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Abstract: In a recurring game. a stage game is plaved sequentially by different groups
of plavers. Each group receives publicly available information about the play of ecarlier
groups. Plavers begin with juitial uncertainty about the distribution of types (representing
the preferences aud strategic behavior) of plavers in the population. Later groups of players
are able to learn from the history of play of earlier groups. We first study the evolution of
heliefs in this uncertain recurring setting and then study how the structure of uncertainty
and information determine the eveuntnal canvergence of play. We show that beliefs converge
over lime and. maoreover. that the limit beliefs are empirically correct; their forecast of
future public information matches the true distribution of future public information. Next.
we provide sufficient conditions to ensure that the play of any stage game is eventually close
to that of a Bavesian equilibrium where plavers know the true type generating distribution.
We go further to identify conditions under which play converges to the play of a trembliug-

hand perfect {(Bavesian) equilibrinm.
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1. Introduction

Notions of repeated games are useful for modelling strategic dyvnamic iuteraction in
economics, political, and other social sciences. They also serve as experiiwental tools where
convergence properties of various learning and evolutionary processes can be studied.

It is worthwhile to distinguish between two tvpes of repetition. The first type is a
repeated interaction among a fixed group of plavers, for example firms engaged in ongoing
olicopolistic competition. Formal models of repeated games deseribe such interaction and
there is a large game theoretic literature in this area. (We refer the reader to Aumann and
Hart (1092, 1991 for snveys and references.) A second type of repeated interaction. intro-
duced formally as recurring games in this paper. invoives different plavers at eaclh time. As
in a repeated game, in a recurring game a stage game is repeatedly plaved. but each stage
15 plaved by a new gronp of plavers. The repetition is important because each new group of
plavers may observe relevant information about the play of earlier gronps. Recurring games
capture the evolution ol social hehavior in multigenerational games, as well as interaction
that ocears frequently in an existing society. For example. most of the real estate transac-
tions which occur each vear involve different participants and can naturally be modeled as
a recurring game. Similarly, the numerous applications of a particular auction procedure
at different times and locations constitute a recurring game. Not ouly are recurring games
obviously applicable to a wide variety of problems of practical interest. they also provide a
wonderful laboratory for theories of learning and evolution.

Of particular interest here is the process of ratiomal (Bavesian) learning in the context of
recurring games. We study conditions under which play comes to approximate equilibrinm
play of the static stage games. and also identify interesting situations where such conver-
gence fails. In addition, we explore how recurring game results about rational learning can
be extended 1o include irrational plavers, long-lived plavers, and stochastic games,

Versions of repeated and recurring games have been used to study fictitious play. naive
hest response belavior, genetic and adaptive algorithms. Bavesian learning. and other learn-
ing and evolutionary systems, The important contributions to this literature are too numer-
vus to list here. but examples related to our work here include: Nash {1950) and Aumann
and Mascliler (19G7). as well as wmore recent work by Fudenberg and Kreps (198%). Jordan

(1991), Fndenberg and Levine (1093). and Kalai and Lehrer (1003).  Of this literature.



the closest in spirit to the approach taken here are Jordan (1991) and Kalai and Lehrer
(199311 Jordan (1991) studied a semi-rational repeated game Bavesian learning process
that leads players’ expectations in the long run to a Nash equilibrium. and Kalat and Lehrer
{1993) studied a rational learning process that leads plavers in a repeated game in the long
run to Nash equilibrinm play. Our work is built on the same mathematical foundation of
Bavesian updating and convergeunce of beliefs. but differs substantially in the tvpes of con-
clusions reached regarding convergence to various forms of equilibrium play. and the type
of applications addressed.

To nnderstand some of these differences. it is useful to note some overall differences
between learning in recurring games and learning in repeated games. In a repeated game,
for instance between a wife and a hushand or a parent and a child. plavers have the time
to learn to best respond to the actual plavers theyv face aud their chosen strategies. On
the other hand. in a recurring game. for example recurring single exchanges hetween pairs
of buvers and sellers. such opportunities are not available. Thus. recurring game playvers
who study the past plays of earlier plavers can at most learn the distribution of strategies
in the population of opponents, but not the actual strategy of their realized opponents,
So. in general, convergenee in repeated games may lead to Nash equilibrium play while
convergence in recurring games may lead to Bavesian equilibrium play. This might be
considered the ~bad news.™?

There is also some “good news™ as one changes from repeated games to recurring
ones. First, long run learning in a recurring game does not require that playvers live forever.
as it does in a repeated gane. Instead, ondy sufficient cumulative social experience must
survive with time. This means that one does not have to be as concerned with the speed
of convergence in recurring games. as one would in repeated games. Second, the imposition
on players’ rationality is less severe in a recurring game, In a repeated game a plaver must

solve an infinite horizon dyvnawmic optimization problem in addition to Bavesian learnineg.

I Although the learning literature is closest in terms of the approach to modeling behav-

ior. some evolutionary models are closer in terms of the fit into the recurring setting. For
istance. Young (1993) studies the evolution of conventions in a recurring setting: a game
is played consecutively by different plavers and some observations of history are available
to current plavers.

2 Of course. the news is bad ounly to the extent that one wants plavers 1o play Nash
equilibrium. There are games for which players are better off in ignorance. i.e.. for which
all Bavesian equilibrium outcomes Pareto dominate the Nash eguilibrinm outcomes.
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In a recurring game. the plaver’s horizon can be very short. significantly simplifving the
optimization problem. For instance. if the stage game requires only a single choice of action

by a plaver. then there is no incentive to experiment and the behavior is simply myopic.

While the above myopic phenomenon makes the recurring analysis simpler. it can also
create drastic welfare differences between the results of learning in recurring games versus
learning in repeated games, Examples in this paper show that individual incentives not to
experiment can lead to significant social welfare losses that may require social intervention.
such as aflirmative action. Experimentation by a playver results in an externality relative
to later plavers as it may help them learn. One can also find examples where the myopic

behavior and failures to experiment lead 1o social gains.

Another phenomenon which is typical to recurring games is that there mayv be iinpor-
tant differences in the information and monitoring between an outside observer, sayv the
econometrician or the public, and the actual plavers of a stage game. Plavers from current
or past stages of the game may know significantly more than outside observers who are only
exposed to public signals from each stage. For this reason. the perceived social explanation
for what is going on. mav differ from the perspective of insiders which takes into account
privately avaitable information and experience concerning pavoffs and actions which might

not be publicly observed.

In addition to the specialization to recurring games, the current paper also develops
some general results and techniques regarding rational learning. First. by allowing a sufli-
ciently rich set of beliefs in the minds of players. we obtain convergence to trembling hand
perfect (Bavesian) equilibriim, This contrasts with the previous learning literature which
obtains, at best, convergence to Nash equilibrinm. Second. a simple technique of repre-
senting plavers enables us to incorporate into the model plavers wlha do not learn at all, or
who follow other methods of learning, One application of this technique is to examine the
behavior of rational plavers in the presence of boundedly rational plavers. This is in the
spirit of the analvsis of Kreps, Milgrom, Roberts and Wilson [1982). A second application
of this technigue shows that we can apply the recurring game results to situations that
involve long-lived playvers. A third application allows us to adapt tlie wodel to capture
situations where the game is stochastic. i.e.. changes stochastically from one stage to the

next as a function of the social history.



The paper is structured as follows. In the next section, three examples motivate and
illustrate the approach and results. The following sections include the formal definitions for
the general model and sufficient conditions for social learning to converge to Bavesian and
trembling hand perfect Bavesian equilibrium play. Several additional examples illustrate
various violations of the conditions and show how convergence mayv fail. The paper ends
with a discussion of a method by which one can incorporate some long lived playvers and

stochastic games into the model, and some concluding remarks.,

2. Motivating and Illustrating Examples.

Our first example shows a failing of learning in recurring games. We start with it
because it highlights some of the differences hetween the recurring and repeated settings.
In this example. social learning fails even with fully revealing signals because individuals

do not have socially efficient incentives to experinent.
Exaserre 1. Failed Social Learning: The Neod for Role Models and Affirmative Action,

Consider the members of a population facing the option of taking on a certain task.
e.g., attending law school. Tor the purpose ol this example, divide the population into two
tvpes, those who would succeed at the task and those who would fail. An individual who
suceeeds receives a pavoll of 1, while an individual who undertakes the task and fails has a
pavofl of -2, Not taking on the task results in a pavofl of 0 for either type.

Without knowing lis or her own type’

a member of the population decides whether
to take on the task based on the tvpe distribution in the popolation. For example. if
the distribution of tvpes in the population. r. is such that ¥ of the population would
suceeed. then the Bavesian equilibrinm (optimal decision) refative to this prior 7 is for
every individual to take on the task {8 x 14+ .2 x (=2) = i > 0).

If. however, members of the population are not sure about the distribution of tvpes in

the population. then less desirable social outcomes are possible. Suppose. for instance, that

3 This is easily fit into a Bavesian model as follows. Introduce a second plaver called
“nature” . whose type is either “succeed” or “fail”. and who has no strategic role in the
game (i.e.. give plaver 2 only one action). The first plaver has only | tvpe. but his or her
pavoff depends on the realized type of plaver 2. This type of construction is described in
detail in Harsanyi (1967-68).



members of the population helieve that it is equally likely that the population is deseribed
by 7., which is just the reverse of 7. That is, under 7. .8 of the population will fail. and the

Bavesian equilibrium is to not take on the task.

