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Abstract:

The paper studies a contracting problem in which a Principal enters in two-sided moral hazards with
N independent agents. There are no technological or informational linkages between the N ageney
problems. Despite this independence, optimal incentive schemes essentiaily eliminate the Principal’s
incentive problem when team size N 1z large enough. Reputation-like effects appear in our static setting
through an improved aggregation of information about the actions of the Principal. One implication
of this result is that it s generally suboptimal to require each agent’s compensation to depend only
on his own outcome. Another implication s the existence of purely informational cconomics of scale
to increasing teamn size. [Thus, the concentration of otherwise unrelated transactions i a single “firm’

creates wealth throngh a more efficient use of information about the Principal’'s actions.

The paper shows that extremely siaple statistrcal contracts are approximately optimal in large
teams. The outcome of such contracts is observationally indistinguishable from standard Principal-
Agent contracts. This provides a theoretical justification for using standard Principal-Agent contracts

in environments that involve twe-sided hazard in a fundamental way.

Journual of Economie Literafure Classification Numbers: D21, D23,




1. INTRODUCTION

This paper examines a class of contracting problems 1o which a team consisting of a Principal and
N agents produces a vector of outcomes y ... .. y~x. The Principal and ageut n take unobserved actions
ay and b, that determine the distribution 7(a,. b, ) of the outcome of the nth agency problem, g,. The

Principal is free to vary lis actions across agents.

Two-sided moral hazards with multiple agents may be viewed as a special type of partuership games

in which the Prineiple plays the role of a central partner.}

Examples and potential applications of
our model abound. One is that of a {ranchisor operating a network of N franchisees. The outcome
1ty of the mth franchise outlet 1s a vector of performance measures. ‘This outecome is random with a
distribution jointly determined by the franchisor’s and franchisee’s inputs a,, and b,. Another example
s a firm seiling a product to N consumers. The firm’s choiee of quality and the consumer’s effort 1n
caring for the product jointly determine a probability distribution over the possible levels of product
performance (¢.g.. frequency of breakdowns and cost of repairs). A third example 1s that of a firm
dealing with N enployees. Each employee chooses a level of effort. swhile the firm chooses such things
as the employvees” working conditions and the safety and productivity of the equipment they use. Lor

example. the employer may be a retailer who can mfluence the productivity of his salespersons through

investment in marketing rescarch and the development of new produocts.

Optimal incentive contracts i two-sided moral hazards with multiple agents can be guite complex.
One reason is that it is not a priori obvious whether the optimal incentive scheme s, used with agent =
should condition this agent’s compensation on the entire team outceme or on his outcome alone. Since
the optimal contract cannot be guaranteed to take the simpler form s, (y, ). one has to examine. in
principle, all incentive schetnes of the form s, (1. .. .. yx) where agent n's compensation might depend

. . 9
on the outcomes of all other agents. possibly in a very complex way.”

In the model of this paper. the V" agency problems are identical and independent: (1) The Principal’s
costs are additive across agents: (2] The outcomes y, are independent given the vector of Principal’s
and ageuts” actions: and (3) The Principal can freely and costlessly vary his actions @, across agents.
Assumption (1) eliminates technological economies of scale. while (2) says that there 1s ne common

uncertainty that can be used to improve the agents’ incentives through relative perforniance evaluation.



The absence of any physical or informational linkage between the W agency problems might give the
jmpression that optimal incentive schemes in a large team are merely N -replicas of the optimal schemes
in the single-agent problem. 1f this were true. then there can be no gains to conditioning the agents’

pavolls on the other agents” onteomes and no advantages or disadvantages to changing team size N,

The results of this paper show that this conclusion is incorrect: Contracts in which agent n’s com-
pensation depends enly on his own outcome y, are not optimal in general. Conditioning on the entire
vector of team outcomes 1s valuable because 1t improves the agegregation of imformation about the ac-
tions of the Principal. hence reducing (and. in the limit. eliminating) the cost of providing him with
incentives. The surprising aspect of this result is the fact that it can be obtained using contracts of very
siple structure and that it holds even though the Principal has complete freedom to vary his actions

ACTOSs agents.

To describe the results in more details, let 17 be the Principal's expected payofl in the optimal
contract in the one-agent case (N = 1). hmagine now that the Principal is somechow able to credibly
and costlessly commit to raking any action of his choice {action at. say) with all agents. Given that
action a* has been taken. the Principal’s side of the moral hazard problem s eliminated. so what was
originally a two-sided moral hazard 1s cffectively transformed to a standard Principal-Agent problem
with outcome function w{a*. ). Let s7{(y,) be an optimal Principal-Agent contract when the Principal
takes the action a*. and let 17+ > 1] denote the corresponding expected payvofl of the Principal. The
paper’s main result is that the average expected pavolt of the Principal in an optimal incentive scheme 1s
approximately V' provided N s sufficiently large. Thus, the Principal’s incentive preblem is essentially
climinated through an improved aggregation of information ahout his actions. This frees the incomi\-‘(;
contract to deal exclusively with the agents™ moral hazard. much like in the standard Principal-Agent

model,

One mmplication of this result 15 that 1t 15 generally incorrect to assume that the naive contract
consisting of replicating the optimal contract of the single-agent problem will be optimal when the
P'rincipal is dealing with multiple agents.® The result also implies that the conelusions of medels with
two-sided moral hazard and a single agent are not robust to increasing the mumber of agents. This is
significant because models with two-sided moral hazard are often intended as models of environments

with a large number of agents. as in the franchising and product quality examples mentioned earlier.
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The contrast 1s particularly apparent when agents are risk-neutral because our results would then nnply
that with multiple agents first-best allocation can be arbitranly closely approximated. In particular.
the inefliciencies that drive the qualitative conclusions of two-sided moral hazard models in the single

agent case are significant only for low values of V.1

Another mplication is the existence of purely informalional cconomies of scalc to increasing team

® Viewing N as a measure of firm size, our results suggest that concentrating otherwise unrelated

size.
transactions in a single large “firm” creates wealth through a more efficient structure for generating and
using information about the firin's actions. This is true despite the absence of any obvicus technological
advantages to organizing production in larger firms. The informationat cconomies identified in this paper
also constitute a source of competitive pressures to increase firn size {¢.g.. through mergers. expansions

or predation), suggesting that asvimptotic argurnents where .V increases have economic content in our

context.

