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Abstract:

The paper develops a [ramework for factor analvsis and arbitrage pricing in a large asset economy
modeled as one with a continnum of assets. 1t 15 shown that the assumptions of absencee of arbitrage
opportunities and that returns have a striet factor structure imply exact factor-pricing for o full
measure of assets. I nite subsets of assets are interpreted as independent random draws from the
underlying economy. then there is probability one that, in a finite sample of assets. every asset is
exactly factor-priced. 1 further show that approximate factor structures exist in general and that they
can be chosen optimally according 1o a measure of their explanatory power. Factor structures in the
present model are also roahist to asset repackaging and to the use of proxies to approximare the 1rue

factors.
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1. INTRODUCTION

Iactor mocdels simplify the study of complex correlation patterns in large populations by divid-
ing individual risks into systematic cconomy-wide components, and individual-specific idiosyneratic
components. By identifving common factor-risks and providing a sitiple relationship relating them to

individual risks. factor models proved to be o useful tool with a wide range of applications.

One important application of factor models is the Arbitrage Pricing Theory (APT) proposcd by
Ross LAY The APT builds on the intuition that a large cconomy offers investors the opportunity
to eliminate idiosyneratic risk through diversiication of asset holdings.  The absence of arbitrage
opportunitics then implies that an expected exceess return (or a risk premium) will be patd only to
cotnpensate {for bearing non-diversifiable systematie risk. Assets can therefore be factor-priced” i
the sense that any excess return can be explained as a linear combination of the factors” risk preniia
weighted by the asset’s exposures 10 factor risks. This intuition is tradidonally forninalized using a
model of an economy with an infinite number of assets 7= {1, 2....}. Call the difference between the
actual excess return of an asset and the excess return predicted by the APT s factor-pricing lormula
the asset’s “pricing error’. The main result of the APT states that the suin of squared pricing errors

is finite. so. most assets have small pricing errors.

The present paper provides an alternative framework in which the space of assets is indexed by
7= [0, 1) instead of the traditional approach employving an infinite sequence. Within this framework.
pricing results i the spirit of the ADPT arve derived. One such result is that. outside a set of measure
zovo. every assel is exactly factor-priced. I we interpret inite subsets of assets as independent random
samples drawn from the underlyving cconomy. then. with probability one. all assers i such samples
have zero pricing errors. These results differ from the traditional APT s conclusion that “most™ assets

have small” pricing errors. a conclusion which is consistent with all assets being incorrectly priced.

The pricing results are derived under the standard assuwimptions of the pure-arbitrage version of the
APT. requiring only a strict factor structure for asset returns and the absence ol arbitrage opportuni-

ties {equivalently. continuity of the pricing function). As with the nsual AP the idea is 1o determine



the restrictions on asset pricing relationships derived from the no-arbitrage assumption alone - with-
out imposing Nurther conditions on market equilibrium, investor preferences. or the distributicnal

properties of returns.

Of course, interpreting finite subsets of assets as independent random draws 1s not intended as a
descriptively accurate acconnt of how asset pricing theories are tested in practice. Rather. it is an
idealization of how an outside observer might test the APTs pricing restriction using information
contained in a finite ssnple of assers that highlights the strong pricing restrictions imposed by the
APIs assumptions. The pricing results are subject to rwo other cavears.? First. just as in the usual
APT. the pricing errors in a particular finite subset of assets can be arbitrarily farge. The pricing
result asserts something abourt the magnitude of pricing errors en arerage rather than in any particular
samiple. Formally, the sampling result is formulated as o probabilitv-one statement on the space of
randomly and independently drawn samples. Second. the results assume that the pricing frncetion is

lixed independently of the samples drawn.

The paper also provides an analysis of fuctor structures in large cconomies. with applications not
necessarily limited to the APT. The wain concept developed is that of the erplanatory power of a
set of candiditte factors. which may be viewed as a cominuum analogue of B2 in Statistics. The kdea
ix to view candidate fctors as o =t of regressors and compute the pereentage ol 1otal variations in
asset returns explained by them. This provides a formal criterion for ranking the explanatory power
of alternative sets of factors. a eriterion that con help inevaluating the gain from including additicnal

factors and in formulating a trade-off between parsimony and completeness of factor representations.

Using the eriterion of explanarory power. a procedure of optimal sequential factor selection is
introduced and we stidy its asviiptotic properties. 1t is shown that optimal approximate factor
structures exist and can be selected to reflect the primitives of asset returns. If the economy has a
strict factor structure, then the “true” factor space Is unique and can be computed nsing this sequential
procedure. Furthermore, the explanatory power of a factor space changes continuously witli that space
in the sense sinall misspecification of the true factors lead to a correspondingly small loss in explanatory

power. This is important because the true factor space is not known in practice, so proxies containing



estimation errars mst be relied on instead.”

Why does the choice of an index set (continmun vs. infinite sequence} matter? Intuitively, the
reason is that the main conclusions of the APT and factor models involve comparisons of the relative
size of various subsets of assets. Examples of such statenents are: mast assets are priced correctly: a
typical asset can be factor priced: and. a factor Is significant if it accounts for a significant part of the
variation in maeny assets. These statements can be given a clear meaning in finite assets economies by

a mieasure of the relative weight of subsets of assets ro reflect what the modeler intuitively has in mind

{e.g.. assigning assels cqual weights) It therefore seems reasonable to expect abstract infinite models
(¢ also have a measure of relative weights relleering the structure implied by the Gnite environments

they are meant to represent. It is not at all obvious how to develop such a measure for a model with

an intinite sequence of assets. To illustrate the difficnlties ivolved. consider the following example:

forample £ Let {0} be au Lid sequence of random variables with zero mean and unit variance

and consider thie sequence of assets:

1 =Nl

fgzl}l. f;:?;lg

.‘f_; = i I's = ."‘_) ff, = .';‘;

- = i Fo = J?-_» Iy = I_}g Plo = 1t

This economy has no approximare A-factor structure for any finite & (in the setise of Chiamberlain
and Rothehild). The problem in this example is that there is no obvious way to assign weights to
assets 1o use i ranking the “factors” . 7m0 Coneretely, this means that it s difienlt 1o answer
questions like: Is 71 more significant i explalning asset returns than, save i, ? 1 we take a farge
sample of assets. i what ratio would we expect gy and 7,00 to be represented? And. in what sense
daes the nfinite sequence economy reflect properties of large finite asset economies L, = {F... .. Pkl

In fact, the hindamentals of 1two finite economies 1, and E,- mayv be very different from each other

e



when n' is much larger than ». making 1t difficult 1o see how either one relates 1o the infinite sequence

CCOTOMy.

These problems cannot be resolved by defining a probability measure on the sequence space becanse
any such measure will assign nearly vnit mass 1o the first noassets for large enough . The tail of
the sequence. which presumably holds a significant part of the defining features of the cconomny. s
left with negligible weight and hence under-represented. For example. it is difficult to construer a
meaningful sampling procedure from 7= {1.2.. ..} such that all assets have equal chance of being
represented. In the APT literature. this difficulty led to the relinnce on asymptotic statements which
hold as the number of assets increases to infinity, but with few implications for linite subsets of Oxed

s1Ze.

The peculiar problems arising in Example 1 do not arise in economies with a large finite nuniber
of assets or in economies with a continuung of assets. In Loth cases, one can be explicit about a
measure to use in making sense of wdeas involving statements like most assets, a typreal asset, and so
on. In fact. in Section 5.2, it 15 shown that these problems do not appear in the continuum-economy
analogue of Example 1. A useful analogy here is that of a large exchange economy comprised of agents
of one of two possible types, If we know all the features of the economy. e.g.. endowments. production
possibilities. the preferences of each tvpe. etes but not what the ratio of cach tvpe 1 the popularion
1. This would be an incomplete model about which little of interest can be saud about things like
equilibrium prices and allocations because these coneepts depend on the relative weight. or measure.

of agent types in the cconeniv.



2. THE MODEL

2.4 Assels and Returns

There is a continmium of assets represented n the measure space (7.7 where T = [0 1 and T
is the set of Lebesgue measturable subsets of T The supply of assets is represented by a probability
distribution = on (77 7) which assigns to cach subset 4 2 7 its weight 71} relative 1o the entire

asset market.

To fornalize the intuition of @ market consisting of a large nunber of negligible assets. it is natural
1o asste 7 1o be non-atomic. That is. each asset { has a negligible weight 7(¢) = 0 in the economy.
For simplicity. assume that 7 s the Lebesgue measure on (0000 All the results ga through if we nse
any other distribution on the space of assets provided it is absolutely continuous with respect 1o the

Lebesgie measure.

