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ApsTracy. It s known that the only subgaime perfect equilibrium for finitely re-
peated Prisoner’s Dilemma games consists of “defecting” in every round. Finitely
repeated gajes are only representative of a class of Indefinitely repeated games
where the sole subgame perfect equilibrinm is noncooperative. This broader class
of repeated games with “quasifinite” continuation probabilities is defined.

A matrix inequality is recalled that when solved by a cooperation vector, induces
a subgame perfect equilibrium. A condition for continuation probabilities indicates
when this matrix inequality can be satisfied at equality by a cooperation vector.
The associated strategy is a cooperative subgame perfeet equilibrium.

I, INTRODUCTION

The types of equilibria for finitely and infinitely repeated generalized. Prisoner’s
Dilemma games are markedly different. Past work has conecentrated on the graph
of equilibriun payolfs in repeated Prisoner’s Dilemima games. see Stahl [L1]. In
Jones [3] and [6]. the geometry of subgame perfect equilibria for indefinitely repeated.
generalized Prisoner’s Dilemma games is examined. Also in Jones [6]. the conditions
tor the existence of cooperative subgame perfect publicly correlated equilibria is given.
The characteristies of these equilibria fit naturally between the equilibria of finitely
and infinitely repeated games.

("arroll T1] examines indefinite terminating points of repeated Prisoner’s Dilemima
game. But as Becker and Cudd [3] promote in their response to Carroll. there are
cooperative equilibria for some indefinitely repeated pames. In this paper. continua-
tion probabilities are classified as to whether there exists any generalized Prisoner’s
Dilemma games with cooperative equilibria. Continuation probabilities satisfving
this condition are called “quasifinite” since thev have the equilibrium properties of
finitely repeated Prisoner’s Dilenina games. The henefits are obvious: defecting in

Wey words and phrases. Conmtinuation Probabilities. Prisoner’s Dilemima. Subgame Perfeet Equi-
librinm . Indefinmitely Repeated Games,
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every round 1s the ouly subgame perfect equilibriam for any generalized Prisoner’s
Dilemma game (regardless of the pavoll mairix) repeated indefinitely by a quasifinite
continttation probability, Quasifinite games encompass the class of games examined
by Carroll. but alzo show that a positive probability of the game continuing to the
next ronnd s not sufficient for the existence of a cooperative equilibrium for some
generalized Prisoner’s Dilemma game.

In Jones [5] aud [6]. publicly correlated strategies have associated cooperation
vectors, When a matrix mequality equivalent 1o the one-stage-deviation principle is
satisfied. a cooperation vector represents a subgame perfect strategy. The matrix and
its spectral radius depend on the discount parameter and the continuation probability,
When a value associated with the stage game is less than the spectral radius, then
there are cooperative subgzame perfect equilibria. When this value is greater than the
spectral radius. then there does not exist any cooperative subgame perfect equilibria,
When this inequality is satislied at equality. the cooperation vector may or niay not
define a viable strategy. The existence of a cooperative equilibria in these cases s
equated with a limit converging. This imit classifies which continuation probabilities
have cooperative strategies associated with them that will satisfyv the matrix equality.
Fxamples demonstrate some of the subtleties involved in this analvsis. Some general
praoperties (such as monotonicity) of continuation probabilities are considered.,

Backeround material. the model. and pertinent previous results appear in Section
2. The Classification Theorem appears in Section 3. The existence of cooperative
equilibria satisfving the matrix equality is examined in Section {. Throughont the
paper. examples illustrate the analvsis of games which previoushy were difficult. if
not mpossible. to analyze.

D0 INDEFINITELY REPEATED. GENERALIZED PRISONER'S DILEMALA GAMES

I proceed by introdneing notation for a stage game with standard information. .c..
where there is only one state of nature and the plavers know all the past moves of
cach plaver, Let N = {1.2..... n} be the set of all plavers. Assume that there s a
litite action space and that a wility function (v; for plaver 7] maps this set into the
real nmbers. In the past. the disconnt parameter was considered as hoth a disconnt
on fnture pavolls and as the probability that the game continues to the next round
(r.g.. Murnighan and Roth [9]). Tn this paper. the discount parameter & € (0,11
denotes how the plavers” utilities decrease over time. The uncertainty about the
game continuing is captured by the continuation probability.