An innovation of this paper is the method used to derive the results which s of interest both for its
simplicity and for generating substantial detailed information about how optunal allocations may be
implemented. Instead of going through the daunting task of calculating and characterizing the fully-
optimal contracts in the N-agent problem. [ focus instead on extremely simple and tractable class of
contracts that bypass the Principal’s optimization problem. These statistical contracts. motivated by
Green [7]. divide output on the basis of the value of a simple test statistic. While naive statistical
contracts arc typically suboptimal. the Principal cannot do worse in the optimal contract than in any
statistical contract, Fhe main result then follows by showing that there 1s a statistical contract that

vields an average pavoll close to VF when V15 sufficiently large.
) 2e bay A g

One nearly optimal statistical contract has an equilibrium in which there is high probability that
all agents will receive the payvments predicted by the standard Principal-Agent model with one-sided
moral hazard. This equilibrium is sustained by penalties triggered by a drop in a test statistie, which
is interpreted as evidence that the Principal deviated. Such a drop hias an arbitrarily small probability
when equilibrinm strategies ave played. Consequently. an outside observer is likely to find strong
evidence in favor of the conclusion that the agency relationship is organized as a standard Principal-
Agent relationship. even though two-sided moral hazard is present in a fundamental way.
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Stated differently. the standard Principal-Agent madel may perform welt even when it in fact fails
to capture a fundamental aspect of the incentive problem. This point is significant hecause Principal-
Agent models are often applied to relationships in which the Principal’s moral hazard is an important
factor (as in franchising. product quality. and employment relationships). Yer a modeler who applies the
standard Principal-Agent model to such relationships is effectively focusing on the agent’s incentives
and implicitly assuming that the Principal’s incentive problem can be ignored. The analysis of the

paper makes it possible to justify and appropriately qualify this assumption.

An important gqualification has to do with the value of the Principal-Agent model in comparative
statics. hmagine an outside observer who uses the Principal-Agent model 1o predict how the contract
will change in response to exogencus changes in the parameters defining the agency relationship. The
prediction reached will generally be incorrect. The problem is that by overlooking the two-sided nature
of the moral hazard problem, this outside ebserver will focus exclusively on changes in the terms of the
contracts and will not take into account the Principal’s freedom to change his actions in response to

changes 1 the environment.

The results of this paper have a dynamic. reputation-like flavor. This is surprising in view of the
fact tlial our framework considers a static relationship where outconies are revealed once and for all at
the moment of contract execution. rather than gradually during the play of a repeated gamme. Of direct
relevance to our analvsis is Radner’s [13] model of cooperation in undiscounted repeated games. Radner
considers an infinite horizon madel of a repeated partnership in which playvers maxiniize average pavofls.
A cooperative outcome can be sustained because, roughly. a player can benefit only by deviating an
infinite nuinber of periads. But such deviations wonld generate massive evidence that permits accurate
detection and punishiment.” In our model, a deviation from a* with a large fraction of agents will
similarly generate massive information when N is large. This information can be used to deter a
Principal maximizing average expected paveff from making large deviations’. The incentive scheme we
find may be consistent with the Principal oceasionally deviating by playing something other than a*
wirth some agents. However. the scheme ensures that the Principal will have the incentives to play at

with high probability with all but a vanishing fracticn of agents.”



2. THE ONE-AGENT MODEL

21 Actions, Quteomes and Payoffs

The Principal and the agent have finite action sets A and B with generic elements denoted ¢ and b
respectivelv.® Let Ay and Ap denote the simplexes defined on the finite sets 3 and B respectively.
A Principal’s mixed strategy 1s a probability distribution o € AL while an agent’s mixed strategy is
J e Ap. Let ala) and J(H) denote the probabilities with which actions a and & are chosen under the

nuixed strategies o and J respectively.

There is a finite set of possible outcomes: ¥ = {y! = 0. y*. ... yM} € [0.x). which is interpreted
as a set of possible owtput or profit levels. The outeonie y is a random variable whose distribution is
determined by the actions of the Principal and the agent. Using Ay to denote the simplex in Y
representing all probability distributions on Y. the distribution of ¥ is given by the outcome function
7w s Ay oowith oy (a0 b) denoting the probability of g = y™ and w(a.b) depoting the vector of

probabilitics. To make the problem interesting. I ipose the standard assuimption:
Al:  w(a.b) has full support 1 the sense that mp (. b) > 0 for every a. b and y™.

The Principal and the agent randomize independently {rom cach other and from y. The distribution

of y under the nuxed strategios o and 7 1s given by

Tl ) =Y malab)ala) 3(b).

a.b

The Principal is risk-neutral and has a cost function ¢ @ 4 = IR, The agent has a von Neumann-
Meorgenstern utility function w and a cost of effort function g 8 — £, The expected costs under the

mixed actions a and J are ¢(a) = 3 cla)ala) and (.3} = 3, y(b) 3(b).