Given the initial bejiefs of the population that 7 and 7 are equally likely. the first
weniber of the population sees his or her chance of success as .3, and given the asvinmetry
m payells (i.e. the higher cost of failure) chooses not to undertake the task. This means
that the second member of the population to make this decision wili have the same available
information and will also choose not to undertake the task, and so forth. If = is the true
distribution, then since no ane takes on the task. no one plays the optimal strategy relative
to 7. In this case. social Iearning fails, and indeed, this example violates the sufficient
conditions for social learning that are presented in Section 6.

While social policy is not the subject of this paper. notice that being aware of the failing
of social tearning above has poliey implications.  The social equilibrium has important
informational externalities that are not taken advantage of. That is. if early individuals
could be convinced to take on the task. against their own perceived individual incentives,
with high probabifity their suceess rate will be observed by later individuals who will update
the beliefs to put higher probability on the optimistic prior 7 when it is the true distribution.
[t that case. after suflicient]ly long the optimal strategy will be for members of the population
to take on the task.

This example illustrates a notion of positive affirmative action and role models. It
would be ta the benefit of the group as a whole, even if thev are not sure whether 7 oor 7
is the case. to induce early members of the population to undertake the task so that in the

case 7 role models™ will be ereated for the henefit of the large population to follow,

As a further remark on affirmative action, note that the incentives must be such that
they do not obscure the suceess of the individuals. For example. giving a population schol-
arships to law school, but not changing the bar exam requirements, will serve this purpose
{unless the exan requirements are to be permanently changed). as changing the reguire-
ments would produce less useful signals of the true distribution in the population.

The above example also illustrates clearly the difference between a recurring game and
a repeated game. If taking on the task was a repeated action available 1o a single patient

individual, then it would pay that individual to experiment in early stages. becanse of the



potential benefit from learning his or her abilitv. Moreover, in the repeated game. the
individual would learn about his or her own tvpe, rather than the distribution of types in

the population.
ExaMsMPLE 2. Learning to Coordinate in the Presence of Boundedly Rational Players.

Consider a classic "Battle of the Sexes™ game which is plaved recurringiv. The pavoffs

are pictured below,

A B
A 2.1 0.0
B 0.0 .2

In addition. ronsider that some plavers may be “boundedly rational” who follow a
naive best resporise strategyv, nbr for short. Such a plaver matches the last period action
of the oppasite sex playver. Yor example. an nbr plaver in the role of player | at time ¢ + |
adopts the action chosen by the plaver in the role of plaver 2 at thine t. (Let first period
nbr plavers randomize equally over A and B.) Thus. an »nbr plaver is implicitly assuming
that the other plaver will choosge the same thing that his or her predecessor did.

Assume that in each period. when a new pair of plavers is randomly drawn indepen-
dently of each ather and past plavers. they may be either Bavesian rational players or an
nhr tvpe. Fach plaver knows only his or her own type and the social history of the actions
chosen by both plavers in each stage preceeding their stage.

We begin by finding the Bavesian equilibrinmn strategies in tiie recurring game where
the tyvpe generating distribution 7 is publicly known to all players. With that in hand we
will come back to the case where 7 is unknown. Suppose that under 7 the probability of a
plaver being an nbr type is o (7{ndr) = 1), and of being a rational tvpe is .6 (t(rat) = 6}
The behavior of nbr plavers is ecasily predicted based on the play of the previous stage.
We can thus compute the following Bayesian equilibrium strategies for the stage game at
timme £+ 1. where f > 1. by examining strategies of rational plavers and requiring that they
be best responses 1o the distribution over the strategies of other rational playvers and ubr

plavers
Clase 1. Actions were (A A) at time {.

G



The nbr types will play A at time ¢ + 1 and this is also the unique cquilibrium strategy
for a rational player in ecither role. (A rational row player expects that the column plaver
witl play A\ with probability at least 1, which makes A a best response for a rational row
plaver. Then given that all row plavers will play AL this is the unigne best response for a
rational column playver as well.) Thus the equilibrium actions in a stage following a stage

of () will be (ALN) with probability 1.

("ase 2. Actions were (B.13) at time t.

This is similar to case | and so the equilibrinm actions in a stage following a stage of

(B.B) will be {B.1B) with probability 1.

Clase 3. Actions were (AB) at time £,

In this case nbr tvpes will play {(BoA) at time t + 1 in their respective roles, Hlere the
only equilibrium strategies for rational plavers are to play (A.B), 1n thelr respective roles,
Rational plavers are swaved by the nbr tvpes and play the opposite of them in an attempt
to match their connterpart. (Matching the other player if that player is an wbr type leads
to the highest pavofl, while matehing the other plaver if that plaver is rational leads to the
lower pavolf.) Thus. the equilibrium actions in a stage following a stage of (A.B) will be:
{AA) with probability .6x.1, (B.B) with probability .6x.1. (A.B) with probability .6x.6,

and {B.A) with probability 4x i

Case 1, Actions were (BLA) af time 1.

In this case nhr types will piay {AB) at time £+ 1 in thelr respective roles. For rational
plavers. however, there are three sets of equilibrinm stratesies. Rational plavers could all
play A with probability oue in their respective roles. Rational plavers could all play B with
probability one in their respective roles. Rational playvers could also all randomize, to place
probabifity 1/9 on their respective favorite actions and 3/9 on the other action.

I the fivst equilibriiom. the actions in a stage following a stage of (B.A) will be: (AA)
with probability .6 and (A.B) with probability 1.

[ the second equilibriutn, the actions n a stage following a stage of (B.A) will be:
{(B.B) with probability .G and {A.B) with probability 4.

[n the third equilibrium. the actions in a stage following a stage of (B.A) will her (AALA)



with probability 2/9. (B.B} with probability 2/9. (A.B) with probability 1/9. and (B.A)

with probability 1/9.

Notice that the cases of plaving (A.A) and (B.B} (that is, Cases | and 2 above) are
absorbing when rational playvers follow their unique equilibrinm strategies. Notice also that
under recurring plav. cases (AALRB) and (B.A) must (with probability 1) eveutually lead to
one of these absorbing cases. We can thus conclude that in an equilibrium play of the above
recurring game, where 7 1s known. plavers will couverge to coordinate forever on (A.A) or

(B.1).

Now let us consider what happens in the above situation if 7 is not known to the
players. Different equilibrinm strategies may be realized. depending on the initial heliefs
of the plavers concerning the relative likelihood of other tvpe generating distributions. For
example. plavers might believe that it is possible that an alternative 7 describes the relative
likelihood of rational and »lr tvpes, More generally, plavers may allow for other type
generating distributions which assign probabilities to other types of irrational plavers. For
instance. they may believe that tlhiere are types of plavers who alwayvs play their favorite
action. or plavers who best respond to what nbr’s would do. ete.. Clearly. there is a large
set of type generating distributions of which the above 7 is only one.

Our model captures this game with uncertainty about the type generating distribution
7 (the uncertain recurring gane) as follows, First, a tvpe generating distribution is randomly
selected aceording to a commaonly known prior distribution I'. No one is told any information
about the realized 7. Next, the recurring game proceeds to he played. with plaver roles filled
according to this unknown realized distribution 7. As the game progresses, however. new
plavers can update their beliefs about the realized 7 based on the observed actions of plavers
in earlier stages,

Qur theorem regarding convergence to Bavesian equilibrium { Theorem 1, below) has
strong implications here. Applied to this example it states that late plavers of the uncertain
recurring game must play close to the Bavesian equilibrium strategies of their stage game.
as if they knew the realized 7. Moreover, additional conclusions of Theorem 1 are strong
enough to preserve the the absorbing properties of the plavs (A A ) and (B.B). So even if the

equilibrium playvers started with a highly diffuse prior aver the distribution of types o the



population. allowing for many types of houndedly rational behavior. they will fearn to play
as if they were plaving a Bayesian equilibrium relative to the realized distribution. And. in
particular, if the realized 7 is the one we described earlier. then play will be absorbed to a
recurring playv of either (AJA) or (B.IB).

We will return to a proof of the above conclusions (concerning absorption) after the

formal presentation of the results,

As mentioned in the imtroduction. some of our results provide conditions under which
plavers will learn to play trembling hand perfect Bavesian equilibrium. In the previeus
examples there was no distinction between the Bavesian equilibria and the trembling hand
perfect {Bayesian) equilibria of the static games. Thus. there was no room to distinguish
hetween learning to play Nash equilibrium and learning to play a trembling haund perfect

equilibrium. This distinction is made in the following example.
ExXaMPLE 3. Learning to Coordinate on a Perfect Equilibrium,

Consider a three plaver game where pavoffs are known and given in the following tahle.
where player 1 chooses a row, plaver 2 chooses a column. and playver 3 chooses a matrix.

iy i3

(8 ) a2 M
I 1.1.1 1.1.1 aq 3.3 0.0.0
w L1 1.1 [T {1.0.0 3.3.3

In the right hand matrix players | and 2 play a coordination game. while in the left hand
matrix the pavofls are constant. Plaver 3 can thus play @3 and hope that plavers 1 and 2
coordinate. or play a3 and get a lower but sure pavolf.

There are continua of Nash equilibria to the above game. There are 3 trembling hand
petfect equilibria of the above same: (ay.as.@y) (T @2, a4y). and (1/2.1/2.75). where the
1/2 indicates an even mixing over the twe available actions. All the trembling Tiand perfect
equilibria involve plaver 3 choonsing @3. while there are Nash equilibria which involve plaver
3 plaving as.