Assets have uncertain returns. Formallv, there s a probability space (002017} such that asset !/
piys o rate of return 7 (w) in state w € 08 Using L, 1o denote the space of random variables with
finite mean and variance, an assel relurn process s o function r: [0 1] — L, assigning a random

o~

return 7, € L, to asset £

Define the mner product (Fig) = [, rydl” and the Le-uorm of 7 is - 0 = (F10)5% Using
. fo +u : , i o

. var. cov to denote expectation, variance and covariance, respectively, we have (1 g) = covi{r. )~

:

FrEg oand B pt= varle) + (B Bold face letters will always denote processes (1e.. functions

from (0.1 iuto L) betters with atilde =77 will be wsed to represent random variables: and levrers with
a bar - 7 will denote expected values, Thus, 7 15 a random variable whose expected value s 0 The

svinbaol r then denotes the inction v - 77 -+ L, detined by vy, = 7.



The Covariance Structure of Asset Heturns

A process v determines an ecpected return funetion 00 0T — Rowhere EL(#) = rp s the expected
rate of return of asset t. In addition. we also have o covartanee function Cov o T x T — JR where
Cove{t. s) = cov(ip. 7y ) s the covarianee hetween the rates of return on assets £ and 5. The diagonal
{— Covp(F. 1) = Vare(?) delines the caranee funciton. The term covarianee structure will refer 1o the
functions £ and Covye (the subscript will be omitted when ris clear from the context}). A process r

has a measurabie corariance stracture i B and Covy are Lebesgue measurable” [ also maintain the

mild assumptions that £ 7 — B oand Vare T — IR are bhowded,

The function C'ov mav be thought of as representing the entries Cov(f, s) of & ‘marix” with a
continuum of rows and cohnnns, Cov s therefore a generator of the covartance matrix of cvery

possible finite subset of assets {#.- -4, } drawn from T

2.4 Idiosgncratic Processes

A process hois idiosyneratioif Coviy (4. s) = 0 almost evervwhere on 7' 7. This definition formalizes
the intuition that correlations in an diosyneratic process must be sparse’. so the corresponding risks
are negligible in the agereeate. Proposition Al in the Appendix shows that this definition is in fact

cquivalent to anv one of two seemingly stronger technical conditions on h.

Our definition of diosyneratie residuals 15 o natural extension of the standard definition of id-
losviteratic residuals for fnite sets of randon variables: An alternative {in fact equivalent) way to
interpret the definition is to sav that 1f we draw a subset of N assets from the anderlying economy
at random. then they will he uncorrelated with probability 1. In particular, the N x N covariance
Hiatrix corresponding to this iinite subset of assets will be diagonal with probability 1 (see Sections

and 3.6 tor more detailed discussion).



2.4 Factor Spaces. Projections and Factor Rotfalions

A factor space Is any lincar subspace F spanned by a finite subset of zero-tean randon variables
in L.. The orthogonal projection Proj,r of a random variable F € L, on 7 orepresents the f-fuctor
risk: toe.. the part of total risk that ean be explained by £7. The difference r —.r — Proj,. 7 is o random

variable orthogonal to the subspace Foand represents residual risk which cannot be explained by F.

It is often convenient to work with factors rather than factor spaces. A set of factors A =

{(;‘l(:;\} for I is any orthonormal basls for F (vel F o= spand. & = O t'ur((;;_.) = 1. and

cov (8. 65) = 0 for all k= 51 A set of factors A’ is arotation of A if they span the same factor space.
Orthogonal projections have a simple representation relative to a set of factors A:
llI'()_.]F.I‘ = .7’1(“1 -+ -)’]\'éj\‘.

where the s are real numbers called the factor loadings. or betas, of Frelative to AL and represent the
sensitivity or exposure of  to the corresponding factor risks. Geometrically, Proj .o is & coordinate-

lree description of the orthozonal projection of Fon £ while >, Jiéy is its representation relative 1o
i) . ik I

the basis {&... .. it

2.0, Eramples
Lid. Processes: A process hois an Lbd, process if. for every finite set of indices {#.... tv}
the random variables {fy ... .. By }oare independently and identically distributed with mean ;2 and

variance @. Clearly. ) 05 a constant function which assumes the value g The covariance funetion
C'ovy, is zero on 7% except on the diagonal where it is equal ta o, Obviously. h has o measurable

covariance structure and is. in fact, idiosvoeratie provided o= 0.



Finitely Generated Processes: A process g s finitely generated if there is a set of factors &0, S

stich that

I
gy =i+ E I T o— .

L=t
where oy 31,003 are bounded. measurable real-valued functions. Since g s bounded. Fg (1) = r
. S A )
aud Covyg (8] = k‘:l e .. the process g has a measurable covarlznee structure.

A0 Strict W-Factor Structures
A process r has a strict A -factor strueture 1 there is a K-Tactor space Fosuch tha
fr=ry = Proj.r -l (2.

such that (1) h is idiosyneratic: (2) Proj iy = 0 for 7 - aes tand (3) F is mnonal in the sense that

thers is no proper subspace F' < 7 with these properties.

This definition closely parallels the traditional definition of strict factor structure: The risk 7, —
can be decomposed into f-factor risk Proj, 7y and an idiosyneratic risk By which cannot be explained
by F7. The minimality condition ensures that Fdoes not contain superfluons factors which do not

stemficantly contribute 1o #7s ability to explain asset returns.

[fA={&.. 0 fpc b s any ser of factors for 1 then a process with a strict A-factor has the familiar

representation:

[ 1
(R

Fe =l b iy i (-

A rotation A of the factors will change the representation (2.2) by changing the factor loadings. b

will have no etiect on the decomposition of risk o svstematic and idiosyneratic parts,



3. ASSET PRICING UNDER STRICT FACTOR STRUCTURE

L this section [ derive exact factor-pricing under the assumption that returns have a strict factor
structure. While this assumption is strong, 1ts use simplifies the comparison between the framework
of this paper and much of the work on the AT where this assumption is commnion. Sections 5 and 6

will be concerned with the inplications ot dropping this assumption.

3.1 Portfolios

A portfolio w is characterized by Wts support {8, £, C T and a correspanding set of portfolio
werghts oo a,} C . The cost of a portfolio w is ((w}h = ¥ o, 1 follow the literature

by assinning that C'(w) = L so o, represents the percentage of the porrfelio invested in asset {0 A
necative a, retlects the possibility that asset ¢ is sold short. A portfolio w defines a random return

=310 ayry, whase expected return o and variance var(i) are defined in the usual way.

An arbitrage portfolio is the ditference between two porttolios. That s w is an arbitrage portfolio
iF it has the form w = w. - w .l which case w_ and w o will be referred 1o as the positive and
the negative parts of w. An arbitrage portolio costs nothing because iU inances the purchase of one
portfolio w . by short selling another portfolio w . The rate” of return of an arbitrage portfolio w s

the randonm vartable & = . - . S0 its expected return and varianee are o, — i and var{a — )

g2 Risk Promia and Arbitrage Opportunities

For simplicity, I will assume thronghout that there s an asset or a portfolio payving a riskless rate

s, Given this, it is useful to think of 7 as a snm
Feo= g (P = p+ (e — )
of:

1) N peskless rabe of refurn ~y



1) A pure risk Fyo-orp representing fluctuations around the expected return vy and

) An ercess refurn ov a risk preniiwn rp — = pald to compensate for these fhctuations.

More generally. eall a random variable a pare sk if 1t has zero mean. Our goal 13 1o define a
function ¢ which determines the risk premium paid for holding any pure risk generated by either an
asset or by a portfolio of assets. In addition. we also want ¢ to be continuous in the sense that if two
pure risks are close then so are their corresponding premia. Formallv, et L= ={r — 7 01 e T2 L,
denote the set of pure risks associated with the process v, and let span (L7} be the closed lnear space
spanned by L7 Then we seek a continuous lnear function o @ span(L7) — IR which s consistent

with r in the sense that w{F — ) = 1y = = for all &

[t is casy to find examples of return processes that are tnconsistent with any risk preminm funetion.
For example. it suffices that there are two assets t and s which have identical pure visks (ie.. 7 — 1y =

7o — ) but have different expected returns r, # .

The next result characterizes asset return procvesses which are consistent with a (norm) continuous
linear risk premium function, We will say that an asset return process voadmiids no avbitrage opportu-
nities if for every sequence of arbitrage portfolios {w* b var(ii*) — U implies v — 0. In other words,
an arbitrage opportunity would exist if one can, at no cost, make an essentially riskless investmen

that earns a return bounded away from zero.

