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ABSTRACT

An exponential penalty function algorithm is developed. This algorithm
is also shown to be similar to the method of multipliers of Hestines [5]
and Powell [9]. The limiting convergence rate behavior is similar to

that of the method of multipliers



A Generalized Lagrange Multiplier Function
Algorithm for Nonlinear Programming

Consider the nonlinear programming problem (NLP)

Minimize f(x) (L)
xeE"
subject to
gi(x) <0 fori=1,...,m (2)

%

with an optimal solution x .

Penalty function methods [ 47 for solving NLP involve constructing and
solving a sequence of easier unconstrained minimizatias, where with each
iteration the penalty for infeasibility increases. In a like manner, barrier
function methods involve solving a sequence of unconstrained minimization
problems where the penalty for being near the boundary while feasible decreases,
As pointed out by Luenberger [ 6 , p. 289] a characteristic of penalty
and barrier methods is that they are not really iterative, that is, the trial
solution at iteration k - 1 is in no way related to the solution at itera-
tion k. An alternative gpproach that is iterative, the method of multipliers
[ 2, 5, 9], transforms NLP to a class of nonlinear programming problem with

the same Kuhn-Tucker points:

m
Minimize f(x) + r T [max(O,gi(x)):\2 3)
1=1

subject to
gi(x) <0 fori=1,...,m, )
where r > 0.
k k
Trial values of the Lagrange multiplier, kl,...,Xm at iteration k, are

then used to form a Lagrangian

m 2 . ™ ox
f(x) +r = EmaX(O,gi(X))] + TN g (), (5)
i=1 i=1

which is then minimized. Letting Xy minimize (5) we then update X? by the

following procedure:

k
A, if g.(x), €0
k+1 k —
IR t (6)
2r o (x Y +) k ntharwuiaca



Using this update procedure on the X?'s with r sufficiently large, a
Kuhn-Tucker point of NLP is achieved in the limit with very general
conditions on f(x), gl(x),...., gm(x) [ 217.

In penalty function algorithms the Primary goal is to determine a good
trial value for the primal problem with the trial dual variables a subsidiary
interest. The method of multipliers has a different focus. The goal is to determine
good estimates of the Lagrange multipliers which are used in the Lagrangian of g
nonlinear program with the same Kuhn-Tucker points as NLP. The Lagrangian is then

minimi , .
imized and improved estimates of the multipliers are determined. The main

importance of the trial x values within the algorithm is in estimating the new A's.
The estimates of the multipliers are improved by estimating the difference between
the trial values of the multipliers and the actual values of the optimal Lagrange
multipliers.

We present here an algorithm that estimates the percentage of error in the
trial multipliers and corrects for this error. The advantage of this approach
is that the algorithm becomes self-scaling. That is, the constraints need not
be multiplied by constants to transform NLP so that the multipliers are relatively
close to each other. Therefore, as an alternative to (3) and (4) we may con-
sider substituting the following set of constraints for (2) in NLP:

exP[rgi(x)]gi(x) <0 fori=1,...,m @

where r » 0. However, even if gi(x) is convex, exp[rgi(x)]gi(X) is not

necessarily even pseudo-convex. To remedy this we define

) 1
exp[rgi(X)]gi(X) if 8i(X) E
g, (x,r) = (8)
i
1-1 .
- e otherwise,
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Substituting (8) for (2) we have the following nonlinear program (NLP1):

Minimize f(x)

subject to
g;(x,r) <0 for i =1,...,m.
We now state two preliminary results.