Consider a situation where all plavers are rational and they know the pavofl table (and

this is all common knowledge). In this situation. there are still a multitude of equilibria



of the stage game from which to choose. The uncertainty that players face is thus strictly
strategic, In this example. a player’s tvpe Is simply an indication of what strategy they
employ after each history. Plavers learn by observing the actions chosen in previous stages.
For instance, all that matters 1o a first stage plaver 3 is his or her beliefs over the actions to
be chosen by the other plavers. Thus, a tvpe of the other player is what strategy they play.
If player 3 has initial uncertainty which places high enough probability on coordination then
3 will choose 3. and otherwise 3 will choose ay. Over time plavers will observe past playvs
of the game and learn to correctly predict the actions that will be chosen in subsequent
stages. Thus. they will learn to coordinate on an equilibrinm. The question is whether that

is simply a Nash equilibrinm. or a trembling hand perfect equilibrium.

(lonsider the stratesies (@.a0.ay). which constitute a Nash equilibrium that is not
trembling Land perfect, We argue that if players have “full subjective uncertainty.” in that
they never completely rule out the possibility that the other players will play any action
combination. and if plavers 1ypes are with low enough correlation. then they could only
learn to play a trembling hand perfeet equilibrinm. Suppose to the coutrary. that over time
plavers have learned to coordinate on (@y.ay.ay). Thus, they play (7. a;.a3). bt each
plaver still has beliefs that place some probability on the event that the other plavers use
any other combination of actions. Plaver 1 still believes that there is a positive probability
{however small) that 3 will plav @3. As long as playver | does not believe that this action
of plaver 3 is highly correlated with plaver 2 plaving @p. then it is better for | to play a;.
rather than @;. This means that @, could not be a best response to plaver I's beliefs and

s0 {(@y.as.ag) could not be the result of rational learning.

It is clear that the role of the coreelation in the beliefs of plaver § concerning the
possible actions of plavers 2 and 3 is important in the above example. Given full subjective
unecertainty, this correlation determines whether convergence ends up being to a trembling
hand perfect equilibrimin. or to an undominated Bavesian equilibrivm which might not he
trembling hand perfect. This is explored in more detail in Example 7. Theorem 3. and the

concluding remarks.

We turn now to a formal presentation of the maodel and resulrs.
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3. Recurring Games

In a recurring (Bavesian} game. a stage game is plaved at each time f € {1.2.3....}.
New plavers are randomly drawn at each time { to play the stage game.

The stage game is a standard Bayesian game described by a list (V. {00, }ien. )
with the following interpretations. The set N = {1.2.....n} describes plaver roles with -1;
describing a finite set of {pure) actions available to a player in role 7. 24 = Ay x - X Ay
describes feasible action combinations. The notation A(A;) denotes the mixed actions
available to a plaver in role i, Each ©; is a countable set describing the possible types
of a plaver in role iL and © = O x --- x O, describes profiles of plavers” types. 7 is a
type generating distribution, which is a probability distribution defined over the profiles of
types in @. Plavers™ pavoffs depend both on the vector of tvpes and the chosen actions.
Plaver i's preferences are represented by the von Nenmanun-Morgeustern utility function
wi 1 Ax 0O — IR Utilities are bounded: there exists a finite M > 0 such that |u{a.8) < M
for all @ and 4.

To describe the recorring game, it is necessary to define the wav in which information
becomes availahle from each stage. 5 is the countable set of possible publicly observed
signals. with generic element s € 5. Fach vector of stage game actions 2 € 4 and type
f € O results in signals according to a probability distribution ji, s defined over S A (social)
history of length £ denoted kit is a vector of publicly observed signals (s}, 5% ... . stye St
Plavers at time / = 1 will not have observed any signals. so we adopt the convention that
s = {0}, Let 1T = s U (USY) be the set of all possible social histories.

A playver in the recurring Bavesian game is denoted (i.1). representing the playver of
role ¢ at time £. The reeurring Bavesian game is thus described as follows.

Initially {after history @). a vector of types 8! is randownly drawn according to 7. Fach
plaver (. 1) is informed of his or her respective ). Next, each plaver {i. 1) chooses an action
al € A;. Plavers ave paid w;(a'.8') and a sigual s is randomly drawn according to p: 4.
h1' = (s') becomes the publicly known social history {(of length 1). In the second stage. a
new vector of types, #2, s is randomly drawn according to 7 and each new player {7.2) is
informed of Lis or her respective type 87 and chooses an action a; € ;. Players are paid
wi(@®. #*) and a signal 5% is randomly drawn according to ji,z 42. The next social history is

h? = (s1.6%). The recurring game is defined inductively in the mannoer just described.
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Strategies for plavers in a recurring gawe are represented by maps o, - I x0; — A(A;).
which prescribe a mixture over the possible pure actions available to ecach plaver role as a
function of the realized tvpe in that plaver role and the observed listory up ta that stage.?

The utility of a playver in the recurring game for a given profile of strategies is defined to he

the expected pavoll in the obvious way.

Uncertain Recurring Games

In a recurring game, if the playvers know the distribution according to which types
are drawn (7). then the analysis is similar to the analvsis of a static Bavesian game (as
developed by Harsanyi {1967, 1968)). It differs in that the history of previous stages may
serve as a correlating device. If the plavers do not know the distribution . then history
also plays an interesting role in learning. This s the focus of our analysis and is captured
as follows.

Let M(©) be a set of probability distributions over @, The uncertainty of players is
represented by 'L a probability distribution over M (@). We assume that T has countable
support, and thus also assume that M (0} is countable. Prior to the start of the recurring
game, a type generating distribution 7 € M{0)is drawn according 10 the known distribution
I'. The playvers then proceed to play the recurring game without any information about the
realized 7. However, since players in each stage know I' and see the history of previous play.
over the course of the uncertain recurring game. they update T according to the abserved

history of public signals and their own type.

Remark: It is important that we have modeled the uncertainty in the form of a prior over
priors. The game is “doubly Bavesian™ in the sense that playvers of anyv stage are unsure
as to which Bavesian game thev are plaving. They learn about which Bayesian game they
are plaving from updating based on the sociat history. If one tried instead to model this by
stiuply endowing players with a possibly incorrect prior over tvpes. then there would he no

way for players to learn from the social history.

Remark: We requirve that all players start with the same uncertainty 1. This consistency

assumption 1s common in the literature on Bavesian games. Nevertheless, this assumption

1 Notice the convenient abuse of notation. A full description has o as a function of i.1.

since cach pair {1.f) is a new plaver. However, since ¢ 1s identifiable from a history., we
economize on the notation,
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is restrictive to the degree that heterogeneity in beliefs over diflerent 7's conditional on
histories cannot be incorporated into the type space. As will become obvious, the basic
learning and convergence to equilibrimin results are not dependent on the common prior.
and extend easily 1o the case of diverse priors. The modifications which are necessary
concern the fact that if there are an infinite number of different priors then there might be

no uniform rate of convergence.?

The Probability Space

Before proceeding. it will be helpful to define a probability space which serves as the
basis for an uncertain recurring game. given a strategy o.

A fully described outcome {or state) is an infinite sequence (7. 8%, al ' 8%, 6% %)
in M(#)x (0 xAx5). To describe the probability distribution over outcomes. it suflices

to define consistent probabilitics over all initial segments of outcomes, and then P, is

the consistent extension ta the set of all outcomes.® This is done inductively, by letting
Po(r)}y=T{7) and
Polro.. .. S Yy = Pl T8 e (@Y e gen (ST,

where it = (s1.... . sty.
The updating that plavers undertake is captured by P(,{Tlht.95+‘). a version of the

conditional probability distribution.

4. Social Learning

The first lemma states that an observer who updates the prior distribution I according
to the observed histories will eventually stop learning. in the sense that the updated T
(P,(7|ht}) converges to a limit distribution. The convergence of the probability placed on

any 7 is a standard consequence of the martingale convergence theoren. The fact that the

* We would also need to add an absolute continuity condition. requiring that each plaver's
beliefs T'ye he absolutely continuous with respect to the true distribution T. In the absence
of this condition. a plaver might a prior rule out the realized distribution 7 aud wonld then
be nnable to learn.

5 We abuse notation and let 7 denote the event consisting of ail outcomes with first entry
r.oand ..., Bt at. st denotes the event consisting of all outcomes with this initial segment.
ete.. To complete the probability space. consider the o-field generated by the set of events
which consists of all finite initial segments.

13



resulting limits together still constitute a probability distribution requires a bit more work.
which is given in the proof.

Lemma 1: CoxverGeExce of BELIEFS. Consider an uncertain recurring game and a
list of strategies 0. For almost every h € §™ there exists ™ € M(0) such that P.{-|h")

converges to I'™.

Proor: Consider any 7 € M{0). Let X' = P, (7|h'). The sequence of XNs is a martingale.
By the martingale convergence theorem {for a statement see Theorem 354 in Billingsley
{(1979)). there exists a random variable X such that X7 converges 1o X almost surely. For
cach 7 define I'™ (7) to be this X'. Let €}, be the outcome set {of measure 0) for which this
convergence fails. Since 3 {@) is countable, it follows that U, is a set of measure zero.
We now show that ZrE\[ oy I(r)y =L almost surelv. This implies that T' € M(0O)
(almost surely). and that P(7iR") converges to I'™{7r) uniformly across 7 (almost surely).