PROPOSITION 1: There is a continuous lincar risk premium function v ;o span (L7} — I con-
sistent with v if and onfv if v adiniis no arbitrage opportunitios. If such a function exists. then it s

unigte.

This result confirms the relationship hetween the absence of arbitrage opportunities and the conti-
nuity of asset prices. a result which is well-known for the traditional sequence model {e.q.. Chamberlain
and Rothehild 5]). While additional restrictions on asset prices. such as positivity, may be natnral.

only continuity plays any role in the pure form of the A1



g Kract Faclor-pricing Theorem
Since r has a strict factor structure, the pure risk of an asset £ is the sum
IL'; — 't = [,I'i)..]’,xl;"; -+ h;.

If v is a linear (not necessarily continuous) risk preminm function consistent with ro then the risk
premmium on asset Fis the swm of a premium paid for holding the asset’s factor risk and & preminm

for holding its idiosvneratic risk:

== wfe =)

C(PTo]Fy -+ )

G(Prol, Foy = i)

The ability to eliminate idiosyneratic risk through diversitication in a large economy and the absence
of arbitrage opportunities suggest that no premium will be paid for bearing idiosyneratic risks, Fxact

factor pricing means that o () = 00 50 any exeess return paid for an asset must be due entirelv to

that asset’s factor risk. The next result provides an arbitrage pricing result for our moclel:

PROPOSITION 2: Ifr adinits no arbitrage opportunities, then for almost every asset f,

ry— o = c(Prol ). (3.1}

In particutar, if A = {&po0 0 én ) ds any set of factors generating 170 then there exist constants

Sl ~p. representing excess returns per umit of factor risks. such that the expected return on
almost every asset £ osatisfles:

fr=mg~dyp o+ Ik 4.2

The continuity of v hmplies that there s a pricing veetor p € <pan{L7} such that the premium
(P = ) is equal to the (inuner) product of 7, — rp with po [t s casy 1o see that =~ by - b g
Since the only risk within £ that earus o premium is the one spanned by po this might lead 1o the

1



conclusion that thie APT is a one-factor model {(the one factor being p). This. however. misses a basic
point: The APT s assumptions have little to say about the factor risk premia ~q... .. ~p (henee the
position of p within the factor space 7). These premia would depend on such things as consumer
preferences. endowments and market equilibrinm. on which no restrictions are imposed by the AT s
assumptions. Rather. the “bite” of the pricing result is in restricting poto lie in the factor space /7

spanned by {é.. .. &b (instead of being sorme arbitrary vector in span (L7)).

A4 Comparison with the Traditional APT

Deline the pricing eriov of asset by

= Jets - = ety

-z i,'(i{:).

That is. «a; represents expected exeess returus which cannot be explained by factor-pricing. aoud.

therefore. represents an asset-specilic premium. The traditional APT assuines an infinive sequence

... .. Fr. ...} with a corresponding sequence of pricing errors {a,} and reaches the familiar conchi-
sion:
~
3 . .
5 a, <. 3.3
n=l

This conclusion is often stated as a double approximation: The pricing error approcanafely equals

zeto for mast assets™ On the other hand. Proposition 2 implies:

/ r:f dr = . (3.1

Conclusion (3.3} is. in principle, consistent with a situation in whicli a,, 3 0 for every i, =0 not

single asset is correctly priced. while (3.1) iinplies that the set of assets which are exactly correctly

priced has measire one,

This difference is sienificant for practical as well as theoretical reasons. In practice. the pricing error
is assumed 1o be zero, wsually hecause “currently available statistical tests are not amenable to testing

12



approximate relationships” (Connor and Korajezyvk |

). Since the traditional APT {equation (3.3))

cannol guarantee zeto pricing errors for any asset. additional assumptions on marker equilibrinn.
investor” preferences and distributional properties of asser returus ave often introduced. Shanken (16
pointed ont that adding these assunptions means that empirical tests willl in fact. be tests of the
joint hypothesis of the APT plus these additional assumptions. casting doubt on whether the AP is

itself testable.

The dilference in the conclusions {3.1) and (3.3) can be explained as tollows. At a technical
level, the source is the difference hetween the measurable structures of the sequence and continuum
moclels. Let A, denote the subset of assets whose squared pricing errors exceed % One can show
that the absence of arbitrage opportunities implies that each oA, s finite. and therefore “negligible.” in
a market containing an infinite number of assets. The problem in the sequence medel s that, while
each A, Is finite. hence negligible relative 1o the entire economy. the limit )7 4, may be the entire
space of assets. which s obviously non-negligible. This breakdown in the continuity of the notion of
negligibility cannot occur in the continnum maodel because the comntable union of negligible sets st

also be neghigible.

The economic interpretation of the technical abservations made in the last paragraph hinges on
the ratio between the nmumber of assets needed for a given level of diversification and the rotal number
of assets available i the economy. This ratio s not well-defined for the sequence economy. The
continuum model. on the other hand. captures the basie intuition underlving the AT, namely that
the economy is very large relative to the extent of diversification needed to nearly completely eliminate

idiosyaeratic risk.

3.0, Alternative Approcches

An alternative approach that also vields exact factor pricing is based on the representation of the
space of assets as an inlinite sequence with a linitely additive measure in which each asset has zero
weight (see Werner [18]). Thix however. s not a measure space in the usnal sense. so many standard
probabilistic and statistical 1eols may be inapplicable to . For example. dominated convergence

13



theorem fails and the integral of a strictly positive hinction may be zero”  Moreover, it is not clear
how to define and derive properties of random sampling within this framework. Also. since there are
examples of sequence economies i which no single asset Is correctly priced. an snalogue of Proposition
Y-that the set of correcthy priced assets has full measure {iu particular. that it is non-crpty)-will no
hold for o sequence moedel. regardless of whether the underlyving measure is conntably additive or not.
Finally. economies modeled as purely (initely additive measures have a built-in discontinuity in the
limit which makes them difficult to interpret as models of large but finite asset economies. The reason
is that such interpretation is essentially @ statement of continuity berween Jarge finite madels and the

limiting infinite model.

Another approach that tries to civewvent the problems arising in the standard sequence model is
bised on the technigues of non-standard analvsis. Ina paper subsequent to this work, Khan and Sin
(1995, (11} use such techniques to model a large economy in which assets are indexed by an atomless
measure space. They arrive at asset pricing and factor structure results that are virtually identical in
substance and cconomic interpretation to those first reported in this paper. These inchude their result
of exact factor pricing of almoest all assets. optinmal extraction of sets of factors based upon a criterion
of explanatory power. the decompesition of risk inte factor risk and idiosyneratic risk. and the use
of an tufinite-dimensional analogue of the variance-covariance matrix to derive such decomposition.
Khan and Sun also show that asset prices are determined by their exposures to a benehmark portfolie.
in & CAPA-like relationship. Thev refer 1o this result as the munification”™ of the AT and the CAPML
As noted by the Associate Fedltor. the existence of such portfolic is & consequence of the continnity
of the pricing function (as in 3] or in Propositien T above}, However, the fact that asset prices have
a CAPM-like relationship to the pricing vector does not make the AP'T equivalent 1o the CAPAL It
is well-understood that, unhke the APT. the CAPAs conclusions require restrictions on individual
behavior and market equilibritnn, making the two theories profoundly different in assumptions and

implications {see. for exauple. 100 po 1787

11



4. IMPLICATIONS FOR PRICES IN

FINITE RANDOM SAMPLES OF ASSETS

Luagine an outside observer who s interested in inferring properties of the asset pricing relation-
ships in an unknown underlying cconomy using the linited information contained in a finite subset of
assets. Such inference is clearly groundless without a framework within which the properties of the
subset can be related to those of the underlving market. This is analogous 1o the case of a statistician
who wants to use a givenn. finite set of observations to draw general conelusions: It s necessary 1o view

the sample as a random draw from an underlving population according to some probability Taw.