Theorem 1.

a) (x,\) is a Kuhn-Tucker point of NLPl if and only if it is a Kuhn-Tucker

point of NLP.

b) 1If gi(x) is convex and differentiable for i = 1,...,m, then gi(x,r)
is convex and differentiable for i = 1,...,m.
Proof:

Part a: If (x,A) is a K-T point for NLP then
m—
vE(R) + T A, Vg.(®) =0
i=1 * 7

figi(;) =0 fori=1,...,m

i} > 0, gi(;) <0 fori=1,...,m

Now

VE(x) +

™3

; 1X¥gi(x,r)

(rg; () + Dexplrg, (x) Vg, (x) if g, (O 2 -
X,
1 1

VE(x) +

n~a

t 0 otherwise

VE(x) + g'i.(rg.(E) + 1explrg, x)1v g, (x) (by (12))
j=p T 1 i i

— m— —
vE(x) + 'Z Kngi(x)
i=1

1

la]

(11)

(12)

(13)

(14)

N

(10)
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with the second to the last equality holding by substituting O for gi(x)
when Xi > 0, by (12) again. Clearly gi(x,r) =0 if and only if gi(x)==0 and
gi(x,r) < 0 if and only if gi(x) < 0. Therefore, (;:x) is a K~T point of
NLP1l. For the converse we need only reverse the process in (14).

1
Partb: To prove b we need only show that for ®E

" veY -1 '
h(y) = {ye . (15)

v

-e-1 x < -1

is convex and monotonic, since the composition of a convex monotonic function

with a convex function is convex [ 7 ].
D (ve’) = (v + e (16)
Now (16) is equal to zero if and only if y = -1 making h(y) differentiable, and
(16) is positive if y > -1, that is, h(y) is monotonic. Finally,
pove’) = (v + e’ 1
which is greater than zero for y > -1, with the result that h(y) is convex.
Note that Theorem 1 holds for all r > O.

The Algorithm

We now state an algorithm based on determining trial solutions to NLPl and
prove convergence to an optimal solution to NLP.

Step 1: At iteration k given xlk,...,xmk with Xik:> 0 for i =1,...,m and given

r = where r, + ® gs k » ®» we minimize

s K 18)

letting x, be the x that minimizes (18).

Step 2: For i =1,...,m, let

k

Yy T \ik[rkgi(xk) + 11 exp [ryg; x)] 2

then set



_5—
k+1
= mi k
X min rUk, max(yi ,Lk)] for i =1,

where 0 < L< Uk’ L 0, U, o, r, L @, and Uk/rk +0 as k + »

.. ,m (20)

Return to Step 1.

We introduce Lk and U, as lower and upper bounds on the trial Lagrange multi-

k

pliers to ensure convergence of the algorithm. They do not, however, represent

. <. . . . k
much of a practical limitation. Admittedly, not allowing Xi = 0 means we always
have to carry along constraints that are not binding. The burden is not excessive,

. . 1 . .
however, since for these constraints V gi(x,rk) = 0 when gi(x)'f_- gl eliminating
k

a major part of the computation with respect to a nonbinding constraint in any
unconstrained algorithm. This algorithm is a member of the class of expotential
penalty functions as presented in Evans and Gould [ 3] and a variant of the penalty
function in Murphy [ 8].

We now prove convergence of the algorithm.

Theorem 2.
Assume (a) The feasible region is compact and nonempty

(b) x, € X a compact set

k

(c) r, - ®as k * =,

() &), gl(x),...,gm(x) are continuous
then any converéent subsequence of x), converges to an optimal solution of NLP.

Proof: Let Xy be a convergent subsequence with limit x. We first show that x is
u

feasible. Assume that x is not feasible, that is, gh(;) > € > 0 for some h

with 1 <h <m. By (d) we can say that there exists a K such that for k > K

k
g ; o . u
gh(xk ) > > - This means that as k = gh(xku,rk ) »®. Since X, 2 ij> 0, by the

definition of Lk the limit of the minimum of (18) is then + e which contradicts (a),

because (18) evaluated at a feasible point is uniformly bounded for all r. Consequently,

x is feasible. We now show that X is optimal in NLP. Because x* is feasible,
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* * n k *
f(x)> f(x) + = Xi gi(x s 53
i=1

o k
> f(x) + T Ay gi(xk,rk)
i=1 (21)
> £0x) + Ukm('il)
k

> £ * _
> £(x) Ukm/rk,

for all Xy since -1/r, is a lower bound for gi(x,r) for all x whether feasible or

k
not for i = 1,...,m and Uk is an upper bound for kik for i = 1,...,m. Taking
limits on the subsequence ku as k + o , f(x) = f(x*) or x is an optimal solution
to NLP.

