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Abstract

We present a model of brand-switching in which a consumer's impression of
each brand is based on her memory of past consumption of this brand, and is
stochastically updated whenever the brand is consumed. In the ordinal version of the
model, consumer's memory is an ordering of the available brands. The top brand is
chosen and consumed, and may therefore move to a different ranking. In the cardinal
version, the consumer remembers a "cumulative utility index" per brand, and, when a
brand is consumed, the index is updated by the addition of a random variable,
interpreted as "instantaneous utility." In both versions of the model it may be assumed
that the consumer may sometimes be "dormant," choosing the same brand out of
inertia, or that she is always "active," re-evaluating her decision based on her
cumulative memory.

We prove that, in all versions, the frequencies of choice converge, with
probability 1, to limit frequencies which can be computed from the model's parameters.
We also show that, under mild assumptions, every sequence of choices would have a
positive probability.

We test the ordinal model empirically, using scanner data on purchases of
crackers, yogurts, and catsups. We show that both the "order effect" and the "inertia
effect" exist. Specifically, the ordinal model performs significantly better than its
restricted version, in which only the last brand is recalled. Similarly, the model

performs significantly better with the inertia assumption than without it.
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1. Introduction

In recent years, marketing researchers have presented considerable empirical
evidence that the fundamental nature of frequentlyv-purchased, low priced products is
one of frequent switching among different brands in the same product class. This
phenomenon is known as "brand switching” or "multi brand buying." While different
consumer choices at different times may be explained by changing tastes, the high
frequency with which consumers change their purchasing decisions calls for a more
parsimonious theory, explaining patterns of choice with relatively few parameters.

One approach to the problem of statistically describing brand switching is
known as "random utility" models. According to these models, the consumer observes
the realization of a random variable, interpreted as "utility," for each available brand,
and then chooses a brand whose utility is maximal. Specifically, for every alternative
there is a random variable v, =v_+¢,, where v, is a deterministic component which
may depend on specific brand and household attributes, and &, is a random
component varying from one choice occasion to the next. Typically, the ¢,'s are
assumed to be independent of previous periods' realizations. Some models also
assume independence across brands, while others allow correlations to exist. For
instance, multinomial Logit and Probit models fall in this category. For a detailed
analysis see McFadden (1981) and Ben-Akiva and Lerman (1985).

However, the data tvpically suggest that consumer choices are history-
dependent. Specifically, one may identify such patterns as "brand lovalty" and "variety
seeking” behavior. (For an extensive review of the literature on individual consumer
behavior see McAlister and Pessemier (1982).) Indeed, these phenomena were
introduced into stochastic models by Jeuland (1979) (brand lovalty) and by McAlister
(1982) and Trivadi, Bass, and Rao (1994) (variety seeking behavior). Furthermore,
Guadagni and Little (1983) propose a model in which choice probabilities depend on

the whole history of consumer choices. More recently, Chintagunta, Halder, and Roy
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(1994) presented a model incorporating state dependence, habit persistence, and

consumer heterogeneity.!

The present paper suggests a history-dependent random utility model,
attempting to take into account consumer's past choices, as well as the randomness in
consumer's satisfaction with the brands. It differs from classical random utility models
in a few ways: first, we assume that the consumer's choice is determined by the utility
derived in the past from acfual consumption, rather than by perceived utility from
hypothetical consumption in the future. That is, in contrast to the random utility
models, in which the consumer first observes realizations of utility variables for the
current period, and then makes a choice, our model suggests that the utility values that
matter at the time of decision are the past realizations. In this sense, our model is
retrospective, rather than prospective. Correspondingly, while the classical random utility
models use, in each period, as many random variables as there are brands, our model
presupposes only one random variable per period. Interestingly, this reduction in the
number of "hidden" variables does not restrict the class of consumption patterns our
model may give rise to with positive probability.

Second, our model is cumulative in nature. It is implicitly assumed that the
consumer's choice depends on her "cumulative impression” of each brand. The
consumer's memory is not assumed to be very large; in fact, we assume that the
consumer recalls only summary statistics of past consumption, and their number does
not depend on the number of past consumption periods. However, the consumer is
assumed to recall a ranking of brands. Thus, the effect of a particular consumption
period need not be bounded in time; the consumer may "remember" certain facts

forever. In particular, it is possible that the consumer tries a certain brand once, and

! Their model, like those of Carpenter and Lehmann (1985) and Chinlagunta, Jain, and Vilcassim

(1991, 1994), explicitly incorporates explanatory factors such as brand attributes, prices, advertising
campaigns, special displays, and brand mix. Yet the focus of the present paper is the dynamic pattern of
choice, and, as in standard random utility models, we will assume that all other marketing factors are
encapsulated in the choice distribution.
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never wishes to consume it again, due to the "traumatic" memory of the first time. We
refer to the effect of brands’ ranking on current choice as the "order effect."

The third and final main feature of our model is that the consumer is not
assumed to make a conscious decision at each and every consumption period. Rather,
we suggest that the consumer may be in one of two modes: a "dormant," or "inert"
mode, in which she keeps purchasing and consuming her previous choice without re-
assessing it; and an "active," or "conscious" mode, in which she actually contemplates
her decision. We assume that the transition between these modes is governed by a
stochastic process. For instance, with a certain probability one brand may be featured,
or be on sale. In this case, a consumer who chooses a certain brand out of inertia might
come to re-assess her choice. It is likely to expect her to become active and choose the
featured brand. However, she might also become active and choose a different brand.
We do not model the specific marketing factors here; instead, we assume that all
relevant information is encapsulated in the (brand-dependent) distributions of the
dormancy period'’s length.

We refer to the possibility of "dormant" states as the "inertia effect." Note that it
is independent of the previous two assumptions. That is, one may introduce inertia (in
the form of dormant and active states) into other models of brand switching as well.
Similarly, our basic model has two versions, namely, with and without the inertia

assumption.