To rationalize this inference. consider the question as a problem of statistical inference in which
finite subsets of assets are interpreted as randoin draws from the underlving asset economy. Thinking
of a given small subsct of assets as o particular realization of o sampling procedure provides the
necessary statistical linkage between the observed properties of the sample and the corresponding
properties of the market on which inference is based. This statistical interpretation is used (here and
in Section 6.2} to derive rather strong implications. [ begin with a formal description of the sampling

model,

4.0 The Sanpling Model

Let (7.7 ™7 be the set of infinite sequences of assets with the product g-algebras and define 777 1o
be the p-fold product of 77 which we view as asubset of T i the usual way, Points (4., te)y o T
will be interpreted as randomly drawn subsets of woassetso while (£ 000000 £ T will be interpreted
as a random draw of an entire infinite sequence economy. I will assume. for concreteness, that assets
are drawn independently using the distribution 7. Formally, sequences of assets (£1.04, .. € T are

drawn according to the product measure 7> on 7. The n-fold product of 7 will be denoted 7% and

will represent the probability law generating finite draws (#... .. fal

It is important to emphasize that the assumption that draws are made independently according
to 7 is made here as a simple way ta illustrate o basic point: One can view the continuum model as
A samiple space representing an outside observer’s abstract model of the economy from which finite

15-



samples of assets are drawn., Oune can, for example. extend this by introducing correlations and biases
i the way assets are sampled or by making the Likelihood of picking a particular asset depend on the
price functions. All that is required s 1hat the samipling law generates draws which are representative

of the underlying population {e.g.. samples will not be concentrated in a subregion of T').

. Pricing Result for Finite Samples

Combining the sampling model of Section L1 with Proposition 1 vields the result that there is

probability 1 that, in a randomly drawn Bnite sample. all assets are exactly factor priced:

PROPOSITION 3: Suppase that v admits no arbitrage opportunitios. Then. for amy sainple size

Proposition 3 is a statement about the properties of a tvpical or average subset of assets, rather
than about pricing errors in o particalar swneple, The point is that, while pricing errors can be large
in particular subsets. these subsets are unlikely 1o be drawn in the sense of the sampling model of

Section 11,

Proposition 3 shows only the testability in priveiple of the asset pricing relationships. The reason
for this qualification is that the expression a;, = O in {11} involves three quantities not directly
observed in practice: (1) the expected return on asset ¢,: (2) the factor loadings of each asset g, - and
(3) the factor’s risk premia ~p. However. estimating these quantities is an issue distinet from whether
the AP itsell is 1estable. The tocus of the debare about the theorerical feasibility of testing the
APT was whether the AT had any tplication at all for samples of fixed finite size. even assuning
that the quantities 1-3 are perfectly known. The siguificance of Proposition 3 is that it gives a sharp

affirmative answer to this question, !
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o3 Comparison with Tosting the Traditionad APT

The sampling model of Section L] provides an interesting perspective on the iimplications of the
tracditional APT for finite subsets of assets. Inour context. the traditional APT may be viewed as a
theory of pricing and returns for a fixed nfinite draw of assets (47, £3....). The theory provides no
sampling space (7.7 ™) or a sampling procedure 7 to explain how this draw was generated or what
relationship might exist between its properties and the properties of the underlving asset market. In
particalar. the concepts of ‘tepresentative” versis “exceptional” draws cannot be given formal meaning
i the traditional model, Lacking an underlving sampling story. the traditional APT does its best 1o
derive an asset pricing conclusion which s valid for any arbitrary sequence of assets, The asviptotic

conclusion Cu? < o appears to he the strongest such statelnent.
s Pl S

By contrast. the framework of this paper focuses on statements about the space of off possible
draws (T 7)) and interprets the drinwn sequence (#7. 45, ..} as the outeome ol a random sampling
experiment.  Interestingly, while for an arbitrary draw one can. at bhest. obrain o weak asymptotic
result. asubstantially sharper statement can be made about the probability-1 subser of representative

draws.

The reader might wonder whether an analogue of Proposition 3 can be obtained for the sequence
model by defining & sumpling strueture on (. 850 0) along the lines of Section L1 Anv such at-
tempt must confront the problem that a probability measure A on the infinite sequence will assign an
arbitrarily birge mass to the first N assets for large enough N Large samnples drawn using A will give

excessive weight 1o the first N assets. Sampling according to A will not produce a sequence analogue

to Proposition 3 because the APT is consistent with targe pricing errors in the first Voassets.



5. APPROXIMATE FACTOR STRUCTURES:

EXISTENCE, OPTIMALITY AND ROBUSTNESS

S0 The Erplanatory Power of Factor Spaces

Recall that span (L7) is the ¢losed linear space spanned by all of the form 7 — r. for sonme asset 1,
Let Froodenote the set of all factor spaces i span (L7} of dimension A =012 and let & he the
sot of all fintte dimensional factor spaces (Lo F = U o Fr). The crplanatory power is the function
U F — It defined by:

fyvartbroj, mdr

_}':1,‘ var( ) dr

ViF) -

A ={~..... fre b s aset of factors which span the factor space £, then we will write Ve &) to

denote V(F). Dhvision by ‘,‘:‘,‘ var{ry pd7 normalizes 1Voso that O < V(F) < 1 or every Fobut otherwise

plavs no role in the analvsis.!! [ assume throughout that ris a bounded asset return process with
measurable covariance structure. Under these assumptions. Propesition A2 in the Appendix shows

that 1V is well-defined.

To motivate the definition of V.onote that Proj, @ represents the part of asset #75 return that can
be explained by the factor space £ The numerator _f'..,. var{['roj, 7)) d7 represents a measure of the
average variation in returns that can be explained by I, Therefore. V{F) is the average variation
explained Ly Foas a percentage of the average total variation in asset returns. The reader might
el it useful to note the similarity between the definition of V{/7) and the standard detinition of

K7 in Statistics. Both concepts attempt to measure the average goodness of fit relative to the inear

subspace spanned by a given set of regressors.

It is worth noting that the fncion Vocan be alternatively defined in terms of the gross (rather
than the rates of ) return on assets. This awounts to medifving the measure v to take acconnt of
the market values of the various assets. \While this has no effect on the results at o technical level,
the interpretation of what constitutes a "good’ set of factors will, of course, change. Basically. the
nmeasure 7 s a oriterion tor ranking subsers of assers by their relative importance in the economy and
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what constitutes a good Gt will reflect that. This is similar to the usual definition of f2. reflecting

the implicit eriterion that all sample points are given the same weight.

5.2 Optimal Fector Eitraction

Oue way to think of the problem of fnding an approximate factor strieture is to follow o sequential
procedure: (1) Start with the factor (L{ that has the highest explanatory power: {2) “regress” ron r:; to
obtain a residual process ry in which all svstematic vartations cxplained by r“ Lhave been removed: (33
Repeat these twoe steps with the return process ra 1o extract a new factor r‘:_, and =0 on. The resulting
optanal sequence of factors {(‘l(;_, ..} generates a sequence of tactor spaces [y = span {r;l' ..... & ol

witl increasing explanatory powers. Fhe following proposition formalizes this intuition and shows, in

partienlar. that this sequential method of extracting factors is well-defined:

PROPOSITION 4: For any process r.

i} There is & such that V(¢7) 2 17(¢) for every factor &,
i) A optimal sequence of factors exists. That is. there is o sequence {8785} satisfving

1'(5[) — 1max 1'(5)

&

Viegd = HITIBN V(é) N=2.

SL{A )

Wil 1 has strict K-factor structure if and only i there is an optimal sequence of factars {¢

-~
—

with V(#5) = Vies,) = 0.

Recall that Example 1 in the Introduction desceribed a sequence cconomy with no approximate
factor structure. o that example. there wis no obvious way to rank two factors ip,, and g, according
to their explanatory power. By contrast, consider the following example which gives a continuune-

ceonony anilogue to Example 1:



Erample 20 Let {,} be a sequence of Lidirandom variable with unit variance and zero mean. Call
i process T eountably sonple if for every t.ry = §jy, for some e I we define A, = {0 cep = 0, ).
then the measurability of © hmplies that the 21, form a countable partition of 77 by micasurable sets.

and that V{7,0) = 74,0, Asswe turther thae 74,0 > 0 for all . so there s an inlinite number

of non-trivial factors.

In Example 2.1t is alwayvs possible to rank factors by their explanatory power. An approximate
factor structure can then be found by looking for a set of factors with the largest explanatory power.
By contrast. the problent i Example 1 was the lack of an obvious criterion to meaningfully compare

the relative size of the sets of assets whose returns are given by 7, il iy tespeetively.