This is accomplished in two steps. First. we will show that

Y, < (1)

TEM(O)

for every outcome outside of U, 0., Next. we will show that

Ev > T =1 (2)
reM{6)
Together, (1) and (2) imply that E*e ) I'™{7) = 1, almost surely.

To prove (1), suppose to the contrary that - (7)) > 1 for some ontcome outside
of U8, Let i he the history of signals associated with this outcome. Then there exists a
finite B C M(#} such that Zreb‘ I'{7)—1=d >0, for this outcome. Let n = #H. Since
B is finite. there exists 7" such that [P, (7|h') = U™(7)| < d/nfor all 7 € B and ¢ > 7. This
1mplies that Z en P70y > 1 for any 1> T.a contradiction,

To prove (2], fix any fintte 1 C M(#8). Iirst we show that
S T¥(r) =Y Tir). (3)
TER TESR

Since B is finite it follows that E[}° ., T>(7)] = 2.5 E[T™(r)]. which by definition

is equal to 30 cp Ellimy .o Po( r|iit)]. By Lebesgue’s bounded convergence theoren (for a

T P (-[h') converges to I'™ at & if for any € there exists 7 such that for all ¢ > 7
.“'\”P.‘_EA\I((,‘]ll)ﬂ'(TIhi) - F\(T)l < L.



statement see Billingsley (1979). Theorem 16.4). it follows that

Z Ellim—., P.(r|h"Y)] = Z lim— .. E[P,(r|h")].

el reR

Since, E[P.(7|h"Y)] = I'(7) for all 1. we have established (3). One easily establishes (2) using
(3} and the fact that Zre\!((-}) riry=1. 1

Although Lemma 1 establishies that an observer’s beliefs will converge over time. it
does not guarantec that they converge to the true distribution 7. or even that the observer
will be making correct predictions coucerning forthcoming public signals.  This second
conclusinn, however, intuitively follows from the convergence of beliefs. If the predictions
are still significantly incorreet at some time, then there is room for additional learning.
Thus. onee learning has effectively stopped. predictions should be approximately correct.
This is captured in Lemma 2. below.

First. we define beliels to be c—empirically correct if they induce a distribution over
signals which is ¢-close to the actual distribution over signals.

Definition: Beliefs are (-empirically correct relative to 7 and fr after 77 0f Po(stTHRY) s
¢ close® to Po(s'Tr ) forall £ > T

An empirically correct set of beliefs are those where an observer of social histories, hi',
has learned to predict signals as if he or she knew the realized distribution 7.

The following result can be proven directly from Theorem 3 in Kalai and Lehrer (1993a).
{See also Blackwell and Dubins (1962}.)

Lemma 2: Socian LearxinG. For any list of strategies . distribution 7. and ¢ > 0.
there exists a random time T such that the {Bavesian updated) beliefs are (—empirically

correct after 7. Y

Lemma 2 tells us that over time, based on the history of the recurring game. Bavesian
observers who start with uncertainty I' will learn to predict the signal that will occur in

any stage as if they knew the true distribution. 7.'% Lemma 2 does not imply that plavers

# ' is e=close to g if there exists a measurable set ¢ such that (i) p(Q) > | — ¢ and

Q)Y > 1 — e and (i) (1 =)' (A) < p(A) < (1 + eyd(A) for every measurable 4 C ().

% A random time means that for almost every outcome there exists such a 77

¥ In fact. the stronger conclusion that they will correctly predict all events involving
future signals is true. In a recurring game. however. plavers only care about their own
stage,



will come to know 7. or that they will correetly predict signals conditional alse on their
type {see Example 5). We now turn to an examination of these issues as they pertain to

the convergence of equilibrinm play in uncertain recurring gaies.

5. Equilibrium in Uncertain Recurring Games

Given an uncertain recurring game, let us define the expected utility of plaver ¢ for
iven profile of strategies o. conditional history of signals through ti it and
a given profile of strategies o, conditional on a history of signals through time £ 4%, and

plaver i's type ﬂf’”:

1-}(0’.ht-gf+l) — E Pa{f£t+l.9t+l|ht.()s+l) fii((ir+1.9t+1). (1)
FtH1E@ 1 +1e A
A profile of strategies ¢ forms an uncertain Bayvesian equilibrium of the uncertain

recurring game if. for all 7. ¢, bt € St and #; € 0.
Vila b8 > Vila fage s, B 00)

for all @y € Aiowhere afay g, is the profile of strategies which alters & only by changing

a; to (g g, alter history h' for type 6;.

6. Convergence to Bayesian Equilibrium.

As illustrated in our previous examples. the consequences of learning depend on the
informativeness of signals and the stracture of the uncertainty. In this section, we present
conditions under which social learning leads players in the uncertain recurring game to even-
tually play actions which approximate a Bayesian equilibriuin relative to the true {realized)
type generating distribution. We then provide examples that illustrate the roles of these
conditions by showing what can happen if these conditions are violated.

[n the rematning sections, we restrict attention to situations where signals are deter-
ministic: for cach a and # there exists s such that jz, 4(s) = 1. The notation s, 4 replaces
the distribution pr, g{s). Notice that this does not imply that signals are fully revealing. as

different action—tyvpe pairs could map into the same signal.

Definition: A\ recurring game has pavoll sufficient signals if, for all ¢ and «. 8. .8 such

that 8; = 8, and s, 4 = sog. it follows that wi{n; a_;.8) = i, d—;.0) for all ;.
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The condition of payoff sufficient signals states that the information contained in a
signal. when coupled with the information of a plaver’s tvpe. is suflicient for that plaver to

calculate his or her anticipated pavofl as his or her action varies.

This condition s (when conpled with the next condition] sufficient for play of an un-
certain Bayvesian equilibrium to converge to that of a static Bayvesian equilibrium relative 1o
the true distribution. The intuition is straightforward. Plavers eventually learn the correct
distribution over signals. If this information. together with the rest of their information
(their type) allows them to correctly calculate their pavofls, then they are chioosing a best
response to the distribution over their payofls induced by the strategies of the other plavers
under the true distribution. In tie absence of this condition. plavers are missing pavoll rele-
vant information and could choose strategies which are best responses given the information
that they have. but not to the true underlving distribution.

The pavoll sufficient signals is alimost a necessary condition for play to converge to
resetble the play of a Bavesian equilibrium where plavers know the type generating dis-
tribution. It is not quite necessary. because even in the abhsence of any information it is
possible that best respouses to the initial uncertainty happen to be the same as the hest
responses where plavers know the realized type generating distribution.

Let us mention two situations where it is ¢lear that there are pavoff sufficient signals.
First, if plavers™ pavoffs are private valued and signals are the actions plaved in a stage then
signals are pavoll sufficient. Second, if there are common values and signals reveal tvpes

and actions then signals are pavoll suflicient.

Having pavoll sufficient signals alone is not quite enough 1o gnarantee convergence
to a Bavesian equilibrium relative to the true {realized) distribution. since it is possible
that one has learned to correctly predict signals unconditionally. but has not learned to
correctly predict them given the additional information contained in one’s own type. (This

is Mllustrated in Example 6.) It is ruled out by the following condition.

Definition: Social learning implies private learning relative to a if for any & > 0 there
exists ¢ > 0 such that for any b € S™ i P (s™ 1A' is € close to P (s 7 hY) for all ¢
above some T, then Po(s"THAL 88} is d-close P (T r b 88 for all ¢ > 1 and any i and

#' such that 7(#%) > 0.
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The social learning implies private learning condition. is easily interpreted. It states
that whenever an outside observer has learned to approximately predict the signals of the
next stage as if he or she knew the true tvpe generating distribution. then any inside observer
(who gets an additional piece of information #;) will also be able 1o approximately predict

the signals of the next stage as if he or she knew the true type generating distribution.

We mention two situations where it is clear that social learning implies private learning.
(1) Each distribution 7 in the support of I'. coupled with the strategicos o leads to a different
distribution over signals. In such a case. anv observer who learns the distribution over signals
will also learn the true tvpe generating distribution. (it} Types are drawn independentiv so
that each 7 is a product of 7;'s and [ can be decomposed nto a product of distributions
across ;5.0 and either signals are the actions played. or signals are the types drawn, or the
signats are the actions plaved and the types drawn. Here, one’s own type does not tell one
anvthing new about the tvpes or actions of the other players.

Situations where social learning does notl imply private learning require particular in-
terdependencies among tyvpes, as illustrated in Example G.

Before we state Theorem 1. it is necessary to define ideas of closeness to a Bayesian
equilibrium relative to a given distribution. There are two conclusious to the theorem. First.
that after a suflicient time plavers choose actions vielding e optimal expected utilities as
captured in the definition of a tight ¢-Bavesian equilibrium. below. Second, after a sufficient
time plavers” strategios play close to an actual Bayesian equilibrinm of the true static game.
This closeness is formalized in the definition of plavs ¢-like.