The proof of convergence presented here is weaker than the proof
of convergence of the method of multipliers as presented in 2 ],
in that wekrequire 20 -+ @, However, none of the local duality conditions
that are necessary for guaranteeing convergence with r, bounded in the

method of multipliers are needed here. Also, in computational experiments

Bertsekas { 2] found it advantageous to update r,as is done with the

standard exterior penalty function, for example, setting r = a'r with a > 1.

k+1

From now on we assume that f(x), gl(x),...,%n(x) are convex and satisfy
Slater's constraint qualification. Using standard procedures { 4 ] the follow-
ing theorem can be proved:

Theorem 3:

Let x be an optimal solution to NLP. Let Vl,...,§$ be the limit of any

J‘ —

k k * —
convergent subsequence of Y1 SRR S Then x >Y{>+--5>Y_~ exist and constitute

a Kuhn-Tucker point for NLP and NLP1.



Convergence Rate Results

The convergence rate results are quite similar to those for the
method of multipliers. However, they have to be developed in a different
manner. We need to establish the following lemmas to determine our theoretical
rate of convergence. The proofs of these lemmas use the fact that the al-

gorithm converges which in turn uses r, S as k 3 m.

Lemma 1. Let I = {ilgi(x“) = 0}. Let Xlﬂ,...,kmm be the corresponding

ute ols
"~ w

dual variables. Assume Xl ,..,Xﬂl areunique and for all i ¢ I X; > 0,

Then for i € I, lim A

k =— %
ko L )

y; =,

1

Proof: By Theorem 3 and the uniqueness of XI,---,K;, y? - X; for i=1,...,m,and
since ka_ki S_Uk for k> K for some K by the strict complementarity assumption
%*
Lim min[U, , max (L, v =AT for ie 1, (22)
Ko k i i
or
lim X.k = X.x for i e I.
ko o T i

We now present our first convergence rate result.
Lemma 2. TIf the conditions of Lemma 1 hold, then

lim r, g.(x,) = 0 for i ¢ T . >(23)
K k=i 7k

Proof. TFor i e 1

k

Y; = kik rkgi(xk)exp[rkgi(xk)] + Xik(exp[rkgi(xk)]-l) + Xi . (24)

k
Since Yik and Xik have the same limit by Lemma 1, yik - Xi -+ 0 as k + = and

Xikrkgi(xk)exp[rkgi(xk)] + Xik(exp[rkgi(xk)] - 1) =+ 0. (25)

Since the sign of each term in (25) is the same as the sign of gi(xk), each
term must converge to zero as k + ». From either term we see that (23)

holds.



This result illustrates the superiority of the convergence rate of
this algorithm over penalty and barrier methods. Examining a barrier

method first, we have for the barrier function

m -1
f(x) - = '[rkg.(X)] (26)
2 i
i=1
evaluated at its minimum X
m 2 -1
vE(x) + 151 (reg; ()] " ve (x) =0 (27)

Now [rk gi(xk)]_l is uniformly bounded [4p.997) and for i ¢ I,rgi(xl)]—1 4
-1
. r - -
which means 'ry gi(xk)] 2 0, or r, gi(xk) + o, In like manner with the
penalty function

m
£x) + % T, [max(0,g, ()] (28)
i=1 1

any convergent subsequence of 2 T gi(xk) for i = 1,...,m converges to A .
i

the optimal Lagrange multiplier for constraint i, which we assume to be

greater than zero for i ¢ I. The conclusion we may draw is that the

algorithm presented here gives us an x, with gi(xk) converging to zero for

k

i ¢ T more quickly than the penalty or barrier function algorithms.

Also this lemma is important from a computational point of view. The

point - T, is where there is a discontinuity in the Hessian of g_(x,rk) that
1

could interfere with estimating the Hessian of the penalty function. Since

Xk for k sufficiently large,.

rkgi(xk) -+ 0, we know that for i € I}gi(xk) > -r
With the trial solution sufficiently far from the discontinuity it would seem that

nuymerical problems in dealing with this discontinuity should occur only as an

accident.