Definition 2.1. The time-dependont continuation probabdity 3 1< defined by 3 =
(). 30 ) where Fp € [001]. The number g is the probability that the game will
continne to the &% ronnd given that the (b — 1) round oceurs.

Notice that both finitely and mfinitely repeated games can be represented by con-
tinuation probabilities. The continuation probability for a finitely repeated game of
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r rounds is represented by the sequence consisting of r s followed by a tail of ze-
rocs. For an infinitely repeated game. 1t s the sequence of all 1750 The continuation
probability is assumed 1o be common knowledge. The expected pavolt for the indefi-
nitely repeated game weights future pavolfs by both the discount parameter and the
continuation probability,

[ use a characterization of stage games generalizing the Prisoner’s Dilemima that
is found in Bernhein and Dasgupta [3]: a comparison 1o their work appears at the
pertinent junctures. Specifically. T eonsider stage games with a single inelheient Nash
cquilibrinm and normalized pavolls so that the cach plaver receives zero utiles under
the Nash equilibrium. The normalization tmmplies that there exists at least one efficient
strategy whose pavolls are positive and. thereby, strictly Pareto dominate the payoffs
of the Nash equilibrium. Let X be the set of mixed strategies for the stage game
and X, be the set of mixed strategies for plaver 7. Let the single Nash equilibrium
the stage game be denoted by o™ The normalization implies that w (a7) = 0 for all
plavers ¢.

Deline a function i+ ¥ — R that gives the maximum gain to playver ¢ if her
opponents stick to a fixed strategy o and if she is allowed to deviate from o, Therefore.
filoy = ma\;[u_;(ri.rr_i) — u{a)]. Notice that fi{e™) = 0 for every plaver ¢ by the

=

definition of a Nash equilibrium. Also. notice that fi(o) > 0 for at least one player i
for all mixed strategies 0 # o™ of the stage game.

Since 77 is ineflicient by assumption then there exists a 7% € ¥ such that w(77) >
wi(a™)y =0 for all 7. Let 77 be a fixed strategy such that w,(77) > w(¢7) for all 7 and

; : fi(7)
7T € arg min ¢ max - I

TS

The strategy = is an improvement fronm o™ for every player. vet also minimizes the
benefits from deviating from 7.

Asstime that plavers use publicly correlated strategies. So. plavers essentially basce
their collective strategy on the public observance of the flipping of a A-coin. Let
Azl = (1 = N7 represent the correlated strategy where, swith probability Al the
plavers all play 7= and with probability (1=2A) the plavers all play o7, The parameter A
represens the level of cooperation where A = 0 is noncooperative and A = | is purely
cooperative. The pre-discounted expected ntility for player 7 using this correlated
<trategy in the stage game is

AT+ (= N[ = A7)+ D= Mo = Au(F7).
Therefore. cooperation increases the expected pavolf. but also gives a more lucrative
incentive for plavers to deviate from the strategy since fi{77) > 0 for all ..

l.et S be the strategy profile for the indefinitely repeated game where the plavers
play the correlated strategy Ap[77] + (1 — Ay ){o™] at round £ until a player devi-
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ates. Enforcement is by a grim trigger mechamsm. where deviation from 77 warrants
punishment with o7 in all subsequent rounds. Deviation from A [77] + (1 — Ag)[e7]
= immediately obvious 1o the other plavers due to complete information. There is
an inmportant temporal aspect in this definition. T am requiring that the deviation
is decided before the observation of the probabilistic event. One can think ol this
restriction as adhering to a mechanism and making the decision to deviate in a par-
ticular round at the beginning of the game. Similar results. however. hold if the
deviation occeurs alter the event. Relving on grim trigeer strategies is sufficient since
any stthgame perfect outcome can be supported by a grim trigger mechanism [1].

