valie 1. Each of # bidders receives vne of finitelv
many signals about i+ befure snbmitring his bid. Signals satisfy the strict monotone
likelihuod ratio property. A single signal ran only change the likelihood of any subset
of valies by a muitiplicative factor nniformly bounded away from ¢ and x. Thus the
pusterior of a bidder after having received any signal has every possible value i in
its support and density buninded away frum zeru and infinity. An example satisfving
olr assimptions is the information stmetnre with two signals. 5 = 1.2, where the
probability of receiving signal 1 is strictly decreasing n i-.

Bidders chuse bids as a finetion of their signal about value. The k highest bidders
each get an ubiect and pay a price egual to the & — 1% highest bid. receiving a pavoff
equal tu the difference Letween value and price.

We characterize the nnique symmetric equilibrinm of this auction. VWe then ex-
plore the limiting properties of the equilibrinm as the mumber of bidders and objects
srows large. In particular. we consider a sequence of auctions with i, bidders and £,
objects and ask under what conditions the equilibrium price of the auction cunverges
in probability to the tre valie of the object. We call this property full information
aggregallon.

We shuw that a necessary and sufficient condition for full information aggregation
is that &, — ~ and n, —k, — 2. i.e.. both the number of ubjects sold and the number
of bidders who do nut receive an ubject goes to infinity. We call this property double
laripeness.

In an extension we ask what fraction of bidders must receive an informative signal
fur full information aggregarion to huld. Consider the following environment. With
probability =, a bidder receives a Linary signal of rhe form diseussed above. With
probability 1 — =, the bidder receives nu information. We shuw rhat full information
aggregation will hold as long as double largeness holds and . dues not converge fo
zeru tuo fast. More precisely, we require that ~. /1, — x.

Our results stand in stark contrast to thuse in the fixed & setting. Wirh fixed &



fill information aggregation requires very strong signals. If supply is growing then
there is full information aggregation even if individual signals are only minimally
informative. This is true even if supply is growing very sluwly relative to demand.
and only a vanishing fraction of bidders is informed. Thus nun-negligible supply can
Le a substitire for strong signals. This provides a mich more enconraging fonndarion
for a bLelief in rhe information aggregation properties of markets.

Winning with a bid b convevs the negative information that at most k of the uther
Lidders chose ro bid abuve b 1ipon receiving their signals. This is the winner's ciuse.
The driving force behind our results is that in vur setting there is alsu a loser’s curse:
lusing with a bid b convevs the positive information that at most n — & uf the other
Lidders chose to bid below b, If both k., — ~x and n, — k, — ¢ then the rwo effects
rogether imply that the information that a bid is on rhe threshold between winning
and lusing ronvevs a very precise estimare of value. Since the precise value of rhe Lid
unly marters when it is on this rhreshold. this will imply that the equilibrium price
converges tu the true valie.

A feature of our resilt is that it is nef necessary for supply to grow proportivnately
ro demand: k., n, can. fur example. converge to 0. This is surprising since one might
rhen expect the winner's enrse to uverwhelm the luser’s enrse. Some intuition comes
from examining the properties of unr equilibria: as k.;n, goes tu zero a growing
fraction of rthe Lidders essentiallv “sit ont” the anction by submitting bids very cluse
o U. The number of “active” bidders grows proportionally with &,. and so the winner's
and luser's curse effects balance ont.

We devore cunsiderable space to the question of unigueness of equilibrium within
the rlass of symmetric equilibria. While this result is of sume independent interest. it
is critical to the interpretation we place un ovur resnlts. The equilibrium examined is
surprisingly good at information aggregation. However. this equilibrium has a rather
romplex structure. and une might ask if there are mure natnral equilibria that do not
satisfv full information aggregation. If this were true then full information aggregarion
world not be a fundamental property of this market. but rather a cunsequence of a
special chouice of equulibrinim.

We rhink rhe restriction tu svmmetric equilibria is guite natural in our set-

ring. since the symumefry assnumption can be viewed as an arongmify assumption.



Anonvmity seems a natnral requirement when modeling large markets.? Su. estab-
lishing that no other symmetric equilibrinm exists gues some distance 1n strength-
ening wur conviction rhat information aggregation is a feature of the market under
considerarion. and not just of a particnlar equilibrinm.”.

Section 2 rharacterizes the equilibrium of the model for fixed & and »n and dis-
cnsses the nniqueness result. Section 3 explores the behavior of the equilibriim price
distribntion as the auction grows large. It states and proves the main theorem and
examines rhe cases in which &, /n, goes to zero and in which the fraction of informed

Lidders becomes small. Sectiun 4 concludes.

1.1 Related Literature

Palfrev (1935} asks whether aggregate vurpir in a Conrnot oligopoly with decentral-
ized infurmation abuut marginal cost and demand converges tu the cutpnt of the
corresponding full information setting as the number of firms goes to infinity. Palfrey
shuws that a sufficient and essentiallv necessarv condition for this result is that the
likelihoud matrix relaring signals ro states 1s “invertible”. This requires in particilar
that there are at least as manv signals as states. In contrast. onr results hold even
if there are unlv two signals althongh our state space is infinite. In Palfrexv’s model.
arerage ontpit must be eqnal to rhe full information vntpnut in each state. Thus.
state Ly stare. the uverproduction of sume firms must be exactly compensated by the
underproditetion of other firms. In viur model. all that matters is that in each state
i, the righr number of bidders bids abuve the correct . The magnitude by which
Lidders nunder or overbid is irrelevant.

Feddersen and Pesendorfer (1994) analvze twu candidate elections with common
valiies and give conditiuns under which full infurmation aggregation is obtained in

equilibrinm. Full information aggregation in an election means that the candidate

“ Anonvmity also plays a central role in the literature on convergence of decentralized trading
models to cotnpetitive equilibria; see Gale (193%), and Rubinstein and Wolinsky {1990) who show
how a viotation of anonymity canh lead o a non-competitive limit.

PA pesnlt stating that the symmetric equilibrium is the only equilibrium (symmetric or otherwise)
would be even nicer. This is false. because of the equilibrium in which players 1. .., K bid more than
the highest possible value regardless of their signal. while the others. knowing they have no chance
of winning at a price less than the highest possible vaiue, bid 0. If one rules out weakly dominated
alrategies then we suspect that the symmetric eqailibrivm s indeed unigue. but we are unable to
show this



elecred is the same as would be elected if all the private information were common
knowledge. Similar ro rhe & + 1™ price anction analvzed here. in a voting model
the artion of a plaver (the vote) unly matrters when he is pivoral and su a vorer
ilike a Lidder in an auction) has ro condition on being pivoral. Thus the mechanism
thar gnaranrees full information aggregatiun in the present model is also ar wurk in
elertiuns.

A natural question is the degree ro which our resnlts depend un the assumprtion
of identical preferences. In Pesendurfer and Swinkels (1993) we explore informatiun
aggregation results in a model in which objects have a common compunent of value
~a quality - about which plavers have some information. but in which plavers also
have idivsvneratic differences in rastes. There. we show that in the limit. objects are
allorared to thuse who valne them most. and price reveals true quality. Thus. our
informartion aggregarion result is rubust to the introduction of preference diversiry.

We roncentrate here un the pure common value fur several reasons. First. the
driving force behind information aggregation is clearest in this simple case. Second.
this serting differs from that of Wilson and Milgrom only in having weaker signals
and nun-negligible supply. Thus it is the assnmption of fixed supply rhat makes their
strong infurmation assumptions necessary. Third. in the pure common value case we
are able ru characterize equilibria explicitly and prove nnigueness. This allows 1s tu
show buth necessity and sufficiency of duuble largeness for information aggregation.
With differing rastes we give a (stronger) snfficient condition for full information
aggregarion but cannut show necessitv. Finally. the forces driving information agyre-
sation in rhe serting with idiosyncratic tastes are somewhat different than rhuse ar
work here. In particnlar. the pure cornmon valites result cannot be thought of as a

special case of the result with idivsyncratic rastes.

2  Model and Equilibrium

We begin Lv rharacterizing the equilibrinm of the moudel with a fixed number of
Lidders and wbjects. There are n bidders. labelled 7 = 1..... n and k identical ubjects.
Each Lidder pits valie 1 on a single vbject. and 0 un further ubjects. The value +
is common across plavers. Lt nnknown: © is drawn according to a distribution (1)

wirh snpport U, 1.