The specific formulation of the model outlined above calls for a modeling choice:
should the consumer's memory be ordinal, retaining only qualitative pairwise
comparisons of the different brands, or should it be cardinal, quantifying these
comparisons? The ordinal model puts relatively little demands on the consumer's
memory: only a general, and potentially rather vague impression is assumed to be
recorded, such as "brand a1 was overall better than brand b," without quantifying this
preference. For the same reason, this model does not allow the consumer to distinguish

between, say, a weak preference for a "slightly better" brand, and a strong preference

Ll
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for a "good" brand over an "unacceptable” one. By contrast, the cardinal model makes
these distinctions, but requires a real number to be recalled for each brand.

We find both models somewhat extreme. It is likely that consumers can have
weak preferences alongside strong preferences, while not being able to perfectly
quantify all brand rankings. On the bright side, both models capture some features of
consumer's memory. We therefore develop in this paper both the ordinal and the
cardinal variants of the model. We provide the theoretical results for both of them, and
study the ordinal one empirically. (An empirical study of the cardinal model involves
computational difficulties we have yet to overcome.)

It might be useful to contrast the ordinal and cardinal models in simple

it

examples of "brand loyalty" and of "variety seeking behavior." For simplicity, consider
the case of a consumer who is always active in both models. In the ordinal model, a
consumer's memory may be in one of n! states, if there are » brands: a state of
memory is simply a permutation of the brands, which is interpreted as an ordering,
from the most preferred to the least preferred one. The first (top) brand is the one that
the consumer will choose. As a result of consuming this brand, the impression the
consumer has thereof might change; correspondingly, the consumer's memory might
move to a new state, in which the consumed brand is ranked somewhere among the
others, while the relative ranking of any two other brands does not change. We will
assume that the transition between these memory states is governed by a Markov chain.
If the transition probability from a memory state to itself is one, the best brand
according to this state remains the best one as a result of its consumption. Hence the
consumer would appear to be "satisficed" with this brand, and maybe even to form a
"habit" of consuming it. By contrast, if the consumer's memory always moves to a
different state, the consumer will never choose the same brand two consecutive times.
Next consider the cardinai model. It assumes that, at each period, each brand
has a "cumulative satisfaction index." A brand which has the maximal index level gets

to be chosen, and, as a result of its consumption, its index might change. Specifically,

we assume that the index is modified additively: the "instantaneous utility" derived
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from the brand's consumption is added to the previous value of the index, while the
index value of the other brands remains unchanged.

Should a certain brand have a positive expected instantaneous utility, the
consumer will, on average, tend to consume it more, the more she has consumed it in
the past. We might therefore observe brand loyalty in this case. On the other hand, a
negative expected instantaneous utility implies that, on average, the consumer gets
more dissatisfied with the brand, the more she has consumed it. If this is the case with
all brands, the consumer will exhibit variety seeking behavior.

The cardinal model in which the consumer is always active may be viewed as a
stochastic version of "case-based consumer theory" proposed by Gilboa and Schmeidler
{1993). As in their paper, the zero level on the instantaneous utility scale may be
interpreted as the consumer’s "aspiration level": when it is exceeded, the consumer is
"satisficed" and tends to choose the same brand again; when it is not obtained, the
consumer is "dissatisficed," and tends to alter her choice.

Note, however, that despite the use of Simon's (1957) term "satisficing," in our
model, as well as in Gilboa-5chmeidler's, no bounded rationality need be assumed. A
"satisficed" consumer may be dubbed "irrational” to the extent that she never fries
certain brands, and does not even attempt to maximize the instantaneous utility.
However, the consumer's "utility" should be interpreted as the cumulative, not the
instantaneous one. Thus, especially if the consumer has had the chance to try out all
alternatives, both variety seeking and habit formation are modes of dynamic choice

consistent with the basic tenets of "rational" consumer theory.

The rest of this paper is organized as follows. In Section 2 we present the formal
ordinal model. We prove that, if all legitimate transition probabilities are positive, any
finite sequence of choices has a positive probability according to this model. We also
mention that the Markov chain dictates limit frequencies of choice for the various
brands.

In Section 3 we spell out the formal cardinal model and prove the corresponding

results in this framework. That is, we show that, under mild assumptions on the
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distributions of instantaneous utility, limit choice frequencies will exist almost surely,
and they can be directly computed from the model's parameters. Further, we show
that, if these distributions have full support, the cardinal model will also assign a

positive probability to any choice sequence. Both Section 2 and 3 deal with potentially-
inert consumers as well as with always-active ones.

Section 4 tests the ordinal model empirically. We show that it performs at least
as well as, and sometimes better than existing models of similar complexity.
Specifically, we test the ordinal model versus the first-order Markov one in a three
brand case. We also test the inertia effect for the simplest two-brand choice problem.
These tests support the existence of both order and inertia effects. Finally, Section 5

contains the proofs, while Section 6 concludes.
2. The Ordinal Model

Consider an individual consumer confronted with a repeated choice from a set

A={1,---,n} of alternatives. In our setting the alternatives will represent different

brands of the same product class. We are interested in the sequence of choices

(elements of A) made by our consumer at times: r=12,....

Let §= {SZA > A sis apermutarion} be the set of states. A state se§ is
interpreted as follows: s(l)is the "best" product in the consumer’s eves, and
57'(a) < s7'(b) means that the impression the consumer has of alternative a is better than

that she has of b. Correspondingly, we interpret s '(a)<s'(b) behaviorally, ie., as

implying that, given the choice, the consumer would consume a rather than b.