Define N = (A1 Az Ayl ..o ) 1o be the cooperation vector associated with the strat-
ceyv profile S0 The cooperation vector A measures cooperation for the indefinitely
repeated game just as Ap measures cooperation for round k. The strategy profile
Sowith an associated cooperation vector AL is a subgame perlect equilibrivm if 1t
salisfies the one-stage deviation principle. The following proposition appears as a
corollary to a proposition in Jones 5] and [6].

Proposition 2.1. (Jones [BF and [G]) The straleqy profile S with the associated co-
opcration veetor N is a subgame perfect cquilibriwm of and only iof. for cecry round kb
and cvery player 1.

50 Ji77)

(2.1 A< M ADN where

TH

U (\.))3 (‘-‘2“;_3.));; ({':{j_g-),:g.j,l (\lj-_)-'}_'g-ip‘jr,

0 0 (\-),_'; b2.1:5.j_; (\:{<j’j;.il<j,_-‘]

Mo ) = | |
G 0 0 &3 023, 3

The following theorem dictates, in part. when there exists a cooperation vector
fand henee a subgame pertect equilibrium) satisfving Fquation 2.1, The theorem ap-
pears inJones [6] and utilizes the spectral radins of the matrix defined in Proposition
2.1, Jones [T] examines the existence of positive eigenvalues with associated eigenvec-
tors containing all positive entries. These eigenvectors ultimately define cooperative
strategies. Surprisingly. the existence of such eigenvalies and eigenvectors does not
relv on 1the Krein-Rutman Theoren. the infinite dimensional counterpart to Perron-
Frobenius Theory {(both of which have been successtully applied in mathematical
cconomics previoushy e.g.. Kohlberg [8] and Samuelson and Solow [10]).

Let g represent the spectral radius of M{&.4). TFrom Joues [7]. when the con-
tinnation probability consists of positive entries. the spectral radius is given by
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1
€8 S
"= where & = lim H 3,1 . To simplily notation. let g be the maxi-
| & =
. fir* . . . .
i of {%} - Again. in the theorem below assume that J. > 0 lor all A
AN e

3= 0 then the game 1s linite.

Theorem 2.2. «a) When yo > p=. thore docs not st a cooperative cquilibrivm sal-
isfycng plN < MANC b)) When o< g Mhere caisl cooperatice cquilibria salisfying
< ML

The obvious omission from Theorem 2.2 1s when g = 570 The existence of a vector
satisfving Fgnation 2.1 and defining a strategy (/... all entries between (b and |
melusive) is considered 1 Section 1. Further, notice that g is alwavs positive by the
definition of 7. If the spectral radius of M (&0 4) is zero then there does not exist a
cooperative subgame perfect equilibrinm regardless of the stage game (because grois
never less than zero)., This idea 1s used 10 classify all the continuation probabilities
which do not have a cooperative subgame perfect equilibrium for any generalized
Prisoner’s Dilemma game.

3. Tur CLASSIFICATION THEOREM

For a finitelyv repeated generalized Prisoner’s Dilemma game. it is well known
that defecting in every round is the only subgame perfect equilibrium. However. the
continuation prohabilities of finitely repeated games are only representatives of a class
of continuation probabilities with this property. The theorem belosw fully represents
these continmation probabilities. The subsequent corollary. remarks. and examples
display some of the subtleties and implications of the classification theorem. Recall

. i 41 B
that & = hm | I 5,
=2

Definition 3.1. The continuation probability .7 is quasifinile if and only if there does
not exist a cooperative subgame perfect equilibrium for any generalized Prisoner’s
Dilemma game when indefinitely repeated under 3.

Theorem 3.1. A conlinuation probability 3 is quasifinide if and only if £ = (.

The proof of Theorem 3.1 appears in the Appendix. Bernheint and Dasgupta [3]
examine indelinitelv repeated. generalized Prisoner’s Dilemma games with both finite
and continuous action spaces where the continuation probability is asvmptotically
fimte.