G40 Gpland Approvimate Factor Structures

Approximate factor structures are useful because identify the most significant factors and discard
factors which contribute little to explaining asset returns. There are two reasons why such approxiia-
tion may be important. First. the underlyving process r nmiay be one with no strict factor structure at adl
{a5 11 the case of Examples 1 and 2). so approxiimation is the only wav 1o get a factor represeitation.
Second. the definition of & strict factor structure can. in some cases. be “sufficient]y stringent that 1t
s nnlikely that any large asset marker has o0 usebully small number of factors™. {Chamberlain and
Rothchild §3]. p. 1282}, Thus. even if a striet A-factor structure existed. A might be so Loge that
A more useful model would be an approximate factor model with L < A factors. To illustrate this,
consider the following example:

Erample 3: Let {5, 1 be as in Examples Land 2 and let 0 < b < a0 < 1. Detine the process v by serting
7= oon (a1 and 7, = 5z on {boa . Divide 000 into 2% equal subintervals (the end-points will nos
mattery. and let 7 = iy on the subinterval with the highest endpoints. 7, = 7y on the subinterval

inmediately to its left, and so on.

This process has strict factor structure with 2" -+ 2 factors. The number of factors needed to
represent assel Teturns using a strict factor structure increases exponentially with n. On the other
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hand. if & is close to 0 an approximate factor model with 1wo factors {72} perfonms well at

explaining ‘most of the variation in most of the assets.”

To formalize this. an eptimal L-factor structure for a process ris a factor space F, with ditmension
at most Losuch that it has the highest explanatory power among all other factor spaces of dimension a
most L. and parsimonious in the sense of containing no superfluous factors that make no contribution

to its explanatory power. Formally,

0 F salves

i) Py ois mindinal ding £ < Lotmplies V() < V(L)

PROPOSITION 5: Ifr hus a K-strict factor structure, then an optimal approxnnate L-fuctor

structure Fiooexists for cach 141

It is worth emphasizing that this result hias no comterpart in the sequence approach: If a sequence
economy has astrict factor structire with A non-trivial factors. ' then it cannot have an approximate

L-factor structure for any Lo< AL

T4 Asymptotic Properties

One often finds in the lHterature the imtuition that if sutliciently many relevant factors are included
in the model. one will eventually he able to capture nearly all svstematic variations i assel returns,
leaving residuals which are approximately idiosvneratie. Example | demonstrates rhat this intuition

is ditficult 1o formalize {let alone prove) wirthin the sequence model.

The next proposition confirms this intuition i the model with s continuum of assets by invesrigating
the asvinptotic properties of factor spaces as the number of factors mereases. Before stating the

theorem. we need the following two definitions:

1."‘(\[‘1;“ — Hll]) I‘(]‘)

FeF

PO — gup V().




PROPOSITION 6:

T

M SImax T
bR

Phy = VY as K — o for any optimal sequence of factors {¢

(i}....}:

1~

i) There exists a unigne mininal factor space Foosuch that VU = V(EF )

iv) The residual process hy = Fy — 1y — P'roj, Fyods idiossyieratic

Propositions 1-6 refine and sharpen a related result on the decomposition of risk in abstract settings
in Al-Najjar [1j. The key improvement here is that the present framework gives an efficient and

parsimonious way to extract the factors. This difference is crueial in applications: for exaple. il

r has a strict I-factor structure. thew, by Proposition | {i). the true optimal factor can be found.
AlNajjar (L showed only that there is a countable set of factors spanning the range of the aggregate
part of r.

The proofs oftfered here are also new. and in fact independent of the ones found in Al-Najjar 1.
The main innovation is the introduction of the function Vowhich. in addition to providing a better

intuition. also makes it possible 1o develop an elementary proof of decomposition (I'roposition A5

5.4, Reference Variables

In practice. the true factor space will not be known a priorl. Suppose. for example. that {#
is a strict factor structure for a given asset economy r. An empirical investigation will typically have to
relv on a set of prories or reference vartables to approximate these factors. Such proxies will generally
not perform as well as the true factors in explaining asset returns. but they might be expected 1o

perform reasonably well if they happen to be highly correlated with the true factors.

To fornmalize this. consider two sets of fuctors {80, .. St oand {0 MY Sinee factors are
1 I 1 IS

scaled to have norm one. (8p &) 15 the correlation coeflicient between & and 8. A sequence of sers

of factors {80 .. S converges 1o &L Aot ming{érid]) — 1 as n — x. In words. two
L Kin=1 ol L I LA R

o
[



sets of factors arve close if cach factor in the Hrst set 1s lighly correlated with the corresponding factor

in the second H(‘l.l‘,

PROPOSITION 7: Suppose that. for cach n. {(Ii‘ ..... r:}‘\-} is @ set of reference variables for

[e1, o éi ) with corresponding factor spaces P oand I Then ming{&, #y — | fmplies tha

VIF™Y) — V().

In the context of the sequence maodel, Reisman 113] pointed out that a set of reference variables
obtained through a slight pertarbation of the factors might not constitute an approximate factor
structure. This is problematic because estimates of the trae factors will typically be based on the
limited - and noisy - information available from ohservations of asset returns: so. they should not be

expected 1o coincide with the true factors in most situations of interest.

Proposition 7 shows that small errors In estitmating a set of factors produce only small differences
in the resulting explanatory power. In particular. i r has a strict factor structure with factor space
Foand if F7 is a set of reference variables suthiciently close to /0 then r has an approximate factor
structure relative to #7. The proposition therefore suggests that the lack of robusiness in the sequence
model is due to the difficulty in assigning relative weights to subsets of assets in 2 neaningful wav
To see this. note that while there is no difficnlty in defining a funerion analogous 1o V7 in the sequence
context. such definition requires an expliclt measure on the space of assets. But any such measure
will necessarily put amass of almost 1 on the irst N assets, for N large enough. thus ignoering assets

i1 the tail of the sequence.

3.6 Relationship Lo Chamberlain and Rotheiild s Definition

Fix the sequence economy {7, . /oo and let X5 be the covartanee matrix of the first NV assers,
| ) e T

Chamberlain and Rothehild 5] saxy that this sequence has ~an approximate fA'-factor structure if and

onlv i exactly B of the eigenvahies of the covariance matrices Xy increase without bound and all

other eigenvalues are bounded.™ (p. 12wy e



The definition of an approximate factor structure given earlier differs from Chamberlain and
Rothehild's in a munber of important respects. First, inour definition it is possible to evaluate the
relative performance of alternative candidate factor spaces. whileo in Chamberlain and Rothehild's
definition. a sequence economy either has an approximate factor strueture of some order A0 or it o

no approxitiate factor structure at all. Second. our definition allows for a ereater range of asset ve-

turn processes to have approximate factor strucrures than suggested in Chamberlain and Rothehild's

definition. Consider the return process in the following example:

Lie equal to L on the half open interval (,+‘

i, A is the charaeteristic funetion of (L1 L1 and so o,

Erample 4o Let i} beas in Examples 1 and 2. and define the process v =%, e by letting gy
: } and zero otherwise. Thus, Jpy is the characteristic

b

function of (

bodrawn randomly from T will fail 1o

With > -probability |, any sequence ceonomy {ry. 7
have a factor structure in the sense of Chamberlain and Rothehild. The reason. roughly, s that a
T ‘14 . ,IA] s0 cacl random

typical sequence will contain infinitely many points in each interval (
By contrast, it is intutively clear {and Proposition .

variable fp st be inclnded as a0 faetor.
formally proved) that © has an approxinate tactor structure becanse, for moderately Targe AL the set

of factors {ij. ..., i b owill be enough to explain the variation in returns on most assets. Chamberlain
and Rothehild™s eriterion of the nunber of exploding eigenvalues ignores the rate at which different

cigenvalues explode. In Example 1, the eigenvalue corresponding to 7, for large & explodes at a slower

rate than. sav, the one corresponding to f; .



6. APPROXIMATE FACTOR-PRICING

6.0 The Approximate Pricing Theorem

PROPOSITION &: Suppose that r admits no arbitrage opportunitios. Then for everv ¢ = (.
there is o W-factor space e oand a stubset of assets 1 C T with 721 > 1 — ¢ such that the pricing

error o velative to F for overy £ € A satisfies:
W= = g — U (l’mjf,h f‘,) < ¢,

The double approximation in Proposition 8 mighr initially suggest that the pricing result m this
proposition is sitilar to the approximate factor-pricing theorems in the sequence approach. A nuber
of important differences should be emphasized. First. Proposition 8 does not assume r to have cither
w strict or approximate K -factor structure. Second. the approximation in Proposition 8 improves as
new factors are introduced. This contrasts with the approximate arbitrage result of Chamberlain and
Raothehild [57 where the quality of the APT approximation is not defined. and so increasing the number
of factors had no dlear effect. Finaliv, the pricing formula in Proposition 8 has different implications

for asset returns and prices in finite subsets of assets.