We assume that, at state s €5, the consumer chooses the alternative a = s(]). As
a result, she may change her impression of 1, but not of other alternatives. Hence from
state 5 the consumer will move to a state 7, according to which all alternatives b,c#a

are ranked as in 5. In other words, the dynamic path will move along arcs in:

6
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‘f Vh,c € A such that s (b) # land s7'(¢) # 1
E=4(s,f)eSxS
s Q) )<

Further, we assume a Markov process with state space S and a transition matrix

g, such that ¢(s,1)=0 whenever (s5,1) ¢ £. In particular, g(s,s) is the probability that, if
a = s(1} is the best alternative according to s, when it is consumed, it would remain so.
If, for instance, ¢(s,s)=1, the consumer is "satisficed" with a=s(1} and would keep
choosing it forever (extreme loyalty). If, on the other hand, ¢(s,5)=0 V¥seS§, the

consumer is always "dissatisficed,” and will switch her choice at all periods. (An
extreme example of variety seeking.)

We note the following:

Observation 2.1: If ¢(s,/)>0 V(s,7) €/, then the Markov chain is irreducible. (Hence,

it has a unique stationary distribution.)

(All proofs are relegated to Section 5.)

Observe that, out of (» !)2 pairs of states, only n-n! arein . This might raise a

doubt, whether the model is rich enough. Specifically, are there choice patterns that
require the use of arcs outside of £? The following result answers this question in the
negative. Namely, any observed sequence of choices can be explained by our model

(with positive probability), given an appropriate choice of parameters.

Theorem 2.2: Assume that ¢{s,/)>0 V(s,/)eE. Then for every T>0 and every
sequence x = (x,---,x;) €47 there is a sequence of states (s,,s,---,5;) €S"" such that:
(i) q(s_,,SM)>O VO0sr<s7 -1

(i)  s.()=x_, V0o<r<T -1
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That is, there is an initial state 5, €5 and a positive-probability path in 5, which
dictates the choice sequence x.

We now turn to extend the model to incorporate inertia. There are several ways
in which this can be done. For instance, one might consider a state space
§=5x (Nu {O}), where (s,7) is interpreted as implying that the consumer's memory is
in state s, and that she has been dormant for the last » periods. Such a model would
allow the transition probabilities to depend on the length of the dormancy period. By
contrast, one may assume that the next state is independent of the dormancy period,
and employ a more concise model. In particular, for each se§, let O° be a
distribution over the natural numbers, with finite mean and variance. Assume that,
once the consumer is at state s, she will move to the next state according to the
transition probabilities g as above, but that she will do so only after a number of
periods Y which is a random variable with distribution Q°.

We observe that the counterparts of Observation 2.1 and Theorem 2.2 hold in
this model. Specifically, the limit relative frequencies of the brand choices can be
computed from the Markov chain stationary distribution and the expectations of the
distributions Q°. Also, with positive transition probabilities, every sequence has a

positive probability of being selected. (Note, however, that if g(s,s)> 0 for some states

s, there will typically be more than one way to obtain it from the Markov process and
the associated dormancy times.)

One might argue that allowing the distributions (° to vary across states
compromises the ordinal nature of the model. Indeed, the expected time during which
a consumer appears to be "dormant" while consuming a certain brand might be viewed
as a numerical measure of the consumer's satisfaction with this brand. But this
interpretation is not the only one possible. For instance, a consumer may become active
only if there is an increase in the price of the brand she chooses. Assuming a certain

probability for price changes in each brand, the distribution of dormancy time becomes
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dependent on the chosen brand, S(l), and thus on the state 5. Yet, the consumer is only

assumed to remember the ordering of the brands, whereas the distributions Q°

describe a process which is external to memory.
3. The Cardinal Model

We will now extend the model to deal with a cardinal memory. A consumer

chooses from the set A={1,2,-,n} of alternatives. We suppose that if she chooses
alternative a € 4, she will get an instantaneous "utility" of ii(a), where ii(a) is a

random variable distributed according to G, with mean g, <0 and variance o’ <x.

Let the history at time 7, H,, be a sequence of pairs, denoting the choices the

i

consumer made in the past and her satisfaction with them. That is, #, :((x.,,rr))

=1’
where x_ €4 is the alternative chosen at time 7, and r, is the instantaneous utility
realization.

Should the consumer be active at stage /, she would evaluate every alternative

a € A by the functional:

Ula,f) = Z[”l_ .

1 b

Two comments regarding the cognitive interpretation of U-maximization are in
order. First, the consumer is not assumed to consciously calculate U. Rather, this
functional attempts to capture the consumer’s "overall satisfaction” with the various
brands. Second, that calculation of U requires to retain only » values. Specifically,

(}(a’t)“{U(a,t—l)+n if x, ':a
Ula,1) otherwise
Thus, the U-maximization model does not assume that the consumer’s memory is

unbounded.
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Let /.  be an indicator function, indicating whether the consumer is active at
stage r. That is, 7 =1 indicates that the consumer chooses a U-maximizing
alternative. On the other hand, if 7, =0, the consumer simply chooses the previous

alternative again (Jcr = x,,]).

A state of the world @ is a sequence of triples of the form (xw r’ ]”’), where

L B
x; € A denotes the consumer’s choice at time ¢, r” € R denotes its utility realization,

and [’ € {O,l} indicates whether the choice was made in a "conscious" manner. A state

@ can therefore be written as @ = ((xf’,r]“’,lf’),(x” r‘”]”))

2

The set of all states of the world is Q= (A x R x {O,l})‘\'. We endow Q with the

o -algebra, X, generated by the random variables (x,.r,./,) (where r is Borel

measurable.)
For a state w, alternative a, and time ¢ > 1, define the number of appearances of a

in the sequence w up to stage f to be:
F((u,a,f) :#{1 <7< r x;” :a}

and let U(w,a,f) denote the U-value of brand a=4 at that stage, according to the

history dictated by @. Thatis, U(w,a,7)= Zi‘f’ S P
— ¥ Ta

Of special interest will be the relative frequencies of the brands chosen, denoted

by

F((u,a,z)
!

Sflw.a,0)=

and their limit

10
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L F(w,a,t)
Sflw,a)=lim T

{—per

(We will use this notation even if the limit is not guaranteed to exist.)