Definition 3.2. (Bernheiim and Dasgupta [3]) The continuation probability .4 is
asymptotically finite Al and only il hm 4, = 0.

br—
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They prove that there does not exist a cooperative subgame perfect equilibrium
[or any generalized Prisoner’s Dilennma game with finite action spaces when the con-
tinnation probability is asvmptotically finite [31. Their result follows from Theorem
3.1 and appears as the lollowing corollary. The proof appears in the Appendix.

Corollary 3.2. An asymplotically [inile continwalion probabilily is quasifinite.

However. there is a difference between quastlinite and asyvmptotically linite contin-
nation probabilities. The following examples and remarks make some of the distine-
tions more clear.

Remark 3.3. There crist quasifinile conlinualion probabilities which are not asymp-
tolically finile.

Example 3.4. Cousider the continuation probabdity defincd by

1 if ks odd

4. = )
(1;)} if ks erven,
1t follows that
1
e i J ;l-}-lT
&= lim 3,1 = hm (—)) = 0.

b

1l

J
The conlinuation probabiity 3 is quasifinite. but not asymplotically finite.
The continuation probability in Example 3.1 does not converge to zero. but does

have a subsequence converging to zero.  This is necessary, but not suflicient. to
guarantee that the continuation probability is quasifinite.

Proposition 3.5. If 4 is quasifinitc and 3 >0 for all k. then 3 has a subscquence
conrerging lo zoro,
Proof. Assume that no subsequence converges 10 zero. Hence, there exists a lower

bhound. ¢ > 0. such that Jp =  for all £, 1t follows that

i+ L 3

sl
&= 121\1 II73] = lim H o] == 0.
i=2 4=2

i
This contradicts that £ = 0. Therefore. a subsequence of 3 converges to zero. g

Remark 3.6. /f is nol sufficicnt for @ subsequence to converge to zero for a confin-
wation probabdily to be quasifinite,



THE CLASSIFICATION OF CONTINUATION PROBABILITIES

For some generalized Prisoner’s Dilemma game. there exist cooperative equilib-
ria when indefinitely repeated by continuation probabilities with subsequences that
converge (o zero. but are not quasifinite. Under such a stage game, although the
subsequence indicates that there are shocks which may cause the game to end with
higher and higher probabilitv. the existence of a cooperative eguilibrium indicates
that the plavers are still optimistic about the future. The following example demon-
strates a continuation probability with a subsequence converging to zero which is not
quasifinite. This example (with a specific stage game and equilibrinm strategy) is

thoroughly examined in Jones [5] and [6].

Example 3.7. 7.ci 3 be the continuation probabiiy defined by

1.
V=1

3 -
(-) if VkeN
1 otherersc.
By definition,
L A L
s+ 1 n !2')+l ns IR ; J' e
j=2 R SO e

Il

. (:3) |7 3V V3
lim - = (—) = .
nd— l ] 2

Although 3 has a subscquenec converging to zero. i is nol quasifinidc. By Theo-
ver 310 there crists o cooperalive subgame perfeel equilibrinm for some generalized
Prisoncr’s Dilemma game indefinitely repeated by 5.

Lo SontTioxs To TuE MATRIX EQuaLrry

Recall from Section 2 that g is delined as the maximum of {H{—%} e Jones [6]
LA [ =i

proves that a cooperative equilibrium exists if = > g and that only the noncooper-
ative equilibrinn existsal g7 < g
In this section. [ examine the condition necessary for a cooperative equilibrium

. - S . . . ra-

exists and g7 = max ;l([”))' I'his is equivalent to answering 1he question. “When does
=AY :

a cooperation vector satisfy VA = ;7 A7 As is proved in Jones [T]. every value is

an eigenvalue of M with an eigenvector consisting of positive entries, In fact. the

clgenvector associated with any eigenvalue is unique up 1o multiples. Recall that a
vector defines a strategy if all its entries are between (0 and 1. Any vector with all
positive entries can be rescaled to represent probabilities as long as the entries are
bhounded. ie.. il the vector is in (™. However. the vector may be in R, but not
(. If the vector is unbounded. it cannot be rescaled so that all of its entries are
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probabilitics. The following proposition indicates when a vector defines a strategy.
and when it doesn’t. But. it is the corollary and examples that indicate the utility
of this proposition.