Definition: A profile of strategies. o form a tight € Bayesian equilibrinm of static Bayesian

game (N A Q.7 {u; ) if for all 108, € @, and «; in the support of a;{#;)

‘}'((T/(II'.T.HI'] z I'}'(O’/Ei.‘.".ﬁ,) —(

for all 7; € A;. M

Notice that a tight c-equilibrium is stronger than a standard definition of ¢-equilibrium

{as in Radner (1980)). The strenghening is that every action in the support of a playver’s

"' In the static Bayesian game there is no history, so o; : ©; — A{:A;). Vi is the usual

definition of expected utility, Vi(a 7.8, = 3, 7(8]6;} > alal#)u(a. 6).

ll
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strategy must be an «—best response. rather than just the strategy itself being an ¢-best
response. This strengthening rules out the possibility of placing small probabilities on ac-
tions that lead to relatively low payolfs. This stronger conclusion turns out to be important
in obtaining the absorption in Example 2 (see the discussion following Theorem 1), for

mstance.,

Definition: Given r. a profile of strategies of the uncertain recurring game o plavs ¢ -like
a profile of strategies of the realized static Bavesian game @ at stage # + | after history ',
if there exists @ C © with 7(0*) > 1 — ¢ such that o;(#,.h!) is c—close to g;(#;) for al}
4, ¢ (‘):

The above definition states that a set of strategies of the uncertain recurring game
plavs e-like a set of strategies of the true static Bavesian game if a large enough set of tvpes
choose actions under the first set of strategies which are e-close to those chosen under the
second set of strategies. This definition clearly implies that the overall distribution over
actions will be e-close under the two strategies. (For any & > 0. there exists an ¢ > 0
such that if @ plavs o like &, then P,(a'tHr b is é-close to P;;(a|‘r}.) It may still be that
sonte types that occur with very low probability are plaving different actions under the 1wo

strategies. This is illustrated in example 1.

Theorem 1: Learxineg To PLay a BAYESIAN EQUILIBRIUA RELATIVE TO THE RE-
ALIZED DisTRIBUTION. Consider an uncertain recurring game with payofl suflicient signals
and an uncertain Bayvesian equilibrivm o such that social learning implies private learning,.
For everv e > 0 and almost every 7.0 there is a time T such that o, at stage t + | after
history h'. is a tight « Bavesian equilibrium of the static Bayesian game (N.A.Q. 7. {u})
for vach t > T. Moreover, for cachi t 2 T there exists a Bavesian equilibrivm @ of the static

Bavesian game (N.A.O.7.{u;}) such that o plays e like @ at stage { + 1 alter history I’

Proor: Fix any 7 such that T'(7) > 0. It is suflicient to show that for anv « > 0 and almost
every b (P, -conditional on 7) there is a time T such that for cach { > T. o(-. 1Y) is a tight
¢- Bayesian equilibrium relative to 7 and that there exists an Bayesian equilibrinm @ of the
static Bayvesian game such that o plavs like o.

First, note that by Lemma 2, and social learning implies private learning. it follows

that for almost every i (F,~conditional on 7) and any & > 0 there exists 7" such that if
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t > 7T, then
maxg+1 | D (s"THRL 8 = Pa(s"H im0 6] < 8 {

&

for all ¢ and # such that #{#) > G.

We now show the first conelusion of the theorem: for anv ¢ > 0 and almost every L.
there exists T such that (- fi') is a tight e~Bavesian equilibrium relative to 7 for each
t > T. Given the pavofl suflicient signals, we can write the expected pavofl to a plaver
of type #; after history h' of some action «;, given that all other plavers follow o. as
Vilaga ' 8) = Y e Po(sTH R )0 (a, 805" where T{ag . 8i.5) = wila;. a_; A). for
some .8 with 8, = #,. and ¢ = sz 5 (and wla; 8.8} is set arbitrarily if there is no such

E.F)__). 12 Gimilarly. define Vi{a,.o,7. 0 8:) = Y P (st bt 0 a; B; s Then,
Vilajoa.m. bt ) = Vi{a.a b8, =

Z[P”(“Hl 7 0 8) = P (TR0l Hi s,

s1+1

So. given the honnds on utility,

Vileroor i 8) = Vil o bt 8,)] < M| Z[r”ﬂ(st*}'llr.h.t_ﬂ,‘) — P (s R 8]

(# Ade
20

|[Vila, oo bt 6;) — Vil o it 8| < /2 for any 1 > T and any a;. Since @ is an uncertain

("hoose the & preceeding (G) to he

cand find T accordingly. Thus. we know that
[ iy

Bavesian equilibrium. and thus each a; € o;(8;. hY) maximizes Vi(a; o bt 08;). the ahove
inegualities imply that each «, in the support of a;(#;,. h') is an ¢ best response relative to
T

Next. we show the second conclusion of the theorem: for anv ¢ > 0 and alimost every
I (Py—conditional on 1) there exists T such that for each > T there exists an Bavesian
equilibrium @ of the static Bavesian game such that & plays ¢ like . Suppose to the
contrary that there exists a positive measure of 2 such that this does not hold. Pick anv £
such that (6) holds and o deoes nat play e-like auy Bavesian equilibria @ of the static game.
for infinitely many #'s. Index the #;'s according to the positive integers and then for the
first 8, find a subsequence of the above t's such that a;(8;.h*) converges to some o;(#;).
Then proceed to do the same for each #; in the ordering. taking a further subsequence each

time,

9 - . B . e . . . B B . .
2 Notice that in this definition, the signal is predicted as if there were no deviation by i.
Given the payofl suflicient signal condition, ¢ can couple this information with «; and #; to

calealate the expected utility,
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Note that for some sufficiently laree ¢ along a particular subsequence. @ plavs ¢ like 7.
(Take any finite set. @ C © with 7(0%) > | — ¢ and then choose the subsequence corre-
sponding to the last indexed #; € ©;.) Thus. @ cannot be a Bayesian equilibrium relative
to 7. So. there exists £, #; and @; € 4, such that Vi{@,.7.7.8;) — Vi{a,.7.7.8;) > a for some
a > 0 and any «a; in the support of 7@;{#;). where Vilai.@.7.8;) = >, Pe(s|r.fi)uida; 8;.5).
For any v > 0 there is some sufficiently large T along a subsequence of the subsequence
defined for #; such that Ps(s|r.8;) is 1 close to P,{s|7.h'.6;) for t > T along this sub-
sequence, [This further subsequence is found by taking a finite subset of ©_; with large
cnough conditional probability (according to 7) given #;. Intersect the subsequences corre-
sponding to these types #_; and #; so that a_; converges to a_; for this arbitrarily large
{7-conditional on #;) group of types 6_;.] Thus. it follows that for sulliciently large ¢ along
this subsequence, Vi(a; a7 b5 0) = Vila oot b8 8;) > af2 for some a; in the support of
a{@;. '), (For large enough ¢ on this subsequence, the support of @;(4,} is a subset of the
support of a;(#;.h*).} By our earlier argument (that for any ¢ > 0 there exists large enough
T such that (Vi(a;.o.m b8}~ Vil o ht 8,)] < o forany ¢ > T.6; and a;). it follows that
Vil o B8 > Vita o bt 8;) Tor some large enough f and a; in the support of a8, hY).

This is a contradiction. since @ is an uncertain Bavesian equilibrinm. [

There are two conclusions 1o Theorem 1. First. after a sufficient time the actions that
each tvpe of anyv playver chooses in an uncertain Bavesian equilibrium are in fact e-hest
responses 1o the actions and tvpes expected under the (unknown) realized type generating
distribution. Notice that this first conclusion could allow for actions which are different
from those under a Bavesian equilibrium of the static game. The second conclusion says
that after a sufficient time play must. in fact. be close to that of a Bavesian equilibrium
relative to the realized type generating distribution.

Notice that the static Bavesian equilibrium @ to which play is close may vary from one
stage to the next, This is due to the fact that playvers may condition oun history and thus
may be plaving correlated actions across time. A very simple example is one wlhere players
play one equilibrium in even periods and another in odd periods.

With Theorem 1 in hand. let us revisit Example 2 (the Battle of the Sexes game with
some naive best responders). When the 7 deseribed in Example 2 is the true distribution.
we have the conclusion that rational plavers will play close to one of the profiles of Bavesian

equilibrium strategies which are outlined in Example 2.1 Also. they must clhoose actions

3 Toapply Theorem 1. 1et naive best responders have utility 0 for auy action combination.
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which are ¢ ~best responses to the true distribution. In stages after (A A) or (B.B) have been
plaved. for ¢ small enough. since hest responses are strict. this requires that rational players
exactly follow the equilibrium strategies of {A.A) or (B.B). respectively. Thus the absorbing

nature of the Bavesian equilibrium is carried over to the uncertain Bayesian equilibrium.

Theorem | states that after some time an uncertain Bavesian equilibrium is a tight -
Bavesian equilibrium relative to the realized distribution. and that at each stage after that
time it plavs ¢-like some Bavesian equilibrium relative to the realized distribution. Thus.
every type is almost best responding relative to the true distribution and the aggregate
actions play close 1o a true Bavesian equilibrinm. Does this also mean that each type is
almost playving the same as in some Bayvesian equilibrinm? The answer is not necessarily
if there is an infinite number of types. This is illustrated in the following example where
there are alwavs types whose strategies are not close to any of their Bayesian equilibrium

strategies,
FExaspLr 1.

There are two plavers. N = {1.2}. who each have two pure actions (A; = {a;.@})
available. Plaver 2 has two possible tvpes, @, = {#;.8;}. while plaver 1 has a countable
set of types represented by O = {1.2.3,...}. Utility is private valued and there is perfect
monitoring {signals reveal the actions chosen),

In the following tables. the first entry represents wy and the second wus.