2.2 Contracls

A confract s a function s Y — . with 0 < s(y) < y. representing a binding agreement in which

the Principal receives s(y) and the agent receives y — s(y). Note that the definition unposes budget



halancing as well as a rather strong form of limnited liability. The agent is assumed to have a reservation
value of . A contract s defines the pavoffs of a non-cooperative game I'(s) where the action set of the

Principal ts 1 and that of the agent 15 B plus the option of rejecting the contract.

The Principal and the agent are assumed to take their actions simultaneously and independently.

Their expected pavoifs under the mixed strategies o and 4 are:

Vison d) = Foy 5 sly) — eln).

(s 3) = Lo s wly — s(y)) — y(9).

240 Two-Sided Moral Hazard witl a Smgle Agent

A mixed profile (a.4) is a {Nash) equilibrium in I'(s)af:

[M{s.0.3) 20 ()
Uis.a.d) >0 (s.a..3) v.7, (14}
Vis.n. d) = Vis.a' ) ', (1C°p)

[Cp and 1€y are the familiar incentive constraints for the Principal and the agent. while € is the

agent's participation constraint.” The problem of the Principal can now be formulated as:

max (s a. 1) such that (a.J) is an equilibrium for 1'{s)

ER I

Let V7 denote the Principal’s maximuim expected pavoif in the one-agent problem.

24 The Evtended Principal- Agent Gume

The main 1ssue addressed i this paper is whether increasing team size creates new comnnitnient
opportunities for the Principal. If the Principal were able te commit to a given action a. the two-
sided moral hazard problem will be effectively transformed to a classical Principal-Agent problemn with

outcome function w(a. ). Given a. the Principal selects a Principal-Agent conmtract s, that is optiunal
bl



relative 1o w{a. -}, One can therefore think of the Principal’s cholce of a as selecting among a famly of

Principal-Agent problems parametrized by the eutcome functions (. -).

‘To formalize this, consider the modification of the last problem with the Principal’s incentive con-

straimt removed:

max V(s a..3) subject to PO 10,4
sanLd)
Assume that (s7.at b)) 1s a solutien to this problem and define VF = V(s a*. 3*%). Note that st
I

must be an optimal contract in the standard Principal-Agent with outcome function #(a*.-). To make

the problem interesting. | make the assumption that commitment is valuable to the Principal:

A2: 17+ > 1.

Define the distance between two contracts by |s — 8" = max, [s(y) — s"{y)|. That is. two contracts
are close il 1hey yield approximately the same pavments at all states. The optimality of s* 1mplies that
the agent’s hest response to (s, a™) is not single-valued {Grossman and Hart [8], Proposition 8). The

+

next assumption guarantees the existence of contracts s,

arbitrarily close to the optimal contract s%

and to which 4% is the agent’'s unique hest responsec:?”

+

A3:  For every ¢ > 0 there is a contract 57 such that |s} — s*| < 37 and such that b¥ is the

unfgque best response to (s a™).

Thus, s is approximately optimal since it guarantees the Principal an expected payvoff arbitrarily
close 1o 1750 I A2 is not satisfied, slightly weaker versions of the results would still be valid. In
particular. ene can redefine the extended Principal-Agent program by replacing the weak mmequalities
i £ with a strict inequality. liniting the agent’s actions to pure actions. and replacing the max with
a sup. This would give a himiting expected payofl U+ which will in general be lower than V+. On the
other haud. if U+ > 17, then the main conclusions about the value of aggregation of information and

the henefits from conditioning agents cempensations on the entire vector of outcomes would still be

valid.



3. THE V-AGENT MODEL

J.1. Actions. Quteomes and Payeffs

There are N identical agents. Let AN, BY and YV denote the sets of all V-vectors of 4. B and ¥,
with generic elements denoted . b and 7 respectively. Two action vectors @ and b determine a proba-

Dility distribution on the set of team outcornes Y denoted:

P (g\ . 5) .

Individual outcomes are assumed to be conditionaily independent in the sense that the random variables
(n...-. yx ) are independenm for any given profiles @ and & Under this assumption, P has a simple

decomposition into the probabilities @, (a, . by).

Agent n's mixed strategy is a probability distribution 3, € Agp. Agents are assumed to randomize
independently from each other and from the Principal. so the product mixed sirategies determine the

Jjoint distribution # on agents™ action profiles B,

A Principal’s mnixed strategy s a probability distribution g over the set 1% of all action vectors i
Note that there is a fundamental asvmmetry between the Principal and the agents because the Principal
is free to correlate his randomizations across agents while the agents randomize independently. Since
the Principal randomizes independently from the agents. the mixed profile {g. 7] defines a prohability
distribution on team outcomes given hy:

Plitpvy = PUFIEb) p(@) w(h).
ib

The expected payoll of agent n s the same as in the one-agent case. Note that the outcome yy
depends on j only through its marginal ji,, on a,. =0 the distribution of y, 15 given by x(p,,. .3, }. Note,
however, that since the Principal can correlate his randomizations acress agents, g 1s nol necessarily
the product of 1ts marginals.

The Principal is assumed to be sk neutral and has cost function " Ay — 1 that is edditive: 11

. . - - - . — Cid 1
a € A, represents the frequency distribution of actions in @. then '\f: =c(n) =3, cla)ala). This




savs that the Principal’s cost of effort functien displays constant returns to scale. See Section 4.7 for
further discussion of this point. | will often use the average cost (per-agent) ¢ instead of the total cost

function ¢ If the Principal uses the mixed strategy g, then his expected average cost is e{p) = I, c(a).