Proposition 4.1. A nontriviel veclor N* satisfying M\ = =\ can be rescaled o
de fine a cooprralive subgame perfeet cquilibrinm i and only

k+1 —1
(11 llilll‘ Ek(]:[ )’) < .

The lollowing corollary and examples help characterize the necessary properties of
the continuation probahility for a strategy to satisly the matrix equality. The proofs
ol Proposition 1.1 and Corollary 1.2 appear in the Appendix,

Corollary 4.2, [[ {3}, isx monotonically nonincreasing. then a nontrivial veclor
selisfying M = 3\ can define « coopcrative subgame perfeet cquilibriovm under
suitable rescaling.

Plaver 2

defect cooperate
d
e . - N
& 0.0 3.1
v
1
Plaver | .
O
O
I
A -1.3 2.2
A
a
|
o

Bimatrix form of the Prisoner’s Dilenuma
Figure 4.1

Example 4.3. Consider the slage game given in Iligure .00 Nobice that it sot-
isfies the condifions of a genervalized PD game given in Scetion 2. Specifically.
= {eooperaie_cooprrate). u ™)y = 2. and fi(77) = 1. Ll & =

LV

Let the con-
tinuwation probability be defined by 3, = 1 — (%)* it follows that € = 5. Thoreforr,

« _ 1
= =
Corollary 1.2 guarantecs that there ceists a nonlvivial solution lo MN = =X = p\
which il define a strateqy upon vescaling. The only solutions to M 2 p\ are
mulliples of an cigeneector satisfying the wmalrie cquality.
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When 7 1s montonically inereasing, Theorem Ll provides information about the
rate of convergence to determine if there exists a cooperative subgaime perfeet equi-
librium for the matrix equality. The following two examples demonstrate this rate of
CONVETEeIICE,

Example 4.4. Again, consider the stage gume given in Figure .40 Lot the discownt
paramctor & = Lo Lt the continuation probability be defined by 3 = AKT for all'k. Hi

i
Jollows that

Tt—

ri 1 ’l_‘ 2 r]_z
E=lim [[[ 4] = lim (m> = |

sinee Jim Lln (—2—) = 0. The speeiral rodins s
PR rit 1

LYo Thercfore. a nontrivial veclor
defines a coopcrative subgume perfect equilibrio if N~ 1% where A7 =1 and

A+ =1 I8 |
No=81] %) = J)“ :

=2

Obviousty. T AL = oc. By Theorem L1 there docs not crist a cooperafive subgane

Aoe— T

perfect cquilibrivin Jor Hhis andefinitedy repeated game.

The continuation probability of the preceding example was monotonically mcereas-
ing and converged to | too slowly.  Compare this 1o a monotonically increasing
contimuation probability that converges to | more quickly,

Example 4.5. [ci the stage game given 0 Figure J.0 and & = 15 Led the continua-

5
tion probabilify b defincd by 4, = UV s s the last crample. 3 (s monolonically
incrcasing and £ =1, As before, 7 = % =y which means that a cooperative sihgame
perfoel cquitibrivm ceists only (o nonlrivial cogenvector defives a legitinale stralegy.
Theorenm L holds sinec

I8 -1 £ o -5y
lim &° [T 3 = lim [ ] VY = e = = Ve < x.
fo—m it ’ h—n \ - 5 k—

71: =

Henee, a cooperative solution exists for MN = p\.

3. CONCLUSION

Finitely repeated games only have a single noncooperative subgame perfect equi-
librium for any eencralized Prisoner’s Dilenmina game. This equilibrinm property is
not limmited to finitely repeated games: quasifinite games generalize finitely repeated
games. When a Prisoner’s Dilemma game is indefinitely repeated by a continuation
probability from the class of guasifinite continnation probabilities. there does not
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exist a cooperative equilibrium regardless of the discount parameter and the stage
gaie.

