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ABSTRACT. A continuation probability 1s mtroduced to develop a theory of indef-
initely repeated games where the extreme cases of finitely and infinitely repeated
games are specific cases. The set of publicly correlated strategies (vectors) that
satisfy a matrix inequality equivalent to the one-stage-deviation prineiple forms a
cone of cooperation. The geometry of these cones provides a means to verify intu-
ition regarding the levels of cooperation attained when the disconnt parameter and
contintation probability vary,

A bifurcation point is identified which indicates whether or not a cooperative
subgame perfect publicly correlated outeome exists for the indefinitely repeated
game. When a cooperative equilibrium exists, a recuesive relationship s used to
construct an equilibrium strategy, New cooperative bhehavior 1s demonstrated in an
indefinitely repeated game with infrequent shocks (a subsequence of the continna-
tion probability goes to zero).

I, INTRODUCTION

The disparity bhetween the size of equilibrium sets for the finitely repeated Pris-
oner’s Dilemima game and the infinitely repeated game has spawned a number of
attempts and methods 1o determine where cooperation begins between finitely and
imfimitelsy repeated games. Past work has considered the discount parameter either as
a discount on future pavofls or as the probability that the gamne continues to the next
round [10]. By introducing a time-dependent continuation probability describing 1the
conditional probabilitv that rownd & occurs given that round A — 1 oceurs. the dual
roles of the discount parameter are separated. The discount parameter 1s nsed only
to represent a discount on future pavolfs.

Ney words and phrascs. Repeated games. Prisoner’s Dilerma, continuation probability subgame
perfect publicly correlated equilibria.

“This research stems from my dissertation work nnder D0, Saari at Northwestern University: it
was supported in part by NS ogramt 1ST 9103130, This paper has benelitted from comments and
suggestions by 1. Kalal, MU Kilgonr. J. Rathif, and 5. Zabell.
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The continuation probability introdnces a continnun of indeflinmtely repeated games
which. in a sense. lie i1 between the two extreme cases of finitely and infinmitely re-
peated games. From this elass. [ examine indefinitely repeated generalized Prisoner’s
Dilemma games with finite action spaces. Bernheim and Dasgupta [3] examine indefi-
nitely repeated generalized Prisoner’s Dilennna games with both finite and continuous
action spaces. Their results are markedly different as they examine local hehavior
near a Nash equilibrinm. Both Carroll [1] and Becker and Dudd [2] discuss indefi-
nitely repeated games. As Becker and Dudd point out. Carroll considers indeflinitely,
but finitely repeated Prisoner’s Dilemma games. Further. Beeker and Dudd diseuss
the usefiulness of indefinitely repeated games with and withont a definite endpoint.

Past work has concentrated on the role of the discount parameter i determining
the set of possible equilibrinm pavolls for infinitely repeated games. For example,
Stahl [15] provides a graph of possible pavolfs of subgame perfect publichy correfated
equilibria nnder different discount parameters. My approach introduces a lincar op-
erator. a matrix inequality equivalent to the one-stage-deviation prineiple. and a
means for determining levels of cooperation. This is done by examining the set of
“cooperation vectors” associated with subgame perfect publicly correlated equilibria
satisfving the matrix inequality: the set forms a “cone of cooperative ontcomes.” The
model and linear operator approach are discussed in Seetion 2. Important for this
discussion is the observation that the matrix is defined solelv by the discount param-
cter and the continuation probability. The cone of cooperation and 1he motivation
of the continuation probability approach are presented i Section 3.

An advantage of this approach is that the tutuition that “more” cooperation is pos-
sible. when pavolfs are discounted less and swhen the probability that the game con-
tinues inereases, is quantified. (The result iscin part. described by the monotonicity
theorem which appears in Section 3 and is a direct consequence of the geometry of the
cone of cooperation.) Also. a “bilurcation point of cooperation” is delined in Section
I which identifies the border hetween indelinitely repeated games with cooperative
subgame perfect publicly correlated equilibria and those with only noncooperative
sithgame perlect publicly correlated equilibria. These theorems determine when co-
operative outcontes oceur i hetween finitely and infinitely repeated games. as well
as the <ize of the equilibrium set, Section 5 contains examples of finitely. miinitely.
and indefinitely repeated Prisoner’s Dilemima games and displays the nsefulness of
the bifurcation point. The indefinitels repeated game demonstrates cooperation for
a game that previously was indeseribable.