#: f>

) a3 (2 2
a P41yl 0.0 7 I+{3)"0 0.1
T 0.1 1.0 7 0.0 1.1

Distributions over tvpes are independent. There is only one distribution of player |
tvpes. which is deseribed by m(#) = (L)%, There are two distributions over plaver 27s

tvpes. 72 and Ta. These are such that m(#) = 1/2 = 7a(#2). while T5(82) = 1/4 and

so that their hehiavior satisfies the premise of the theorem. We disenss this technique in
Section 8.



Plavers are uncertain and U'{r.m) = 1/2 = ['(1.72).

The Bavesian equilibria relative to the realized distributions are unique. Player 2
alwavs follows the dominant strategy of ay if #; and @ if #2. If the true distribution is 7.
then all types of plaver | should play «y. If the true distribution is 7. then all types of
plaver | should play .

In any uncertain Bavesian equilibrium of this uncertain recurring game, it is clear that
plaver 2 will play the dominant strategy of ay if 8, and @ if 5. Player 1's optimal strategy
depends on the preceived (updated) distribution over types of plaver 2. After any history
the updated T will still place positive weight on both distributions.

Suppose that the realized distribution is 7. Then after anyv historv. any plaver 1 will
update, but will still place some positive weight on 7. This means that there will exist some
tvpe #y whose best response to the anticipated distribution of actions of plaver 2 is to play
wy. This is also true of all types larger than #,. As learning takes place, an arbitrarily large
measure of of plaver I's tvpes will be choosing the correct best response of «;, but there
will alwavs remain soue types choosing @y.

Example .1 depends ou an infinite number of types, It is clear that if there are only
a finite number of tyvpes possible under 7. then if we take ¢ to be small enough all types

would have 1o be playving strategies e—close to the Bavesian equilibrium strategies.

For games where the pavolfs are type independent, that is. uncertainty is only strategic.
we obtain the stronger conclusion that play converges to that of either a correlated or a

Nash equilibrinm. This is made precizse in the following corallary.

COI‘OllaI‘y 1: Learying To Pray CORRELATED aXD Nasu Fquvinisria. Consider
an uncertain recurring ganie with pavoll suflicient signals and an uncertain Bayesian equi-
lbrinm o such that social learning mplies private learning. Suppose also that w; is type
independent for vach (. For every ¢ > 0 and almost every 7.0 there s a time T sueh that
for each t > T there exists a correlated equilibrium @ of the full information static gamne
(N4 A{u;}) such that o plays ¢ like o in stage t + | after history ht. Furthermore. if

plaver tvpes are indepedent under 7. then a is a Nash equilibrivm.
Proor: Consider the Bavesian equilibrinm from Theorem 1. Given the type independence
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of u; there is a carrelated equilibrium (7 with information #;} which plays exactly like that

equilibrinm. If types are independent. then this is a Nash equilibrinm, [

In the above corollary. society is learning to “coordinate” on what to play in a game.
For instance in the case where types are independent under 7 and there are several Nash
equilibria to a game. then they will learn te play so that all players will coordinate on a
Nash equilibrinn at each stage,

In some cases, the results of the corollary can be thought of as a purification. For
instance, if there is a mixed strategy equilibriuiu to the game. then plavers would play so
that the pereeived distribution matehes the mixing. even though the plavers themselves

may be choosiug pure strategies.

We now examine failures of convergence due to violations of the conditions used in

Theorem 1.

Social Versus Private Equilibrium
Example 3 shows the importance of pavoff sufficient signals, Example G illustrates the

role of the social learning implies private learning condition.
ExasMerry 5. Pavoll Sufficient Siguals: Affirmative Action Revisited,

There are two playvers. N = {1.2}. Plaver | has two pure actions -, = {ay.@,} and
player 2 has only ene action Ay = {as}. Player 1| has one possible type, @ = {#,}. while
plaver 2 has two possible tvpes. ©, = {#,.8,.}. All types are rational. There is perfect
monitoring (signals reveal actions).

One distribution 7 is such that 7(#,.62) = .8, while another distribution ¥ 15 such
that 7(#,.8,) = .2, Playvers are wneertain and U{7) = 1/2 = I'(T}. Thus. playver 1's initial
uncertainty treats #; and #, as boing equally likely,

In the following tables. the first entry represents wy and the second u,.

2 i,
as a
i 1.0 (1 2.0
[ 0.0 I 0.0
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("onsider constant strategies o where plaver 1 alwavs plays 7; and plaver 2 always
plavs ay. The strategies o form an uncertain Bavesian equilibrium of the above uncertain
recurring game. Both 7 and 7 lead 1o the same distribution over actions under o and so T
is never updated. even if the pavefls are revealed (hut not if the tvpe of plaver 2 heconies
known), However, if plaver 1 knew that the true distribution was . then his or her unigue

best response would be @y

In the above example there is perfect monitoring. payveffs are made known. and social
learning implies private learning. The prescribed strategies form an equilibrium of the
uneertain recurring game, and vet these strategies are not close to any Bavesian equilibrium
of the game where the true distribution is known. The difficulty lies in the fact that player
2’ tvpe is Important in determining plaver 1's pavoffs. and can never be learned from a

history of signals where plaver 1 only plavs @, .

The following example, shows the importance of the social implies private learning
condition. In this example players have private values, there is perfect monitoring. and
society learns to perfectly predict future signals. flowever. plavers never learn which of two

coordination gmines they are plaving.

EXAMPLE 6. Social versus Private Predictions.

There are two plavers. N = {1.2}. who each have two pure actions (A, = {a,.a;})
avaitable.  Fach plaver has two possible types, ©; = {9,—.51}. All types of all players
are rational. There is perfect monitoring, One distribation 7 is such that plavers™ types
are perfectly correlated: 7{#;.6,) = 1/2 = T(8,.62). Another distribution. 7. has the
opposite correlation structure: 7(#,.82) = T(6;.6:) = 1/2. Plavers are uncertain and

l‘(T) = 1/2 = l“(?]



In the following tables, the first entry represents uy and the second u,.

& .8 6.0,

) sy i sy
o 1.1 0.0 dy 1.0 0.1
G 0.1 1.0 4 0.0 1.1

8.6, 6.6,

iy ) a: i
T 1.0 0.1 iy 1.1 (.0
] (.0 1.1 03 0.1 1.0

(Consider constant strategies o which are an even mixing over «; and @; . for each type of
plaver 1 and every history. Let each tyvpe of plaver 2 play his or her strictly dominant action
(85 plavs az. while 8 plays @ ). The strategies ¢ form an uncertain Bavesian equilibrium
of the deseribed recurring game. Both 7 and 7 lead to the same distribution over actions
under @ and so U is never updated. However, if player | knew which of 7 or 7 was realized.
then conditional on lis or her type plaver 1 would also know the tvpe of plaver 2 and thus
what action plaver 2 would take, Thus. an even mixing is not part of a Bayesian equilibrinm
strategy for plaver | when 7 is known,

In the above example. there is perfect monitoring (signals could even show the mixtiure
chosen). and plavers correctly predict public signals and strategies, Plavers also have pri-
vate values. However. social learning does not imply private learning and plaver 17s actions
conditional on his or lier type are not part of a Bayesian equilibrium under the true distri-
bution. The presceribed strategies form an equilibrium of the uneertain recurring game. and
vet these strategies are not ciose to any Bavesian equilibrium of the game where the true

distribntion is known.

Fxamples 5 aud G present us with an interesting phenomenon. There are situations
where the predictions of an outside ohserver converge and are completely accurate con-
cerning the actions which will be chosen in a game. Yet the plavers in the game have not
vet learned all that they might like to concerning the uncertainty in the game and are not

necessarily plaving an equilibrinm of the “true™ game.
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7. Learning to Play Perfectly

In situations where the suflicient conditions for convergence to Bavesian equilibrium
are met. it will actually be quite natural to expect convergence to a refinement of Bavesian
equilibrium. lor instance, if a player is never completely certain of the actions that the
other plavers might choose, then that plaver should never play a weakly dominated action.
This means that convergence will actually be to an undominated Bavesian equilibrinm of
the static game. If. in addition. plavers types are drawn independently. then convergence
will be to that of a tembling hand perfect equilibrium.

We will first present a result concerning convergence to trembling hand perfect equi-
librinm, and then discuss convergence to an undominated Bavesian equilibrium that way
not be trembling hand perfect. To make these statements precise consider the following

delinitions.

Definition: A distribution T satisfies full subjective uncertainty relative 1o a profile of

stratogies o if (a7 R 01 > 0 for all i, 4. o' and almost every 7' 6%

Definition: A distribution I satisfies full independence if there exist M (04)... .. WUa(0x)
(sets of distributions over each @;) and corresponding distributions T, over each M;(0;)

such that {7|T{r) > 0} = H; M(©;) and T'(7) = Il; I';(7;) for any 7 such that I'(7) > 0.

We define trembling hand perfect Bavesian equilibrium according to Selten (1973}
Let A1) denote the interior of A(A;).
Definition: @ is a trembling hand perfect Bavesian equilibrium of the static Bavesian game
(N.5.0.7.{u;}) if there exists a sequence of &% with 5(8;) € AT(4;) and for each 7 and
#; there exists a subsequence of the b's such that 5:"(9;) — 7:(#;) and 7;(#;) is a best

response to % along the subsequence.