Let us assume that the constraints 1,...,p with p £« m are the binding
constraints. Since the gradients of the nonbinding constraints in NLP are
zero near the optimal solutions for ry sufficiently large, we need only con-

sider the problem (NLP2).

minimize f(x) (29)
subject to
gi(x,r) =0 for i = 1,...,p (30)
for determining limiting results on the convergence rate. Also assume Xi >0
for i = 1,...,p. Therefore, after a finite number of iterations Yi = k? for

i=1,...,p. Also by assumption f(x) and gi(x) are convex. Finally, we also
assume that either f(x) or a gi(x) for i = 1,...,p is strictly convex and
Vgl(x*),...,Vgp(x*) are linearly independent.

Using the notions of local auaiity 1n Luenperger | b, p. 321 ] we define

the dual function ¢ of NLP2

P
o (A) = minigum [f(x) 43 A, g,(x,rl} (31)
’ i®i
xcE i=1
where A= Xl...., XP)

The function ¢ is convex, since we have assumed f(x),gl(X),-~-,gp(X) to

be convex. With r, sufficiently large so that gi(xk) >-r ~ forl<icghp,

¢ has gradient [6, p. 321],

[ re () ]
r, g, (x
e 1N g ()
voky =| | (32)

gp(xk) i
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The gradient (32) 1s the direction of steepest descent for the dual
function. The direction of change for the Xi’s provided by the algorithm, however,
is

k+1

M e el e ()] A Semln g 0] - DL (33)

In the method of multipliers the procedure for estimating A% at iteration
k is to move in the direction of steepest descent from Xk. We see that (33)

is not the direction of steepest descent. The relationship between (32) and

(33) is now to be developed.

Let Vgl(x)
vg(x) = 3 R (34)
_Vgp(X)
let
[rkgl (x) + llexpﬁrkgl(x)] 0
H(r,,x) = . ) (35)
0 ... trkgp(x)+1]exprrkggk)]
let — —
kl 0
AQY) = - (36)
0 \
p
__ _

and let F(x) be the Hessian of f(x) and let Gi(x) be the Hessian of gi(x) for
i=1,...,p.

k
From this we can construct the Hessian of @ (A7) , [ 67.
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p
H(rk,xk)Vg(xk)EF(xk) + l?[rkgi(xk) + l]exp[rkgi(xk)]ci(xk)

i=1
1 (37)
+ rkvg(xk) '/\(Xk)H(rkxk)Vg(xk)] Vg(xk) ,H(rk,xk) !
The inverse exists because we have assumed strict convexity for one of the
functions f£(x), g,(x),...,gp(x). Multiplying and dividing by r, we have
LH(r, ,x )98 (x )[F(x)/ 4—5 e [ (x,)Hlexpl )]
r e VBRILE G iy B A Inlnee; (p)Hlesein g; (o) J6; ()
L (38)
"m ’ r
ACCRRICREICHEMEICRI BN ECORICHED S
Let _ -
SOk
1
Fk = .. ’ (39)
J Ak
e p ——d
that is A(Kk) =T T Now
" Tee
= ™ !
D M Ty = T M Ty (40)

1 P .k
= —;; Ty H(rk,xk) Vg(‘xk)[F(xk)/rk + i§1 Xi/rk[rkgi(xk)+1]exp[rkgi(xk)]Gi(xk)

/

+ 4 _]- ~ 4 4
(e ) TH(E L% )98 (x, )] Velx) ' Hr, x,) T -
Noting that H(rk,xk) - Ip as k + = by [9,p.2947 or [6,p.3217] we can say

lim r, Fk Mk Fk = 1. (41)
¥

We may now conclude.
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Theorem 4.