20 Tue MODPEL AND THE LINEAR OPERATOR APPROACH

[ proceed by introducing notation for a stage game with standard information. w.c..
where there is only one state ol nature and the plavers know all the past moves of
cach plaver. Let No= {1.2.. ... n} be the set of all plavers. Let [} = <7_ AD; be

the set of actions of the stage game where D; = {d{.d,. ..., df b s the set of actions

2 i1,
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for plaver 7 at any round ol the repeated game. Here A, i the space ol probability
distributions over ). The utility function for plaver o w, + 1 — R. deseribes the
nnweighted pavoll to playver ¢ for any action taken by the plavers. The indefinite
nature is described by the continuation probability.

Definition 2.1. The {ime-dependent continuation probabiity 3 is defined by 4 =
(S a0 ) where 3 € [001]. The number 3 is the probability that the game will
continue to the &% round given that the (& — 1) round occurs.

Notice that both finitely and infinitely repeated games can be represented by con-
tinnation probabilities. The continuation probability for a finttely repeated game of
rrounds s represented by the sequence consisting of # s followed by a tail of zeroes.
For an infinitely repeated gaime. 1t s the sequence of all T's.

The continuation probahility is assumed to be part of the common knowledge of
the plavers. just as the duration of finitely and infinitely repeated games is common
knowledge, (For a discussion of incomplete information regarding the duration of
repeated Prisoner’s Dilemmas. see Ratliff [13] or Samuelson [11].) The discount

parameter & £ [0 1] denotes how the plavers” utilities decrease over time,

Anindefinite round game is defined by its stage game. its discount parameter. and
its continnation probabilitv. Therefore. an indefinitely vepealed ganc is defined by
the quintuple I = (N.Dow. 4.0). The expeeted pavolf for the indelinitely repeated
came weights fnture pavolls by botlr the disconm parameter and the contination
probability.

| examine stage games that gencralize the Prisoner’s Diletnma. Spectfically., |
consider stage games with a single ineflicient Nash equilibrium and normalized payolfs
so that the cach player receives zero utiles under the Nash equilibrium. Denote the
<ot of these games as 8. The normalization implies that there exists at least one
clficienm strategy whose pavolls are positive and. thereby. strictly Pareto dominate
the pavolls of 1he Nash equilibriun,

Bernheim and Daseupta [3] examine indefinitely repeated games with time depen-
dent continuation probabilities. However. they primarily consider continuous action
spaces bt retain the assumptions of complete information and full rationality. Their
results vield subgame perfect equilibria that are Pareto superior to the repeated Nash
ontcome. Their work depends. however. on continuous action spaces that provide a
local flavor 1o the analvsis.  An example of this 1s where they consider a Pareto
superior strategy in the strategy space of the stage gaine close to the inefficient
Nash equilibrinm. Bernheim and Dasgupta explore finite action spaces but restriet
their analvsis 1o continuation probabilities that are "asvmptotically finite” (that is.
Hing .o 4 = 0).!

"Aly analysis of finite action space games was initially imited to the Prisoner’s Dilemma. Bern-
et aned Dasgupta’s work suggests the normalization of gaines in 8.
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The nornmalizations of the pavoffs and the existence of a single Nash equilibrium
arc achieved by the following definitions. Let X be the set of mixed strategies for the
stage same. Therelore. Y = {a = (g).05. ..., ) Lwhere g, € A Let (NoDou) be
a stage game in S and let the single N (i‘wll cquilibrium in the stage game be denoted
by a7 By defintion. v {a™) = 0 {or ail plavers . Define a function f; + ¥ — R that
gives the maximum gain to plaver 2 1if her opponents stick to a fixed strategy o and if

sheis allowed to deviate from o, Therefore. [i{a) = ax (oo —u o], Notice
e @
hat fi{o™) = 0 for every plaver 7 by the definition of a Nash equilibrin. Also. notice

Ih:n ‘/';(rr) > 0 for at ieast one plaver 7 for all mixed strategies @ # o~ of the stage
vanie.

Since @ is ineflicient by assumption then there exists a 77 € Y osuch that wi(77) >
wio) =0 for all 7. Let 77 he a fixed strategy such that w (77) > w (o) for all 7 and

. : fi(7)
7T € arg nin { max —
T HES

Assume that plavers publicly correlate their cooperative efforts. So. plavers es-
sentially base their collective strategy on the public observance of the flipping of a
Acoin. Let N[77] 4 (1 = A)[z7] represent the correlated strategy where, with probabil-
ity AL the plavers all plav 77 and with probability (1 —A) the players all play 7. The
|mmm( - A represents the level of cooperation where A = (0 is noncooperative and
N = 115 purely cooperative. The pre-discounted expected utility for plaver ¢ using
this c'()l'l‘(‘lalvcl strategy in 1he stage game is

v AT 4 (L= e ) = N rT (= Neg(a7) = Awg(77).