1.2 Contracts

A contract is a vector § = (s3.....5¢) where s,(y,. §) is the share of the Principal in the nth
ageney relationship as a funetion of ¥, and tlie team ourcome . As in the single agent case, a contract

determines the pavolls in a non-cooperative game 1" (5) between the Principal and the N agents:

v
L 1 \ -
i (.‘s‘.,(l.l/) = T EZ 5;1(,Uri-y) - (.(Ir)'

n=1
e gnov) = Eulin — sy (e )) — 0l 3n).
The problem facing the Principal is
max V{5 v) such that (ye. ) 15 an equilibrium for '\ ()

o)

Let Vy denote the per-agent average value of this program (that 120 the optimal value of the program
g g prog prog

divided by N).so Uy is measured on the same scale regardless of V.1

3.3 Anonginous Strategies: Molivation

Equilibria in our contracting setting will involve randomization by the Principal in an essential way.
T'he reason is that 1t may be impossible to give the Principal an incentive to play exactly a* with all
agents. Thus, the best one can hope for is to design the ineentive scheme in such a way that the Principal

will deviate witl at most a small fraction of agents, and this behavior may require randomization.

Additional information about the provision of incentives and the structure of contracts in large teams
can be ahtained by considering Principal’s strategies that arc, in some sense. anonymous. Roughly. these
are Principal’s strategy vectors which treat the agents symmetrically while still allowing the Principal to

.



take different actions with different agents. As we discuss formaliy in Section 3.4, these will correspond
to Principal’s randomizations je that are crchangeable across agents. The strategy of our proofs will
he to first examine equililiria in the game in which the Principal 1s restricted to ancnymous strategies.

then show that these continue to be equilibria in the original game without this restriction.

To motivate anonynious strategies, consider the example of a firm selling a product 1o N = 100

identical consumers. For each unit of the product. the firm can cither choose low quality o'

or high
quality a®. A strategy for the firm is a vector of actions {a;. .. .. ayon) with a, € {a'. «"}. An anonyious

strategy. on the other hand. is a vector of the fractions of the population with which particular actions

were taken.  In our example, with only twoe actions. we may think of Ay = [0.1] as representing
the fractions of low quality products.  The set of population fractions consistent with N = 100 is
=400 s i 1 C Ayl The interpretation of choosing a = a5 for example. is that the

Principal produces 3% low quality units (i.c.. chooses action @' with 3 agents) and 97% ligh quality

units.

An anonymous strategy is one in which the Principal first chooses a population fraction (possibly at
random) of low quality products from A%, then distributes these products symumnetrically across agents.
Thus. cach agent has the same chance of getting a low qguality product as any other agent. In the last
example. this means that cach consumer knows that 3 out of 100 consumers will end with @' -products
and that his chance of getting one s the same as everyone clse. The reason for calling such strategy
anonymons is that the Principal only determines the fraction rather than the nanics of the agents with
which a particular action is chosen. Such strategy rules out. for example. profiles in which a particular

agent believes that he will be singled out for a special punishment or reward by the Principal.

As we hinted earlier. the firm can {urther randomize over the population fractions a. For example,
the firm might choose o = 3% and o = 5% with probability % each. This is different from choosing the
average frequency o’ = 4% with probability 1. The idea 1s randomness in the choice of a represents
aggregate uncertamty from the perspective of the agents. In our example. each consumer may be

uncertain both about whether he will receive a low quality product for a given a. and about the value

of o 1tself.
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The restriction 1o ananymous strategies may be interpreted in a number of ways. In the product
quality example. one might think that the firm produces the 100 units. with a percent low quahty units.
then each consumer sclects one unit randemly, Alternatively, one might think of the firm as having a
list of the 100 consumers. selecting 3 names at random and producing 3 low quality units for them,
Finally. one might think of the firm as knowing from the outset the nawes of the three consumers to
play ¢ against. but any particular consumer is not sure about the rule used to make this choice and

{

assuntes that his chance of facing «' 15 the same as cvervone clse.

4.4 Anonymous Strategies and Erchangeable Randomizations:

Formal Definttions

Let a'.....a" he a list of the actions of the Principal. An admissible acfion distribution for the
Principal in the game with N players has the form o = % (kY. . k") where each &' is a non-negative

Integer and Zf‘:l = N. Let Ay € A, denote the set of admissible action distributions and note that

this set 1s finte.

Fach action vector @ has a unique frequency distribution of actions a = (a'.. .. af) € A%, where
al denotes the percentage of times of is plaved. Two action vectors @ and @’ are equivalent (written
d ~ @' if they have the same frequency distribution of actions. The idea Is that we can obtain @' from
i through a permutation of actions labels across agents. keeping fixed the frequency with which any

particular action is taken.

An anonymous shrateqy is a probability distribution g on A that is cechangeable (or symmetrically
dependent). That is. y¢ has the property that g(d) = p(@') whenever & ~ a’. It is easy to see that the
marginal distribution g, on the action taken with agent n is the same for all agents and is equal to o l?
An anonymous strategy j¢ defines a probability distribution on A% by letting si(a) be the probability of
the set of action vectors @ with frequency distribution a. The restriction to exchangeable randomizations
defines a new gamne I3 (5) in which the strategy set of the Principal 1s A% instead of Ay, Intuitively.
in the game with exchangeable randomizations the Principal first randomizes over aggregate frequency

distributions over actions (i.c.. randemizes over A7) then. given the chosen frequency a € A% he

symmetricatly assigns actions to agents so that the marginals are cqual.
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4. RESULTS

This section states and interprets the main results of the paper. Section 3 provides the proofs.

4.1 The Main Result

PROPOSITION 1: ['nder assumptions AI-A3. the Principal’s expected average pavoff in any op-
timal incentive schemne Is approximately Ut when N s sufficiently large. That 1s. for any € > U, there

is N osuch that Vy > VF — ¢ whenever N > V.