Fach bidder i receives a signal « £ 5 = {1....}/}. Conditivnal on 1. signals are
independent acruss plavers. with a probability 7(s 1} of signal . The probability

disrribnrion of signals given ¢ is

We make the following assiumpftions:

Assumption 1 F has a differentiable density f(.). There is ) >0 such that 14 >
fir) > g and f1(ry < Vg vr e [0.1

Assumption 2 =(s. 0} 15 continuwously differentiable ae v. There s an n > U such

) ( s({s.}

that 1y < m(s.y < L — g and such that for s > s - 7(1—)) > ).

Assumption | implies that the prior over values has nu mass points and rhat rhe

support of the prior is all of [0, 13, Assumption 2 implies that the signals satisfv the

T
(st

strict monotone likelihvod ratio property (MLRP) and that the likelihood ratio
is nniformly bounded for all pairs of signals s.+'. The differentiability and Luunded-
ness assimptions are made for technical cunvenience. Strict NILRP implies that by
sampling a large number of signals - can be determined with arbitrary acenracy. As
a cunseqiience. a large population of bidders always has information that. if properly
aggresated. would determine 7 with great precision. Clearly. without this property
we ronild not expect the equilibrinm price tu converge in probability to et

Each Lidder / submits a Lid b, as a function of his signal. We will counsider
svimmetric Nash equilibria. The cumnlative distribution for bids conditivnal un a
signal s 1s denoted H,(+) for s € S. The support fur f,(.) 1s denuted Qgﬁ (suppurts
will alwavs rurn out to Le intervals).

Let d; denote the k" highest bid among all bidders except bidder 1. When d, =

we sav that b is pivotal. We describe the equilibrium strategies from the perspective of

Lidder 1. Since strategies are symmetric this describes the whole equilibrium profile.

Eyasume that the true value s & = 1~ 7. where as before. signals are 111D conditional on ¢.
and where both signals and ¢ are independent of . Theu. all our results would carry through 1
the <ense that the true ¢ would be revealed by price (which would converge to v+ ). So of course,
the reat point is that asvmptotically the auction mechanism reveals all avatlable information about

(ralivy,



Proposition 1 There is a unique symmetric equiltbriwm Fo(-). s = L. M of this

auction. In the equilihrium. each H(b) is continuons and for s > &' by > by For

vach bid b2 b b

1

. ! FO D L O R AL i‘)zf(l'}
h=Firde =b.s)= / Py e 17 , ok D
ooy albowyt B HL = (b)) (s w)? flw)dw

v i1}

where (b i) = II{s — 1.0} = (s ) H(b).
Proof A furmal proof is in the Appendix L.

Propusition 1 savs rhat fypes mix over disjoint intervals in such a way rhar for
each bid b made by tvpe ~. the expected value of an object given that bis pivoral and
Lidder 1 received signal v is b. This makes sense given that a change in bid makes
a difference onlyv when the bid is on the rhreshold berween winning and losing. i.e..
when d; = b. The equilibrinm is the analug of the equilibrinm described in Milgrom
(1U%]. Theorem 1) fur the case of a contimious signal space.

A rechnical puint abont E(1dy = b. <) should be mentioned. Nute that (b . 1) 1s
the probability of any given bidder bidding less than & given valie 1. So. the density
veflects that for dp = b n — k — 1 of plavers 2.....n mnst bid less than b. while
L — 1 must bid more. These are both pusitive probability events. However. the event
d, = b is zero probability, since it involves a plaver bidding b. So. it is not clear thar
(i dy, = b %) need always be well defined. and indeed. it is pussible tu construct bid
fnetions fur which it is not (simply choose H; functions in such a wayv that m, .
hoab'vohe (b)) is nut well defined). Houwever. for bid functions with disjuint supports
rhis is not a problem. The intuition is that unce one knows that a plaver has a bid in
. b, furrher information abont his bid is irrelevant to 1. Lemma 5 in the appendix

furmalizes this.

2.1 Uniqueness

The contribution of prupusition 1 is to demonstrate nniqueness within the set of
svmmerrie equilibria. The two key steps are ru establish rhat in equilibrinm Lids are
weakly monotonic in signals and to establish that weakly monotonic equilibria cannot
involve arums.

At first blnsh weak monotonicity seems quite obvious. Assime a player with

siemal s finds b ro be a betrer bid than b << I, Then a plaver with signal Somos s



more uptimistic abont the value of the ubject when b wins and b loses. So. he alsu
onght tu find ¥ a betrer bid rhan b. The difficulty with this argument is that rhe
plaver with signal & may alsu have substantiallv more pessimistic views about what
he will pav in cirenmstances when b luses and &' wins.”

Let ¥ Le the event that b luses and & wins. Nuw. F{inY &) — F(riY . s) >« fur
sume ¢ > U. And. E(pY. &) — L£(plY . =) is at most & —b. So. if b and & differ by ar
most «. then & will also find ¥ a preferable bid ru b. For any inferval in the support
of eqnilibrinm bids. vne ran string together lucal comparisuns like this to show thar
more favorable signals correspund to weakly higher bids.

Cunsider next rhe rase where b and b’ are the end puints of an interval in which
no wne bids, and where 4" is preferred to 6 Ly . The diffienlt case is the une in which
Louth # and b are atums. Since b’ is preferred to b by <. E(riY. ) — E{p:¥. 5] > U. And
as before. E(r Y. &) > F(0iY. 5. So if E(plY. ") < E{piY. 5) then s also prefers &
to b

Assume F(piY. <) > E{pY. ). Conditivnal un Y. price is either b or &', So. it musr
Le that rhe beliefs of " shift weight awav from the event p = b and tuward the evenr
p = i cumpared ro the beliefs of 5. Since s conld have bid just nunder &'. it must bLe
that (e Y. p=W.5) > Ifalso £{riY.p =105} > b then since & is better off than
< in either case. s" alsu prefers &' to . Su cunsider the case that F(v|Y.p =b.5) < b.
Then. rompared to 5. «" places less weight un the event where bidding b instead of b
15 rustly tu 5. and mure on the event where bidding & insread of b is profitable ru ».
Since ~" does Letter than ¢ in each event. ~" again prefers b’ ro b.

It is in showing weak monotonicity that svmmetry plays a role. If we were to allow
asvmmetric equilibria. the difficulty may arises that plavers uther than 7 bid un the
interval 15, 8) but 7 does not. Then we cannot ger frum b to ¥ by lucal comparisuns
acruss tvpes of . biit neither can we conclude that price is either b or 8" given Y.

The second step is tu show that weaklv monotonic bid funetions cannot involve
atoms. Ifbis an atum. and b is pivotal then there may be several people tied at b, Bur
rhen. winning or lusing with a bid of b convevs infurmarion in addition to knowing

that b is pivoral. This is so beranse when a bid of b is pivotal. the udds of gerring

“Harstad and Levin {19%3) claim to prove the unigueness result at issue here in the context of a
sinzle objeet anetion. Thetr prool does not address This dithieulty with monotonicty or the possibility
of atons



an ubjert depend on how many uther plavers submitted a bid at or above & This in
rrn depends un the signals thouse plavers received.

Tou establish rhar arums cannot be a part of a svmmetric equilibrinm we show
that rhere is a winner s enrse at atums: when b is pivural and a bid of § wins. valne
is lower un average rhan when b is pivotal but does not win. But rhen sume bidder

will have an incentive tu either raise or luwer b a bit.

3 Information Aggregation

Consider a sequence of anctions indexed Ly the pusitive integers. where the r auction
1. has ». bidders and k, Jbjects fur sale. The structure un values and signals is
constant alung the sequence. and satisfles all the assumptions already made. For
each r. Propositiun 1 establishes that rhere is a nnique symmetric equilibrium. We
will maintain rhe notation deseribing the equilibrium from the last section. with r
snbseriprs where appropriate. Let the randum variable p, deseribe the prire in rhis
equilibrinim, We want tu nnderstand the conditiuns nunder which p. approximares r

as r gets large.