Denote the vector of limit frequencies by f(a)) = (f(a)l)f(a)n))

Let us first consider the case where the consumer is active at every stage (7, =1
with probability 1). We define a probability measure Pr on (€, Z) that will reflect the

consumer choices as well as the distribution of the random variables 7,7. At the initial

stage the consumer will randomize uniformly among all her alternatives:
Prlx, = a] =— forall ae4.

Atstage 1>1, let (1) be the set of alternatives with the highest U-value:
Cty={aed Ula,)=U(b1) Vhed.

The consumer's choice is assumed to be uniform over this set:

Pr[a!.l :a]:(fét) forall a eC(1) .

To complete the definition of the probability measure we set Pr[/, =1]? i.e., the

consumer is active at every period, and we assume that Pr agrees with the distributions

{Ga }a with respect to the variables {x,}.

2 For the statement of our first result, ], may be dropped from the definition of €}, Yet we find it

more convenient to define a single measure space (Q, Z) .
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Our first result states that, with Pr measure 1, limit frequencies exist, and they

are inversely proportional to the expectations g . Thatis, given g, (u, <0), define

Eﬂ[.ub
7).~ i

brc

Alternatively, f, €R" is defined by: (i) (fﬂ)“ =He
A
(ii) / (f”)a =1

We can now state:
Theorem 3.1: Pr[{a) eQ) ﬁf((u) =7, }] =1.

Theorem 3.1 suggests an interpretation of the instantaneous utility that the
consumer derives from the brands. Consider two alternatives a b 4. The relative
frequencies with which they will be consumed are in inverse proportion to their mean

utility levels, regardless of the specific utility distribution:

f(x,a) _ My
f(x‘lb) /Lll
For example, if x4, =-2 and u, =-4, brand 7 will be consumed twice as

frequently as brand b. If these are the only two brands, their consumption frequencies

will be

il

and 1, respectively.

This example illustrates the difference between our “instantaneous utility” and the
neo-classical notion of utility. In our model, even if there is no randomness in #,

4, < pt, does not imply that brand b will never be chosen. It will be selected less often

12
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than brand a, but if u, <0, U(a) will eventually be lower than U(b). Correspondingly,
the ratios *#, determine the ratios of choice frequencies. Since the former can also be

computed from the latter, {¢1,} are (asymptotically) observable up to a multiplicative

factor.

Let us turn to the more general case where the consumer need not be active at
every stage. In this case, if the consumer is active at time f, she may become dormant

for L, periods, where I, is a random variable. Specifically, for w € Q. let
1z =minlk>0] 17, =1}

Thus, 7, is a random variable taking values in {1.2,---}U{s>}. We assume that, if 7, =1,
and x, =a, L, follows a distribution Q7, with a finite mean, v, > 1, and finite variance.
Given O = (Q'Q") let Pr, be the probability measure on (Q, Z) that reflects

the consumer choices as well as the distribution of the random variables », ... Define

forevery a e 4.

(f..) = (f;)a Ya

> (£ )vs

bod
Theorem 3.2: PrQ[{w eQ | I (w)= 1. }] =1

In other words, if the consumer follows the specified decision rule, the relative
frequencies with which she will consume any two brands is inversely proportional to
their average utility levels times their average inertia times. In particular, if the inertia
period distribution is independent of the brand chosen, we get the same limit

frequencies as in Theorem 3.1:

13
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Corollary 3.3: If Q= Q* forevery a,bec4 then PrQ[{a) EQ} (@)=, }] =1.

Next we turn to the cardinal counterpart of Theorem 2.2. That is, we address the
question, which choice sequences have a positive probability according to this model?
The answer will obviously depend on the distribution of the instantaneous payoffs. For
instance, if each brand has a positive probability to vield zero payoff, any sequence will
have a positive probability. However, we will be interested in more robust results. In
particular, let us consider the case in which each distribution is continuous, with full
support.

It turns out that, if the consumer starts out with zero initial U-values, not every
sequence of choices will have a positive probability. Consider the following example:
the consumer has three alternatives 4 = {a,b,c}. If she starts with zero initial U-values,
a pattern of choices like a,h,a will not have a positive probability with continuous
instantaneous utility distributions. Indeed, if b was chosen after 2 , a's first utility
realization must have been negative. For the same reason, so was b's realization.
Therefore ¢ should have been chosen at the third stage, rather than a again. However,
there is no reason to assume that all initial UU-values are zero. On the contrary,
observing the consumer’s choices starting at an arbitrary period, we are likely to find
effects of past consumption. For instance, if brand ¢ in the example above has a low
initial U-value, the pattern a,5,a may be a result of U-maximization. The question we

address is, therefore, given a sequence of brands, are there initial U-values, U(-,0), and

realizations #, such that sequence follows from strict U-maximization ? A naive
calculation of degrees of freedom is not very encouraging: for a given brand to be

optimal at a given period, we need (n-1) inequalities to hold. Thus we have 7'(n-1)

inequalities, but only »n+(7-1) parameters to choose (1 initial U-values and the

realizations (I[)fll ). Yet, the following shows that such parameters do exist.
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Theorem 3.4: For every sequence (x,,..x,)eA’ of choices there are n initial values
/(i,0), and a sequence of realizations r, for 1<r<f-1, such that the sequence is

determined by U-maximization with strict inequalities throughout. (That is, such that

x, is the unique U-maximizer at stage 7, forevery 1<r<1¢.)

Since the theorem guarantees strict U-maximization, there is an open

neighborhood of (rr)i_:l for which U-maximization dictates the choices (x ) .. Hence, if

!
r-

(7, has full support for everv a € 4, the sequence x has a positive probability. Finally,

we observe that a similar result holds also in the case that the consumer might be

dormant.