The intuition for Propasition 8 may be explained as follows, Given an approximate factor space
Fre. Proposition 6 can be used 1o show that there is 2 unique linear subspace 1 such that the rave of

return on any asset § can be written (uniquely) in the form:
o= rp + l’m_],f.],r", <+ Proj, re + fig.
X
where fy is idiosvueratic. If there are no arbitrage opportunities. the risk premium funetion o will

have the properties asserted in Propesition Lso we may write:

Fp— g =L (T’I‘()j/,“ f',) + o (Proj,, 7)) — clhy).

The only difference between this equation and the corresponding one in Section 3.3 {(where a strict
factor structure is assinned) is the appearance of the term e (Proj,, 7). The terin Proj, 7y represents
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additional svstematic risks not captured by the factor space Fy (which T will refer to as If-foctor
risk). While an asset’s exposure to f[-factor risk will contribute to that asset’s excess return, a rich
enotegh e will ensure that 1most assels” exposure to that risk is smalll implying that 'roj,, 7 s close

1o Zero for 1mnost assets.

0.2 Pricing Resalt for Finite Subsels of Assels

For finite subsets of assets drawn randomly from the underlving asset economy. Proposition 9
roughly states that there is a high probability of drawing a sample in which a large pereentage of

assels are approximately correctly priced.

PROPOSITION 9: Suppose that ¢ admits no arbitrage opportunities. For every ¢ > (0 there is a

samiple size n and a factor space F € F such that

nuniber of assets §, with jag, | < e

H

One difference between this result and Proposition - for asset econondes with strict factor structures
is the role plaved by the sample size no In Proposition Lo plaved no roler in partienar, o lareer
sample size presented no advantage as far as testing the APT was concerned. In Proposition 9. the
approximate factor space & does not necessarily capture all svstematic risk. Thus. there may well be
a subset of assets in the economy with too high an exposure 1o f{-risks o have their excess return
adequately explained by F. In this case. a larger sample size is important because it reduces the

chance of drawing a subset in which assets with high exposure 1o H-risk are over-represented.

.4, Pricing with Reference Variabies

Consider a sequence economy with a strict factor space o Reisman argued that the traditional
APT's main pricing result 37 o3 <0 ¢ is valid with respect 1o abnost any factor space FThis result
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s disturbing hecanse f7 “might account for only a trivial fraction of the common variation in security

rerurns and still an APT approximation .0 must hold™ (Shanken {170, p. 1570).

I will now show that this situation does ot arise when the underlving space of assets s represenied
by 17 =10, 1] and point out that the disturbing implications of replacing the factor space by a set of

reference variables 18 an artifact of the sequence approach to modeling large asset markets.

For simplicity. assume that r s o one-factor asset return process 7 = & + by with no arbitrage

opportunities and let o denote its unique continuous pricing function. By Proposition 2, we have

clhe) = O except on a set of assets. oL of measure zero, If 67 € span(L=). # # &, is any reference

variable orthogonal to the idiesyneratie components by for all £ €AY then we must have o(6) =

ey = 0. So

C(Proi 7 = A ™ (&) £ e(e) = c(Prodi i)

for almost every asset 1. On the other hand. Proposition 2 implies that «f = (F, — o — o (P'roj; 7)1 = 0
for alimost every asset.  Using a to denote the pricing error obtained when the factor model is

misspecified as 7, = 4,8 + ke this implies that a4 # 8 for alimost alt ¢ henee

/ () dr > / atdr =0
e Jr

That is. the quality of the factor-pricing result {measured by the average pricing errors) deteriorites
as the true factor is replaced by a reference variable. This shows that the concerns raised in the

literature on the use of proxies are not serioits i a large economy with o continnum ot assets. Note

further that sinee (&' &) — 1. & is an increasingly accurate estimate of the true factor &0 So. the

quality of the approximation improves in the sense that .IT(”“— dr — 1"



7. CONCLUDING REMARKS

The underiving theme of this paper is that a complete deseription of an econemy requires an
explicit description of the relative weight. or measure, of subscts of assets Ina sense. the sequence
wodel is an incomplete description of an asset economy because it does pot allow for neasures that
appropriately reflect basic concepts that are central to the APT and factor analvsis. By contrast,
the model of this paper allows for measures that have a simple and natural representation. making i

possible to give a new perspective on sich issues as pricing. factor extraction, and sampling.

Within this framework. results for factor structures and asset pricing are derived. Some of these
results represent cleaner and sharper statements of known results or widely shared intuitions, thus
providing a plausibility cheek on the model. Other results are new with no counterpart in the sequence
model. illustrating the incremental contribution of the framework with a continumn of assets. It is
worth noting that while factor analvsis is cast  the context of asset pricing and the AT, the
concepts and results are valid in other contexts in which there is a need for a parsimonions and

tractable representation of individual risks i terms of common. cconomy-wide risks.

The factor-pricing results reporied here suggest that some of the critiques of the APT are Lronght
about by the particular formalism of an inlinite sequence of assets. This will hopefully focus the debare
on more substantive conceptual isstes concerning the AIYE's basic assumptions of absence of arbitrage
opportunities. svinmetric information about assets’ stochastic returns, strict factor structure, ... ete.
Finallv. while the paper vindicates the AT s basic elaim that ne-arbitrage assumptions impose strong,
pricing restrictions. empirical evidence against the APT is also more damaging within the presem
framework. compared to the traditional sequence APT which makes no definite prediction about the

likelihood of pricing errors in inite samples of assets,
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APPENDIX
PROOFS

Proof of Proposition 1:  Suppose that o is continuous and let {w¥} be o sequence of arbitrage
portfolios with corresponding positive and negative parts wh and w¥ . respectively. If var(id*) — .
then || (% — k) — (% — ¥ 31— 00 Norm continuity and the linearity o imply that o (% — o)

vt — by 00 By the definition of v, this means (r =) = (= Sl = ot — u"": — D, as

required.

Converselv. Let span, (L7} be the hnear space of all finde linear combinations spanned by L7 If
i € span (L) is the random rate of return on a portfolio w with support {£,..... t, } and weights
A, deline (i — ) = 37 0,1, — . This definition makes sense beecause if a0 is the rate of return
on two different portfolios woand w’ with supports ¢, #; and weights a; and aj. bur, say. Z} gy, >
3 oagd hen w-w! s an arbitrage portfolio such that var(a@ =) = O vet w—w’ # (04 comradiction
with the assumption that radmits no arbitrage opportunities. Sinee there is a riskless portfolio, inis

also clear that (0} = 0.

This shows that 2 can be extended linearly to all of span,(£L7). Note that span, (L7} Is a norm
dense linear subspace of span (L7). Sinee v is continuous (hence uniformly continuousy on span, (L7
v las a nnique continuors extension 1o span (L7}

Q.11

To prove Proposition 2. [ begin with simple characterizations which further clarify the structure of
idiosyneratic processes. Part (1), in particular, shows that the definition of an idiosyneratic process
aiven here 1s in fact equivalent 1o the seemingly stronger and more abstract definition in Al-Najjar
117 for general processes. Let Froodenote the set of all factor spaces in span (L7) of dimension & =
012, and let F be the set of all finite dimensional factor spaces (fe. F o= L2 Fro) Tt s also

convenient to define the set Foof all countably inhnite dimensional closed subspaces of span (L7,



PROPOSITION A.1:

)

1 is idiosyneratio fand only if for every randony variable r,ocov(r fiy) = 0 for almost every +:

——

h is idiosyneratio i and ondy i for every [T« F o P we flave by 7 — ae.

i
Proof:
i) Define /1 to be the closed linear spaced spanned by {Lt 24 e 0 U I h s idiosyneratic then for

i)

every !, ('()\'(}14 . !-:,) = 0 for almost every s, The linearity of the covarianee implies that this claim
15 also true for anv & & JI which 1s a hnite linear combination of elements in {iﬂ, Ste o}
Finallv, rhe elaim holds for any .7 in 1 by continuity of the covariance function. Finally, writing
the direct sum L, = -+ ff—. and noting that for any 7 € I~ we have r'm'{;},.'?:_q) = 0 for every

s € T.we conclude that for any 7 € L, cov(r fiy} = 0 for almoest every s

In the other direction. suppose that for every r.ocov(r by ) = 0 for almost every £0 Then for every

{, (‘()\‘(ix,.faﬁ) = Covit.s) =1t 7(s) — e so ‘]'.‘,. [Cov(s. 1) dr{ty = 0. By Fubini’s Theorem.

/ Covis. t) d7? = / [/ (‘(JY(.H‘.f)i(JJT:| dr = (.
JURT B L T

implving that Cov{f.s) =0, 7% — w50 his idiosyneratic.