Definition 1 The sequence of auctions {4} | setisfies full imformation aggregution

tf pe = v conrerges to O e probabilily.

3.1 A Necessary Condition for Full Information Aggregation
Consider the case = = [, Then
1 — b )= (Moo L - Hay (b))

and rherefore Proposition | implies thar

L /'1 L= mM L M B MO () "
AV ; e : - A
_jnl (1 — =M. w1l = Hy i)y LS )b s dae
At by, this redices to
Y U L L )
ro= "= . ar L =
M i s e fle)d e
Similariv.
h, = /‘1 B SiLoey rl}‘("} di {.3)
-l 0 i“l Silowyre e Vi eydwe '

v



Eqnarion {2} implies that independent of n, the highest bid in .1 is the expecred
value of the ubject runditional un vbserving b, signals 1. The idea is thart di, = b,
ronvevs the information rhar k. urher plavers bid by, and therefore received signal
V. All other playvers bid less than by, and since plavers bLid less than by, with
probabilitv 1 (regardless of rheir signal) rhis convevs no information abonr . Thus.
conditional un by, Leing pivoral. rhe bidder's infurmarion is his own signal 1/ plus
rhe information thatr a set of k. uther bidders all received 1/, Fur anyv finite &, this
implies that by, is strietly less than 1. Any time » is more than by, price and
valie will diverge. Therefure. k. — 2 is a necessary rundition for full informarion
aggregarion. Similarly. Equation (3) reflects rhar when &, is pivoral. a bidder knows
rhat. like himself. the 1, — k, bidders who Lid b,, received signal 1 while there is no
informarion abont signals received by the &, — | other Lidders. So. anuther necessary

condition for full infurmation aggregation is thar n, — k., — x. This suggests

Definition 2 .| sequence of aucfions { A} | satisfies double largeness if k. — x

and v, — k. — .

3.2 Sufficiency

We have seen rhat dunble largeness is a necessary condition for full information ag-

gregation. We now show thar ir is also snffictent.

Theorem 1 p, —1 converges in probability to O of and only if {4} salwsfies double

Taripe ness.

Proof We have alreadv established necessitv. So. let 1), (1Y} be the distributiun of
i condirional on anyv given evenr Y in 1., and d, (1Y) Le the correspunding densiry
vl Y1 will exist for all the ¥V owe consider). Let X,(b) be the event thar uf bidders

3o n.in 4. &, — | bid abuve b and rhe remaining 1, — k., — 1 bid beluw . Then.

PriX, by = (o (e b B — e b

For event N.ih} to weenr. a fracrion

e, — A= 1

n,— 2

T

b—
fa—



of bidders 3.. ... n. bid Lelow b. Thus. if we define (b} Ly
ir(b) = argmin Lle by — g

rhen a simple calenlation shows that Pri\ (b)) r) 1s maximized by = re(b) (see
the prouf of Lemma | below). Further. as n, grows large Pr{\,(b),r'} depends in-
rreasingly sensitively on o (v b). If w.(0.b) is in tnrn sufficiently responsive tu i
then PriX,(h)1) will depend sensitively on . and su the event X, (b} will conrain
a grear deal of information about . With donble largeness this is in fact tre.
This iz confirmed by the fullowing lemma. which is the key to our results. Let
To= o asnppl Hosl ) {Dage b} That is. T, is rthe support of possible bids in 1.

less the highest and lowest bid.?

Lemma 1 L+t A, satisfy double largeness and Iet O >0 and ¢ > O, Then there is ¢
swuch that forallr > ¢ forallb € T, and for allw. v such that etther w+o < < rlih)

or (b)) << -

Pri X, (b))

_ >
PriX, (b)) u)

Thar is. X.(h) becumes much less likelyv as - moves away from 12 {b).

We defer the proof of Lemma 1 tu rhe nexr subsection. Here we show how Lemma
1 implies Theorern 1.

Becaise we are in a svmmetric equilibrinm of a svmmetric model. when consider-
iny rhe event ;. = b. we can withoiut luss assiume rhat plaver 2 is the vne who bid 5.
su that dy = b can Le replaced by X, (b) " {h, = b} (since ties are zero probability).
Simitarlv. the event p, = b can be replaced Ly X, (h) ™ {by = 0} N {by > b}. Nure
fiirther rhar. conditional un 1. bLids are independent. So. if & & [bsf;] for sume .

rhen

. g I VT
A dy, = D) — Pr N (D) ofs. ) jf(:)

By PriX, (b w) =(s u)?, (w)du
Similarly.

PriX, (b)) 7ls. o)1 — b)) f ()
Sy Pri b s (L — b)) flw)diw

do(vip, =b) =

“The kev resnlts that follow can be extended to {by B} but only at the cost of more compli-
cated notation. Sinee the key vesult is a probabalistic one. the difference = irrelevant.

|9
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Let n be such that 5 < ={s.r) < 1.and 4 < f(r} < 1/y for all s and ©. (Such a y
exists by Assumptions 1 and 2).
Pirk « = 0. and (" > U. Chouse 1" so thar Lemma 1 is satisfied for ¢ and (" Ler
vt and b & T msuppff ... Then
Priv—iz(b) <« dy =hos)
Prii-—sby = ¢ dy =bs)
I PI:\ (m.ww w**f(r)dr

T on bm NG
" by de
-~ ”_1.!‘1 I ] ( (
j (k) ,-(J A (i)"
> e

where the first inequality uses that 5 < (s} < L and 5 < f{r} < 17y and rthe
second is from Lemma 1.

Similarly. for anv b < [,
1 — o {bor)
1 — b

Lecause bids depend unly on signals. and the likelihoud of any given signal is boninded

=)

Lelow by ) and abuve by 1. Su

Pr(v—1i{b)y <c'p =hi
Pri{jr —r2(b)i > p. = b)

Thus. far enungh along the sequence of anctions. almost all the weight in the
distribution of - ronditional un either event becumes concentrated around 7 (6}, And.
since £ 0.1}, it thus follows that the expecration of 1 conditional un either event
converges tu o (b). That is. for all « > 0. there is 7" such that for all » > 7. for all

=~ and forallb e 15
Priiv — rl{by > dy =bs) <«

and so Eirdy = b =) — r2(b) < 2¢. and similarly for the event p. = b.

From the deseription of the equilibrium. £{irdy, = b.s) = b. Since L dy, = b.s) — rrib) <
2 it fullows that b — 17 (b)| < 2e. Also Pr{ir — ¢7{b)] > ¢ | p, =) < ¢ and therefure
Priv—h >3 p,=b) <. As this holds for all b € 7, and Pr(p, € 1) = 1. we
conelnde that Pri.r — p. > 3¢) < «. Since ¢« was arbitrary. rhis establishes that v —p.

cunverves to U in probability. proving Theorem 1. B

13



[+ remains tu prove Lemma 1.

Proof of Lemma 1 Let h = 7,. A straightforward rcalenlarion shows that

i1 . . %.I'r(r'_fJ} . , .
— InPri X (i) = o ny —h.— 1 —in,—=2)r {0 by {4
i re(r byl = e b)) '
Nuw note that
S drb)

st — e )
is alwavs negative since f;.r,( 1 b} is negative. while n, — k. — 1 — (n, — 2), (1. b) has

rhe same sign as

n, — k. — 1

ne — 2

— bl

Su. %ln Pr{ X, (b)) is pusitive for r < r2{b) and negative for r > (). We will
prove that for anv & > 0. and 1) > 0. there is »" snch rhat for r > ¢’ for any
h = T.and for 1 such that v — 2 7(h) > & ﬁ Ind{ X, (b})| > . This will establish
the lemma. Tu see this. pick ¢ > U. and let r’ be such that when » < 07 (6) — 2

“ind{r XNy (b)) > D. Then. for w+¢ <y < 01 (h).

PriX, () , a '
NI P X () InPe(X, (b)) > 5D

ln——— 2%
5 Pr{X. (b)) )i 5

and su

PriX.(b) 4} L ED
PriN, (byie) ~
which can be made arbitrarily large Ly chuice of /).