If there are only a finite number of tvpes. then the mention of subsequences in the
definition is inconsequential as we can intersect them to find a single sequence, and the

definition is equivalent to Selten’s. Here we need to apply the definition to infinite numbers

A trembling hand perfect Bavesian equilibrium is thus distinet from the notion of

perfect Bavesian equilibrium defined by Fudenberg and Tirole (1991) for extensive form
CAMeS,

27



of plavers (viewing ecach playver as an agent. taking the agent normal form corresponding
to the Bayvesian game) which accounts for the need to make explicit use of subsequences.
This definition allows us to capture situations such as Example 4. where plavers behavior
converges at different rates,

Theorem 2: LEarying To PPray TREMBLING [TaxD PERFECT Bavesiax EQuiLis-
RIvM. Consider an uncertain recurring game such that w; is private valned. there is perfect
monitoring (signals reveal actions). and T is fully independent. If o is an uncertain Bayesian
equilibrinm such that U has full subjective uncertainty relative to o. theu for every ¢ > 0
and almost every 7.0 there is a time T such that for each t > T there exists a trembling
hand perfect Bayesian equilibrium ¢ of the static Bayesian game (NS, O, 7. {T7;}) such that

a plays ¢ like 7 at stage £ + 1 after history h',

Proor: Fixanyv e > Oand 7 such that I'(7) > 0. It is sufficient to show that for almost every
I { P-conditional on 7) there is a time 7" such that for each ¢ > 7T there exists a trembling
hand perfect Bavesian equilibrium & of the static Bavesian game (N, 4. Q. 7. {«;}} such thai
a plavs «—like 7

Suppose that there exists a positive measure of i such that o does not play ¢ like
any trembling hand perfect equilibrinm of the stage game for an infinite subsequence of
t’s. By Lemma 2 and perfect monitoring. we can find suel an b osuch that for any 6.
max, | P, (a|lht) — Pyla|r. h)] < & for all ¢ sufficiently laree.

Index the #;s (according to the positive integers) and then for the first 8; find a
subsequence of the above £'s such that a;(#;.h') converges to some @,(8;). Then proceed to
do the same for each #; in the ordering, taking a further subsequence each time. For any
> 0 and sufliciently lTarge { along a particular subsequence (similar to the one defined in
the proof of Theorem 1), o plays #-like @. Thus. & cannot be a trembling hand perfect
Bavesian equilibrinm relative to r.

We now show that for each 7 and # such that 7{(#) > (. there exists a subsequence of
the s such that each «a; in the support of @,(#;) is a best response to P, (a_;|h') along
that subsequence. For any ¢ and # such that 7(8) > 0. a;(#;. 1) converges to 7;(6;} along
the subsequence of £'s used in the definition of @. Thus, given the finite action space. the
support of o, (8, ') contains the support of 7,(8;) far enough along the subsequence. By full
independence, private values, and the definition of uncertain Bavesian equilibrivm we know
that a,(8,.h%) is a best response to I, (a_;|h'). Thus. far enongh along the subsequence,
every a; in the support of 7;(8;) is a hest respouse to Py{a_;|k"). which establishes our

desired conclusion.



To complete the proof of the theorem, we construct a sequence &' such that o(f;) €
AT A;) and a8 — @(8;) for each ;. and P~ (a|r) = P,(alht). The construction
of this sequence completes the proof of the theorem since it follows from above (and full
independence) that every a; in the support of T;(#;) is a best response to a' far enough
along a subsequence. This is a contradiction since our supposition implied that @ is not a

trembling hand perfect Bavesian equilibrium.

To construct the sequence @i, we first construct an auxillary sequence o for each 7 as
follows. Order the set -1,. Consider the first a; € A; such that Ps(a;|7) > FP.(a;|h') and
identify the set 6,,. such that &(a;]6;) > Po(ajlt)ilf 6, € (_')q Find .ff_f,. such that

Z T(8)T: (ai|#;) + Z T(#,)(max[F{a;l8;) — .lrfll.(]]) = P.(a;|h").

B g0, 6, €0,

For 8, ¢ 6,“ let &' (a\f;) = 7:(a;]8;) and for 8, € 6ﬂl let @ a;|#:) = max[d;{a;]8;) — .rfh.U].
(It is clear from its definition that .t‘,’,l € [0.1].) Now proceed to the next ) in the ordering
over Aj. except instead of using @(at]8,) as the hase. we use a(al|d;) + [F:{a;|8;) — Fi{a:}6))]
(thus ensuring that the base strategies still add to one). This process is iterated.!?

Define at(#;) by
O = (1 = ANt 0 + AP, (a b,

where AY > 0 is a sequence converging to (),

By full subjective uncertainty. we know that a'{a;|6;) € A1) for each §,. We
also know that by construction /% (alr) = Palalht) and so P= (a|7) = P (aiit). The last
thing to show is that in a subsequence (of the previously defined siuhsequence) for each #;.
FiHf;y — @(#). Given that AY — 0. we need to show that @'(6;) — @,(8;). Without loss
of generality, assume that Py (alht) converges to F'(a) along the sequence of 5. {Given the
finiteness of -1 we can choose an appropriate subsequence where this is true). Since /% (a|h?)
converges 1o F(a) along the sequence of s, and siuce for any v > 0. far enough along
particular subsequences @ plavs v-like @, it follows that far enough along these particular
subsequences we can make P, {a]l?) arbitrarily close to Pr(aj7). (See the comment after
the definition of plavs ¢ like). Thus P{a) = Ps(e|7) and so P, (alht) converges to Pe{a|7).

This implies that ¢ — 0 for each «; in the construction of @t and so &4(#;) — a,(#,). |1
1,

> Quee the distribution over an a; has been adjusted downward so that o (a7} =

Pala;|h'), it is not adjusted any further, If the last ¢ is the sequence is adjusted down. it
must be that some previous @) was such that P‘(;,((L:"T] < P, (a|h"). and the weight taken
off action «! can be transferred to @, in such a process. each action is adjusted downward
at most once and when there are no actions to adjust downward the distributions must be
equal.
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Again. in sitnations where preferences are type independent. we obtain a stronger

conclusion.

Corollary 2: Learyixa To Pray TREMBLING HAND PERFECT EQUILIBRIUM.

Consider an uncertain recurring game such that there is perfoct monitoring and an equilib-
rium . Suppose also that u; is type independent. If T is fully independent and has full
suhjective uncertainty relative to a. then for every ¢ > 0 and almost every 7.h there is
a time T such that for cach t > T there exists a trembling hand perfect equilibrivm s of
the full information static game (N, A, {u;}) such that o plays ¢~like s at stage t + 1 after

history .

Proor: This follows from Theorem 2 and Corollary 1.

The Role of Full Independence in Convergence to Perfect Equilibria

If the full indepeundence condition in Theorem 2 (and corollary 2] is not satisfied. but
there is full subjective uneertainty, then play still converges to a refinement of Bayesian
Nash equilibrium. Notice that if a playver has uncertainty which allows for every action
combination of the other plavers, then anv best response to that plaver’s beliefs about
actions of other players has to be an undominated action. Thus, in situations where play
converges to a Bavesian equilibrinm play and there is full subjective uncertainty. play will
actually converge to an undominated Bayvesian equilibrium. The following theorem is then
an obvious consequence of Theorem 1.
Theorem 3: Lesaryiye To Pray UNpoMINATED Bavesiay Equinigrivye. Con-
sider an uncertain recurring game with payolff sufficient signals and an equilibrium o such
that social learuing implies private learning. If T has full subjoctive uncertaiuty relative
to . then for every ¢ > () and almost every 7.0 there is a time 1. such that for each
t > T there exists an undominated Bavesian equilibrinm!'® & of the static Bavesian game
(N.S.0.7.{1}) such that @ plays ¢ like & at stage { + 1 after history h'.

In the case of .V = 2, the set of undominated Nash equilibria is the same as the set of

trembling hand perfect equilibria (see van Damme (1987)). Tt is not clear to what extent

16 Undominated is defined in the weak sense. where a; dominates o for #; if it vields at
least as high a pavofl (and sometimes higher) no matter the actions and the types of the
other plavers (considering only those tvpes which receives positive probability conditional
on a plaver’s type).
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this result generalizes to Bayvesian equilibrium. When N > 3. however, this equivalence is
broken and play does not necessarily converge to trembling hand perfect equilibrium play.
This is illustrated in Example 7, below. Different players end up with different beliefs after
observing the same history hecause conditioning on their tvpes may lead them to different

updating, Thus there is no common set of trembles justifyving their actions.!’

Exasrie 7.

There are three plavers whaose pavolls are tvpe independent. Actions and payofls rep-
resented helow, Plaver | chiooses a row, playver 2 chooses a column, and plaver 3 chooses &

matrix.

| »
L M I L M kR

/ 1.2 2.0.1 0.0.0 1.2.1 2.0.0 0.0.2

b b 0.0.1 1.0.0 1.2.1 0.0.0 £.0.2

Here all il information trembling hand perfect equilibria result in payolls of 1.2.1.°
The set of undominated Nash equilibria is larger, consisting of those where plaver | chooses
any mixture of ¢ and b, playver 2 plays L. plaver 3 chooses any mixture of [ and r.

Consider. the undominated Nash equilibrium (b, L.}, which is not trembling hand
perfect. Lot us describe initial uncertainty which leads play to converge ta b, L.

L is strietly dominant for 2, so any equilibrium will have 2 play L. To justifv b for
plaver 1. she must believe that 2 will plav B with at least twice as high a probability as 2
will play M. To justifv { for playver 3. e must believe that 2 will play K with at most half
as high a probability as 2 will play M.' Such beliefs can arise in the learning enviroment.
as plavers update based on their own tvpes. before choosing an action. This may lead them

to different npdating for plavers | and 3.