Therefore. cooperation increases the expected pavoll. but also gives a more lucrative
meentive for a plaver to deviate from the strategy since f(77) > 0 for some «.

Let S be the strategy profile for the indefinitely repeated game where thie plavers
plav the correlated strategy Ag[77] + (1 — Ad[e™] at ronnd b until a playver devi-
ates. Fnforcement 1s by a grim trigger mechanisin, where deviation f['om T warrants
punishment with @ in all subsequent rounds. Deviation from A [77] + (I = Ag)[o7]
ix immediately obvious 1o the other plavers due to complete imformation. There is
an important temporal aspect in this definition. | am requiring that the deviation
1+ decided before the observation of the probabilistic event. One can think of this
restriction as adhering 1o a mechanism and making the decision to deviate i a par-
ticular round at the beginning of the game. Simitar results. however. hold if the
deviation occurs after the event. Relving on grim trigger strategics is sufficient since
any sithgame-perfeet ontcome can be supported by a grim trigger mechanism [1].

Define A = (XA Ayl L) to be the cooperation vector associated with the strat-
cav profile 5. The cooperation vector A measures cooperation for the indefinitely
repeated game just as Ay mcasures cooperation for round A The strategy profile
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Sowith an associated cooperation vector AL is a subgame perfect equilibrium il it
satizfies the one-stage deviation princeiple.

Proposition 2.1. e stralegy profilc S with the associaled cooperalion vector N s
a swbgame perfect cquilibriwm if and only U for coery round koand crory player 1,

S| A Ji(T7) + r\f;ff;(f‘x)} < B A7)+ Z & T Avssmt | Megrniils™)
=1

=1

which o cquivalonl fo

A (77) < Z & H Figs | Akt 7).

r=1 J=1

Proof. (<) The left hand side ol the mequality is the expected pavolf from deviating
at round £ The right hand side of the inequality is the expected pavoff from adhering
to the strategy represented by the cooperation vector. Every plaver at every round
receives a greater expected utility by adhering to the strategy. Therefore, the strategy
induced by the cooperation vector satisfies the one-stage-deviation principle which
implies that the stratesy is subgame perfect. (=) The other direction is similar. g

It is possible 1o arrive at an equivalent definition for 5 to he subgame perfect by
considering the following matrix.

” (\'i_) K“’.j’:.i_’; (\:ﬂ.jz.i‘;--j_l (Krl‘),g‘),_‘g-i].)}_!',
0 (] h‘j,;; (('2.7,_';.1,1 (‘;3.7]3-7);-7):‘,

0 0 0 &3y 83475

The system of inequalities for 7 fixed m Proposition 2.1 is equivalent to the following
matrix inequalities,
e < u (e Moo A

OF

fl( l.)

T

8%
8%

A<M (e A)A

since v A7) > 00 This matrix ineguality must be satisfied for all plavers . Due to the
stimilar structure of the matrix inequalities for the plavers. only the matrix inequality
57

e need be considered due to transitivity.

with the larsest
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Corollary 2.2, The stralegy profile S with the associaled cooperation roclor N\ is a
subgame perfect publicly corrdlated cquiibroom (of and only of. for crery playcr ¢
Fi) \
— A< Moo AL
AT '

Notice that the left hand side of the inequality 1 Eguation 2.2 depends solely
on the stage game while the right hand side depends on the continuation probability
and the discount parameter. This ineguality separates the information [rom the stage
same and the repeated process. The effects of changing a single parameter of the
matrix inequality vields information about the set of subgame perfect equilibria and
when cooperation ocours.

It is uselul to consider M{é..9) as a linear operator from (™ to (™. In doing so.
recall that the spectral radius of Mie. .93 bounds the spectra of V(oo 3) meluding
1he absoline value of the eigenvalues, (See Dunford and Sehwarz (5] for information
on computing the spectral radius and 1ts properties.)  The spectral radius plays
an integral part of establishing the bifurcation point of cooperation in Section .
In general. the spectral radius is difficult 1o compute. However, since M (6, .9) s
nonnegative and upper triangular. the spectral radius is casier to compute. This is
discussed in Jones [T1 as well as in Section 1.