4. Empirical Evidence

For the empirical analysis, we used data from three panels of households. The
data for the first panel were collected by a marketing research firm, Information
Research Incorporated (IRI), and pertained to the purchases of saltine crackers in the
Rome, Georgia, market. The second and third data sets consisted of purchases of
catsups and yogurts by a panel of households in Springfield, Missouri. These data sets
were provided by A. C. Nielsen. All three are optical scanner panel data sets and
contain information on all purchases made by the same household over the data
collection period (about two years). Each panelist is provided with an identification
card that is presented at the checkout counter at the time of the purchase. (The
consumers have an incentive to present the card at each purchase.) Purchases are
scanned and recorded under the consumer’s identification number. The data provided
constitute a reasonably complete record of the households” purchases over time as all
participants indicated that thev shop at least 90% of the time in the participating

retailers.

._.
n
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Since we focus on the temporal aspect of a single consumer’s choice, long choice
sequences provide a more reliable test of our model than do short ones. Thus, the data
were screened to eliminate households that did not make at least fifteen purchases.
(This approach is often used for analyzing choice data. For instance, Bawa (1990)

restricts attention only to households with more than 24 purchases).

Crackers

The data on the saltine crackers consist of 125 households with 3138 purchases.
There are three major national brands — Sunshine, Keebler, and Nabisco with market
shares of 7.4%, 6.8%, and 54.1%, respectively. The other 31.7% of the market are
distributed among several local brands that we grouped together under "private label”

in the analysis. For all of the four brands the 16-once package is the one analyzed.

Yogurt
The vogurt data include of four brands — Yoplait (6 0z.}) , Dannon (8 oz.},

Weight Watchers (6 oz.), and Hiland (8 oz.) with market shares of 32.6%, 39.8%, 25.5%,

and 2.1% respectively. We analvze 51 households that made 1871 combined purchases.

Catsup
The catsup data set consists of 38 households making 771 purchases. Heinz is

the major brand with three different sizes, Heinz 40, Heinz 32, and Heinz 28, with
market shares of 2.9%, 71.1%, and 19.7% respectively. The other 6.3% are captured by
Hunt's 32. We treat those products as four different brands in the analysis of the catsup

product category.

Due to computational difficulties, we tested only restricted versions of our
model. Thus, we do not attempt to estimate a "universal" model that would encompass
all the features discussed above. Rather, our goal here is to empirically validate the

order and inertia effects, while their interaction calls for further analysis.

16
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4.1. Test of the Order Effect

We start by testing the model of Section 2, without the inertia assumption, i.e.,
assuming that the consumer is active at all periods. For the case of two brands, say a
and b, this model has two states, corresponding to the orderings ab and bn. Thus, it is
equivalent to the well known "first-order Markov process" (See Jeuland (1979)). In this
model, there is a state corresponding to each brand, and transition probabilities that
govern the consumer’s current choice, given her most recent one. In the presence of
only two brands, a state # in the "first order" model corresponds to the state ab in ours.
Therefore, we need at least three brands to distinguish between the models.

Assume, then, that 4 ={a,b,c}. The first order Markov model would include

three states, one per brand. In our model, by contrast, there are six states:

S = {abc, ach, bac, bca, cab, cba}

Note that not all transition probabilities may be positive. For n brands, out of the (n !):

pairs of states, only »#-n! are in the set E. In the case n =3, 18 of the 36 pairs are in E,

and 18 are not. A schema of the transition matrix is depicted in table 1.

17
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Table 1:
Destination State

Origin abc |ach |bac |bca |cab | cha
Sate

abc + 0 + + 0 0
ach 0 + 0 0 + +
bac + + + 0 0 0
bea 0 0 0 + + +
cab + + 0 0 + 0
cba 0 0 + + 0 +

"+" denotes potentially positive entries. The enltries in each row must sumto 1.

Observe that the first order Markov model is a special case of ours. Indeed,

given Markov transition probabilities (p,j) .+ one may compute the corresponding
M L Lt

probabilities (‘L.:) in our model. For instance, ¢, .., is the probability that a

EREN
consumer, who at time f has memory abc will retain it at time 7 +1. This is obviously

P... i.e., the probability that 4, once consumed, would remain the top choice. For a
more interesting case, let us consider ¢, ,..,- This is the probability that a will not be
consumed next, i.e., (1 - pm), and furthermore, that it will be consumed again before c.

(Note that, if a is not consumed next, brand b is the next choice by definition of the

memory state (abc).) According to the first order Markov model, once the consumer

chooses b, @ will be chosen before ¢ with probability ﬁﬁ&l“im——, and ¢ before a with
pb,a + pb.r
s pb.c
probability —="“~——_ Thus,
pb,a + pb.c
pb a
— 1 _ . -
(L abe ) bac) ( pﬂ.ﬂ) pb.a + pb.c
pb.c
={1- SR
D/ abe i bea) ( p‘,_‘,) PoatPse
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The rest of the probabilities (q”) are computed similarly.

It is easy to see that a general transition matrix (qs‘,) is derived from the first

order Markov model iff:

(i) Qiabcriave) = Grackiiach)
(ii) Divacrivacy ~ Divearipear
(]1]) q:'mb:,[cam = q(cbal.[cb.n
(IV) q[abc‘],fbm:) B q( chal.[bac}
(][ abcllbeal q\' cha)libeca)
(V) q{ achifeab) qr bealfcah)
ql ack i cha) q{ bea b cha |
. ql bacl.jabc q[ cab i fabel
(vi) : =

q( bac).fach| qt cab)[acb

In the present study we analyzed data sets with four brands each. In order to
obtain three-brand choice sequences, we conducted two tvpes of analysis. First, we
restricted the analysis to consumers who chose only the three leading brands. This
generated the "selective" data set. Second, we lumped together the two least popular
brands per consumer (as was first done in Massy, Montgomery, and Morrison (1970)
and has been common practice ever since), generating the "combined" data set. For

each consumer, at each stage f, the state s, is defined as in Section 2. Note that the last

states are not well defined, since we observe only the top-ranked brand in the
permutation. To render them well-defined, we "doubled" each sequence by

concatenating it with itself.