Note that if the Prineipal is restricted to incentive schemes of the form s, (#.) (i.c.. where agent n's
paynent depends only on his own outeeine). then the best the Principal can hope to achieve is an average
expected pavoft of 11, Proposition 1 therefore implies that in an optimal scheme the compensation of

at least some agents must depend on the outcomes of other ageilt&”

An optimal contract might link the compensations of various agents in a potentially very complex
way. To gain a better understanding of incentives in large teams. 1 will focus instead on extremely
simple statistical rontracts and note that the Principal will do at least as well in the optimal contract as
in any statistical contract. This approach will generate substantial information about optimal incentive

schemes without actually having to compute them.

4.2 Stabistical Contracts

A statistical contract §°% 1n the N-azenl problem is defined by a one-agent contract s(y) and a test
g I 3 & U

statistic 1YY = {01} such that

st} I Tig)=1
so lu- Ty )) =
( f7{F1=0
In this contract, agent 1’ payment depends on his output only when the value of the test statistic I’

is high. A low value of T on the other hand. will be interpreted as evidence that the Principal has

deviated. so he is punished by giving all the output to the agent.

12



The advantage of these contracts is their simplicity: Any such contract is completely determined
by two components, the test statistic 1" and the one-agent contract s. The next result establishes the
existence of an incentive scheme supported by a statistical contract of a particularly simple form. First,
define 4(5) = {7 (y)..--. -ar(6)) € Ay to be the vector of empirical frequencies corresponding to §

fthat is. 7. (7)) is the percentage of times outcome ¥ occurs in the vector §).

PROPOSITION 2: For every ¢ > 0 there is an integer N and a statistical contract 53° defined by

(sr. 1) such that:
N |sF-stl<a

i} 1 depends on § only through ~{i)

i1y [ (57) has a Nash equilibrinm (p.v) with the properties:
I- p is exchangeable
2- Ply:T(F) = 1ip. v} > 1 —¢ whenever N > N
3o [UH = V3 <« whenever N> N

Note that T may be too coarse 1o be a sufficient statistic for the team outcome ¥ 50 the statistical
comract is likely to ignore some potentially valuable information about the team performance and may
therefore fail 1o be optimal. Proposition 2 may be interpreted as saying that the value of the information
overlooked by the coarse test statistic becomes small so 17 becomes. in a sense. approximately suflicient.,
and the statistical contract becomes approximately optimal. The optimal contract. on the other hand.,
takes into account and optimizes over every bit of information even when these make a negligible

contribution In Nnproving incentives.

4.3 The Form of Incentive Contracts in Large Teams

To the extent that excenting complex contracts involves some unmeodeled costs. the simplicity of the
statistical contract 857 found in Proposition 2 suggests that this nearly optimal contract might be a

o

reasonable model for the incentive schemes actually niplemented in large teams,

13-



Suppose that the statistical contract s, is indeed the one being used. Think of the conclusions
an outside observer might reach by observing the outcomes and compensations for cach agent, but
without knowing whether or not the underlying contracting problem involves two-sided maral hazard.
When 1 = 1. an event with high probability under (. v). all of the N agents will be compensated
according to a contract arbitrarily close to a standard Principal-Agent contract. Since the contract
is synunetric, each outpur level has positive probability. so the WV realized output-payment pairs will

provide information about compensations at all possible outeomes (with high probability when N 15

large).

Thus. an outside observer will find overwhelming evidence supporting the conclusion that the con-
tracting relationship is governed by a standard Principal-Agent model with one-sided moral hazard.
This observer will be able te fairly accurately predict compensation in the V-agent two-sided moral
hazard problem using a standard Principal-Agent contract s*. 1gnoring all the subtleties and problems
caused by the Principal’s moral hazard. This provides a theoretical justification for using Principal-
Agent incentive schemies even in environments where the Principal is likely to have the ability 1o 1ake

actiens that impact on the agents” productivity and compensation.

Our framework also provides an important gualification for the intuition that the Principal’s meen-
tive probleins cau be ignored by pointing out the role of the special safeguards built into the overall
contractual arrangement between the Principal and the agents. In particular. the success of a stan-
dard Principal- Agent model in environments with two-sided moral hazards is highly dependent on the

presence of a large munber of agents.

Finallv. the maodel explains that an outside ehserver using a standard Principal-agent model 1o ex-
plain compensation i a two-sided moral hazard environment as in the last paragraph will systematically
miscalculate the implications of exogenous parameter changes on contract and performance structures.
The reason why the standard Principal-agent model will not do very well in comparative static exper-
iments is that it ignores the (act that some adjustments to exogenous changes can be made through
changes in the Principal’s actions rather than in the observed contractual terms. The role played by
these adjustments is taken into account in the extended Principal-agent model of Section 2.1 in which

the Principal can respond to exogenous changes using two instrunients s and a rather than just s,
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4.4 Informational Leonomaes of Scale

An obvicus implication of Propositions | and 2 is the existence of economics of scale te increasing
team size, measured by 1'% — 17 per agent. The source of these economies mn our model 15 that a large

team makes it possible to provide the Principal with incentives at a vanishingly small cost.

There are, of course. other reasons that make increasing teamn size beneficial to the Principal. Two

potential sources of cconomies of scale are relative performance evaluation'!

and the possihility of
using the targe teamn size to implement group penalties through the transfer of output across agents.
To isolate and highlight the role played by the aggregation of information about the actions of the
Principal, the construction of Proposition 2 ensures that other sources of economies of scale do not
arise in the model. Relative performance evaluation is eliminated by the assumption that outcomes are

conditionally independent. so the outcome of one agent conveys no useful information about the action

taken by another agent, Transfers. on the other hand, are eliminated by construction:

PROPOSITION 3: The nearly optimal statistical contract §°° satisfies the no-transfer condition:

0L s () Sy forevery agent nand outcome yy.