It is possible to examnine the properties of spectra of the operators associated with
continuation probabilities and discount parameters. The spectral properties allow
continuation probahilities to he classified by whether or not there exists a stage game
in S where non-trivial cooperation vectors satislyv the matrix equality, el the
existence of non-trivial subgame perfect publicly correlated equilibria. This work

appears in Jones 7]

3. Tur Coxt OF COOPERATION AND ITS APPLICATIONS

In finitely repeated Prisoner’s Dilenima games it 1s well known that the only sub-
game perfect equilibrium requires plaving the Nash equilibrium in every round (e.q..
Luce and Raifla [91). However, when infinitely often with sufficiently large discount
parameters. these games have an infinite number of outcomes preferable 1o defecting
in every round (Myverson C11]).

Radner [12] disensses the “discontinuity™ of the set of equilibria that arises when
the number of rounds of a repeated game tends 1o nfinity. He shows, under cer-
tain bounded rationality conditions. that equilibria in finitely repeated Prisoner’s
Dilemma games can be cooperative up to a number of rounds before the repeated
same ends. In my framework. this intuition is represented by the continuation prob-
ability ol the finitely repeated game of » rounds approaching the continuation proba-
bility of the infinitely repeated game as r tends to infinity. The difference in thought
requires a few words.
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Specitically. let " be the continuation probability for the finitely repeated game of
rorounds, Let p be the continnation probability for the infinitely repeated game. As
Frends to infinity, p” and p mateh up in the fiest r terms,

. . roterms -
pr={1 1.0.0....)

p=1{l.1.1..... S I I

[ndeed, the sense that p” is getting “closer”™ to p can be justified by nsing the weak
topology of (™ when ™ is considered as the dual space of 1. Alternatively. capturing
the sense of “hounded rationality™ p7 converges to p under a metric that concentrates
more weight on the beginning terms of the sequence than the tail of the sequence.
(IFor example. iU d™ defines a metric on continuation probabilities where d%(p". p) =

*

Z ) (p e — (pie | then p” converges 1o p under 7 when ¢ is between 0 aned 1)

k=1

Under the sup norm metvie (dip™. p) = sup{| (p"), = p; |} = 1) used here. however, for
1€

all . p” does not converge to punder d. Thus. the approach described here introduces

a conceptually different way to resolve this puzzle.

The disparity ol the size ol equilibrium sets of finitelv and infinitely repeated
games is considered a discontinuity since as the number of ronnds of the finitely
repeated game increases. the equilibrinm sets do not converge to the equilibrinm set
ol the infinitely repeated game. Under a sup norm metric. we don’t expect to have
the equilibrinm sets of linitely repeated games approach the equilibrinm set of the
mnfinitely repeated game since the continuation probabilities do not converge.

This idea is the basis for results substantiating our intuition about cooperation
increasing as the probability that the game continues nercases. By concentrating
on the geometry of the subgame perfect publicly correlated equilibria and not the
expected pavolls of the strategies. T am able to justify the intuition that more coop-
cration is possible when the game is discounted less or has a greater probability of
continuation.

The set ol cooperation vectors =atizfving the matrix nequality in Equation 2.2
forts a cone intersected with the closed unit sphere in . This set is called the cone
of coopcration. The cone of cooperation is convex and closed under multiplication
by a positive scalar. as long as the restriction that the cooperation vectors all have
entries between 0 and 1 inclusive holds.

The convexity aliows for the construction of an infinite number of subgame perfect
cquilibria just by knowing two different cooperation vectors that satisfy the matrix
inequality, Bt sinee the veetor {0.0.0....) =olves the matrix incquality. then any
nonzero cooperation vector vields an infinite number of subgame perfect equilibria.
The closure under multiplication by a positive scalar insures that when the cone
is nonempty then there exists a subgame perfeet equilibrivm that achieves full co-
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operation for at least one round: actually, there exists a subgaime perfecet publicly

correlated equilibriwm with sup Ay = 1. The proof of the following theorem follows
kel

directly from the Tinearity of V(. 4): it appears in Jones [6].

Theorem 3.1. For o fired indefinitcly repeated game, the set of cooperation veetors

that induce subgame porfeet cquilibria forms a conc infersecicd with the closed unit

hall in 1™,

Intuition suggests that more cooperation is possible for a repeated game with a
greater probability of continuation. Further. as the discount parameter increases. we
expect a greater range of cooperation vectors 1o be in the cone of subgame perfect
equiltibria of indefinitely repeated games. Not only does the coue of cooperation in-
crease under the above changes. but the larger cone contaius the smaller cone. This
wlea s captured in the following monotonicity theorem. Let (7(é..9) represent the
cone of cooperation vectors that indnce subgame perfect equilibria for the mdetfi-
nitely repeated game with fixed stage game. discount parameter 8. and continuation
probability 7.