Thus we obtained, for each consumer, an occurrence transition matrix. We focus

on the hypothesis that, for each consumer ¢, , where 4 is the consumer’s

abc).(abe) = q[ ach )| ach
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most frequently chosen brand. Observe that this is an implication of the hypothesis

that the transition matrix (q”) is derived from a first-order Markov model. (In fact,

this is but one of the six equalities specified above.} This hypothesis was tested using a
standard goodness-of-fit y*- test with maximum likelihood estimators for p, , for each
consumer.

Due to the unavailability of long choice sequences, the occurrence matrices tend
to have small numbers in some entries. Hence the theoretical validity of the y°- test is
somewhat arguable, and we therefore present the following with some diffidence.

Table 2 presents the p-values of the y~ tests for the six data sets:

Table 2:

Product Version p-value
Category
Cracker Selective 0.1636
Combined 0.0025
Yogurt Selective 0.0033
Combined 0.0001
Catsup Selective 0.4489
Combined 0.2615

As Table 2 shows, there is very strong evidence that the ordinal model provides
explanatory power bevond the first-order Markov process, that is, that order effects
exist, in the crackers and vogurt categories. Interestingly, the catsup data are
inconclusive. This might be due to the fact that three of the four catsup brands are

manufactured by Heinz and are similar enough to be confounded in the consumer’s

memory3. At any rate, we find the above results indicative of the existence of order

effects.

3 Indced. when the two lcast popular Heinz brands arc considered as onc. the p-value drops to 0.1520.

20



Gilboa and Pazgal History Dependent Brand Switching

4.2, Test of the Inertia Effect

Following Massy, Montgomery, and Morrison (1970), we lumped together the
three least popular brands for each consumer. Thus the problem was reduced to a two-
brand choice, "most preferred" (Brand 1) versus "other" (Brand 2).

For each consumer we computed maximum likelihood estimators using the first-
order standard Markov process, and the first-order standard Markov process with
inertia. The comparison of the last two directly tests the inertia assumption in the
context of our ordinal model for n=2.

The specific model we estimated allows inertia (dormancy) periods only for
brand 1. Indeed, repeated choice of "brand" 2 may be an artifact of our lumping

process. We assumed that, at every period in which Brand 1 was chosen, there is a

probability r of the consumer becoming dormant for L periods, with L -N(,u,c71).

Thus, the inertia model has three additional parameters, namely, (r,;z,a) as compared

to the standard first-order Markov one.

Note that, for a consumer who bought a single brand, both models can be
calibrated to obtain a likelihood value of 1. Thus these consumers cannot help us
distinguish between the models. The percentage of consumers that bought a single
brand were 27.5%, 24.5%, and 39.4% for the cracker, yogurt and catsup data sets
respectively. We therefore restrict attention to the other consumers.

The results of our analysis are presented in Table 3. For each data set, we
provide the percentage of consumers that bought more than one brand, for whom (i)

the inertia model performs better than the first-order Markov one; (ii) the above holds

with statistical significance at various significance levels (using a ,, test for the log-

likelihood ratios).

21
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Table 3:
Higher | Atleast50% | Atleast70% | Atleast 90%
Likelihood | Significant | Significant Significant
Cracker 80.2% 59.4% 45.1% 15.4%
Yogurt 87.2% 76.9% 36.0% 17.9%
Catsup 82.6% 52.2% 30.4% 13.1%

For most consumers, the number of purchases available in the data sets is not
very large. Thus standard significance levels applied to single consumers in this
literature range between 70% and 90%. (See .Jeuland (1979) and Givon (1984).)
According to this measure, the results reported above seem to indicate that the inertia
effect does exist 4.

However, one may wonder how much additional explanation is provided by
our model as compared to the first-order Markov one. The standard measure for
goodness-of-fit for these models was suggested by McFadden(1974), and it is computed
as follows. Given a proposed model, one computes the maximum of the log-likelihood

function according to this odel, to be denoted L(X). As a basis for comparison, one

computes the log-likelihood function of the independent, equi-probable choice model,

according to which every brand is chosen with probability . at every stage. Denoting

the latter by £(0), the goodness of fit measure is

(0)

L IX)
- =1 .
P I

Note that p” is in [0,1], with p° = 0 denoting no improvement of the model over
the independent equi-probable choice model, while p° =1 corresponds to a perfect fit.

Hauser (1978) has shown that, for time-independent models, p° can be derived from

*  The data as well as the estimation program are available upon request.
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information-theoretic arguments, as the fraction of explained entropy. However, this
measure is commonly used for time-dependent models as well.

For each consumer in each data set, we computed the value of p° for the two
models compared above: the first-order Markov chain, and our model with inertia. To
aggregate over consumers, we calculated two averages per data set: a simple average,
and a weighted one, where we used the number of purchases as weights. As expected,
both models perform better according to the weighted average than according to the
simple one, because consumers with longer choice sequences tend to support the
dependence on past choices. Since p’ compares both models to the time-independent,
equi-probable choice model, we get higher p° values when more weight is put on
longer choice sequences. At any rate, according to both averages, the explanatory

power of our model is substantially greater than that of the first-order Markov model,

as shown in Table 4.

Table 4:

First-order Inertia
Markov

Cracker Simple Average p° 0.3367 0.4360
Weighted Average p° 0.3781 0.4793

Yogurt Simple Average p° 0.4083 0.5681
Weighted Average p° 0.6274 0.6895

Catsup Simple Average p° 0.3110 0.3672
Weighted Average p° 0.3319 0.3959

To sum, the data indicate that the inertia effect is not only statistically significant for
a non-negligible set of consumers, but also that it improves the explanatory power of

the model.
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5. Proofs

Proof of Observation 2.1: It is sufficient to observe that for any 5,7 €§ there is a path

of length n (or less) leading from s to ¢, using only arcs in E. Q.E.D.
Proof of Theorem 2.2:

Extend x = (xI,---,xT) to an infinite sequence x = (xI ,---,xT,xT_l,m,) e A® such that
every acA appears in X infinitely often. We will find a sequence

(sn,s: S, Sy ,---,) 5" such that conditions (i} and (ii) hold for all 7>0. In particular,
(s,.5,.5;) will be the desired sequence.