The point is that while the optiinal contract might involve such transfers (¢.g.. to spread risk. or to
execute group penalties), the fact that one can design a nearly optimal contract without such transfers
implies that the net benefit to using them in an optimal contract must become negligibic in a large

fearn.

1.4, Speciad Case: Risk-Newtral Agents

To illustrate the results. consider the case where agents are risk-neutral. Under this assumption. the
solution of the one agent case is very simple. In particular, when the Principal cannot commit to a
given action. then the relationship is a simple partnership game with two players. In such game. the
optimal contract supporting V7 will generally involve a sharing of output hecause making the Principal’s
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payment contingent on output is the enly way 1o give him incentives 1o choose a ligh level of effert. The
resulting outcome is ineflicient in general because increasing the share of the Principal under budget

Lalaneing constraint necessarily reduces the agent’s meentive to choose a high level of effort.

On the other hand. the solution of the one-agent problem when the Principal can commit to a
given action is quite different. From standard Principal-Agent theory. the value of this problem. V7%
is supported by an optimal contract s* in which the Principal receives a fixed payment and the agent
absorbs all the risk. By contrast with 1. the outcome corresponding to V# is in general efficient.
Esscutially. the classic partnership problem that causes 17 to be inefficient disappears because the
Principal’s ability to commit to a given action leaves the contract complete freedom to deal exclusively

with the agent’s mcentives.

Under agents’ risk-neutrality. our result that Vy is approximately cqual to '+ meaus that the average
outconme in a large encugh team is approximately first-best eflicient. This may be viewed as providing
an approximate solution to the partnership problem (Legros and Matsushima [10]) for the special class

of partnership games with a central partner.

4.0, Fadure of Gutput-Sharimg-Under-Risk-Neufralety

An attractive feature of two-sided moral hazard models with one agent is their ability to exptain
output sharing between the Principal and the agent even when both are risk-neutral. By contrast.
non-trivial output sharing in the standard Principal-agent mocdel can he obtamed only by introducing
further complications. such as agents™ risk-aversion. that often make it difficult to compute the optimal

contract expleitly.

Our results point cut that streng qualifications must be imposed when a model with two-sided moral
hazard is intended for applications in multiple agent setiings such as franchising and produoet quality.
Proposition 2 shows that the value 17 and the contract supporting 1t will be suboptimal when V' 1s
large. and that the optimal scheme will approximately vield an average value of 17* that involves no

sharing at all.

To take an example. consider a finite-action version of the two-sided moral hazard model of product

-16-



warrantics proposed by Cooper and Ross [5]. 1f the intended application is a manafacturer selling
large number of units of the product. then our results point out that the optimal contract for the one
agent case is not robust to increases in team size, and that a rather simple incentive scheme can achieve
a nearly efficient outcome. This conclusion is similar to the one derived in a dynamic model of product
warrantics (Al-Najjar [1]). In that model. the driving force 15 the firm’s reputation rather than explicit
contracts in a team of large size. [t is interesting to note that explicit contracting in a static problem

with many agents has reputation-like implications.'?

4.7 Non-additiee Cost and Uniform Actions across Agonts

In many situations with two-sided moral hazard and multiple agents. some of the Principal’s actions
are agent-specific while others are by nature uniforin across agents. Thus. in the manufacturer-consumer
procuct quality example discussed carlier. the quality of material and after-sale services are consumer-
specific while a miore carclul design of the praduct that improves its safety represents an action that is
uniform across agents. Similar examples in the contexts of employment and franchising relationships

can be easily found.

In our basic model the assumption of additive cost structure was maintained for analyueal and
notational simplicity. The model can be casily modified to take into account broader definitions of cost
structures. including the case where some of the Principal’s actions are agent-specific while others are

uniform across agents.

To see this. consider the N-agent model, and recall our identification of an action a with the action
distribution in which the Principal takes action a with every agent {see Section 3.1). In this case. c{a)
represents the average cost of the Principal when he takes action a with all agents.’™ An a which is not
a verlex of Ay represents a situation in which the Principal uses different actions with different agents

with frequencies given by a. The average cost function ¢ is additive if e{a) is just the average of the

costs of the underlying pure actions weighted by the components of a.

Maore generally. ¢ may be concave, reflecting technological advantages to taking umform actions
across agents. As an ilhustration. in the guahty example of Section 3.3, c(a) represents the average cost
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when the percentage of low quality products is a. Suppose that ¢(a") = 2 e(a")y =1 and N = 100. If
e 1s inear and the firm chooses a mixtures of qualities a = 0.03 so 3 cars are of low quality and 97 arce
of high quality. then the average cost of a car is ¢{a} = 1{0.03) + 2(0.97) = 1.97. On the other hand. a
strictly concave ¢ implies ¢(n) > 1.97. =0 while the firm can vary the quality of cach car. producing a

mixture of qualities is relatively more costly compared with averaging over uniform quality outputs.

Actions like advertising. product design and research and development which, by their nature, have
1o be chosen uniformly across agents can be viewed as ones for which ¢ sharply inereases as we move
away from the vertices of Ay so it is prohibitively costly to choose different actions with different
agents. In this case. our results go through and will. in fact. be much easier to prove. The reason 1s
that the only deviations we need to be concerned with are those in which the Principal switches from
taking a* with all agents to taking some other action a also with all agents. Such deviations generate

massive evidence that makes detection all but certain.