Theorem 3.2. If o and 3 arc continualion probabiditics such that ay < 3, for all 1.
and & and &, arve discount parameiers such that & < &, then

C'(&1.a) C a0 9).
Proof. Suppose A € o a). It follows that for all plavers 7 and rounds &

~

WAL RS ST I | YO DV EagT

=1 =1

But o, < 4, and & < & mply

- - N v
> e H gy | Ayt {77) < Z ST s | Avwril77)
=1

r=1 a=1 g=1

< Z Al H Feg, | Ageu (7).

r=1 =1
Transitivity implies that A € (8, 9): henee, C(é.a) CO(6,0 7). o

While this theorem insures weak containment. the inequality hecomes strong when
('(&.a) is nontrivial (that s, C(éLa) # (0.0.0....)) because 11 1s ecasy o constnet
a vector in C'(é&.03) that 1s not in C'(&. a). When the discount parameter or contin-
nation probability changes. the cones expand and collapse i response. How do we
know when the cone of cooperation is trivial or nontrivial? This question is addressed
i Scection 1.
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I T BIFURCATION POINT OF COOPLERATION

When does a nontrivial solution exist to an indefinitely repeated game? Turther.
how do we lind a cooperative equilibrium?  The bifurcation point of cooperation.
s is a tunction of & and & a number associated with the continuation probability,
[t divides the matviy inequality. v < AL into noncooperative and cooperative
regions depending on pr To see how the bifurcation point works. realize that a stage

f-r
ol
how mueh deviation plaver ¢ prefers to cooperation where she would receive u(77)

game gives the ratio )) [or every plaver ¢. Essentiallv. this number represents

in future rounds. Let g be the maximum of {%} . I < gm0 then there
A ic N

exists a cooperative outcome. I g > g7 then there does not exist a cooperative

cquilibrium. When g = g7 the existence of a cooperative equilibrium depends on the

characteristics of the continuation probability {(.g.. 15 the continuation probability

monotone? ). Jones [7] explores this last consideration.

For a fixed continuation probability 4 and a fixed discount parameter &, let M =
Mo 3y Further. denote the cone of cooperation vectors satisfving A < W\ as
C'(pr). The prools of the following theorems appear i the Appendix and are ac-
companied by lemmas and text which develops the necessary funetional analysis,
However. 1o give imtuition to the techniques eruploved. remember that M ois an op-
crator from (% 1o (™. The bilurcation point 15 actually the spectral radius of the
operator M. The spectral radius 15 a nonnegative real number that hounds all of the
cigenvalues with eigenvectors in (. I general. the spectral radius of an operator can
be difficult to compute (see Dunford and Schwartz [3]): however. since M is upper
triangular and nonnegative. 1t is casier to compute the spectral radius of M.

I limit the juspection to continuation probabilities with all positive terms. e,
Fio> 0 for all &0 I 3, = 0 for some £, then the game s finite and there are no
cooperative outcomes,

The following equation relates the spectral radius to the continuation probability
and discount parameter. This cquation is due in part 1o the spectral radius be-
ing a linit point ol a sequence ol eigenvalues and the speetral radins bounding all
cigenvalues (with cigenvectors in (%) of the operator. The proof of the following

equation appears inJones [8]. For a continuation probability with all positive terms.
£o
. . . [
the spectral radius ol M s ———— where
| —&¢
L
i1 N
(1.1) &= lm H.J’f
fi— N " :
=2
The assumption that Jp > 0 for all & does not insure that € > 0. In fact. af
lim F = 0 then & = 0 and the spectral radius is zero. I this case. there does not

h—

exist any generalized Prisoner’s Dilenina game where cooperation is a sitbgame per-
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fect equilibrium. A classification of continnation probabilities as to when the spectral
radius is zero appears in Jones [6] aud [7]. In the following theorem, remember that
o> 0and ;o =0,

Theorem 4.1. a) When o = g~ there does nol crisl a cooporative cquilibrivm sal-
(sfiping p N < MO When o< ™, there creisi cooperative cquilibria salisfying
A< ML

We now know when there exists a nontrivial solution to A\ < M\, One question
remains: how do we find an equilibrium strategy? The {ollowing recursive formula
vields one such wav,

Theorem 4.2. For any real number a, such thal o < o < p= Ahe following the
recursive relationship

a

i 12) Ay, = | — AL
+ (0 4 118 3y

and X7 =1 defines a rector solulion Lo p N\ < MX. Upon rescaling. ™ defines an

cqudibrivm strateqy for the fuddfinitely repealed game.