Su. ler

) |
(b, 1) = arg  min i— Ind(i1 X, (b))
(SN TR SRS § R

subject to 1 — ()| = &

Then. it is anflicient tu show thar

L.J-lr( P br)

i) | . .
o Indie X)) = - g, — ko —1—{(n. =2 {0 b)) — X
(".- f )) .F'rt’i‘,mhr)(l 7‘1,)_(',‘1_.,1],‘})‘ L J ( )).

To do rthis we distingiish three cases:

Case 1 5, < snppff.. 1 < ~ < 1. In rhis case
‘) () , s
— e by = — (s = Loy = Tis o Ho (0000 (31
(1’ (}i'

14



If l}—) < ). then

i (TI{« — L. v} - x{s. b H b)) < _(—)H(.~ —1.r).
ih ih
If %u’ = U, rhen
a o 13
— {(I{s — L vy~ w{e 0V H (b)) < —1ls ).
e N

Thus by Assumption 2 there is an 5 > U such that

i
=l b

N .
- , , < =1 - i6)
el hr)l 1 - -“‘r()‘- b,—]]
and rherefure it 1s snfficient to show thart
n,—k.e—1—in.—Nr.li..b) —x !
Since rrib.} minimizes .. b} — ””lr"_'z"l the fact that jv, — r2(b,)| > & rogether
wirth 16) imply rhat
. — k.o — 1

S~ T 1),)@ = &y
e — 2 :

and henece n, — A, =1 —{(n, — 2y (0. b)Y 2 in, — )¢y — x.

Case 2 b, < suppf{,. In this case r.{r.b.) = {1l r}H,(b,) and therefore

2rirb) L) (b
Tl b L= e b)) (Lo H (b (1= =1 (b))
D .

= m,‘fllﬁ‘}<*v’f

for sume 5 > U by Assnmption 2. Sou it is again snfficient ru show that

.

I”T'_k"_1_{‘”7'72)'1.7'(i'r-br))1_'x i

Sinece e b)) = s ey Hy by it fullows that o 2{b,) minimizes

e —h.—1 |
Hyhoyin, —2)

il —

Therefore. the fact that 1, — 7(h) > & and Sw{1l.r} < —pfor all v implies thar

r_'li‘r_]- :
! L > Ay (9]

7(li‘rl - i . ‘
o (hin, — 2!



Naute that
e — b — 1 —{n. =2, by =n, —k,—1—=An,— N0 (L) {1m

So. if 1. — 2)0L,(b,1 stavs bonnded then (3) folluws since 1. — &, — 2 by donble

largeness. Converselv. if (n, — 231 (h) — x then (%) follows from (9) since then
n.=ko—1—(n,—23H b=l > Ggln, = 2V H (b}

Case 30, € suppfly;. Inthis case o (1 h) =1 — (M. el — Hay, (b)) and hence

%.l‘,-li".br) B % (1 — =Mool = Ho (b))
o B = by L = S = T RO e L = b))
2]
< ——xtMor) < =y
i

fur some 5 > U Ly Assumprion 2. Therefore. ir is sufficient ro show that
np—k. =1 —in. =20 0r. b ) (11)
= (n, =201 —uar v, b)) —h+1 —x
Since | — (1. b)) = = Moei(1 = Hy (b)) it follows that »7(b,) minimizes
ko—1

Moy — | (12)
‘ O == Ha b)) '

Therefore. the fart that 1, — 2(b}i > & and 2 7( V. r) > n implies rhat

k. —1 : ‘
> . 1130

M. )= ;
! , ) (”r_A—))i’lfll,\J'r”)r))i -

Nute that

e = 2L =i b)) — ke = L= i Mo = 200 = Hoay b)) — (b, — 1)

So,if in, = 23(1 = 40 (b,)) stavs bunnded then (11) folluws since k&, — ¢ by donble
largeness. Conversely if (v, — 2)(1 — H (b, (}) — x then (13) implies (11).

This proves the Lemma B

We have proven that p, converges tu ' in probabiliry. The next remark establishes

rhat cunvergence is nniform over all 1.

Remark 1 For all ¢ > U, there is ¢’ osueh that for v > ' Prlp, — vl > ord <o for
all v 2 0.1,

Proof see Appendix 2.



3.3 A Small Fraction of Objects

Cunsider rhe case that k.. n, — 0. Then. Theurem | states that full infurmarion
aggregation will hold if and unly if k. — >¢. In this secriun. we explore the properties
of the equilibrinm with k. /'n. — U to gain insight info this result.’

The kev is rhe fullowing Corollary. Let b € (0. £2(i)). Then. rhe expected number

of Lids abouve I grows at the same rare as A

Corollary 1 Pick b e (0. F(r)). Then. there 1s & > 0 such that

r — [ .
>1L;4L>>5 4

Ty | e

for afl v ound r.

Proof see Appendix 2.

Pick a small ¢« > U. and define a bidder ro Le uacfire if he bids moure than «.
Bv Corollary 1. the expected number of active bidders gruws at the same rate as
%.. Thns. full information aggregation is equivalent ro the number of active bidders
srowing withont bound. Inactive bidders can be thought of as bidding essentially 0.
An easv implicarion is that anv time k. /n, — 0. the lower bound of the bids made
wirth M ronverges to U (since most bidders with signal M are inactive).

We have alreadv seen that when &, stavs bunnded. the top end of the support of
Lids remains less that 1. implving a failure of full informarion aggregation whenever
' 15 sufficientlyv cluse to 1. We can now see that in fact when &, stavs bounded fuil
information aggregation fails for all » > ¢. In particular. since the expected number
of active bidders is bununded. it ran easilv be shown that regardless of 1. there is a
probability Lounded away from 0 that no one bids abuve ¢. Intuitively. very litrie
is learned from inactive bidders. and so when the number of active bidders stayvs

Lonnded. the amount of information in the event p, = b stavs Lonnded when b > r.

3.4 A Small Fraction of Informed Bidders

In the previuns section we held the information strmcrure fixed as we increased the
mimber of Lidders. In this section we assume that each bidder receives nsefil infor-

marion wirh probability ~. where ~. — 0.

Fuiirely analozous argiments hold in the case where -

I



There are three signals. 5 = {1.2.3}. We assume that 7.(2.r) =1 — = for all ».
su that signal 2 provides nu information. For « € {1.3} 7.(s 1) = ~7(s. 1) where
silor s strictly deereasing in v Tl -3l e) =11 and 7(~. ) sarisfles Assumptiun

)

Fur fixed  Propusition 1 holds. For fixed ~ Assumption 2 is satisfied and henre
if -, stavs Lunnded away from zeru then a slight modification of Theorem 1 implies
fll information aggregation also for this case. Thus the interesting question is what
happens when =, — U. First note that if n.~, stays boinded then we cannot expeet full
informarion aggregation since a rvpical popnlation of Lidders dues not have enongh
information to determine the valie with great confidence. Thus n,~, — X is a
necessaryv condition for price tu converge tou the tre value in probability.

The following theorem shows thar a sufficient rondition full informarion aggre-
sation in rthis rase is that in addition ro double largeness. \/n.~, — . To give an
intnition for this condition note that if rhere are m Lidders with the nninformarive

signal then rhe standard deviation of the number of these bidders who bid above anv

given b is y (1 — Ho (b)) Hy (B)m = . To gnarantee full information aggregarion
the actions of the informed bidders must in the limit determine whether the price is
abuve ur below b A necessary cundition for this is that m, must be small relative ro
the number of informed bidders. Since the nimber of bidders with signal 2 grows
as n.. , grows as /n,. Hence unr condition gnaranrees that ”—m,—* — x four all b
This implies that the informed bidders will rvpically dominate the noise introduced

Ly Lidders with no infurmarion.

Theorem 2 Suppose Assumplion 1 holds and that n,~r — . Let p, denote the
vundom rariable that describes the cquilihrium price in the auction with n. bidders.
b ohyects. and value v Then. p, converges in probabifily to v of and only if double

largeness frolds.

Proof Neressity is as before. In Appendix 2 we repruve Lemma 1 for the currenr
informarion structnre. The remainder of the proof of Theorem 2 is the same as the

proof of Theorem 1. W



4 Conclusion

In this paper we give ronditions nnder which a common valie ancrion fully aggregares
dispersed private infurmation in rhe sense thar the equilibrinm price converges in
probabiliry to the trie valne of the object.