One direction follows inmediately from the dedinition. In the other direction, suppose that h is
idiosyneratie. I/ < F then the definition of Fo implies that I has a countable orthononunal
basis {=1. 52 B From part (1) the fact thet I is idiosyneratic implies that for any £ Iy ooy
except {or #7% i a subset of assets 5 © 7 with 705) = 0. Dehne S5 = U2 5 and note that
(8} < Zfil 7{5) =0 For every £ € 5. we have Iy £~y foralt L= 1.2, Since I~y e
s a spanning set for f1. we conelude that By o M for all assets £ & 85, That s for all assets
autside a set of measure zero S are orthogonal to £ as required. This proves the result in the
case I € Foo Inthe remaining case fJ € F, the spanning set G is finite and the same argument
applies with only minor modifications.

Q.10
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Proof of Proposition 2: Lot r be an asset return process with strict factor space £ e Fo F
and continuous pricing function v Let {7, 0 a € A} be an orthonormal basis for span (L) where
A is an arbitrary index set. Since w2 is a continuous linear functional on span{L7). there i a vector
# & span{lL7) such that o{r) = (810} lor every 7 € span{L™}). By Theorem IV 10 of Dunford
and Schwartz 8. there Is o conntable subset 4 < A such that @ = 4, for every o ¢ 1 Deline
H = span {7, : a € A} so by Propoesition AL (i), Ae e [T+ 7 — e Since 0(F) = 0 for every 7 & [T+
by construction. we conclide that L‘LL{) =0, 7 — e

QED.

A more direct proofl of Proposition 2 using limits of arbitrage portfolios s also possible. The
advantage of the present proof (aside from being shorter) is that it better highlights the roles played
by the continuity of ¢ and the structure of Hilbert spaces. The economic reasoning enters in a subtle

way i the step that the union of negligible sets is negligible in Propuosition Al {ii).

Proof of Proposition 3: B3y Proposition 2. the set of correctly priced assets A satisties 7{4) = |

Thus.

HLIILes

where the second equality follows from the fact that 7' is a product measure.

QLD

To prove Proposition 4. 1 begin with three preliminary results which may he of independent interest.
It is important to note that the measurability of £ — var(f) is made only for expository convenience.

All the analvsis would go through if we define Voo be [ovar{Proj, rdr.
. Iy i,

PROPOSITION A.2: Assume that ¢ s bounded and Las a measurable covariance strucrure,
Then for any £ FUF . the function t — var(Pro] .7} is hounded and measurable. I particufar,

it var(re) s measurable. then V{7 is well defined.
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Proof: FPirst, since pis norm bounded by @ constant M || Proj,ry 1< 7 <0 for all £ Seconsd,
if {(zk}j\,‘:l is any orthonormal basis for £ then the measurability of the covarlance structure of r
(which implies weak weasurability by Proposition A1) means that § — ('(l\'(rzk. M)t = var(Proj, iy
is measurable for overy k. Since the &¢'s are orthogonal, var(Proj, 7y} = S var(Proj, 7). The
function ¢ — var(Proj,7) is measurable since it is the pointwise finit of the sequence of measurable
functions ¢ — Z.i\:l var{l’roj, #). Thus. the function f — var{Proj 7)) is a bounded measurable
function. so V7 is well-detined.

(Q.17.1).

PROPOSITION A.3:  Suppose that I FP e FUF are orthogonal and let Foo= span (2 1.
Then V() = V(I = V(I
Proof: Since £-5 F' = F.we have Proj,. & = Proj,.7 + Proj.0 and
var(Pro),. ) = var(Proj.o) + var(Proj..r).
The additivity of the integral implies:
/. var(lroj . r)dy = / var(Proj,. rydv + / var(l’roj,. ) dr.
Jr Jr i

The result new follows by substituting in the definition of V{# 1

Q.I15.D.

PROPOSITION A.4: Lot {&, - a < A} be an orthonormal basis for span(L°), where the index

sot A mav be uncorntable. Then there is a countable set 4 7 A such that V(&) = O if and onlyv if

a €l

Proof: Toreach n=1.2.. . define A, = {a V(o) = ;} [{ A, contained inlinitely many indiees
for some . then for any 1 we can find m distinet indices {a*. ... o A, Using Proposition A3,
we have Vispani{&ar. ... S F) = 20, Ve ) = 2% This s impossible since V() < Lorall 17 e £

We conclude that A, must be finte for each o, hence 4 = 04, = {a 2 V(&,) > 0} is countable.

D,



Since the choice of the basis {r-“,‘ soo€ A was arbitrary, the countable set of indices b may be
highly “inefficient”. For example. even if v has a strict one-factor strieture, the set (1 whose existence
15 asserted in Proposition AL may be infinite. On the other hand. this proposition is aseful bhecanse
it reduces the problem of searching for an optimal set of factors to a countable dinlensional subspace,

natnely the subspace spanned by {8, ca & A}

Proof of Proposition 4: (i) Recall the detinition V™% = suppe - V(F) < 2. Lot {4 be
a sequence of factors such that 1'((:'“) PP From Proposition Acb we may assume. without loss
of generality. that the sequence {7} was chosen so that it lies in a countable dimensional subspace
L' of L7, Since each ¢ has norm equal to one. these vectors belong to the unit sphere 137 of L' Dy
the Alsogln Theorem (8. Vo520 po 124]0 B s compaet in the weak topology on L, (which coincides
with the weak® topology in L), Since B s a sublset of the countable dimensional (hence separable)
subspace L. the weak topulogy on 137 s wetrizable. With some abuse of notation. we mayv therefore

assuine that there is a random variable &0 with | &° <0 1 such that &7 — 67 weakly.

Prefining d™ = 8" — &7, we have

[ n ol Fe dE = /(5“ LN
JF N

_ / 5 = m]'dr
S

L

/((i’--,‘-,)‘-’(ir— / (™| 7)) dt + / AT FNA By dE
4T Rl e

The fact that ' — 0 weakly means that the sequence of lunctions { — (4™ [ F¢) converges to (b almost

everywhere. This implies that the second and the third integrals converge to zero as n goes to infinity.
. I - E) = .

This and the assumption that [, F Proju 7y {7 df — VP imply thar [(475 Pt = Ve O

the other hand. since ¥ ( — ‘c" = (& ‘r‘,)“z dt = (& 'r,)"rh’. it must also be the case
e T S0

Sy

that ;: &7 H: I hence 1:'((;') .- l'lludx-

{ii) Apply part (1) to the process © to extract an opiimal I-factor space ¢ with corresponding risk
exposure function i, Write 1y = v - 35,¢]. The process ry s clearly bounded and has a measurable
covarianee stroncture. We ean therefore again apply part (1} to extract an optimal factor & for ro.
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Note that we must have ‘."'(5;) <V (rir) Write 1y = 1y — 385, Repeating the process produces the

desired ordered sequence of factors {6745, .}

(1) 1s trivial,

QL.

The complication in the proof of part (i} arises because the Alaoglu Theorem ensures only the
existence of wealk luuits for the sequence {(;’1‘ ..... r:}!\—}. While V7 is continuous in the strong {norn)
topology on L7, it is not continuous in the weak topology so we cannot pass to the it and conclude
that &7 s an optimal facter. The proof takes as candidate the weak limit &7 then show by hand’
that it is indeed optimal. This weakness of weak convergence in L, also explains the need for the
restriction that r has A-strict factor structure in Proposition 5. The carly part of the proof of pant
(1} can be extended to the sequence of L-factor spaces used i Proposition 5. However. the {weak)
limiting factors not only might fail to have norm one. bhut may even be correlated.

Proof of Proposition 5:  Let Iy be the strict factor space {or ro Let {7} be asequence of L-
factor spaces such that V(F™) 7 U0 We may assume. without loss of generality, that F7* © Fy for
all i For each n, write £7 = span {é. . &b and note that. by proposition A3 V(I =57, \'lr:f').
Since each sequence {5;‘} is hounded and lies in the finite dimensional subspace Fyo there must be
a & sueh that (I(" — (;; in nornt. Since the inner product is jointly continuous in norn. {("1 ..... (;;4}
is a set of factors. Since 17 s nornt continuous {tor an argument. see the proot of Proposition 7).

‘.'I:_n;x.\‘ = 1-'(;;1 ..... (“L)-

QI D.