The proof of the above theoren is contained 1u the Appendix. The idea stems from
linding eigenvectors for the matrix. M. which have @ as their eigenvalue. Rescaling
mayv be necessary 1o insure that the entries of \* define probabilities,

As pomercases. 1t follows that deviating becomes more profitable for at least one
plaver. We expeet that less cooperation should be supported by subgame perfect
cquilibria as goincreases. This intuition is substantiated below in Theorem 130 The
prool of this theorenyis in the Appendix and relies on constructing a vector in (7{ ;)
that is not in C'{pq).

Theorem 4.3. [ p™ F# 0 and 0 < py < gy <™ then Clun ) © Cllps).

50 EXAaMPLES OF THE Birtrearioxy Poist or COOPERATION

The specific examples of finitely and nfinitely repeated games demonstrate how
this type of matrix analyvsis encompasses the standard results from same theory. Al
though the results are standard in these cases. the method s quite different and vields
a different insight as to when cooperation is sustained by a subgame perfect publicly
correlated equilibriim. Example 5.3 examines a game that cannot be analvzed by
traditional game theory. An indefinitely repeated. Prisoner’s Dilemma game is con-
stidered with a continunation probabiiity that has a subsequence converging to zero.
A representative cooperation vector of the cone of cooperation is examined.
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Example 5.1. Consider a finitcly repeated game of length vo The associaled con-
tonwation probabidity 3 satisfics 3. = 1 Jor b < v and 3, = 0 for &k > r. No-
tiee that M{6.3) is a wilpotent opcrator: specifically, M7(é.3) (s the zcro matrir.
Thevefore, the speetral radius of M0 3) s zevo. (1] p7 s the spectral vadivs, thon
Mo N = () N = [0]N Thardforc. pm = 0.) By Theoram UL thore docs
nol crist a nonfrivial cooperation veclor X thal salisfies p X < M(&. N Jor any p.
This solution comeides with fraditionad game theory, but wlilizes the Lincar oporalor
approach,

The familiar result that cooperation in every round can be supported by a subgame
perfect equilibriunm in an infinitely repeated game as long as the discount parameter
is large enongh is examined in the next example, Reeall that for an infinitely repeated
game with stage game in S. (ull cooperation can be supported in every round (7.¢..
A = | for all B) by a subgame perfect publicly correlated equilibrium as long as. for
every plaver /.

. f(r
(5.1 — : < 4
' (filr=) = w7

For the infinitely repeated game. 1 show that the spectral radius s nonzero and that

the cooperation vector Ay = {1 1 L0 representing full cooperation in every round
15 an cigenvector for Wie, 4) as long as the discount parameter is large enough.

Example 5.2. [ec! F be e conlinualion probability rcprescnting the infiniiely re-
peatcd gume, So. . =1 for all ko By definidion, € = 1. Therefore, the speetval

vadies of M 3.8) is p™ = T By Theorcm L1 there crisis a nontrivial coopera-

Lon reclor satisfying p A < M6 )N for all o < p™.

Traditional gaane theory insures that full cooporation tn cecry round can be sup-
ported by o subgame perfect publicly corvdlated cquilibiia as long as Fquation 5.1
holds. Notice that Xy = (L. Lo 0) s an cigenvector of M{o.3) for the cogonralue

j= iT For \y to yidd a subgame perfecl equilibrivin, it follows for every playor
Hiat
I‘(_(;_n) . &
' N <MD = — A
vl = A [ — & !
st hold. But this malrie inequalily is frue, when for ceory o,
.[‘(‘(T!) < b -
w =) T L =@

However, this incquality can be rowrdien as Fquation 5.1,

Example 5.3. Consider the Prisoner’s Diemura ganee with the bimaltvie form given
in Figure 5.0 This game (s in S, I particular, there exists a single Nash cquildbriun,
the puie siralcgy o =(dcfect. defeet) with w{o™) =0 fori =1 and 2. Lel 77 be the
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pure straleqy feooperate, cooperate). Then 77 Pardlo dominales o= It follows tHat
File=)y =1 and wivs™) =2 for cach player 1.
Player 2

defeel coopcrale

¢
[ 0.0 3.-1
N
{

Player |

Bimatrir form of the Prisoncr’s Didemma
Frgure 3.1

Lei 3 be the confinuation probabilily de fined by

g \./-E.T—l
(~> i VkeN
i ot hrerwise,
For instance, 3y 3y, 35000 hare a decrcased Likelihood of the game continuing.

whie the probability thal the ganre continues (s assured oltherwise (3035095 3500,
are afl 1), Think of the continuation probability as adding scvere shoeks and dispersing

the shocks furthor apart as time gocs on. Fren though the shocks become more severe,
2

the shocks arc spread further and further apart. Lot the discount paramcter be & = 2.