Note that in the piire common valie setting rhere are nu welfare consequences from
fuil information aggregation ur the lack thereof. As long as all ubjects are rransferred
from the Liver to the seller a Paretu efficient allucation is achieved. Hence the
¢riestion remains. why do we care abuut full infurmation aggregation?

Consider the fullowing extension of the model. In addition to 1 nature also draws
avalie i < 1 — ¢ which is the valuation of the seller. Snppose the seller vbserves w
and - and can decide whether o pit the objects for sale or not. If he decides tu put
the ubjerrs up fur sale then an anction as described in this paper will be conditered.
Full informarion aggregation implies that the seller will always put the ubjects np
fur sale. This the analvsis of the anction is nnchanged by the introduction of this
additional stage and an efficient allocation is achieved for every r.uw.

If. un the other hand. the seller sells unly une object. and hence the equilibrinm
price is bonnded away from 1. then (for small 1} it cannut be an equilibrinm for the
seller ru pur rhe ubject np fur sale irrespective of the realization of 1 and w. Thus an
nefficient allucation will be realized with positive prubability.

\More generallv. fill information aggregation is linked tu efficiency whenever we
infrodiiee an investment prublem on the seller’s side. If the seller has control vver
sume compunent of the vbject’s value then full information aggregation s necessary
tu provide the right incentives for efficiency.

On the buvers side. learning the true value of the object may provide valuable
infurmation for related decisions. For example. information aggregated in the price of
a financial asset may be relevant for deciding how to cunstriet the rest of a portfolio.

[n the furmal setting. there is uniy une tvpe of ubject. Huwever. more generally.
one shonld rhink of the anetion as being part of a larger econumy. In that case. price
in this market is relevant fur trade-uffs made berween uther rommodities. and price

again plays an allocative role.
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5 Appendix 1: Existence and Uniqueness

Lemma 2 Fir any symmetrie strateqy profile Ho s & Soand Ief b > b be such that
Probowins, b loses ) =0 for all o Then there crists an e > 0 independent of h=>h

sach that Jor s w0

oo b wins, b loses sy 2 Fles b owins, b loses  s") =«

Proof Let -
Fr{ b wins. b loses 1) f{1)

S Pri b wins, b loses ) f(iydr

d{r)

Then
-1 i Sl(s o I
(. b wins. b luses  s) = / . ) ‘(5 i )"I‘(I ) i,
o Jy d{wymisow) flw)dw

Nute that

diry 1 b wins. b luses 1)
(i) - Pr( b wins. b luses 1)
and let <= [s|.....%.) be the vecror of signals received Ly the 1 plavers. Then.
Pribwins. bloses 11} = Z Pribwins. bloses | s.r)- Pris ir)

= Z Prib wins. bloses . s) - Pris )
Further note that 1 > Pr{~ 1) > 5" since wis. 1) is bounded below by 4 for all »
and + and therefore it fullows that 1.9 > d{r}:d(1') > " independent of b.b,

Thus it must be the case that Pr{i > £(r) — &) > & for sume ¢ > 0 {expectations
and probabilities are raken with respect to the density ). where ¢ depends unly un
~ and /. Then. since there is at least ¢ mass & above £(1'). and since i € 0. 1. there
must be ar least 62 mass below £(i). Let T8, = 0. F(v)). Wy = (E{r). K]+ ¢). and

Wy = Firi~ & 1. Then.
3
sy =Y Priii )b (m 1108,
[

Clearly £7{r 11, ~) is increasing in 7. and £{e: 5. 5) > E(0105) + & Since signals
have rhe MLRP. Pr(l17; ) stochastically dominares Pr(i1;:s']. To establish the exis-
rence of uur . it is thus enongh to find ¢ depending unly un & sich that Pr(ly ) —

Proil, <1 > 12 and Prilly =) — Prill7, &) > w (Lecanse then d(. ) can be thonghr of
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as wbrained from d(.js') by a series of transfurmations that ar least weakly increased
the expectarion of . and by shifting a mass v a distance ar least & tu the right). By

assumption there is j1 > 1 such that 1—}) > ;JH for all v = W w £ 1. and so.

|
Proty ) L Dridis s
DI TEE R L TR (O

)). Since each of Pril17) and Pr{ll} was ar least &2 we are dune. B

The folluwing Lemma says that bidders with higher signals bid more than bndders

wirh luwer signals.

Lemma 3 Suppose H,{-}o.« @5 a symmeliie cqulihrinm. Then for = > &0 ¢

wippH () and B & suppH o (+) we have that b > b

Proof For the given equilibrinm. let 3£, denote the set of best respunses for the
sivmal = and let A{bls) denote the probabiliry thar bid b wins given signal . Nute
rhat fur each + all signals are received with prubability larger than n and hence each
Lidder assigns at least probability y that anyv other bidder received signal . This
in turn implies that if b is a jump point of K(-'¢) then b is also a jump point of
R (-« V%5’ ronverselv. if K () is constant on some interval then A'(:[s') 1s cunstant
on the same interval. We will use the notation b >, b’ to indirate that bid b 1s weakly
preferred tu bid 4" by a bidder wirh signal «.

First we show thar 1 2> sup{snppH,(-1). for all . Suppose to the contrary rhat
there exists a pusitive probability that a bid strictly abuve 1 is made for sume signal
<. This implies that there is a pusitive probability that k41 bids. and thus the price.
are strict]ly larger than 1. But anv bid rhar wins with positive probability at a price
abuve | is strictly worse than a Lid of 1.

Secund we show that if b € Csuppf,(-) then b £ BIi, for sume s (the 1ssue here
is rhar suppfi, is closed. while the set of Lest responses mayv not be). A(bis) is a
non-decreasing function of b, Therefure A" is either continnons at b or bis a jump
point. If 6iis a jump puint ther: b = BE, for sume s since n particular. bids of b must
rhen be made with pusitive prubability in equilibrium. If & is not a jump point then
pavotfs are continnons in bids at b fur all <. And since b € supp f1,() for sume s there
is a sequence of bids in AR, cunverging to b and hence continuiry of pavoffs in bLids
implies that b = 312,

Now let b= snp,.y, (supplli-). We will show thar inf BRy =2 h. Let 7 =

_snppHa T UlTi Chose a ¢ » U surh thar for all 50 with RV <) > K(bis) we
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have F{i4 wins. b luses. MY — (b wins. b loses. M/ — 1) > &. {Such a & exists by

Lemma 2.) Define {b;.....b, ....b,} inductively as follows:

max /" (b b+ & Z by b, L6 =0

. o . =1 ... J—-1
min /7 b, + & 1) otherwise. J /

b
\/_/HC

=
—
—

Clearly. since ;.5 — b; > & > 0 the induetion ends in a finite number of steps. with
h, = b. Bv construcrion. all bids are in Z. and successive bLids are either at must ¢
apart or are endpoints of a gap in Z.

For everv j € {1 .....J — 1} we will show that b;, = b forall b€ b, b,, ) with
striet preference if (1) by, € snppH.{-}. for sume =~ < M and (2} Kb, . i8] > K{bls).
By constiietion (1) and {2) hold when j = 7. So this will imply b =4, b for all
be by 1 by). Since b,y =y bforall b€ by by it follows that b=y b forall b < b
establishing rhe result.

So. choose j € {1.....J —~ 1} and let b € {b,.b;1y). If by, € suppH (-] then
rrivially b,y = b0 I A(h,.ys) = K(bls) = U then b;11 and b earn the same pavoft
and again b,,| >y b. Then. since b, ., € BHA; fur some s. we are lefr with the case
where b, . =, b for sume » < M and Kib; . ps)— Kb« > 0.

Case 1: b,., —h, < ¢ Since b, = bfor s < U
i by wins. b luses. «) 2 E{di) by wins. b loses. «) > b;
Bur

E(r by wins, bloses. M} > F{rib,yy wins. bluses. 5) + ¢ 2

I

b, +¢ Flde| b,y wins. b luses. /)

So b,y =y b

Case 2: 5, | — b, > & Then by ronstruerion (b;. 05.,) N {UgsuppH,(-}) = @ and
hooy =, b for sume « < M. And. since A(b; . #) — A(bis) > U1t must this be thar
fo{e b,y wins, bloses. s) — E{dy b,y wins. b loses. s} > 0. Since the first term on

rhe rhs of this inequality inereases when » is replace by s we would be done if

Flde b, wins. b luses. ~) > [Jidy b, wins. b luses, /). (15)



Note that either dy = b or dy = by, since (B b; 00} 0 (UssuppHs(-)) = ¥ and hence it

follows that for (13) ru Le violated, it mmnst be rhat

Pride=b;.0 by wins. b luses. My > Pridy =b,.10 b, wins. b luses, 5) > U.