Additionally. continnation probabilities have been classified as to whether nontriv-
ial vectors. with associated strategies, exist which satisfv a matrix equalitv. The

induced strategies are subgame perfect equilibria. Althongh there exists a nontrivial
:'qmlllnmm for the matrix equality when the continuation probability is monotoni-
cally nonincreasing. in general. the existence of a cooperative equilibrivim is equated
with a limit converging to a {inite value. These facts and the examples in the pa-
per demonstrate that the analvsis of indefinitely repeated. generalized Prisoner’s
Dilemima games contain subtletios that are not present in the finitely and nfinitely
repeated games.

6. APPENDIX

Proof. (of Theorem 3.1) (=) If 4 1s quasifinite, then the matrix inequality M.\ >

fi{-* B . . . .
LU\ s never satisfied for any stage game. However. for any value of ISR

i (7*) u(7)
there exists a stage pame. And. WA > f’ : )] A has a solution as long as ™ > %
Sinee g7 = 0. the only possibility is for ,u = 0. The spectral radius is zero only when
&=10.

(<) From Jones (6], there exists cooperative equilibria when

- &é fz'(rx) . .
o= — > ———for every plaver 7.
| — &¢ w7

The ratio i’::)) is always positive and depends solely on the stage game. I & =0
then = = 0. Tt Tollows that 0 > LU 4 never satisfied for any generalized Prisoner’s

u{r*)
Dilemma game. Hence. Jis quasifinite. g

Proof. (ol Corollary 3.2} Since lim % = 0. then for any ¢ > 0. there exists some

o A W
o€ N osuch thar 3y < ¢ for all £ > n. It follows that the speetral radius of the
contintation probability

He =
¢ o k>n
is ereater than the spectral radius associated with 4. Consequently. £, > &, for
anv . However. &, = «. Therefore. &5 < ¢ for any «: this 1mplies that &£, =
0. Applving Theorem 3.1. there are no cooperative equilibria for any indefinitely
repeated. generalized Prisoner’s Dilemima gane when the continuation probability s
asvinptotically finite. g
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roof. {of Proposition L1) By Jones [7]. a solution to M = g~ X is a multiple of the

vector A where A7 = 1 and

ot
Ay = (&) H 3, for A > 1.
(=) Il Equation L1 holds then
k41 !
lim AL, = ]1111 S H 9,

Koo
and A* 15 bounded and consists of positive entries. Upon rescaling. this vector defines
1 strategy and hencee a subgame perfect equilibriun.

(=) I A" can be rescaled to define a cooperative subgame perfect equilibrium then

Fguation 1.1 holds. g

Proof. (ol Corollary 1.2} Since {4:}72, 1s monotonically noninereasing and bounded
then ]llIl;__\ Fioexists,
[t follows that

below by 0. Assume hmg—+ 3 = a.

Hll])])()ﬁl(‘ ll'(!l a > ¢

re+1 7 ri+1 i
E=Tm [[[3] =lim [[[a] =«
X N N 7 B
= i

which 15 a contradiction.
Suppose that £ > a.
N such that »o> N imphes that 4, <

Since the sequence converges monotonicallv. there exists an
2*E Define a continuation probahility i by

G if k<N
. =
ot ,
3 Y B S S
1
- B it l 7 . - —~ . . "
l.et é.,,. = L [ [] ] - It loliows that & > & since yr > 3 for all b But
S i:z
E, = < &£ Therelore. € = o.
‘*,m((‘ {f b, s monotonically noninereasing and converges to & then — < |
~1
. . . —~ k A1 . .
for all £ Consequentlve lim (£)° [ [T 4, < . By Theorem L1 a nontrivial
h—‘.\, —7

cigenvector assoctated with g7 can be rescaled to define a cooperative subgame perfect

cquilibrium. g
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