By de finiion.

it A a1
rit1 I il 41 ni I 3 nd
= lim J.1 = lim 3 = lim ()
¢ ri— H 4 0 — U ! 1d—n . l
J=1 i=12 =2
1
wastiT L :
] 3N T 3N V3
= lim - =[-) = —.
e 4 1 2
: Lo DA . I +=v3 . .
Sabstituting in the valwes Jor & and & yiclds p= = — Sinee the speelral radius
JFI('—‘) N

is qreater than = 1 ffor both i}, then there caists a wontrivial subgame perfrel

e { ")
publicly corrclated cquilibricm for the indefinitely repeated game deseribod fn this -
ample. Thorcfore, the cone of cooperation consisls of vontrivial vectors including the

cigenroctor stralegy associated with the cigenvalue 1 given below. Thes strateqy de-
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Jines a subgame pevfeci publicly corvelated sivalcgy sinec Y <1 <y, (A legitimale
strategy is dfined by the cigenrector associaled with p~ also.)

Define o cooperalion vector N = (A Aq Ao 00) by the reeursive relationship of
Foauation 1.2 for the cigenvalue 1o The veetor X is given by Ay = | and

e /(1)

1o give a belter ddea of how N and 3 compare, consider the first 11 terms of cach

geren helow.

The continuation probabidity offers shocks fo the gaome, As the equilibrivon strateqy
approachics a shock. the coopcralion decreases sinec the game way cnd wilh high
probabedity at round 2. Howecreer, aftcr surviving a shock. the amount of coopcration
iercases sinee the nerl shock docs not oceur until round (k + 1% As the number
of rounds inercase, the shocks dissipale bul become more severe. The cristenee of a
~uhgame perfeel cquilibricm strategy indicales thal the playcrs ave forward looking and
~ec begond the Tigh probabiity of the qame cading, coon though there s a subscquence

of the continuation probability going o zoro.

6. CoNCLUDING REMARKS

By Himiting my focus 1o simple publicly correlated strategies. T have been able
to examine games in between finitely and infinitely repeated generalized Prisoner’s
Dilemima games.  The techniques and ideas in this paper exploit the geometry of
the set of subgame perfect publicly correlated equilibria. rather than considering the
gcometry of the pavolfs. Considering the restricted type of strategy, | have been able
to Justify intuition of what happens i hetween linitely and infinitely repeated games,
However. I concentrate on onlv a small portion of the continuum of repeated games,

Throughout, [ assumed equal levels of cooperation. e where all plavers play
the “cooperative”™ strategy with 1the same probability, It is possible to extend these
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resilts with publicly correlated strategies which utilize unequal levels of cooperation.
However. the analvsis vields a nonlincar operator which is difficult 1o manipulate.
This nonlinear operator is “hounded™ by an appropriate linear operator which vields
results similar to those in this paper. see Jones [6].

Finallv. it is possible to examine the speetral properties of matricesin retation 1o the
continuation probabilities. Continuation probabilities can be classified with regards
to the existence of a cooperative outcome for any generalized Prisoner’s Dilemmnmia
game by the spectral properties of the associated operator. This appears as the
(‘lassification Theorem of Continuation Probabilities in Jones [7].

7. APPENDIN

Asin Section 1. all the entries of the continuation probability are positive. Since
the continuation probability and discount parameter are lixed. then let MW= A& ).

Lemuma 7.1, Lrery number a is an eigenealue of Mo R™ — R* with an associated
cigenecctor unigue up fo maltiples.

Froof. The vector A7 is an eigenvector [or the eigenvalue ¢ if MA™ = o\ or equiv-
alently,

e

(f,\”,:Z & HJHJ Aoss

r=1 =1

for all A.