Bir.

Fo{ei b; .y wins. b luses. s) — Ildy by wins. b loses, 5) =

Pr{d, = b b;,; wins. b loses. s}{£ (1" di = b. b, wins. b loses. s} — b} +

Prid, = b1 by wins. bluses. s} E (1 dy = ;1. b, yy wins. bloses. s} — by ) 2 U
Now. Firide =b;0. b, 1 wins. bloses. s) — b, = U becanse bids just below b,

are feasible and Pr(d; = b;,1' b,1y wins. b luses. ] > U . Hence
Eiv de =hyyy. b, o wins, bluses, M) = by > 0.
And.
Flide = b b,y wins. hloses. M) — b > E(r dy = b b,y wins. b luses. s) — b,
Since

Prid, =hb,y by wins, bloses. My > Pridg =0,y by wins. b luses. #).

it fullows that
[t by wins. bloses. M) — E{dy by wins. bloses. M) >0

which proves case 2.

Now we can repear the argument to show that bidders with signals s = M/ —1 bid
above bidders with signals « < 1/ — 1. In particular. ler B = Users 2suppH,. Then.
M never Lids in {0.8'). and su all incentive comparisuns in {0. ) involve M — | and
rvpes lower than M — 1. Proceeding in this way establishes the lemma. 8

Next we show that if 4 is an arom. then conditivnal un b being pivotal. there is
a winners eurse. That is. winning is indeed bad news about the ubject and losing is

voud news abont the vbject.
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Lemma 4 Suppose H,(),-= satisfies that for s > s andb € suppH (). 8 & suppll,(+)
we have that b > W, Let b be a bid that is an atom under H,{-). for af least one of

2 N, Suppose further that the bul b s made with probability sirictly less than one

hy at least one type. Then. there is winner’s and loser’s curse al b That is.
Fivb wims, h=dp <) < Elrb=dy =)< [J(rlh loses. b= dy.s).

Proof TFix a Lid b, We will show that Pr{b wins id, = b. 1. 5) is strictly decreasing in
;. This establishes the result. since it establishes that winning shifts beliefs towards
lower values. and losing shifts beliefs tuwards higher values. By %1, #£ and =13 we

denote the number of bidders abuve. equal tu. and below b. Su. note that

Prib wins |d;, = b1 x) = Pr(b wins d; =b.v)

kel

Z Prib wins. =4 = a.dp = 0. 0)Pr{#A = ad, =b. 1)

a -0
where the first equality holds since unce 1t is known. s carries no new information
abonr the other plavers’ bidding Lehavior. The snmmation ends at k — 1 because for
a >k — 1. Prib wins 2.1 = a) = 0. This summatiun can be usefully thought abour
as raking the expectation of the function Pr{b wins|#.4 = a.d, = b. 1) with respect
to rhe distrriburion Pr(=A = ald; = b. 1) on =4

We establish 3 claims:

1) Pri=.1 = ad; = b. 1} is stuchastically nun-decreasing in 1. and stochasticallv
stiietlv inereasing if rhere is anv tvpe that bids above b with pusitive probability,

(2) Pr(h wins|=A = a.dy = b. v} is strictly decreasing in a.

(3} Prth wins;=.A = a.d; = b.v) is nun-increasing in .and strictly decreasing in
rif rhere is any tvpe that bids below b with positive probability.

Bv i3). when we increase . the function of which we are taking expectations
decreases rerm by term {ar least weakly). (1) establishes that changing 1 shifts the
weight in the expectation towards higher a. (2) establishes that the finction derreases
in n. Together. rhis establishes that Pr(b wins ‘dy = b.r. ) is non-decreasing in -
And. since not all Lidding is cuncentrated at b. at least une of {1} ur (3) is strict. su
thar in fact Pr{b wins .dy = 0.1 #) is decreasing in i,

We rake the rlaims in urder:



Proof of Claim 1 Nute that

S U PraE = e A = ai)

plt:ﬁ“l = 1] (i.'\ - h, ’.) - ol o . B . ‘
Y0l PriEE =d o= =alie)
So.
Priz=l=ua+ldy=br) T Sl Pr(#l ==l =a~10)
Pri=A=aide = bt} B S SPr(#E = oo = alr)
_ ST EPr#E =e— 1L #l=a+ 1)
- S EPr(=E = e #A=ap)
Now.
Prizef =e—1l.2=d=ua—~ Lir} .
Pris=f = ¢ =4 =) B
(:;)(n ‘1 rlzfl)PI.(‘,lir)(uIPI.{[.::].){ ']Pl'{B|?'_)n 1 a-:« ¢ Pl(.l‘f)
(Y (" TP P By P Bt e (e D PrER)
So.

n-i—-a 4

p',-i v : . \
Se L apr#EE =0 - L=EA=a+ 1) Y sk a @i AP 4 F = c =4 =ar

ek

T(E )

SRl = o # = ain) E"]‘: Pr(#F =¢. =4 =uar)

1 Pridimy e Pr(#E = . =1 = alr)
¢.
fa - L)y Pr{firy sl Pl =0 24 = ajr)

koo fev—k a

Nuw. Ly weak monotonicity of bids in signals. if Pr(4s) > 0 for sume type 5. then
Pri.1s) = 1 for all higher rvpes. and if Pr{ £ «) > 0 for sume tvpe 5. then Pr(dis) =0
fur all tvpes below s. So. since signals satisfy the MLRP with respect to i ir fullows
Priy oy
P

rhar Pro is nun-decreasing in . and strictly increasing if bids above b are in the
o) .

support fur any type. So. it is enungh to show that

n-l-a Pl(zh:(ilzu.l)

Z ¢ n-1 a
5 Pr

L=k -a Ler -k oea

(=f =e = =anr)
is nun-decreasing in .. Since ¢ is an increasing fnction of €. it is enogh to shuw that

Priz=Fk =¢ + L. =qajr)

Pr{zf = ¢.==A = a|r)

is nun-decreasing in . But. this is equal to

({"“l)(n_ .1l”)PI‘(.'li!')”Pr(/f.?')' APyt —a - cPe(EN)

VTP PP E ey P B e c—1  PriBr)
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. ) Prig . .
An entirelv analugons argiument to before esrablishes that FE(LB_% s non-decreasing in
. ,

NIFIRN PP W SR S : - : . - .
S Pricaavl et o non-decreasing in r. and strictly increasing if Pr{:s) >0

PrieAcade 50

fur sume rvpe.
Proof of Claim 2

o | . - L
: Prizl =cig Al =a.r -
Pribwinsd, =h =l =a. r)= Z = (l ‘Pr(ﬁ["l— Y )(I o1
. . koo L= el = PG

Rt

(16)

L na

which is best thought of rhe expectation of with respect to a measiure un «.

N

Similarly.

Prib winsidy = b. #A=ua+1.1)
B r:i'z P[f:—’t[::(}lt‘ljfl"'li') EF—a—1
= . T‘n-u-'z PI‘(#E:(:#‘&:(I*I',‘) !’—y’_.,.].

o L S ko

— ”Zu:] Pr(#F =c—-lizl=u+1) k—a—1
T T TPu#E = l#d=a-1 ¢

Sk L

Nouw. whenever ¢ > k — r1.

b —a—1 b —a
< .
€ € + 1

Su.

Pribwinsid, = b #l=a+1)
n-a 1 ot L
_ PriF =¢— lizgd =a -+ 1} k—a
= Z noa -l . - 1 _ . :
St Prsl=c-1#l=a-1)e+1

B TR

which ran be thonght of as an expectarion of the funcrion £ with respect tv a

different measinre un €. Now. since i—‘lf is a strictly decreasing function of €. 1t 1s thus

enuiigh tu shuw that
Prizefi=¢— li=A=u—-1.1)

Pri#lt =ci=4 =a.1)

nas the MLRP in e, Now.

n—1—u

&

Prizmf=c#l=q 1) = ( )Pr(E@r')"Pr(B@r}“ L

while

Pri=f{=¢—L=d=a-11)

B A | , _ .
(n rlz )Pr([:'.r‘}" pr(p oyt
A



and su.