Appropriate versions of our results on economies of scale and the benefits 1o conditioning an agent s
compensation on other agents’ outcomes also hold for the intermediate cases in which ¢ is (mildly)
strictly concave. The analysis would be notationally more complex. however. because it is no longer the

case that the optimal mixture a® in the onc-agent problem remains optimal in the N-agent problem.



5 PROOFS

The main centribution of the following leuna 1s ensuring that N can be chosen so that it works

uniformly for all 0 € A 4.

Lemma 5.1:  For any ¢ > 0 there is N such that for everv o € Ay and N > N

PLF ) = mla by | <elabt) > 1=

Before proving the lemma. we need additional notation. Suppose that the set of V' agents 1s divided
mte L subpopulations with XNy agents in the Ith population. Given a vector of outcomes y. let #i
denote the number of times outcome y,, appears in the [th subpopulation. Let =f (i) denote the
empirical frequency of the mth outcomnre in the fth subpepulation. and les ~H7) denote the vector
of such frequencies. Recall that 5, () and +{¥) denote the corresponding frequencics for the entire
population. Then ~,,(y) = %Z[ #ih, = S '\\A#TU:L so we have 5(y) = 3, ay' (7). It should be
noted that ~' () depends only on the portion of 7' in which @ was plaved. This redundancy in the

definition of 4! (7} simplifies the notation.

Proof: Fix @ that is consistent with a. Let N} be the number of times a; 15 plaved in 4 and note
that n = %(,\'1 ...... Vi) o simplify notation, write 7 = 7(a;.5%) and a; = a{a;). Note also that

7o 0%}y =37, aya' by delinition. so that
[m(a.b7) = (7} = ’Z armt =Y ' (i)
i I
= > elw =5 )

{

S a7 =N

!

IA

Using Chebyshev's inequality, the formula for the variance of binomials. and recalling that there are

M possible outcotes, we have

( A
P{‘rlﬂ 771—( > — .,+}<*_',—%r.
) > o lach INIEAE
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. . . TRV A
Choosing N > N > —

and noting that Ny = o; V. we conclude that cither:

€
) < —
[} or
T
AT E%

2) Ny > R i which case P{F) == > 5 [ar bt} <57 fo[ every [
I

Let L) and Le denote the subsets of indices { for which conditions 1 and 2 above are satisfied. Theun.

for any values L. Lo < L. we have

¢
Zru]rrl u)\<1’2L ok

el

ancl

f? J:Zm!u n. bt 7| >« <ZP e }') ﬁf|>i}<‘r‘

¢
ey eyl L 2L 2

We may therefore conclucle that

I Z( Tl b)) =~y > ey < e

The result now follows by noting that

PLF: |27 = m(a b7} <(|n.f;‘*}—21’ Uil —wla b)) <(l(7.5*}n(r7).

Q.I.D.

Propositions | and 3 are immediate consequences of the proof of Preposition 2,

Proof of Proposition 2: By AZ, we can find a contract 57 such that [sF — s%] < ¢, and such that

b+ is the agent's unique best response to (a*.sF). Let U7 C Ay be the subset consisting of all a such

that b+ continues to be the agent’s unigue best response to (a. sF). Note that for small V. we may

o l [ ~

have I "N A = fat)l, The set {7 is open in A4 and contains n? (because 5% is a unique best response
A I A | i

to (a*. sF). I3 s finite. and ['(s}. a b) is continuous in a for all £}, Thus b7 1s also the agent's unigue

best response to (. st) for any exchangeable mixed strategy g with support contained in {7, Let 177
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denote the Principal’s payvofl under the contract s} and assuming that actions a* and b% were taken.

Note that Vv —VF <o

Define =+ = x(a*.0%) and for any & > 0. let By = {v € Ay |3 — 7] < d}. Since {7 is open.
we may choose d small enough that {4 = {n :w{a. b)) € Bs} C 7. Finally, define T by T(g} = 01f

T E Bijooand T{F) = 1 otherwise,

Abusing notation. 1 will use b% to denote the prefile in which every agent plays b*. 1 now show
that there is g such that {(;2.b%) s an equilibrium of IL{F 7). To ensure that b% s best response. 1t is

enough 1o find a g owith supp (p) C Ly C U7

By Lemma 5.1, we can find N large cnough that for any o & {5 and v > .V
PTG = 0]a 67 > 1 —«

This means that for any such a. V(§. a.b*) < cy*. On the other hand. we can also use the lenuna
to ensure that V{F77 a*. %) < (1 — )b, *. Choosing ¢ small enough implies that no best response to
b in I (§79) assigns positive probability to an o & {7, Finally. recall that the set of admissible action
distributions A™ (relative to V) is finite. so &% must Lhave at least one mixed best response in I'7 (5757,

We can now use Proposition 4 below to conchide that this is also a best response 1o 6% in I (5777},

Finally, the various claiins in the conclusion of the proposition follow directly from the construction

ahove,

Q.E.D.

T

PROPOSITION 4:  The equilibrium (g, v) for the game UL{577) constructed in the proof of Propo-

sition 3 above s also an cquilibrinm for U (57).

Proot: e must show that. in the game I'(577), we have K'(.-';"“’"'.Fi.l_;*] < ‘l'(.ﬂ?“""'.;r.l")‘*) for every
d. Suppose that @ and @ are two actions whose frequency distribution is some a € Ay Clearly.
the svimmeiry of the agency problems implies V(577.d. E’f) = ‘L'(.?“'C'.ﬁ".l")‘*]. Thus, viewing a in
[(§79) as a uniform measure on the set of action vectors with frequency distribution a, we find
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that V(5°7.d.b%) = V(55 n.b*). But since p was a best response to B in [7%.(759), we must have
V(SO a by < V(FEC ).