To prove Proposition G. b first show the following intermediate result which further refines the

construction of Proposition AL

PROPOSITION A.5:  There is a unique minimal lincar space Fy © FioF, with V{7 = 17

Proof: Let A bea countable set of indices as in Propositton AL and define L7 = span{é, cn € .1},
It is easy to see that V(LY = V" and that for any L £ Fo owith V(L) = V™ we also have
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VUL ALY = Vs Thus, without loss of generality, we may assie that any L ¢ Fy with VL) =

VY s subspace of L

Detine I = {g e L7V (5) = 0b T hest show that fF 5 a closed linear subspace. Suppose that

- R o P . e
=3 it where V(i) = 0 for all oo This means that (74,0 = 0. except for £ inacset 43, 27
with 7(FB,} — 0. Thus. every ¢ in the set of measure zero 3 = 53, is orthogonal 1o each 1, hence
orthogonal to the snbspace they span. This haplies that 'l'((:} = 0. That ff is closed follows from an

argumoent analogous to the one used 1o prove Proposition 7.

To complete the proof. the equation L' = £ > H defines /' uniquely. Since V(1) = 0. we nust
have VIEL) = V™% 11 s easy to see that [y mnst be minimal,

Q.F.D.

Proof of Proposition 6:  Puart (i} is inmediate and part (ii1) follows from Proposition A5G, To prove

(i), it is enough to show that I = span{é; ép b Clearlv. & € £ Deline £7 by Foo=e I

Since & At s olear that &, must belong o 1:: Repeating this process establishes that & & F
for all &, hence span{é.dq. o b < P I the inclusion were proper, then, by the minimality of F' .
there is i € Fooowith i — & for all & such that V() = 00 But this would imply that V(7)) > i'[r{;_‘)

for at least one & (in fact infinively many &%), contradicting the assmmption that each & was selected

optimally,

To prove part {(v}i. recall that V() = 0 for any 7 € 'S0 Thus. | || Proj, 7 12 dr ~ 00 inply-
ing that Proj 5y = 0. 7 — ae t. Sinee ip = {ép. 80} Proj ry = l’l‘{)_j,i[[’1'<)_j,.‘ T [’I'UL,\, Feo=

Proj. Proj,.. 7 = E’mj“f‘t,.

QO.E.D.
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Proof of Proposition 7:

By the additivity of Voowe have V() = 57, V(&) and a similu
expression for V(F). It is therefore suthcient to prove that V{&)) — V(&) for each k
Since & converges 10 & i norm, we have, var(Proja f) = (7016

, 2 ~ 3 ; R
P — (7 ) = var(Proj; iy
for cach asset £ Since v is bounded. The Dominated Convergence Theorenn implies that

/ var(P'roj.. jrydt — / var{P’roj; )yt
Jr N X 7 g

as required.

D

Proof of Proposition 8:

I'he proot of Proposition 2 already established that:

7= o = c(Proje )

The lincarity of © implies

Fo— o= eiProg, ) = e(Proj i)
;

for any optimal A-factor space . Sinee ¢ Is continous. hence uniformly continuous. for any «

= ()
there is a > 0 such that var(r) < o inplies [0(3)] < ¢ Proposition G (1) implies that for any a = 0.
there is A such that {f : mr([’mj,l; 71 > a} < a. The conclusion of the proposition follows Ly
choosing a and K appropriately.

QLD
Proof of Proposition 9:  Fix« >
ey <

0 and apply Proposition 8 to obtain a K -factor space I ensurimg
¢ for all £ in a subset

{7 with #(4) > | — «. Since the draws are L. the proposition
follows by applving the Low of large number.

Q...
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2.

EXDNOTES

In this paper 1 focus on the arbitrage-ADPT model (eog.. Ross [1]. Chamberlain and Rothehild

5)). rather than the “equilibrinm-APT (e.g.. Connor ‘67 and Milne (121,

Pointed out by an Associate Editor,

Another iwsite, addressed in o companion paper (Al-Najjar ©27). concerns the rolustness of factor
structures to seemingly irrelevant repackagings of assets. A number of authors. beginning with
Shanken [L5. 16} and later followed by others (e.g.. Gilles and LeRoy 4)). argued that the factor
SUPHCTUre in a sequence economy can be arbitrarily changed as a result of repackaging’ asscts.
Using a model similar ro the one presented here. Al-Najjar [2] shows that when repackaging is
appropriately defined. factor structures ina continuun ceonomy are robust in the sense that
repackaging can never create new factors. See Al-Nujjar [2] for a more detailed discussion of the

literature on this problem.

This rate is obtained by dividing the gross return on that asset. which s o random variable denoted

fi- by the price of the asset (assuming this price s not zero). Thus, a theory of rates of returns is

also implicitly a theory of asset prices.

The existence of o non-trivial idiosvneratic component imposes certain restrictions on the nder-

tving probability space (£2.3,77). For example. this space cannot be generated by the a-algebra of

a complete separable metrie space. It is worth noting that the existence of such lirge probalality
spaces s guarameed by standard construetions using the Kehmogorov Extension Theoremn which

applies to arbitrary index sets (see. g o Ash M) Theoret LL30 po 1910

For example. 11 1s
straightforward to construct a probability space on which a continumn of Li.d. random variables

are defined. See Al-Najjar (1995, [LL p. 1199) tor further discussion.

The condition that Cov is Lebesgue measurable means that it s enough that Cov be measurable
. 3 . gy 3 - - ..

relative to the 73-completion of the measurable space (77,77, This is a weaker condition than the

condition of being measurable relative ta the product space (777721, Recall that the 77 completion

of (12, 74) is obrained by wdding all subsets of sets of 77-measure zero,
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A portfolio may be thought of as a signed measure with finite support. General signed measures
can be introduced as idealized portfolios. as suggested in Al-Najjer {1 Such a generalization would

have fittle iimpact on the results of this paper.
Formally. given any ¢ > 0. there can be at most a finite number of assets for which ja ;> (.
I thank Max Stincheombe for pointing out these facts,

Note that while we maintain the strong assumptions that the observer knows the primitives of the
cconomices (g, the betas and the factor risk premia) to better illustrate the main point about
testing, the qualitative resalt that all assets ina random sample are correetly priced holds for any
specification of the primitives {provided the measurability and absence of arbitrage assamptions

are met).

The measurability of the covariance structure does not require the variance function Var{f) ==
Covit. t) to be measurable becanse the dingonal in T x T has measure zero, so any of s snbsets ix
measurable by the completeness of the Lebesgue measure. For example. et h be an Lid. process
with unit variance and define the process 7, = h, for + € 4 and 0 off 4. Then Cov(f.s) is
identically zero except on the set A = {(1.4) 1 € A} However, 1 is measurable. being a subset
of the dingonal which has measure zero. This i so even when 4 s non-measurable, in which case

Var(t). being the indicator function of -1 will not be a measurable function.

It scems reasonable to expect that a stronger version of this result holds in which the assumption
that r has a A-strict factor struceture is eliminated. 1 haven™t been able to prove this stronger

version for the reasons explained in the remark following the prool of Propusition 1.
For example, A factors with betas uniformly bounded away fron: zero.

The decomposition in the present paper aned in 1]

are linear, in the sense that: (1) risk is writ-
ten as the swm of idiosvucratic and factor risks: and (2} the residuals are mutually orthogonal
{uncorrelated}. Since the absence of correlation does not imply independence. the residuals in o
linear decomposition of an asset’s return may stidl contain infromation that can help predicting

the rerurns of other assets. A stronger forny of decomposition is provided in Al-Najjar {1986, 311

3
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There. random aggreqate stales are extracted with the property that. conditional en knowledgze of

the realized aggregate state, individual shocks are indpendent.

One could have equivalently required (¢p 18) << =1 -+ ¢ since 1t is the space spanned by the sers of

factors which matter in the analvsis. The present definition simplifies the exposition.

More formally, let {300} and {47} be the sequences of the Ahand (K4 Dst largest (in absolute
value) eigenvalues of ¥y Then, the sequence econemy has an approximate f-factor structure if

and only if limsup Ay 0 = x while Inmsup A 1< .

This assumption simplifies the exposition, but can be dispensed with easily.

This follows from the Lebesgue Dominated Convergence Theorem, the continnity of v, and the

continuity of Proj. which implies that af — ;. 7 — a.e.

An orthonormal set ¢ = {~ .~ .} < ] s a basis for a Hilbert space I i I is the norm-closure
of the Linear space generated by ¢ That is. every I € 1 15 either a hinear combination of elements
of (7, or the norm-limit of a sequence of such Lincar combinations. The dimension of H is the

cardinality of any orthonormal basis for ff. Theorem IVOL L in Dunford and Schwartz (1953, p.

253) euarantees that this notion of dimension is well-detined.
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