Priz=F =c—1llzA=0a+171) (n',_ 1,_Q)Pl‘(m")"mlpf(B‘”')ni1 ‘o
Pri#l =¢ = =a.r} (“*1‘ a I)Pr( Ly Pr{Bajn 1w
¢

{(in—a—1)Pr(E)

which is clearly strictly increasing in ¢. So.
Pr(b winsid, = b. #A =a. 1)

is strictlv decreasing in a.

Proof of Claim 3

Pribwinsi=.1 = a.dy =01}
no1 o«
. k-
= Z Pri#l =¢#A=a.d,=07) ”_
[ ST . €+ 1

Triviallv, “°¢ is decreasing in ¢. So. it is enuvugh to show that Pr(#E = /=1 =
AR & & : ‘

a.dy = b. ) is stochastically non-decreasing in 1. But.
(" PeEl BBl T ko
n Lea (nfll u)PI_(E‘iv)s‘Pr(JL}h.)nfl7r17t [ l

PPy T

Priz sk =¢'#A =a.dpy =b.1) =

Pri=FE =¢~ li#A=ad.=br) ("iii"‘)Pr(EIr)f“Pr(B!t')"*‘ @t
Pri=F =c=A=a.d. =hb ) (” “ “)PI-(F;“-)E Pr(Bly)n | oa
n—1—u—ePr{E)
¢+ 1 Pr(Blv)

which is nun-decreasing in . and strictly increasing if there is an s that bids below

b wirh positive probability. B

Corollary 2 If H,(.). s € {1..... M} are bid dwstributions corresponding to a sjm-

metric equilibrivm, then H(0) s conlinuous for all s (ve., there are no atoms).

Proof Let b be an atom. Consider first the case that b € (0.1). and at least one
rvpe bids b with probability less than 1. By bidding an amount an arbitrarily small

amonnt below b, plaver 1 decreases his pavoff by

Prih wins. o, = b <) F{r b wins.dy = box) = b).



For this not to be a profitable deviation. it must Le that E{r]b wins.dy = b.s) 2 b.
Simiiarly. for it not to be a profitable deviation to bid a little uver b. it must be that
Elrbloses. dp = b.s) < h. By lemma 4. this is impossible.

Note that an atom in H,(-) ar 0 implies a positive probability of the event that
dp = 0. However. Pr(r < 0) = 0. So. it must be that E{rd, = 0.1) > U. But.
rhen Lv Lemma 4. £ (00 loses. dp = 0.1) > E(rid, = 0.1) > 0. rontradicting
that 0 is an optimal Lid with signal 1. An analogous argument rides out an atom In
;0.1 at 1. Cunsider finally the case that all tvpes Lid b with probability 1. Then.
winning or losing with a bid of b conveys no information about value. But. then since
[Siris) < E{vls + 1) at least one type will have a profitable deviation. B

Our next lemma establishes that F(vid, = &) is well defined as the limit of

Bl de 2 (0. 0) for a sequence of intervals of bids (0. 8"} converging to b.

Lemma 5 Lef (H ().« be alomless and have disjoint supports.  Then. E{vidy, =
b)Y is well defined for all b € Uy s(suppH(-)) with

s by — (e b)Y TR (s 0)?
Sy (b £ L = x(r b)) (s ),

s

(v)
fw)dw

1
F(rdy = b s) :/ " dv {17)
(4]

T

where v b) = M{s — 1. vy + cls. 0YH (D). For any sequence of interrvals {[b,. 5” P
with non-empty infersection with suppH (-} and lim by =limb, — b E{v|di = b.s) =

lim, .« E(rdy € ;. 5).

Proof Consider b csuppH,(-). Then. let I = [b.b] be an interval having non-empty
intersection with suppH,{-). Define #; as rhe randum variable denoting the number
of Lids in the interval . Define D(1id, € 1) = Pr{(v' < r|dy € {) and note that

1

Pl‘[?" S 1"dk_ € 1] = m Pl(d,xu = .[#‘L[ = l)PI‘(?'I S f.'idk el #[ == 1)

= Prir < Mdy € 1.#; > 1)

Now. bercaise there are no atoms in the bid finctions, as the length of the interval
[ denoted by [’ gues to zero. i—:ﬁ%—%:’% goues tu zero. Su.
Dirdy € ) = Priv’ < ind € 1.3, =1) [1%)

as 1 —U. Denoute by [ the interval (0. 5] and denote by I’ the interval 0.5] But.

Priv' < vdp el .=, =1)=Pr(i' <r=;. =hk-1l==1= =n-FkF-1)



For B C [0.1] Nsupp#,. define r{v. B) = [I(s — L.v) + =(s. 0} H,{B). By Baves rule
and (13].

JS‘(”*l)(;_ff)Jf(?ﬁ D =l 1)) s o) HoA D) floe)de
_f},](n—l)(z f).r(u_'. Iy o= — w(w L0 Tx(sow) H ) (w)dw
Joalo d L — (e ) R o) flede
fo rtw Loy E L= r{w d)F R (sow) f(w)dw

12

Dirmdy € 1)

From this.

LA CT I M 1(l —x(v 0 s ) f ()

Divids & 1. z/‘_ a
(ridy ) 0 Jo rtw oy E Nelw 1R W2 (s ow) fw)du ?

Taking limits. we can define E(v|d, = b. 5) as

[1 ey AN = el b))E R s e
N
0 ‘I'Ol plw by YT — plw b)) R (s w) flw)dw

Finallv. we establish an intuitive necessary condition on equilibrinm bids.

Lemma 6 for any equilibrium (H,(.))ses and for any b € suppH (). E{vidy =
hos)=0b

Proof Given the equilibrium. let BR, be the set of best responses when the signal
is 5. Then. BR,"Int{suppH,(-)) is a dense subset of snppfi;(-). Bv Corollary 2
the 1{,{.) are continuous. Examining (17). it is thus clear that E(vjdy = b. <) is
also cuntinmous in b, and so it is enough ro establish that E{vlde = b.s) = b for
b= BRInt(suppHy()). But. for any such . and any & > b, the change in payoff

from bidding b instead of b is
Prid, = (b.0)s)E (1 —dildy, € (b V). 5)) > Pr{dy € (b.0)|s)E{v = bid, € (b. B s).

Since b lnt(suppf,{-)). Pr{dy = (b.b'}ls) > 0. So. since b is uptimal. it must be thar
Flrd, € (b)), 5) <V for any ¥ > b. and thus that E(vjdy = b.s) < 5. An analogous
argnment shows that E{1d, = b. s} > b establishing the result. B

Proof of Proposition 1 If there is an equilibrium {H,(.)},. 5. then by the preceding

lemmas. [{,{h) must satisfv

b= /.1"1 . S {19)
0

_JﬂulW'*Wl—JULMV]WhJMHUUMU
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where {1 b) = (s — 1.0) + w(s. ) H.(b) for all b € suppH,(-).

We will establish that for each s there is a unique H,{.) satisfving these rwu
equations. and then show rhat H..}. s & 5. 1s an equilibrium.

Equation (17) implies that E{'d, = b.s) is continuons in f/,(b}. Furthermore
rhe following argument shows that E{r|dy = b.s) is strictly increasing in H (b} for
all b 2 suppfl,(-). Denote by § = 5 « 0. 1] the following continuons version of our
signal space. F{s.yir) = [I{s — 1.2) = 7(s.v)y. By a standard property of MLRP
(see Milgrom 1981) the &' urder statistic of the signal {s..r) satisfles sérict MLRFP in
the signal {s..r). But this implies that if z; denotes the k" order statistic of {s.x)
then f{rize = (s.x)) is strictly increasing in . But clearly this is eql_xi\-'aleh'r to
Elrde = b, s) being strictly increasing in /{.