Let K:,...,x; be the corresponding dual variables to NLP2. Assume f(x),
gl(x),...,gm(x) are convex with one of these functions strictly convex. If
XW,~--,XW are unique for all i = 1,...,p and X% > 0 then the limit of r,

1 p i K Mg

as k » o is A(X*)-l where

where

ant 0
-1
A()\}'\—) = 1

-0 e 10
p
Proof:

=l -1
rkMk Fk Pk rkMkrkrk
42)
-1

-1
Tk [%k T My Fé] "k

Il

Since the limit of the bracketed matrix exists and is equal to the identity matrix,

the 1limit of the product is the product of the limits and

. -1 -1
lim r, M, = 1lim T~ I 1im T (43)
Ko k 'k K k Koo k

which is just AQW) L.

As a consequence, for large k the Hessian of @(X) is approximately

1 k, -
g Q) 1. This is different from the method of multipliers where for

k

large r, the Hessian of o(x) is approximately 5%— I. The key to the success

« k k k+1
of the method of multipliers is that the update of A~ to A is steepest
ascent on ®P(A) with the Hessian of ®P(\) approximately the identity matrix

divided by Ty That is we have approximately a Newton type iteration on
maximizing the dual function.

Let us see how the difference in the Hessians is accounted for in this

algorithm.



Theorem 5.

With the same assumptions as in Theorem 4:

k+l | k k
07T =2r AQ) [gi(xk,rk),--.,gm(xk,rk)]’+0[rkgl(xk),...,rkgp(xk)] (44)
where
h(x)
h(x) = o(x) means +0 as x =+ 0,
Proof:

Let us re-examine (33) for a single constraint i. Defining y = rkgi(xk)

we have
), L =L yed + Y - ). (45)

Using the Taylor's formula for e’, the term in the parenthesis in (45) can
be expressed as
2 3 21 3
y e +eY -1 = vty +% exp(zl)y +1+y+ %{"+g exp(zz)y -1

(46)

3
2y + 5 g’ + s exp(z, ) +% e><p(z2))y3

1 3
2y (14y) -By” + (5 exp(z)) +¢ exp(2)))y

2y (1+y+ 5 exp (z3)y2)*%‘)y2+(%exp(zl)+%exp(zz)- % exp(z3>')y3

2y e + o(y).

where 0 € 21> 2 z, £ y. Consequently

2’ 73
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k+1 Lk _ k
Noom Ay =2 g g (x) exp [re ()] + olrie (x))] (47)
Or
Kkl k _ k \
A -\ 2r, A )Fgl(xk,rk),-~~,gp(xk,rk)] (48)

+ [Ofrkgl(xk)],---,Orrkgp(xk)]]'

and the theorem holds.
Let us examine the implications of Theorem 5. 1In searching for the

unconstrained minimum of a function h(x) a Newton iteration from a point Xy is

-1
Kbl © Xp + 2[H(xk)] vh(xk) (49)

where H(x) is the Hessian of h(x).

Since the Hession of ¢(xk) for k sufficiently large is approximately

k, - k
AV 1, the inverse of the Hessian is approximately A (. ). From Theorem 5 we have

R 2 1097905 (50)
where the right hand side of (50) is a Newton iteration as in (49)

Because A(\) is a diagonal matrix, the updating procedure for Xk is
approximately steepest ascent with a transformation of scale in the vector space
of \'s. yithin the transformed space the Hessian of Y(?) is approximately the
identity matrix times % for large r

k
linear and dependent on the ratio of the largest and smallest eiginvalues of

K The convergence of steepest ascent is

the Hessian. Since the ratio of the eigenvalues of ® (3 ) within the transformed
space approach 1, we havearbitrarily fast linear convergence or superlinear

convergence.
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Conclusion:

Now that we have examined ®())> we can heuristically show the difference

in philosophy between this algorithm and the method of multipliers. The me-
. . k %
thod of multipliers tries to estimate the difference between A and X\ .
. . k *
Here, however, we are estimating the percentage of error between A and A
k

and correcting A with this estimate. At this point in time it is difficult
to say which algorithm is superior if either is. However, on a few small test pro-

blems the algorithm presented here was clearly superior to SUMT.
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