Let d(r,!,a) = min{.r' =0 ‘ X, = a} be the number of periods (from time ¢ on) until
the first choice of a. Note that for all ¢, a, d(x,t,a) <= by our choice of (the extension

of) x. Forany time />0 define a binary relation > on A as follows:
a= b iff d(x,ta)<d(x,1b)

(ais "preferred" to b iff after time ¢, the first time a is chosen precedes the first time b is

chosen.)
It is easv to verify that for all =0, » is a linear ordering of A (i.e., it is
transitive, irreflexive, and connected in the sense (a> b) or (h> a) for all a=b).

Hence, -, corresponds to a permutation s, €S. Furthermore, x, is obviously the » -

f

maximal element in A. That s, S,(l) =x,. Finally, by definition of >, if b,c €4 are not

> -maximal, then > ¢ iff b>_ c¢. Therefore (s,s,,} €~ and the proof is complete.

QE.D.
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Proof of Theorem 3.1:

The proof consists of three stages. We will first prove that with a very high
probability every alternative will be chosen infinitely many times. Next we will show
that with a probability which is close to one, for every two alternatives the ratio of the
number of times they were chosen is (almost) the inverse of the ratio of the means of
their distributions. Finally we use standard arguments to prove the existence of the

limit.
Lemma1: Forevery ac4, K20, and £ 0, there exists T such that

Pr[{w Q! F(a),a,i")zK}]zl—g.

Proof: For 720, let B, be the set of states of the world at which a was chosen at most

K times until time T :
B, = {(u eQ Hw,aT)< K}

We are looking for 7'>0 such that Pr[B;|<&. The idea of the proof is as

follows. If alternative a has been chosen only K times, with a very high probability its
U-value is not too low. Moreover, there has to be another alternative that was chosen
many times. By a law of large numbers, this other alternative had a lower U-value than

a (with a large probability), in contradiction to /-maximization.

Let 7 <0 be such that Pr[f>L]>(l—§)1“ where ¥ ~(_ . Notice that such a

number exists since (G, has a finite variance. Let D, be the subset of B, on which

alternative a has had a verv low U-value by time T :
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Dy ={weB, 3<T Ulwar)<K-L)

The choice of L. guarantees that Pr[/), | <% for every T. We now wish to show that, for

large T, (B, \ D;) has small probability. Define

B,’f = {a) eB\D, b eargmaxF(a),a,T)},

ac.d

T,
and note that for w e By, F(w,b,T) =" —]]< .
-

Fix b#a. Let F, 21 be large enough such that for anv sequence 17,)7 of i.i.d

random variables on Q, each distributed according to G, ,

{a) e

Such a number F, 21 exists by a law of large numbers (see, for instance, Halmos

Pr >]— £

2n

SV <KL szFb}

7=

(1950)), since p, <0. Let 7, =K+(n-1)-F,. For every 727, and weB; we are
guaranteed that up to time T, b was chosen at least F;, times. Next define 1"(w,5,7) to
be the last time that b was chosen at @ up to time T. Note that for w EBTb and 7'>7,,
Fla,b,t" (w,5,T))2 F,. Let us focus on period 1" = (w,5,7) for @ €B? and T2T,. We

can now show that Pr[Bﬁ] <-4, Indeed,

=

B = {a) e By * U(m,b,r') 2K-L}U{a) eB; Ulw,br) <K-L} :
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Note that, by definition, B = (D;)". Thus for @ €B; we get U(w,a,1)2K-L for all

t<T. Since b was chosen at t" =1"(w,5,7), U(w,b,t‘) > U(a),a,r') . Thatis,

Pr[{a} B! Ulw,b,r) <K—L” =0 .

Hence for 727, Pr[Bﬁ]:Pr[{(u e B; U(w,b,r‘)2K~L}

<4 . Let Tzrgax]";, and

observe that B, c {UB;’} UD, . Hence Pi[B,]< ZPr[Bff]+ Pr[D, )<+ -n+5=¢. QED.
bza

bza

Lemma 2: Forevery ¢>0 and a,b € A, there exists T such that

H,

Per cQ Flw,a,)= [#b - 5] Fw,b1) Vi IH 2l-¢

Proof: Let there be given £> 0. Let 17> 0 satisfv 5 < min{—,ua ,-——--——_i-y-"—-——-—) Let 7,
i (1—8)-,uﬂ+;.rb

be large enough such that for every sequence Y .Y,,... of iid random variables

distributed according to G _,

1
P{

m

m ‘

Z}‘;j L, >n szl‘;j|<§

J=l 1

Notice that such /| exists by the strong law of large numbers. Define 7, similarly
(with G, and g, replacing G, and pu,, respectively). Using Lemma 1, find 7, such

that the probability that 2 was chosen at least /| times before 7, is greater than I-%.
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Using lemma 1 again find a time T such that up to it alternative b was chosen at least
7, + [, times with probability 1-£ or higher.