Let A7 = 1. Define the other terms of A by the equation
1 . |

pof Rk -1
(f ¥ '
o (o () e
K41 (.’+I EE J
Substitution of this equation below vields,
-1
2 ; ~ " o kb —1 k+r .
& o | AL = & s, ( ) 3 (#1757
2 e P =2 e D ) (1D
k - o B> p r
=& 3; ( ) ( ) = Nua=ul}
jI_Iz ! 4] ;, o+ 1 " g

which proves that A" = (A7 A L) is an cigenvector with eigenvalne a.
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Let X A7 be an eigenvector associated with ¢, Then o\ = VAL Tt follows that.
for all 4.
™ r
("'\k = Z & H .'J),=\.+,‘ ’\A"H

=1 A,":l

h r
= (\‘j)#'\'-}—l’\f\‘-}—l + Z (\.“ H ‘));*'+.I /\;\-+l.

r=2 =1

:(\7);‘.+]/\;‘.+] +g‘jj;+| Z (\'r Hj':"+.‘+] ’\"\‘T‘f‘+]l

r=1 =
- (L‘.),;\-+1/\\,’\-+] + (\.'jl(\.+|(l‘/\;\-+} = (g.j;\-41( ] + « :J/\;;+| .
since A s an cigenvector. [solating Ayyy vields the recursive relationship in Equation

=

1.2, Therefore. A7 s unique up to multiples.

The eigenvector associated with any number ¢ mayv not define a strategy. Recall
that all entries must be between 0 and 1inclusive. [fthe elgenvector contains bounded
entries. then a multiple of the eigenvector will define a strategy after rescaling. Notice
that the sign of all of the entries are the same,

Lemma 7.2. When o <™ then A e (™,
Proof. Let A7 be the cigenvector associated with a. It [ollows that

1
—1 3

1 I o fhl
_Iin} (A7 = lim ( ) H 3 ok

— S a+ |

7
— < |
(a +1)E

[y

since a < ——_The lmit implies that the sequence {A7} 15 bounded. Therefore,

Nedm g
Proof. (ol Theorem -1.2) The result tollows from Lemma 7.2, g
Proof. (ol Theorem 1.la)) This is a direct application of Lemma 7.1, g

Proof. (of Theorem 1L15)) Assume that A\ € (™ and consists of nonnegative terms
with at least one nonzero entry, Further. assume that A satisfies the matrix inequality,
WA > ph Define A7 = (A /sup{Ac}). The vector A7 is on the unit sphere in (7,
kel
Due to the lincarity of M. A7 is also a sotution to MA™ = p A\~
Since M ocontains nonnegative entries and M ois a linear operator, then

MENT = MM = MipAT) = et
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Upon iteration. 11 follows that M7A™ > 4"\ The vector Ay = (1. 1.1.000) s
termwise greater than or equal to A7 <nee N7 s on the unit sphere. Since M
consists of nonnegative entries then M7\, = W7A™ > N0 Under the sup norm
in (i follows that | A o > | AL
raclins of W and M having nonnegative entries.

= p*. By the definition of the spectral

1 i
= T [V e > i A > g

However. this is a contradiction sinee g > =, Therelore. ('{pr) consists solelv of the

ZeTo vector. o

Proof. (ol Theorem 1.3) Let A € C(yy). Then \ satislies g A < Moo 9) A Sinee
o N < AL transitivity implies that g A < Yoo )\ The cone Cijiy) is weakly
contained in Ciyy ). Tt follows that the eigenvector ™ associated with g~ is in both
CONes,

To show that ("(rq) 1s contained in and not equal to ('{jr3) requires proving the
existence ol a vector that s C'(pn) but not in C'(jr). The method is to construct
such a veetor by perturbing A~

Assume that A7 is not the vector consisting of all I's. Il A7 is the vector of all 17«
use the vector (A7/2) for the following construction. Let & be the first term where
AL < L. Sinee V7 isin the cones C{pq) and C(po). the following inequalities hold

oAy < AL < Z(\ 1T 3evi | s

r=1 =1
Let ¢ be defined to make the following equality hold

e

Jia( AL+ ) Z(‘\' H‘)’;\.ﬂ Mg

r=1 J=1
Clearlve e > 00 10 A7 + ¢ < 1 then define
N = (00N N N, A
=1 zeros

This vector V' satisfies po A" < M )N bt doces not satisfv the same inequality
with jig.
The inequality pp V<8 M (4 F) Y does not hold since

AL = AL G > st AL 4

:Z(v H'j,;"+,f /I"Ff':Z H )JAT, /;\ ,e
r=1

=1 [ a=1
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If AL + ¢ > 1 then deline

NM=1o0.0..... 0.1, A . Al ) Nz
—_— ,\I_+(/\:+(/\:+(

h—1 zeros

and proceed in the same fashion. It follows that ("(41) 1s contained in and not equal
to ("ya). o

I
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