Thus. there is at most one H,(b) that satisfies (19) for any given b. By definition
of b (19) is sulved at b, by setting H,(b,) = 0 and at b, by setting f{,(b;) = l.and
has no solution with H,(b) € {0. 1] for b below b, or above b,. Since E{rid, =b. <) is
strictly increasing in H,(b). there is a unique H,(b) € [0, 1] satisfying (19) for each
b < b, b, and H,(b) defined in this wayv is strictly increasing in b. Since //,(b) is nor
allowed ru jnmp. this thus implies that there is exactly one H,(.) that satisfles (19)
at each point in its support and does not involve atoms.

All thar remains is to show that the H,(.) we have defined form an equilibrium,.
Bv construetion. it is clear that all bids in (b, b, are equivalent from the point of
view of 7 when his signal is s {because. in particular. we have constructed the [/ ()
su that the derivative of pavoff with respect to bids is zero). It remains to be shown
that no other bid is better. For every bid b € B, by]. s > 5. E(vid; = b.¢') = b. from
which F{ird, = b.s} < b. and so b, is a better Lid for s than is any bid in ‘LI_Jﬁl_J,
{i.e.. derivative of pavoff with respect to bids negative on b, b] for signals s}. For
5" > s if b € {by by, then the payoff for the bidder is the same as if he bid by
and hence it fullows that the pavoff of s when bidding b, is greater than or equal tu

rhe pavuff of anyv bid larger than b,. An analugous argument establishes that any bid

lower than b, dues not increase the bidders pavoff. B



6 Appendix 2: Miscellaneous Proofs

Proof of Remark 1 Let (5. denote the joint probability distribnition on ¢ and p in
atetion r. Let

E={{vrp):ir—pi>e2}

By Theurem 1 there is an »" such that for r > 1’
GAE) < 6?72

Let » > 1. Let Z.(pl1) be the probability distribution over prices in .1, given .

Then

Zph) = Prl{#bds <pl>n,—k. -1 =

- i (”‘r)rr(p. ) L = (poe)).

J-Tie ke 1 J

Since ux,(p. 1) is strictlv decreasing in ¢ it fullows that Z,(p|r) is strictly decreasing

in 1. Suppose contrary ro the claim that
P — Z {1 +a) >«

for sume 1 € [0. 1]. Clearly this implies that i +¢ < 1. By the monotonicity of Z,(pit'}

in © this in turn implies that

1= Zv=ei)y>e v elinr+6/2

Bur this implies that
v 2 i
GAE)Y > ¢ f fde > ne /2.

since (1) > n. This contradicts the hypothesis that (7 (£} < ne?/2. An analuguus

argnment shows that Z,. (v — ¢/11) < ¢ for all » £ [0.1] and hence the claim follows. B
Proof of Corollary 1 We previously argued that

i (1 — . (b))
ST
o (L—a (b))
It is thus enough to establish (14} for sume given 1.
First. assume k&, — > (alung a subsequence). We know that in thar situation.

beliefs conditional on X {h) converge to ¢5(h}. and r:(b) ronverges to b, Bur. 17 (b} was
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chosen to make x, (2. b) as close as possible to 5‘;}“&{—1 Since b € (0.1). v;(b) is interior
for r large enough. and so x.(v;(b). b} = ﬂfﬁ%l from which (14) is immediate.

Assume that for all r along a subsequence. k, < C. Since C is finite. but the
expected number of plavers with signal M/ grows without bound. equilibrium profits
with signal M/ must go to 0. If HI—_IT(-QD — 0. thensince k, < C. n(1—x.(v. b)) =0
for all v. and so the probability rhat no one bids at or above b goes to 1. Consider
bidding b with signal V. This bid wins whenever it is made. and so E{v[b wins.
M) = E(x]M) > E(¢) > b. Thus. the profits with signal M/ are bounded away from
0. a contradiction.

Next. assume that (along a subsequence). M%Mll — oc. Then. by (12).
r2(b) — 0. But. also n.(1 — & (b)) — . and so examining the proof of case 3
in Lemma 1. (see in particular equation (11)). it is then the case that F(v|X.(b).s)

converges to ©%(b). Since ¢7(b) — 0. this contradicts that E{v|X,(b).s) =b> 0. ®

Proof of Lemma 1 for the information structure of section 3.4 For atl b.

Pr(X.(b)|r) = o (v B)™™ & M1 — o (v b)) !

~ew( 1 vy Hy L (B) if s
where r(1.bh) = { (1 =~ ) Hor(b) + vom(lov) 0f s
L= (3.0)(1 = Hap(B) i s

As before we have that

1
2.
3

Q) v i L (v.b) : o
o InPr(X,(b) 1)) = (e 011 — o b)) e — ke — 1 — (0, — 2y, (v.b))] (20)

As before. define 2 {b) by

k1
rr{b) = argmax (&1 {1.b) — i Ay
vl n, —2
Let

7
(b.vy) =arg  min ;—\ Ind{v].X,(b))]

nbeTr O
subject to jv —1I(b)| > ¢

[t is again sufficient tu show that

%) ‘
| e (e by ) .r i
i e e P2 e b, - .
ol b= (e b)) (nr = 2)a, (1. 5,))]| — <

We again distinguish three rases:



Case 1: b, € suppHy.. In this case

o

b r-br ' ; |

wrlteb) L = b)) =
(v b ) (1 — o (e B0)) ‘

Za(loy)

v

rofv b (L — e (0n0b,))

Hfrinr e e (_”r - 2)-1-17'(_?"7"- br))]

Again note that :! (1.1) < —n for sume 1 > 0 by Assumption 2. Thus it suffices to
show that
ein, — k. — 1= (n, — 2)x,.(v,. )] {21}

= 2, — 271 0) = [, — ke — 1) — 5{n, = 2)(1 = ~e ) Hra(2)]]

i

Since ©X(b,) minimizes j"’(l ) — i {% -{1- 7.',.)H2,(b,,)} ‘the fact that |1, —

ro{bl > e together with ;i—r(l 1) < —n imply that

i 1 s — k=1
iﬁ(l.r_') - n;)_ — {1 =~ Hy (b ]\r > en
| \

r ”1" &
and hence (21) follows from the fact that ~2n, — > (and thus v*n, — x).
Case 2: b, € suppH,.. In this case x.{¢v.b,) = ~7(1, v)H;,(b,)) and hence
o 2 (b))
(e b (L = (00b))

(1) _ B VPR
L= (L o) (ny —kr = 1= in, = 2YH (b }m(1.0}}.

[n. — ke — 1= (n, — 2)z.(1,.b,))]

Again (— 7(1.v) < —n < 0. and hence it is sufficient 1o show that
(n, —k, —1—~,(n, — 2YH, (b,)7{L. 1)) — x. {22)
Since 1°7(b,) minimizes 1“(1 1) — H—lr—(%)—f:('ni—_z}‘lt follows from | — v7(b,)| > ¢ that

: N PR
(1) — i S

> €. /o
| eln, = 2 Hy (b)) = (23)

If ~ (n, —2)H,.(b,) stays bounded then (22) follows from the fact that n, — &k, — x.
Converselv. if ~.{n, — 2)H . {b;) — > then (23) implies (22).
Case 3. b, < suppHs,. In this case r, (. b,) =1 — 4. 7(3.)(1 — H3.{b,)) and hence

Lo (1. b,)

i r
ro(re b (L — (e b))
?—T.’(S. 1)

- i (e — 2L = Hau (b)) (300) — (ky — 1
B = =B = oy e 2 r{br)) (3. 0) = )

n,—k,—1—{n.—2)u (v, b))
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Since %Tr(;h’. v) > n > 0. it is again sufficient to show that

P
(e = 2)7 (3 0L — Hael{be ) m{300) — (ke — 1) (24)
Since 17(b,) minimizes |T(3.v) — % E(nr— 2)(&7_;!3,(5:@}]‘ it follows from |t — v7{b,})| > ¢

that

> en (23)

If - (n,—2)7(3. v)[1 = Hs (b)) stays bounded then (24) follows from the assumption
that k, — . Conversely. if ~,(n, — 2)7(3.0)[l — H3.(b,)] — > then {24) follows

from (25). M

}’_(.«3 i'} _ i { kr’ _?'J. ]
i“ A ‘\,’r (”r —_ 2)(1 - [[.".r‘(b?'))
D)
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