Let E, be the event that 2 was not chosen frequently enough by time 7, or that,

after that time, the average utility realization of a was far from g :

E, :{a) Q| F(a),a,Ta)<Fa}U

{a) EQ Fw,a,7,)2 F, and 3t>T, s.1
|

F,, and T instead of a, F,, and

Define £, similarly, with b, F,,

Clearly Pr[Ea] <f+i=£,

T’ , respectively.
From now on we will focus on Q, = Q\(£, UE,) whose measure is at least 1-¢

Let B be the set of states at which # was not chosen often enough relative to b :

B= {a) cQ, 3t >T Flw,a,1,)< (fi’-’-» - 3} (e, b, rm)}
Ha

For @ € B consider 7, >7, and let /" = t'(a),b,fm) be the last time that b was chosen at

@ up to time 7. Clearly:

]-"((u,a,r') <Fw,a,z,) and Flw,bt,)= F(a),b,t')

- = rrT Ed N - .
Since F, 21,, we must have { >7 . Hence on Q,, at 1, 2 was chosen enough times to

iU w.at 1
( ) j<r;.Thus,foraJef3,

uarantee that | ——— - u,
8 Flo,a.t )
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1"(a),a,t') < F(w,at,)< (—‘u—b— a‘) Flw,b,1,)= (& - gj -]"(a;,b,t')

u, i,
Since b was chosen at 1" =1"(w,5,T}, U(a),b,t’) zU(aJ,a,t*). Butfor w e B (cQ,),
U((u,b,t‘) <(yb+ry)-f3'((u,b,t*) and U(w,a,!‘)>(yﬂ —r;)vF(aJ,a,f').

Combining the above inequalities we get

(41, + 1) F((u,b,f') >, — 1) F(a),a,t‘)
or
ﬂ-!’(m,b,f‘)< F((u,a,t') )

My
Mol

However, 77, was chosen to be small enough so that, —¢&, in contradiction to

weB. Thus PifB]=0 and the required inequality holds with probability

PO, ]=(1-¢). Q.E.D.

We can now prove the theorem: consider a state of the world @ Q) at which the

limit does not exist or it exists but is different from f, . Then there must exist an

integer k£ > 0, two alternatives a,b € 4, and an infinite sequence of stages §,, such that

Han) 1y,
bty p, ok .
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Given k, let B, be the set of states at which there exists such §,. Clearly, if for

some k, Pr[Bk]Zr;r>O we get a contradiction to lemma 2 with g<min(77,%). Thus

Pr[Bk]: 0 for all k and therefore Pr{UBk}:O and the measure of the set on which
k

there is no convergence to f, is zero. Q.E.D.

Proof of Theorem 3.2:

For a state @, alternative a and time 7>1, define the number of times the

consumer chose 7 when she was active in the sequence @ up to stage f to be:

C((u,a,t):#{ls <t xl =a and 17 = I}

where /7 is the choice indicator function. Let U(a),a,!) denote the U-value of outcome

a €A at that stage, according to the history dictated by @ . Of special interest will be

the relative frequencies of the brands actively chosen, denoted by

C(w,a,1)

> C(w,b,1)
bod

c((u,a,f) =

and their limit c¢(w,a)=lim ¢(w,a,r). Denote the vector of limit frequencies by

c(w)= (c(ru,l),- - c(e, n)) )

If we restrict attention to the sequence of stages at which the consumer actually
chose an alternative, we are back in a situation where the consumer chooses a brand at

every period and gets a utility of:
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5(@)= 27 (a)

j=1
where [ is a random variable with distribution ¢, and f?f(a) are i.i.d random

variables, each distributed according to G,. Hence ¥(a} is a random variable with a

negative mean and finite variance (see, for instance, Ross (1972), p. 75) and by applying

Theorem 3.1 to ¢(w) we get the limit frequencies of the choices at active periods.
Let G = {(u EQ‘ Vaed, C(w,a,t)—>x } Since the distributions {Q"} have finite

variances, they are bound to be infinitely many active periods. Formally,

PrQ

[-pir

{a) cQ ZC‘((o,a,r)%xH-l :

By theorem 1, we get Pr,{G]=1

For w eG and k21, let Y {w,a) be the length of the inertia period after the kth

active choice of 7 by the consumer and prior to her (k+])St such choice. Let

n

Y,(w,a) )=1> V(w.q) and G, :{(o eG Vaed, Vw,a)—> ud}.
k-1

For every aq, Y,(a),a),}’:((u,a),... is a sequence of i.i.d random variables on G and

according to the law of large numbers Pr,[G,]=1. For every time t between the K and

(k+])5t choices of brand a, the following inequality must hold:

g: < Flw,a,t) < Flw.a,t)
©NT Cw,at) k

<7 .
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. ]; a)aaat . v H
Thus, for every w €G, and every ae4 : llm-égw : ):llm Y{w,a)=v,, which proves
- v {—»a a)’a’[ [—»or

our desired result. Q.E.D.

Proof of Theorem 3.4:

We adopt the notation of Section 2. By Theorem 2.2, there is a sequence
(50.5,,-,5;)€8™" such that s ()=x,_, and (s,5.)ek Vo< 1. Let
U(a,0)=s;"(a). For 120, let a, =s.(1) and find 7, € R such that

Ula,,7)+r, <> U(b,7) iff  s7\(a.)<() s\ (b)

for all h=#a.. For instance, set r =0 if sr_',(ar):l, r :U(.\‘__(H),T)—U(ar,r)~1 if

.s':l(a_,) =n, and

ro= ;[min{ U(b,7) s (a.)>s7 () }+ max{ Ub,7)i s (a, )< s\ (b) }]— U(a,,7)

otherwise, Q.E.D.
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6. Concluding Remarks

6.1  The models presented here do not explicitly deal with marketing factors such as
prices, advertisement, and so forth. Rather, as in the early works on random utility
models, these factors are incorporated into the distribution of the instantaneous utility
(in the cardinal model), or into the transition probabilities (in the ordinal one). One
direction in which these models should be generalized is to explicitly model the effects
of such factors, which are both relevant and measurable.

6.2  Both the ordinal and the cardinal models may be extended to deal with
situations where one brand's consumption affects the consumer's impression of other
brands as well. This has been referred to as "act similarity" in Gilboa and Schmeidler
(1993). In the present set-up, act similarity may be modeled by allowing all possible

transitions in the ordinal model, or, in the cardinal one, by allowing U(a,l) to change

as a result of consuming brand b= a.
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