O.F.D.
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2.

ENDNOTES

On partnership games see, for example. Legros and Matsushima [10].

The complexity of the spaces of outcomes and incentives schemes grows exponentially with V. Thus.
with M possible outcomes in cach agency problem. there are MY vectors of team outcomes and the
space of possible incentives scheines for a single agent is a subset of a linear space of dimension MY
For example. in a medinm size {ranchise network of 50 outlets and 10 possible outcomes per outlet.
there will be 10%9 team cutcomes that must be taken into account in designing the optimal contract

for an individual agent.

This mistake is made in a recent paper by Bhattacharvva and Lafontaine [1. Scction 4]. They
calculate the optimal two-sided moral hazard contract when there 1s a single agent and assert that
the optimal N-agent contract consists of a simple N-replica of the optimal single-agent contract.
Proposition 2 below points out that the raive .V-replica contract is strictly dominated by an extremely
simple incentive scheme hased on a binary test statistic. The proposition allows for arbitrarily large
number of actions and outcomes and makes minimal distributional assumptions on the way actions
are mapped to outcomes. The suboptimality of the naive contracts is particular apparent in the
special case where the Principal must take a uniforin action acress agents {sce Scetion 4.7 below).
Of course. oue can simply force the N-replica contract to be optimal by assuming that it is impossible
to write or enforee a contract in which an agent’s compensation may depend on an casy lo compute
hinary test statistic. On the otlier hand. this is an assumption which would have to be incorporated

explicit]y in the model and its use be defended on a case-hy-case basis.

All we need here is that the Principal’s pavoff 1s bounded awayx from his average pavofl in the single
agent case. This is much weaker than the claim that the Principle can approximately get 17+ {and
generally requires a smialler N). The proofs of the resuits allow. in principle. to compute tight
bounds on V. and in simple settings (e.g.. two-action/two-outcome cascs) the N needed appears to

be relatively small.

Since there is no conumon uncertainty in the agents” performance. Holmstrom's [9] analysis implies
that conditioning agent n's compensation on the entire vector of outputs cannot be justified on
the grounds that this additional information can be used to improve the agents’ incentives through

relative performance evaluation.
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To find a counterpart for the agents in Radner’s model. one should niodify his model so that one of

the two plavers 15 myopic (short-run plaver).

For example. our resnlt that the Principal gets an average payoff close to lis commitment payoff is
in a similar spirit as Fudenberg and Levine's {6] results for reputation games where a long-run player
deals with a sequence of short-run plavers (see also Section 4.6 below). A recent paper (Al-Najjar
and Ye [3]) explores a dynamic model which can he specialized to one with a Principal mteracting
with a teamn of agents repeatedly. Repeated play creates two new effects (absent in the static model
of the present paper): explicit reputation effects on the part of the Principal, and the potential for

agents to collude against the Principal.

We will think of the acticns as potentially representing vectors of levels of various attributes of the
efforts or the investiments mace by the Principal and the agent. as in the case of multi-task agency
problemns. This should be contrasted with the more comimon {and more restrictive) assumption that
effort is one-dimensional variable. Subject to some caveats, in some cases one may interpret actions

as contingent plans in a multi-stage setting.

To simplify the exposition. I will (somehow loosely) ignore the Principal’s participation constraint

hecause A ean be redefined in such a way as to enable him to opt out of the refationship.

Sinee standard Principal-Agent setting is not the main focus in this paper, it is more convenient to
state this assumption in this form rather than in terms of the primitives of the agency problem (2.c..

7.oog.cand u),

Note the assumption implicit in the definition of the optimal value 1y that if F(s) has multiple
equilibria. the Principal can choose his wost preferred equilibrinm. This 1s a weak implementation
criterion which is nevertheless standard in the literature. Stronger implementation criteria {e.¢..
requiring the result to hold for any choice of a Nash equilibrium of I'(s)) are possible under stronger
restrictions on the primitives of the game. See Mookherjee [12] and Ma [11] for a discussion of this
problem. and Fudenberg and Levine [6] for the sort of conditions needed to ensure that deviations
ean be statistically identified.  Mookherjee [12] and Ma [11] also pointed out. in the context of
other multiple agent settings. that weak Nash implementation might require agents to play weakly

dominated strategies. [t is worth mentioning that the Nash equitibrium constructed in the proot of
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Proposition 2 below has the property that agents play strict best responses. so our framework does

not suffer from this problem.

To see this. ix a = (nf. ... aM) € A7 and let & be the number of times with which action a

N
TR

action vectors in which o' is chosen

st

be chosen in order to ensure that the action distribution is equal to a. There are action
(N — 1)
IR ¢ S TR S

against agent n. A simple calculation shows that the probability that action a' is played against

vectors wlich are consistent with a. and

agent n is equal to &' /N = n'. This shows that the marginal distribution for agent 5 is o for each n.

Note that the result is in terms of the average pavoll per transaction rather than in terms of total
pavoff. There is a number of questions for which the average payoff may be the more appropriate
measure of the Principal’s performance. For example. restrictions on average payolfs is encugh to deal
with the issues of imformational economies of scale, optimality of conditioning compensation on the
agent’s own outcome only [see footnote 3). and approximate efticiency. More crucialiy. restrictions
on average payolfs ix all that is relevant in evaluating the advantages of a centralized structure of

organizing transactions compared to a more fragmented structure with N independent Principals.
See footnote 5 above.

See also Al-Najjar [2] for a related model which combines reputation with increases in firm size 10

show the existence of informational economies of scale to reputation building,.

Note that in our definition of ¢ ; Ay — #2 there is an implicit assumption of constant returns in the

sense that efa) remains constant as the number of agents N increases.
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