' Similar considerations for different types of the same plaver are what wmayv break
the equivalence between undominated Bavesian equilibrium and trembling hand perfect
Bavesian equilibrium for N = 2.

1% The perfect equilibria are any mixture between ¢ and & coupled with L.r: and t. L
coupled with any mixture of I and r.

1 This is not a perfect equilibrium since there is no single set of trembles for playver 2
which would justify both 1%s and 3's actions simultaneously.
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For instance, let @ = {67.81"), ©, = {67,665, and O3 = {#7.07). 87 is inter-
preted to be a rational tvpe who has payvofls given in the above table, The other tvpes are
irrational and have flat preferences, so that their payvolft from any action combinations is 0.

IS
t

Define strategies as follows, o, {8]) is the prescribed part of (b L), a(87) 15 a uniform
mixing across i's actions. ay(#37) plays M with probability 3/14 and R with probability 1/4.
a2 (65) plavs M with probability 1/4 and R with probability 3/

Cousider the following distributions: 7(#7) = 1, 7(8.8:7.63) = 1. F(O7.85.604) = 1.
and T(O".85,65) = L. Initial uncertainty, I'. has weight % on 7 and ]iz on each of the
remaining distributions,

When 7 is the true (realized) distribution only (b, L. 1) will ever he plaved. Conditioning
on histories. players will put weight increasingly on r and decreasingly on the others, since
no other distribution can lead to b, L.[. The weight on these otlier distributions will become
arbitrarily small, but never disappear. Once playver 1 sees that she is #]. she will update
ruling out 7 and 7. but retaining 7. This justifies plaving b. Similarly, once player 3 sees

that he is #5. he will update ruling out 7 and 7. but retainiug 7. This justifies plaving [.

8. Bounded Rationality, Long Lived Players, and Stochastic Games.

Several easy technical modifications enable one to extend the previous results on un-
certain recurring games with rational plavers to significantly richer models. Here, we briefly
describe such modifications.

First. we describe the incorporation of “irrational™ plavers. A plaver type following
some irrational strategy can be made game theoretically rationai { Bavesian. expected utility
maximizing) by modifving their utility function. as done for example in Kreps, Milgrom.
Roberts, and Wilson (1982) and Aumann (1892). We use an easier method (cheaper trick?)
by endowing such irrational plavers with flat utility functions. i.e.. utility functions that
are independent of types and actions.*® Clearly. any behavior is a best response given such
preferences. This approach was used following Theorem 1 in discussing the Battle of the
sexes game Example 2. which had rational types. as well as naive best responding types
who mimicked the action of the previous period opposite player. This example fully fits the

uncertain Bayesian recurring game setup once we modifv the payolf to be uniformly 0 for

20 For some “irrational™ type #; let u;(a.#) = 0 for all @ and any # such that ¢#; = 6,.
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any plaver whose realized tyvpe is nbr. We then consider an uncertain Bavesian equilibrium
where nbr types follow their mimicking strategv. Qur results can then be applied and the
asvmptotic results stated in Example 2 follow. In Jackson and Kalai {1995a} we used this
technique to explore Kreps=Milgrom-Roberts=Wilson results concerning chain stores in a
recurring setting.

Second. the uncertain recurring model is easily modified to accomodate a recurring
version of a stochastic game. Following Shapley (1933). a stochastic n person game consists
of the usual individual sets of actions (4;). bnt with individual ntility functions w; , which
depend on a publicly known state g selected from a finite set of states (. A fixed. known
collection of stochastic transition rules (7,). with n, € A{(Q). describe the movement among
states according to the vector of actions chosen in the last stage. Thus. the game starts in

an initial known state ¢' and plavers choose actions a?

and receive pavoffs u,-‘q](a] ). Based
. i . ¥l . .
on these actions. nature randomly chooses a new state ¢° according to (g ). which is

publicly announced before the second stage is plaved. This process is repeated.

A stochastic recurring game has only one modification. For each stage a new set of
plavers is selected. To represent such a stochastic recurring game as a special case of the
uncertain recurring games presented in this paper, model natore as an extra playver. labeled
(). who has a flat miility function. Formally, nature’s actions are the set of states (). and
the ntility of cach plaver ¢ # 0. when nature chooses ¢ and the remaining plavers choose
a. wi{a.q). is simply defined to be the corresponding stochastic game utility w; (a). To
endow the £ 4 1 stage plavers with the knowledge of which state nature will choose in stage

¢t + 1. madel the public signal coming out of stage t to he s' = (af

.q) where ¢ is randowmly
chosen according to 7., and then nature follows a strategy that plavs ¢ (from s') at time
I 4+ 1. Notice that this construction can be modified so that the signals only partly reveal

q. and nature randoinizes after ohserving the signal allows for substantially richer types of

stochastic games with incomplete and imperfect information.

Finally. our recurring game results can be useful in modeling situations where some
plavers are long lived. lor instance, plaver | may be infinitely lived with a type drawn
during the first period and fixed forever. while the remaining playvers are new each period
and have their tyvpes drawn in each period. Such a game can be modeled by replacing the

infinitely lived playver 1 with a series of plavers (1.1} who may be thought of as plaver 1's
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agents and who have flat ntility functions. Further. let the tvpe generating distributions
7 be such that a single type of plaver one is chosen with probability one, and incorporate
into T the original prior probability that the long lived plaver [ is of the type described by
7.2 The tyvpe of plaver | is then drawn at time 0 (when 7 is drawn) and remains fixed
thereafter. To such a game we can apply our results 1o conclude that plavers 2 through n
will learn to best respond, each in his or her own period t. to the strategy of player {(1.f).
Then. we can conclude that whatever the type of the long lived player 1. late recurring

22

short lived players will he approximately best responding to plaver 1's actual strategy.

9. Concluding Remarks

We close with comments on two assumptions that we have maintained in our analysis.
and a comment on existence.

First. we have assumed that the initial uncertainty. I, is the same for all players.
The model is easily adapted to allow the uncertainty. I'. to depend on a player’s type. The
learning results (Lemmas | and 2) will still hold for each type separately, provided that each
type’s beliefs are absolutely continuous with respect to the true uncertainty. The change
in the results due to type dependent uncertainty is that there may be no uniform rate of
convergence when the set of tyvpes is infinite. This aflfects the conclusions of Theorems 1
and 3 only in that some arbitrarily small measure of tvpes may not have converged to be
«-hest responding to the true distribution at any time. The results of playing ¢-like a true
Bavesian equilibriuin (or undowminated Bavesian equilibrium ) wonld remain unchanged since
it only required convergence for a finite number of types to begin with., The convergence
to trembling hand perfect Bavesian equilibrinm is affected more substantially {except for 2
player games). For instance. two playvers wight have different beliefs about the distribution
of actions that a third plaver might choose. This could allow convergenee to an undominated
Bavesian equilibriun that is not trembling hand perfect. along similar lines to Example 7.

Second. we have limited aftention to a countable set of tvpes aud a countable set of

distributions over those types. The method of proof that we have used relies on these
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3

For cach 7 there exists #; such that if 7(#8) > 0. then #, = #;.

Plaver 1's best response to the short lived plavers, may involve long term goals which
are not captured in the period by period maximization of the recurring setup. Thus, a
hyvbrid analysis of rational learning by players with lives of varving lengths is needed to
fully address situations which are not strictly repeated. vor strictly recurring.

34



assumptions. Aoreover, results by Jordan {1993} in the context of boundedly rational
learning sugeests that in general there may be difficulties in learning to play mixed strategy
equilibria when these assumptions are relaxed. At this time. we do not have much of an idea
of how the results extend when these assumptions are violated, but view 1t as an important
e 13
issne for future research.

Finally, let us sav something about the existence of an uncertain Bavesian equilib-

24 If the set of tvpes receiving positive probability given the initial uncertainty 1" is

riuti.
finite {even il the support of T over possible 7's is not), then existence can he established
using standard results. ‘Uhe first stage is simply a finite Bavesian game (with a possibly in-
consistent prior) for which an equilibriuin exists. Using the first stage equilibrinm strategies
for cach type. the second period updating is then clearly defined and the existence of equi-
librinm strategies for the second period. conditional on any of the finite possible histories.
can be established. and so on. If there is an infinite set of possible tvpes under the initial
uncertainty, then the type-agent representation of the first stage game will have an infinite
number of plavers. as possibly will subsequent stages. In such a case the existence of an
uncertain Bavesian equilibrinm will depend accordiugly ou the existence of an equilibriuim

in these corresponding static games.

23 We refer the reader to Lehrer and Smorodinsky (1994) for some recent work which has
implications for this issue.

24 Nachbar (1995) raises interesting issues related to existence. He shows that in a class
of infinitely repeated 2 hy 2 games. if the sets of strategies that each plaver considers as
plausible are sufficiently diverse in a specific sense. then it is not possible to have beliefs
over the plausible strategies such that players learn and have plausible strategies that best
respond to those heliefs.  Although. the incompatibility depends on the class of games
considered and appropriateness of the diversity condition (which is not easy to gauge).
Nachbar's results suggest that there is still much to understand about the beliefs that are
compatible with both learning and the existence of an equilibrinm. Also. although Nachbar
considers repeated games, there may be some analog of is results for recurring games. Such
an analog is not obvious, however. since in a recurring game players care only about their
own stages. thus substantially weakening the best response reqnirement. and are learning a
distribution over tyvpes rather than a specific type.
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